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Abstract

Given a polynomial p, the degree of its Chebyshev’s method Cp is deter-

mined. If p is cubic then the degree of Cp is found to be 4, 6 or 7 and we

investigate the dynamics of Cp in these cases. If a cubic polynomial p is uni-

critical or non-generic then, it is proved that the Julia set of Cp is connected.

The family of all rational maps arising as the Chebyshev’s method applied

to a cubic polynomial which is non-unicritical and generic is parametrized by

the multiplier of one of its extraneous fixed points. Denoting a member of

this family with an extraneous fixed point with multiplier λ by Cλ, we have

shown that the Julia set of Cλ is connected whenever λ ∈ [−1, 1].

Keyword: Chebyshev’s method; Extraneous fixed points; Connected Julia sets.
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1 Introduction

Finding the roots of a given polynomial is a classical and widely studied topic. A

root-finding method is a function that associates a polynomial p with a rational map

Fp such that each root z of p is an attracting fixed point of Fp, i.e., Fp(z) = z and

|F ′p(z)| < 1. It is well-known that there is an open connected subset of the extended

complex plane Ĉ containing the attracting fixed point such that every point in this
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set converges to the attracting fixed point under the iteration of Fp. This is how a

root of a polynomial can be approximated starting with a suitably chosen point.

The Fatou set of a rational map R, denoted by F(R) is the set of all points

where {Rn}n>0 is equicontinuous, and its complement in Ĉ is called the Julia set

of R. The Julia set of R is denoted by J (R). Complex dynamics is the study of

the Fatou set and the Julia set of a given rational map. For an introduction to the

subject, one may refer to a book by Beardon[1]. The root-finding methods present

themselves as an interesting class of rational maps from a dynamical point of view.

A fixed point z0 ∈ C of a rational map R is called attracting, repelling or

indifferent if the modulus of its multiplier |R′(z0)| is less than, greater than or is

equal to 1 respectively. The fixed point z0 is called superattracting if R′(z0) = 0. If

∞ is a fixed point of R then its multiplier is defined as |h′(0)| where h(z) = 1
R( 1

z
)

and is called attracting, repelling or indifferent accordingly. The basin of attraction

of an attracting fixed point z0, denoted by Az0 is the set {z ∈ Ĉ : limn→∞R
n(z) =

z0}. This is an open set and is not necessarily connected. The component of

Az0 containing z0 is called the immediate attracting basin of z0. An indifferent

fixed point is called rationally indifferent or parabolic if its multiplier is a root

of unity. The basin of a parabolic fixed point z0 of a rational map R is the set

{z ∈ Ĉ \ J (R) : limn→∞R
n(z) = z0}. Every component of this basin contains z0

on its boundary and is called an immediate parabolic basin. It is important to note

that any point whose iterated image is z0 is not in the basin of the parabolic fixed

point z0. The basin of an attracting or a parabolic fixed point is in the Fatou set.

The immediate attracting basin or the parabolic basin corresponding to a periodic

point of period p can be defined accordingly and is a p-periodic Fatou component

(maximally connected subset of the Fatou set which is invariant under Rp). The

only other possible periodic Fatou component is a Siegel disk or a Herman ring. The

details can be found in [1].

One of the widely discussed root-finding methods is the Newton method and

that is the first member of a family known as the Konig’s method. A systematic

study of Konig’s method is done by Buff and Henriksen in [2]. A fixed point of a

root-finding method Fp is called extraneous if it is not a root of p. An important

aspect of Konig’s method is that all its extraneous fixed points are repelling. This

article is concerned with a root-finding method for which an extraneous fixed point

can be non-repelling.

For a non-constant, non-linear polynomial p, its Chebyshev’s method is defined

as the rational map

Cp(z) = z − (1 +
1

2
Lp(z))

p(z)

p′(z)
,
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where

Lp(z) =
p(z)p′′(z)

p′(z)2
.

This is a third order convergent method, i.e., its local degree (made precise in the

following paragraph) is three at each simple root of the polynomial p. Note that

for a monomial or for a linear polynomial p, Cp is a linear polynomial. We donot

consider this trivial situation and are concerned with polynomials with degree at

least two and which are not monomials.

