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THE JSC CLUSTERING PROGRAM lSOC1S AND ITS APP1ICATIONS*

E.P. Kan

W.A. Holley

H.D. Parker, Jr.

10ckheed Electronics Company, Inc.

Houston Aerospace Systems Division

Houston, Texas 77058

1. ABSTRACT

The clustering program ISOC1S developed at the Johnson

Space Center, Houston, Texas, has been extensively used in the

pattern analysis and classification of remote sensor data collected

by aircraft and by the Earth Resources Technology Satellite ERTS-1.

This paper discusses the theory behind this clustering algorithm.

Several new ideas that have been incorporated in ISOC18 are

discussed.· Among these are the novel philosophy of operation

behind the procedure, which assumes that a population (i.e. a

class or a cluster) can be treated as the union of an appropriate

number of subpopulations, and the termination of the clustering

program by a •chaining algorithm l • Finally, t~s paper reports

the results of the application of ISOC1S to an-investigation on

rangeland vegetation mapping using ERTS-1 data.

1* The material of this paper was developed under NASA Contract #NAS9-12200 and prepared for the
Earth Observation Division, NASA Johnson Space Center, Houston, Texas 77058.
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II. INTRODUCTION

Data clustering is a process in which similar data points are grouped into the same

clusters while dissimilar data points are associated with different clusters. Clustering, i.e.

data grouping, has played important roles in the study of statistical data, in numerical taxonomy,

in the investigation of social as well as biological data, and recently also in the analysis and

classification of remote sensor data. In the context of remote sensing, data clustering has

emerged as one of the most important steps towards the pattern recognition of features or objects

of interest, as observed by remotely located sensors. In particular, the areas in which clustering

has been extensively applied are: (i) checking of homogeneity of data; (ii) aiding in detection

of boundaries between fields, e.g. agricultural fields; and (iii) nonsupervised classification of

data.

The clustering problem has been approached in many ways, as is apparent from the

literature. There are basically two main categories of clustering techniques: (i) the iterative

procedure, and (ii) the one-pass procedure. These two types of procedures are actually complementary

to each other, since each type possesses certain advantages over the other and conversely, suffers

specific disadvantages absent in the other. Basically, this is a trade-off between the speed and

the dependability of the two types of procedures. One well known example of the former type is

ISODATA, designed by Ball and Hall (Ball, 1966). An equal~y well recognized procedure of the

latter type is the one-pass alg~rithm, designed by Nagy and Tolaba (Nagy, 1972).

The clustering program ISOCLS, developed at the Johnson Space Center (JSC), Houston,

Texas, is of the iterative type, and is basically a derivative of ISODATA. However, several new

ideas have been incorporated into ISOCLS that makes it operate quite differently from ISODATA.

Actually, the philosophy of operation behind ISOCLS is novel. The new ideas involved are discussed

in Section III and Section IV. Extensive application of the program to investigate ERTS-1 and

non-ERTS data has been carried out at JSC (Kan, 1973), particularly in the area of nonsupervised

classification. A r~cent rangeland!nvestigation using ERTS-1 data to map vegetation types is

reported in Section VI. The general consensus is that the ISOCLS clustering program proves to be

a very useful and dependable tool for the pattern analysis and classification of statistical data

such as those collected by remote sensors.

III. PHlLOSPHY BEHIND ISOCLS

As in ISODATA (Ball, 1966), ISOCLS assigns data points to the current cluster centers

by the minimum distance criterion. Cluster structures are also modified by appropriate 'splitting'

or 'combining' of the existing clusters. However, a few ideas are new in the operation of ISOCLS.

In particular, the program treats a population (i.e. a class or a cluster) as the union of an

appropriate number of subpopulations of nominal sizes. In this way, even clusters of odd shapes,

e.g. donut-shaped, are acceptable. As a result, assignment of points becomes less sensitive to

the choice of distances. The distance between clusters is defined such that the magnitude of the

distance (and thus the separation) relates to the probability of misclassification, 1.e. the
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degree of overlap of the two clusters. Of further interest is that this procedure terminates by

chaining those clusters that are close to one another by a 'chaining algorithm'. This permits

the discovery of those subpopulations, the union of which constitutes the parent population.