The degree of a rational map is the first thing one needs to know for investigating

its dynamics. While discussing a number of basic properties of Cp, the authors in [5]

mention that the degree of Cp is at most 3d−2 where d is the degree of the polynomial

p. We found that the exact degree of Cp depends not only on the number of distinct

roots of p but on certain types of its critical points also. We determine the exact

degree of Cp for every p. Some discussion and definitions are required to state this

result. If a rational map R is analytic at a point z0 and its Taylor series about z0 is

ak(z−z0)k+ak+1(z−z0)k+1 + · · · for some k > 0 where ak 6= 0 then we say the local

degree of R at z0, denoted by deg(R, z0) is k. The map R is like z 7→ zk near z0.

The local degree of R at ∞ or at a pole is defined by a change of coordinate using

z 7→ 1
z
. More precisely, if R(∞) is finite then deg(R,∞) is defined as the degree of

R(1
z
) at 0. If R(∞) = ∞ then deg(R,∞) is defined as deg( 1

R( 1
z

)
, 0). Similarly, if z0

is a pole of R then its local degree at z0 is defined to be deg( 1
R(z)

, z0). A root z̃ of

a rational map R is said to have multiplicity k if R(z̃) = R′(z̃) = · · ·R(k−1)(z̃) = 0,

but R(k)(z̃) 6= 0 i.e., the local degree of R at z̃ is k. A root is called simple if its

multiplicity is 1. It is called multiple if its multiplicity is at least two. A root with

multiplicity exactly equal to two is called a double root. A point z ∈ Ĉ is called a

critical point of a rational map R if deg(R, z) ≥ 2. In particular, multiple roots and

multiple poles are critical points. By definition, the multiplicity of a critical point z

of R is deg(R, z)− 1. A critical point is called simple if its multiplicity is one.

Definition 1.1. (Special critical point) For a polynomial p, a critical point c ∈ C
is called special if p(c) 6= 0 but p′′(c) = 0.

A finite critical point with multiplicity at least 2 and which is not a root is a

special critical point. For example, 0 is a special critical point of p(z) = zd + b

whenever d ≥ 3 and b 6= 0. But it is not so for b = 0. We now present the first

result of this article.

Theorem 1.1. (Degree of Cp) Let p be a polynomial of degree d. Let m,n and r

denote the number of its distinct simple roots, double roots and roots of multiplicity

bigger than 2 respectively. If p has s number of distinct special critical points then

deg(Cp) = 3(m+ n+ r)− 2−B + s

3



where B is the sum of multiplicities of all the special critical points. If p has no

special critical point then deg(Cp) = 3(m+ n+ r)− 2.

If p is generic then m = d and n = r = 0, and we have an immediate consequence.

Corollary 1.1. If p is generic then

deg(Cp) =

{
3d− 2−B + s if p has s many special critical points with total multiplicy B

3d− 2 if p has no special critical point.

The following corollary deals with some other special situations.

Corollary 1.2. 1. If p has two distinct roots then deg(Cp) = 4. In all other

cases, deg(Cp) ≥ 6. In particular, there is no polynomial p such that deg(Cp) =

5.

2. If deg(p) = d and all its critical points are special then deg(Cp) = 2d + s − 1

where s is the number of distinct special critical points of p. Further, if p is

unicritical then deg(Cp) = 2d.

The degree of the Chebyshev’s method applied to a cubic polynomial is found

to be 4, 6 or 7. The remaining part of this article focusses on the dynamics of the

Chebyshev’s method in these cases.

The dynamics of the Chebyshev’s method for quadratic polynomials has been

investigated by Kneisl in [7] who calls this as Super-Newton method. The author

gives examples of cubic polynomial whose Chebyshev’s method has a superattracting

extraneous fixed point. Olivo et al. [4] consider a one parameter family of cubic

polynomials and study their Chebyshev’s method. The case of cubic polynomials

are also studied in [5] where the authors have discussed the cubic polynomials whose

Chebyshev’s method has attracting extraneous fixed points and attracting periodic

points. In all these results, the connectedness of the Julia set remains unexplored.

For a polynomial p, the Chebyshev-Halley method of order σ is given by Hσ
p (z) =

z −
[
1 + 1

2

p(z)p′′(z)

(p′(z))2 − σp(z)p′′(z)

]
p(z)
p′(z)

where σ ∈ C. The Chebyshev’s method is a

special member of the Chebyshev-Halley family. In fact, Cp = H0
p . The dynamics of

the Chebyshev-Halley family applied to unicritical polynomials z 7→ zn−1, n ∈ N is

investigated in [3]. A necessary and sufficient condition for disconnected Julia sets is

found. More precisely, it is proved that the Julia set of these root-finding methods is

disconnected if and only if the immediate basin of 1 (which is a superattracting fixed

point corresponding to a root of the polynomial) contains a critical point but no pre-

image of 1 other than itself. The numerical study done in this paper suggests the

existence of disconnected Julia set for the Chebyshev-Halley method Hσ
p for several
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values of σ when p is a cubic or higher degree unicritical polynomial. However, the

paper does not contain any theoretical proof for this statement.

Though the Julia set of Newton method (applied to a polynomial) is always

connected [9], there are other members of Konig’s methods with a disconnected

Julia set [6]. The Chebyshev’s method applied to non-generic cubic polynomials is

dealt in [4], where the connectivity question of their Julia sets remain to be answered.

We prove that the Julia set of Chebyshev’s method of each cubic polynomial

that are either unicritical or non-generic is connected. This is Proposition 4.4 of

this article. In fact, this proposition shows that the Fatou set of Cp is the union

of the immediate superattracting basins (and their pre-images) corresponding to

the three roots of p when p is unicritical whereas for non-generic p, the Fatou set

of Cp is the union of the two immediate attracting basins (and their pre-images)

corresponding to the two roots of p.

As noted earlier, the existence of an attracting or a rationally indifferent ex-

traneous fixed point is a new feature of the Chebyshev’s method. Its dynamical

relevance is revealed by parametrizing all the cubic polynomials in terms of the

multiplier of an extraneous fixed point of its Chebyshev’s method. This is done in

Lemma 4.5. More precisely, it is shown that for every λ ∈ C \ {5, 6}, if the Cheby-

shev’s method of a cubic, generic and non-unicritical polynomial has an extraneous

fixed point with multiplier λ then it is conjugate to the Chebyshev’s method Cλ of

pλ(z) = z3 + 3z + 3λ2−39λ+124
(5−λ)

√
5−λ where the principal branch of the square root

√
5− λ

is considered. The case λ = 5 is possible when p is unicritical whereas there is no

cubic polynomial which has an extraneous fixed point with multiplier equal to 6

(Remark 4.3(2)). Then we study the dynamics of Cλ for λ ∈ [−1, 1] and prove the

following.

Theorem 1.2. For −1 ≤ λ ≤ 1, the Julia set of Cλ is connected.

The proof of the theorem in fact describes the dynamics of Cλ completely. The

Fatou set of Cλ is the union of the supreattracting immediate basins corresponding

to the three roots of pλ and the immediate basin of the extraneous fixed point with

multiplier λ - this is attracting if λ ∈ (−1, 1) and rationally indifferent if λ = ±1.

Though both C−1 and C1 have a rationally indifferent extraneous fixed point they

differ in terms of the number of extraneous fixed points. The number of extraneous

fixed point of C−1 is four whereas it is three for C1. A fixed point of a rational map

R is called multiple, with multiplicity k ≥ 2 if it is a multiple root of R(z)− z = 0

with multiplicity k. Otherwise, it is called simple. Here C1 has a multiple fixed

point whereas all the fixed points of C−1 are simple.

The images of the Julia set of Cλ for λ = −1, 0 and 1 are given in Figure 1,

Figure 2 and Figure 3 respectively. In each figure, the three immediate basins
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corresponding to the roots of the polynomial are given in blue, green and pink. The

immediate basin of the extraneous attracting (for C0) and parabolic (for C−1 and

C1) fixed point is indicated in red whose zoomed version is also given in each figure.