Another highlight of the program is that it can be made by means of an artifice to operate in

the same mode as Purdue's NSCLAS clustering program (Wacker, 1970).

To further clarify the philosophy of ISOCLS's operation, take the example of the two

sets of points in Figure 1. Set (a) has the shape of a boomerang. Set (b) has the shape of a

donut. Now, it is well known (Kan, 1972) that various clustering criteria with various measures

of similarity will normally give rise to different groupings. As a matter of fact, in the

existing clustering procedures, the final grouping is usually very sensitive to these criteria

and measures. A most popular criterion is the minimum variance criterion which tends to produce

eye-pleasing spherical (or ellipsoidal) groupings. This effect is most easily appreciated in

vector spaces of three dimensions or less. However, operating under this particular criterion,

clusters such as those in Figure 1 are unacceptable. The boomerang shape and the donut shape

are odd shapes according to the standard of spherically shaped clusters. Furthermore, they can

no longer be approximated to any satisfactory degree by Gaussian structures. But yet, such

groupings are pleasing to the eye.

In order that data points are grouped into eye-pleasing structures, and also in order

to circumvent the unnecessarily strict conformity to the standard of nice spherical clusters,

the following philosophy of clustering is adopted in ISOCLS. Clusters are treated as unions of

subclusters of nominal sizes. The intermediate steps in the clustering procedure try to assign

points to subclusters of nominal sizes. In this way, the two data sets in Figure 1 would be

grouped into subclusters 1-7 as shown in Figure 2. At the final step of the procedure, subclusters

are chained into one group if each is close to at least one other in the group. Thus, subclusters

1,2 and 3 are chained together because subclusters 1 and 2 are close to each other, and subclusters

2 and 3 are close to each other, even though subclusters 1 and 3 are by no means close to each

other. Likewise, subclusters 4,5,6 and 7 are chained together to form a big cluster.

The chaining of neighboring clusters is performed by a 'chaining algorithm'. As a

result of the chaining operation, the output classification map from ISOCLS represents chained

clusters by the same symbol, signifying that the chained clusters basically belong to the same

parent cluster. However, the statistics of these chained subclusters are not merged together.

The program, as a matter of fact, outputs the statistics of the individual subclusters. This

is precisely because not all the eye-pleasing clusters can adequately be approximated by

Gaussian structures. Thus, if ISOCLS statistics are used in supervised classifications, as

in the pattern recognition system LARSYS, the statistics of the subclasses should be used,

unless there is reason to believe that the subclasses can be merged together. If merging is

appropriate, a simple calculation would give the composite statistics of the parent class.

The distance measure used in ISOCLS for the assignment of points is the £1 distance.

That is, the distance d(.,.) between point X=(x1,x2, ••• ,xn) and Y=(Y1'Y2""'Yn) is defined

as
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n

d(X,Y) = I \Xi - Yi\
i=1

(1)

between clusters C1 and C2 ' where C1 is characterized by
.. (1) (1) (1)

standard devi.atd.on ° = (°1 ' ••• , on ) and C2 by

The measure of similarity D(.,.)
(1) (1) (1)

mean ~ = (~1 ' ... , ~n ) and
~(2) and 0(2), is defined as

(2)

I
I
1

[

n (~i1)_~i2))2]t
D(C1,C2) = I (1) (2) •

i=1 °i °i

Notice the similarity between the distance measure (2) and the divergence measure between

C1 and C2 (Marill, 1963). The divergence measure is defined as, in the case of univariate

normal distributions,

ex < 1 , where
(1 )

_0_=.1+ex ,
(2)

°
expression (3) can be approximated by

which can in turn be approximated by the same form as (2). Since the program lSOCLS treats

clusters as the union of subclusters, and since subclusters have nominal sizes, the assumption

of ex<1 is indeed valid. ThUS, the distance measure (2) is well justified.

Consider the case of a univariate distribution which can be approximated by the sum

of two equally probable, overlapping, normal n(O,1) distributions. Suppose this distribution

is treated as two disjoint clusters. Notice that neither of these two clusters is ~(O,1).

Table 1 and Figure 3 summarize the relation between the distance measure D between the two

clusters and the probability of misclassification Pe between the two component distributions.