(a) Periodic Fatou components (b) The immediate parabolic basin

Figure 1: The Julia set of C−1

(a) Periodic Fatou components (b) The immediate superattracting basin

Figure 2: The Julia set of C0

Section 2 describes some useful properties of the Chebyshev’s method. The

degree of this method is determined in Section 3. The dynamics of Cλ,−1 ≤ λ ≤ 1

is investigated in Section 4.

6



(a) Periodic Fatou components (b) The immediate parabolic basin

Figure 3: The Julia set of C1

2 Preliminaries

2.1 Some properties of the Chebyshev’s method

Recall that, for a polynomial p,

Cp(z) = z − (1 +
1

2
Lp(z))

p(z)

p′(z)
,

and the derivative of the Chebyshev’s method is given by

C ′p(z) =
Lp(z)2

2
(3− Lp′(z)) (1)

where Lp(z) = p(z)p′′(z)
p′(z)2

and Lp′(z) = p′(z)p′′′(z)
p′′(z)2

.

Two rational maps R, S are conformally conjugate, in short conjugate if there

is a mobius map φ such that S = φ ◦ R ◦ φ−1. Here ◦ denotes the composition of

functions. Since Sn = φ ◦Rn ◦ φ−1 for all n, the iterative behaviour of R and S are

essentially the same. More precisely, we have the following.

Lemma 2.1 (Theorem 3.1.4 [1]). If S and R are two rational maps such that S =

φ ◦R ◦ φ−1 for a mobious map φ then J (S) = φ(J (R))

There are different polynomials giving rise to the same Chebyshev’s method up

to conjugacy. The so called scaling theorem, which is also true for the Chebyshev-

Halley method makes it precise. For brevity we use Hp instead of Hσ
p for denoting

the Chebyshev-Halley method of order σ applied to p.
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Theorem 2.2 (Scaling Theorem). Let p be a polynomial of degree at least two. Then

Hp = Hλp for all λ 6= 0. If T (z) = αz + β, with α, β ∈ C, α 6= 0 and g = p ◦ T then

T ◦Hg ◦ T−1 = Hp.

Proof. For g(z) = λp(T (z)), g′(z) = λp′(T (z))T ′(z) = λαp′(T (z)) and g′′(z) =

λα2p′′(T (z)). Then

Hg(z) = z −
[
1 +

1

2

g(z)g′′(z)

[g′(z)]2 − σg(z)g′′(z)

]
g(z)

g′(z)

= z −
[
1 +

1

2

λ2α2p(T (z))p′′(T (z))

[λαp′(T (z))]2 − σλ2α2p(T (z))p′′(T (z))

]
λp(T (z))

λαp′(T (z))

= z − 1

α

[
1 +

1

2

p(T (z))p′′(T (z))

[p′(T (z))]2 − σp(T (z))p′′(T (z))

]
p(T (z))

p′(T (z))
.

This implies that

T ◦Hg(z) = αHg(z) + β = T (z)−
[
1 +

1

2

p(T (z))p′′(T (z))

[p′(T (z))]2 − σp(T (z))p′′(T (z))

]
p(T (z))

p′(T (z))
.

This is nothing but Hp(T (z)). Now putting T (z) = z we get Hp = Hλp. Similarly,

for λ = 1, we have T ◦Hg ◦ T−1 = Tp.

Remark 2.1. 1. For every polynomial p(z) = adz
d + ad−1z

d−1 + · · · + a1z + a0,

there is an affine map T (z) = αz + β where αd = 1
ad

and β = −ad−1

dad
so that

the coefficients of zd and zd−1 in (p ◦ T )(z) are 1 and 0 respectively. It follows

from the Scaling theorem that Cp is conjugate to Cp◦T leading to a considerable

amount of simplification. We can assume without loss of generality that p is

monic or centered, or both as long as the dynamics of Cp is concerned.

2. In view of the previous remark, for a cubic polynomial p, we assume without

loss of generality that p(z) = z3+az+b for some a, b ∈ C. Then p′(z) = 3z2+a,

p′′(z) = 6z and p′′′(z) = 6. In this case,

Lp(z) =
(z3 + az + b)6z

(3z2 + a)2
and Lp′(z) =

3z2 + a

6z2
.

Hence

Cp(z) =
15z7 + 6az5 − 15bz4 − a2z3 − 12abz2 − 3b2z − a2b

(3z2 + a)3
,

and

C ′p(z) =
Lp(z)2

2
(3− Lp′(z)) =

3(z3 + az + b)2(15z2 − a)

(3z2 + a)4
.
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As stated earlier, the roots of p are fixed points of Cp. But every fixed points of

Cp is not necessarily a root of p.

Definition 2.1. A fixed point of Cp is called extraneous if it is not a root of p.

The extraneous fixed points of Cp can be attracting, repelling or indifferent. This

is where the Chebyshev’s method stands out from the comparatively well-studied

Konig’s methods, where all the extraneous fixed points are repelling. Now we deal

with all the fixed points of Cp. Though the following is well-known, we choose to

provide a proof for the sake of completeness.

Proposition 2.3 (Fixed points of Cp). Let Cp be the Chebyshev’s method applied

to a polynomial p with degree d where d ≥ 2.

1. Every root of p with multiplicity k is a fixed point of Cp with multiplier (k−1)(2k−1)
2k2

.

In particular, every (simple) root of p is an attracting (superattracting) fixed

point of Cp.

2. The point at ∞ is a fixed point of Cp with multiplier 2d2

2d2−3d+1
. In particular, it

is repelling.

3. A finite extraneous fixed point ζ of Cp is precisely a root of Lp(z) = −2, and

is attracting, repelling or indifferent if 2|3 − Lp′(ζ)| is less than, greater than

or is equal to 1 respectively.

Proof. 1. Let α be a root of p with multiplicity k. Then p(z) = (z − α)kg(z) for

some polynomial g with g(α) 6= 0. Further,

p′(z) = k(z − α)k−1g(z) + (z − α)kg′(z) = (z − α)k−1 [kg(z) + (z − α)g′(z)] ,

p′′(z) = k(k − 1)(z − α)k−2g(z) + 2k(z − α)k−1g′(z) + (z − α)kg′′(z)

= (z − α)k−2
[
k(k − 1)g(z) + 2k(z − α)g′(z) + (z − α)2g′′(z)

]
and

p′′′(z) = k(k − 1)(k − 2)(z − α)k−3g(z) + 3k(k − 1)(z − α)k−2g′(z)

+3k(z − α)k−1g′′(z) + (z − α)kg′′′(z)

= (z − α)k−3 [k(k − 1)(k − 2)g(z)

+3k(k − 1)(z − α)g′(z) + 3k(z − α)2g′′(z) + (z − α)3g′′′(z)
]
.

Note that for k = 2, the first term in the expression of p′′′ vanishes and we

have p′′′(z) = 6g′(z) + 6(z − α)g′′(z) + (z − α)2g′′′(z). Hence we get

9



Lp(z) =
p(z)p′′(z)

(p′(z))2
=
g(z) [k(k − 1)g(z) + 2k(z − α)g′(z) + (z − α)2g′′(z)]

[kg(z) + (z − α)g′(z)]2
.

This gives

Lp(α) =
k − 1

k
. (2)

Similarly it is found that Lp′(α) = k−2
k−1

. Hence

C ′p(α) =
[Lp(α)]2

2
[3− Lp′(z)] =

(k − 1)2

2k2

[
3− k − 2

k − 1

]
=

(k − 1)(2k − 1)

2k2
.

The rest is straightforward.

2. Since Cp = Cλp for each λ ∈ C \ {0} and every polynomial p, without loss of

generality we assume that p is a monic polynomial. If deg(p) = d ≥ 2 then

p(z) = zd + a1z
d−1 + ... + ad, p

′(z) = dzd−1 + (d − 1)a1z
d−2 + ... + ad−1 and

p′′(z) = d(d− 1)zd−2 + (d− 1)(d− 2)a1z
d−3 + ...+ 2ad−2. Now

Cp(z) = z−
(

1 +
1

2

p(z)p′′(z)

[p′(z)]2

)
p(z)

p′(z)
=

2z[p′(z)]3 − 2p(z)[p′(z)]2 − [p(z)]2p′′(z)

2[p′(z)]3
.