A distance of 3.2 or larger between two clusters indicates a Pe of less than 10%. A distance

of less than 3.2 indicates a more extensive overlapping and thus a higher degree of confusion.

The follOWing sections will discuss more on the effects of the distance threshold on the grouping

of data points by the ISOCLS clustering program.
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IV. THE 1SOCLS PROGRAM

SS••• S (CS)(CS) ••• (CS) Ch

final
mode

2n

intermediate
mode

m

initial
mode

Descriptions of the subprograms are as follows:

SETUP and DATAIN: The values of the various input parameters are read in and default values

are set up. Data is read into core (and into other memory units as necessary).

CLASS and STAT: Data points are assigned to the cluster centers retained from the previous

iteration. Assignment of· points is according to the minimum distance criterion, using a t 1
distance as defined in (1). Also, the mean and standard deviation of the newly formed clusters

are iteratively computed.

]ELETE: When a cluster contains less than NMIN data points, NMIN being an input parameter,

the cluster center is removed.
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While complete program documentation can be found in (Minter, 1972), an informal

presentation of the ISOCLS clustering procedure is as follows:

Procedure

O. SETUP and DATAIN. If initial cluster centers are input, go to Step 2; otherwise, continue.

1. Automatic initialization of cluster centers:

1.1 CLASSify, STATistics and DELETE.

1.2 SPLIT.

Repeat Steps 1.1 - 1.2 as necessary.

2. Intermediate cluster structure changes:

2.1 CL~SSify, STATistics and DELETE.

2.2 Alternately COMBINE and SPLIT.

3. Final iteration: CHAIN.

4. OUTPUT.

The first m iterations serve as the automatic initialization of cluster centers in

case they are not input. The number of iterations, m, is determined such that p percent

of all the existing clusters is of nominal sizes. After this initial start of m iterations,

the program enters its intermediate stage. In this stage, cluster structures are modified by

appropriately combining clusters that are close to each other, and by appropriately splitting

large sized clusters into nominal sized subclusters. The value of n is such that m+2n+1 = ISTOP

or m+2n =ISTOP. The final C
h

iteration searches for clusters that should be linked together,

and prepares for the symbol assignment in the output of the cluster map.

where S,C and C
h

stand for a 'split', 'combine' and 'chain' iteration respectively. The

functions of each of these iterations are explained below in detail.

The operation of the 1SOCLS program is most easily explained by the functional

sequence of its 1STOP iterations, where 1STOP is a preassigned input number. The operational

sequence can be coded as

,.....



.§TId1 A cluster that is larger than the nominal size is split into two subclusters, a cluster

being considered to be of nominal size when the standard deViation in every channel is less than

the threshold STDMAX. The two new cluster centers just created will be at (~1'~2'••• '~+~'... '~n)

and (~1 '~2'''·' lie-~, ••• '~n)' where (~1'112'··· ,l1n) and (°1,°2, ,, . , On) are the mean and the standard
deviation of the original cluster, and where the k

t h
channel is that in which the original cluster

has the largest standard deviation.

COMBINE: If the distance D(.,.) , as defined in (2), between two clusters is less than the

threshold DLMIN, the two clusters are combined into one. That is, the original two cluster

centers are removed, and replaced by a single new cluster center at a weighted mean of the two
original clusters.

CHAIN: In the last iteration, all clusters that are close to each other are linked together,

as explained in Section III and Figure 2. The subprogram that performs this operation is included
in the Appendix.

~ After the ~ast iteration, i.e. the CHAIN iteration, the program outputs the statistics

of all the subclusters that exist PRIOR to the chaining operation. The statistics of the

subclusters are the number of data points assigned to them, their mean vectors and covariance

matrices. However, in the display map, those points belonging to subclusters that have been

chained together are represented by the same symbol.

V. EXERCISING THE lSOCLS PROGRAM

The folloWing discusses two special cases of ISOCLS, how to interpret the cluster

results and how best to set the values of the input parameters.

A Special Case: NSCLAS The ISOCLS program has a user-input parameter, MAXCLS, which governs

the maximum number of clusters permitted to be generated. During a 'splitt iteration, if the

MAXCLS limit has been reached, a cluster of size larger than the nominal size would not be allowed

to be split. The program.simply proceeds to reassign the points in this particular iteration.