Here 2z[p′(z)]3, 2p(z)[p′(z)]2 and [p(z)]2p′′(z) are all polynomials of the same

degree 3d − 2 with the leading coefficients 2d3, 2d2 and d(d − 1) respectively.

However 2(p′(z))3 is a polynomial with degree 3d−3 and its leading coefficient

is 2d3. Therefore

Cp(z) =
(2d3 − 3d2 + d)z3d−2 + α3d−1z

3d−1 + · · ·+ α0

2d3z3d−3 + β3d−2z3d−2 + · · ·+ β0

, (3)

for some α0, α1, α2, · · · , a3d−1, β0, β1, β2, · · · , β3d−2 ∈ C. Hence Cp(∞) = ∞
and its multiplier is 2d3

2d3−3d2+d
= 2d2

2d2−3d+1
(See page 41,[1]).

3. Each solution of Lp(z) = −2 is a fixed point of Cp but is not a root of p. This

is because the value of Lp at each root of p is in (0, 1) by Equation (2). Thus,

the extraneous fixed points of Cp are precisely the roots of Lp(z) = −2. It now

follows from Equation (1) that the multipler of an extraneous fixed point ζ is

|2(3− Lp′(ζ))|. The rest is obvious.

Remark 2.2. 1. It is possible that the numerator and the denominator of Cp
in Equation (3) have a common factor making the degree of Cp strictly less

than 2d3 − 3d2 + d. For example, if p(z) = z3 + c, c 6= 0 then deg(Cp) = 6.
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(See Proposition 4.4 in Section 4) In this case, the leading coefficients of the

numerator and the denominator of Cp changes after cancelling the common

factors. However, their ratio remains unchanged giving that the multiplier of

infinity is well-defined.

2. Every fixed point of Cp which is not attracting is extraneous. But an extraneous

fixed point of Cp can be attracting, repelling or indifferent depending on the

nature of p.

3 Degree of the Chebyshev’s method

A fixed point is multiple if and only if it is rationally indifferent with multiplier

equal to 1(See Page 142, [8]). This fact is used in the following proof.

Proof of Theorem 1.1. Let p be a monic polynomial with simple root at αi, i =

1, 2, . . . ,m; double root at βj, j = 1, 2, . . . , n and root γk, k = 1, 2, . . . , r with

multiplicity ak ≥ 3. Then

p(z) =
m∏
i=1

(z − αi)
n∏
j=1

(z − βj)2

r∏
k=1

(z − γk)ak

and deg(p) = d = m+ 2n+M where M =
∑r

k=1 ak.

If Cp(z) = F (z)
G(z)

then deg(F ) = deg(G) + 1 by Equation (3) and therefore, the

sum of all the roots of F (z) − zG(z) = 0 counting multiplicities is nothing but

deg(Cp). This is because the leading coefficients of F and G are different, ∞ is a

simple fixed point of Cp and the number of fixed points of Cp, counting multiplicity

is deg(Cp)+1. Each root of p is an attracting or a superattracting fixed point of Cp,

and these are simple roots of F (z) − zG(z) = 0. Every other fixed point of Cp are

extraneous and is a root of Lp(z) + 2 = 0. As is evident, a multiple fixed point of

Cp with multiplicity k is a multiple root of Lp(z) + 2 = 0 with the same multiplicity

and vice-versa. Thus,

deg(Cp) = m+ n+ r + deg(Lp). (4)

Now we need to find deg(Lp) in order to determine deg(Cp).

If α be a root of p with multiplicity k, then it is a root of p′ with multiplicity

k − 1. Therefore

p′(z) =
n∏
j=1

(z − βj)
r∏

k=1

(z − γk)ak−1g(z)

and

p′′(z) =
r∏

k=1

(z − γk)ak−2h(z), (5)
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where g and h are some polynomials such that g is non-zero at each αi, βj and

γk and h is non-zero at each βj and γk, for i = 1, 2, . . . ,m, j = 1, 2, . . . , n, and

k = 1, 2, . . . , r. Here we donot rule out h(αi) = 0 and that is possible, but not

relevant here. Note that

deg(g) = deg(p′)− n−
r∑

k=1

(ak − 1) = (d− 1)− n−M + r = m+ n+ r − 1

and

deg(h) = deg(p′′)−
r∑

k=1

(ak − 2) = (d− 2)−M + 2r = m+ 2n+ 2r − 2.