Recall the form of the iteration sequence:

SS••• S (CS)(CS) ••• (CS) Ch

m 2n

If, in the initial splitting stage, MAXCLS is reached before the program switches to the CS

intermediate operation mode, the program would actually take the following sequence of actions:

SS... S Ch

ISTOP

In this way, the program essentially attempts to best assign the data points to MAXCLS clusters.

This is basically the same philosophy taken by the clustering program NSCLAS at Purdue University

(Wacker, 1970).

To achieve this goal, the user can assign to the program the desired value of MAXCLS,

and should input a very small value to STDMAX, e.g. zero. This assures that the MAXCLS limit

will be reached, and the program will remain in the initial splitting mode. The same effect

also be attained by inputting MAXCLS initial cluster centers and setting DLMIN to a small value,

e.g. ~ro. -In this way, a ICI iteration reduces to a mere reassignment of points.
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Another Special Case: ISODATA By skipping the initial mode, and by inputting an initial set

of cluster centers, the program operates in the folloiling sequence:

CSOS••• OS 0h

This is the mode in which ISODATA (Ball, 1966) operates.

Interpretation of Cluster Results As mentioned earlier, ISOCLS outputs the statistics of the

individual subclusters, even if some of these subclusters are chained together. These subclusters

would have nominal sizes if the MAXOLS limit is not reached. Recall that the nominal size of a

cluster depends on the threshold STDMAX, which the user can input. Hence, the clustering results

obtained from the ISOCLS program should be interpreted with this particular understanding. That

is, even if a 'homogeneous' field (e.g. agricultural field) is clustered into several clusters

that have not been chained together, the user should interpret that, indeed, that field is the

union of several subclusters. He should by no means be dissatisfied with the outcome of the

clustering results. As a matter of fact, if the field is indeed spectrally homogeneous, and

is representable by some compact distribution, it is likely that the subclusters so obtained are

chained together if the proper DLMIN threshold is used. In other words, if the user fully

comprehends how he is exercising the program, he should be able to interpret his results, and

satisfactorily too.

Setting of Parameter Values Three input parameters are of particular interest, namely DLMIN,

STDMAX and MAXCLS.

The role of DLMIN has been thoroughly discussed above. A value of 3.2 for DLMIN has

been suggested in connection with the probability of misclassification. Values of DLMIN lower

than 3.2 give finer groupings, while higher values of DLMIN give coarser groupings. In general,

values of DLMIN outside the range 2.9 -3.6 are discouraged for normal applications.

The value of STDMAX governs the nominal size of a cluster. As a rule of thumb, if it

pleases the human eye to consider a statistical class to be a good compact class if the class

distributes itself over n units of measurement, STDK~ should be"set at roughly n/3. This rule

of thumb is suggested because, with a probability of 0.9, a Gaussian distribution takes values

within ± 1.5 standard deviation from the statistical mean of the distribution.. Experience with

aircraft agricultural data, like the 01 Flightline data over Indiana, indicates that the data

values of a statistically homogeneous field varies over 10-15 units (in a full range of 256 units),

and thus suggests a choice of value 4.0-4.5 for STDMAX.

MAXOLS limits the maximum number of clusters to be generated by the program. For normal

applications, this value is set free; i.e. the program is allowed to generate as many subclusters

as is necessary within the system's limit. For special applications, MAXOLS and the other two

parameters DLMIN and STDMAX can be manipulated to induce the desired results. This will be

further discussed in Section VI.
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VI. APPLICATIONS: INVESTIGATION ON ERT~1 DATA FOR RANGE VEGETATION MAPPING

In the Summer of 1972, the ERT~1 (§arth ].esources ,Technology Eatellite) Application

project was initiated for the investigation of the utili~ of ERTS satellite data, which are

collected by various sensors. Among these sensors is the multispectral scanner (MSS), which

collects four channels of data, with a spectral range from 0.5 micron to 1.1 micron. Several

analysis teams were formed to study specific features on Earth, as observed by ERT~1. One such

team was the Range Analysis Team*. The objective of this team (Parker, 1973) was to estimate

the utility of ERTS-1 MSS data for mapping the various range vegetation types in the Houston

Area Test Site of Texas. In broad generality, range vegetation types include grassland,

shrubland, pasture, wooded and noncommercial forested areas, wetland etc.

In particular, the Range Analysis Team chose several study sites to investigate in

the ERTS-1 project, one of which was the' Snook site t • This is north-east of Somerville in

Burleston County, Texas. This site is approximately 300 km
2• It lies astride the ecotonal

boundary between the Texas blackland prarie region and the Texas clayp~ savannah. The study

site is characterized by fairly extensive stands of post-oak, bottomland hardwood, mesquite,

native grassland and manipulated pastures of bermuda grasses, the totality of which makes up the

rangeland category in the study site, as distinguished from other features such as agricultural

fields and water, e.g. Lake Somerville. The scope of the investigation was to perform vegetation

type mappings into the first hierachical as well as the second hierarchical levels.

For this purpose, ISOCLS was exercised in various ways to achieve classification of the

Snook study site. In fact, there are four approaches to classification:

(a) Normal mode: The program ISOCLS is allowed to generate as many subclusters of

nominal sizes as is necessary. DLMIN is set at 3.2 as recommended earlier. STDMAX is set

between 2.5 and 3.5. (ERTS-1 data take discrete values from 0 to 127.) This gives rise to a

second order classification.
(b) For a coarser second order classification or even a first order classification,

the user inputs the number of classes he wishes to see by setting MAXCLS to that number. Also,

STD~~ is set to a larger value than that which gives rise to nominal sized clusters. In

addition, since a mere assignment of data points to MAXCLS classes is desired, DLMIN is set

to a small value, e.g. zero.
(c) A first order classification based on spectral similarity can be obtained, by

manipulating the results obtained in (b). That is, clusters that are of distance less than 3.2

are grouped together either automatically in the chaining iteration of the program, or manually

during the display of the output results.
(d) Another first order classification based on biological and ecological similarity

can be obtained as follows. First, the results of the clustering runs as obtained in (a) or (b)

are interpreted. Tnen, clusters that correspond to classes of the same or similar vegetation

types (or eco-systems) are grouped together to give a first order classification.

* The team members of the Range Analysis Team were J.M. Disler, E.P. Kan, H.D. Parker, Jr.,
A. Simon of Lockheed Electronics Co., Inc., HASD, Houston, Texas, and D. Pendle~on of the
Soil Conservation Service, USDA.
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One such cluster map is shown in Figure 4. This is the result of applying ISOCLS to

the August 30, 1972 ERTS-1 M3S data on the Snook study site. The GSFC (Goddard Space Flight

Center) identification number of the raw data tape is 1038-16303-MB-3. The study area

corresponds to scan line 651 to 1000, resolution element 1841 to 2190. Out of the 25 clusters

obtained in a second order classification following approach (a), 10 clusters were considered

major (by popUlation) and were colored as shown. Int~rpretation of these clusters is found in

Table 2. More cluster maps and their interpretation can be found in (Kan, 1973).

A comparison of these interpreted classification results with ground-truth information

on the Snook study site revealed that the classification results are indeed satisfactory. No

attempt was made to derive a quantitative measure of the effectiveness and accuracy of the

classification results because of the lack of an adequate set of compatible ground-truth

measurements and the shortage of time in the analysis team effort.

VII. CONCLUSION

The JSG clustering program ISOCLS is thoroughly discussed in this paper. In particular,

the philosophy of operation of this clustering procedure is emphasized in that classes are treated

as the unions of approp;iate numbers of subclasses. Also, chaining of neighboring subclasses

is performed at the end of the clustering procedure in order to discover the eye-pleasing cluster

structures that exist in the set of statistical data. Furthermore, the usage of the inter-cluster

distance measure is carefully discussed which relates to the similarity and thus probability of

misclassification between clusters.