Now

Lp(z) =
p(z)p′′(z)

[p′(z)]2

=

∏m
i=1(z − αi)

∏n
j=1(z − βj)2

∏r
k=1(z − γk)2ak−2h(z)∏n

j=1(z − βj)2
∏r

k=1(z − γk)2ak−2[g(z)2]
=

∏m
i=1(z − αi)h(z)

[g(z)]2

Letting Lp(z) =
P (z)

Q(z)
, we note that every common root of P and Q is a root of g

and hence is different from each αi, βj and γk. Thus any such common root is not a

root of p. Further, it is a common root of g and h, i.e., it is a critical point as well

as an inflection point of p (p′′ vanishes at this point). In other words, every common

root of P and Q, if exists, is a special critical point of p. Conversely, every special

critical point is a common root of P and Q (in fact of g and h).

Let p has s number of distinct special critical points, say cj, with multiplicity bj
for j = 1, 2, . . . , s. Then g(z) =

∏s
j=1(z− cj)bj g̃(z) and h(z) =

∏s
j=1(z− cj)bj−1h̃(z)

where g̃ and h̃ are polynomials without any common root. In this case,

Lp(z) =

∏m
i=1(z − αi)

∏s
j=1(z − cj)bj−1h̃(z)∏s

j=1(z − cj)2bj [g̃(z)]2
=

∏m
i=1(z − αi)h̃(z)∏s

j=1(z − cj)bj+1[g̃(z)]2
.

Now deg(g̃) = deg(g)−
∑s

j=1 bj = m+n+r−1−B and deg(h̃) = deg(h)−
∑s

j=1(bj−
1) = m + 2n + 2r − 2 − B + s. Therefore, deg(

∏m
i=1(z − αi)h̃(z)) = m + deg(h̃) =

2m+2n+2r−2−B+s and deg(
∏s

j=1(z−cj)bj+1g̃(z)2) =
∑s

j=1(bj +1)+2 deg(g̃) =

B + s + 2m + 2n + 2r − 2 − 2B = 2m + 2n + 2r − 2 − B + s. This implies that

deg(Lp) = 2m+ 2n+ 2r − 2−B + s. Hence by Equation (4),

deg(Cp) = 3(m+ n+ r)− 2−B + s.

If p has no special critical point then s = B = 0 and we get,

deg(Cp) = 3(m+ n+ r)− 2.
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Proof of Corollary 1.2. 1. If p has two distinct roots and p(z) = (z−a)m(z− b)n
for some m,n ∈ N, a, b ∈ C then it has only one critical point different from

the roots, namely mb+na
m+n

. Further, it is a simple critical point. Hence p has no

special critical point and deg(Cp) = 4.

We assert that four is the minimum possible degree of Cp for every polynomial

p. To see it, let p have at least three distinct roots. Then deg(p) ≥ 3. If p has

no special critical point then it follows from Theorem 1.1 that deg(Cp) ≥ 7.

Now assume that p has at least one special critical point. Since each special

critical point of p is a root of g and deg(g) = (m+ n+ r)− 1 where g,m, n, r

are as given in the proof of Theorem 1.1, s ≥ 1 and B ≤ m+ n+ r− 1. Then

deg(Cp) ≥ 3(m + n + r) − 2 − (m + n + r − 1) + 1 = 2(m + n + r). Since

m + n + r ≥ 3, we have deg(Cp) ≥ 6. It is clear that deg(Cp) = 5 is never

possible for any polynomial p.