Applications of the ISOCLS clustering program to achieve classification of ERTS-1 and

non-ERTS data have been discussed in this paper and elsewhere. A strong feel for the effectiveness

of the procedure has evolved from these investigations. The general consensus is arrived at that

the ISOCLS clustering program is a very useful and dependable tool for the pattern analysis and

alassification of statistical data such as those collected by remote sensors.
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IX. APPENDIX

CHAIN: This subprogram chains into one cluster all those subclusters that are close to at
least one other subcluster in the group. Two subclusters are said to be close if they are
within DLMIN distance apart, as discussed in COMBINE. This subroutine creates an index array
P(I), I=1,2, ••• ,NCL~STR from the table D(I,J) of intercluster distances, NCLUSTR being the
current number of existing subclusters. The end product of this subroutine will be a converged
index array. Subclusters that are t; be chained together (and thus considered to belong to one
composite cluster) will have the same index value:

O. Form table D(I,J) and set P(I) = I, i=1, ••• ,NCLUSTR. Then, set 1=1.
1. Find all Jls, J>I, such that D(I,J)<DLMIN. If no such J exists, go to Step 3.
2. For all these JI S , set P(I) and p(J) to min[P(I),P(J)J.
3. Increment I by one (1). If I<NCLUSTR, go to Step 1; otherwise, continue.
4. If there is a change in P(I), for some I, in this pass through the table D(I,J),

set 1=1 and go to Step 1; otherwise, return.

For an illustration of this procedure, it is suggested that the interested reader execute the
chaining procedure for the example shown in Figure 5.
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Table 1

Quantities Related to the Two Clusters which are Separated from

a Composite of Two Normal Distributions

fA pM= N(X+A) + N(x-A) ,M-, ef, -2) (c., C,z) f e
N(x): i ""'" (~)

co
[j:'N{HA)IlZ.

00

N(ll:/f)k;'<Z-A) 11lN(x+l..)Il1C- J'LljI-% JN(z+.A)«JL
I <T> I 'r>0 + JtN(Il·A)tlJt fir, 6z..

I) DI I ..
-.. D A .Ix N(l.-A)tlll. , %] 17 +IN(r.-A)d.x..

'---.r--" ~ a:) - /"1 =21"l~1e, <fL e2 0>,<>',) C, j'" ' D -00

)4.,:: ~"u.;.

1.5 ~ 1.09 0.74 2.78 0.23

2.0 &- 1.17 0.80 2.90 0.16

2.5 LP 1.35 0.86 3.13 0.11

3.0 $ 1.56 0.91 3.4Z 0.07

3.5 ~ 1.78 0.94 3.80 0.04

4.0 0 2.02 0.97 4.14 0.02
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Table 2

Interpretation and Statistics of the Clusters in Figure 4

Cluster light I dark I dark I medium Iturquoise I red I blue I yellow I light I off-
Color green green brown green brown white

mea
Statistics

I
..c:-
ttl

I IChannel 1..c:-
'-l

Channel 2

Channel 3

-
Channel 4

POPulati~49 I 16998 31096 13838 7742 1319 2115 5784 I 4726 I 2990

open Iabandoned woods; open wet healthy water ag'iOult"'( gras,'an1' bar.
Interpre- range, cropland; post-oak grassland; bottomlan agricul- (Lake al fields, sparse soil;

c
I tation Igrassland open ;range, bermuda (non- tural Somer- not as and asphalt

sparsely fields, wooded) fields, ville) vigorous dry
vegetated greener thlln very as the

the light vigorous red
green clus er cluster

;t,lIIl-,
'J



(b)

Figure 1

(a) The Boomerang-shaped Cluster
(b) The Donut-shaped Cluster

P
e

(a)

(b)

Figure 2

Breaking Up of the Clusters (a) and (b)
of Figure 1 into Subclusters

1~

o 2.5 3.0 3.5
D

4.0

Figure 3

Relation Between the Probability
of Misclassification P and the
Intercluster Distance eMeasure D
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Figure 4

ISOCLS Class1tication Map of 8/30/72 ERTS-1
HSS Data on Snook: Study Site (Image m 10}8
16JO~HB-JJ SCan 651-1000. Pixel 1841-2190) :

10 majo r c1usters
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I

J 1 2 :3 4 5

1 0.0 7.5 6.2 3.2 11.8
2 7.5 0.0 3.1 5.6 3.0
3 6.2 3.1 0.0 3.1 6.3
4 3.2 5.6 3.1 0.0 9.7
5 11.8 3.0 6.3 9.7 0.0

(b)

DLMIN =3.2

Figure 5

Example for Chaining Procedure
(a) Cluster Structure
(b) Intercluster Distance Table D(r,J)
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