2. Recall that a special critical point of a rational map is a critical point with

multiplicity at least two which is not a root. If for a polynomial p with degree

d, all the critical points are special, then p has no multiple roots, i.e., p is

generic. Clearly the number of roots of p is d. Let p′(z) =
∏s

j=1(z−cj)bj where

bj ≥ 2 and p(cj) 6= 0 for any j = 1, 2, . . . , s. Then deg(p′) = d − 1 =
∑s

j=1 bj
and p′′(z) =

∏s
j=1(z − cj)

bj−1q(z) where q(cj) 6= 0 for any j = 1, 2, . . . , s.

So deg(p′′) = d − 2 =
∑s

j=1(bj − 1) + deg(q). This implies that deg(q) =

d−2−
∑s

j=1(bj−1) = s−1. Thus deg(Lp(z)) = deg( p(z)q(z)∏s
j=1(z−cj)bj+1 ) = d+s−1.

Now it follows from Equation (4) that deg(Cp) = 2d + s − 1. Further, if p is

unicritical then p(z) = (z − a)d + b, for some a, b ∈ C, b 6= 0. If d = 2 then by

the previous part of this corollary, deg(Cp) = 4. If d ≥ 3 then its only critical

point is a and that is special. Now, it follows from the preceeding lines that

deg(Cp) = 2d.

4 Dynamics of Cλ

We need the following well-known results for the proofs. For a rational map R, let

CR denote the set of all critical points of R.

Lemma 4.1. Let U be a periodic Fatou component of a rational map R.

1. If U is an immediate attracting basin or an immediate parabolic basin then

U ∩ CR 6= ∅.

13



2. If U is a Siegel disk or a Herman ring then its boundary is contained in the

closure of {Rn(c) : n ≥ 0 and c ∈ CR}.

Lemma 4.2 (Riemann-Hurwitz formula). If R : U → V is a rational map between

two of its Fatou components U and V then it is a proper map of some degree d and

c(U)− 2 = d(c(V )− 2) + C where c(.) denotes the connectivity of a domain and C

is the number of critical points of R in U counting multiplicity. Further, if c(V ) = 1

and there is no critical point of R in U then c(U) = 1.

The following lemma is crucial to prove the simple connectivity of Chebyshev’s

method applied to polynomials.

Lemma 4.3. Let R be a rational map for which ∞ is a repelling fixed point. If A
is an unbounded invariant immediate basin of attraction then its boundary contains

at least one pole of R. Further, if all the poles of R are on the boundary of A and

A is simply connected then the Julia set of R is connected.

Proof. Let s > 0 and Bs = {z : σ(z,∞) < s} where σ denotes the spherical metric

in Ĉ. Choose a sufficiently small s such that Bs does not contain any critical value

of R. This is possible as ∞ is a repelling fixed point of R. Then the set R−1(Bs)

has d = deg(R) components one of which, say N0 contains∞. Further, R is one-one

on N0. Let all other components of R−1(Bs) be denoted by Ni, 1 ≤ i ≤ d − 1. Let

w ∈ (Bs ∩ A) \ {∞}. As the degree of R : A → A is at least two (as A contains at

least one critical point by Lemma 4.1), at least two pre-images of w are in A. Since

R is one-one in N0, there is a pre-image of w in A ∩ Nj for some j, 1 ≤ j ≤ d − 1.

This is true for all s′ < s and for each w ∈ (Bs′ ∩ A) \ {∞}. By considering a

sequence sn → 0 and wn ∈ (Bsn ∩ A) \ {∞} so that wns are distinct and wn →∞,

we get a sequence zn in ∪1≤i≤d−1A ∩ Ni. Since zm 6= zn for all m 6= n, there is a

subsequence znk and j∗ ∈ {1, 2, · · · , d − 1} such that znk ∈ A ∩ N∗j for all k. This

subsequence has a limit point and that cannot be anything but a pole of R. This

pole is clearly in the Julia set of R and thus on the boundary of A.

If all the poles of R are on the boundary of A and A is simply connected then

the unbounded component of the Julia set contains all the poles of R. Let U be a

multiply connected Fatou component of R. Consider a Jordan curve γ in U that

surrounds a point of the Julia set i.e., the bounded component of Ĉ \ γ intersects

the Julia set. As ∞ ∈ J (R) and the backward orbit of ∞ is dense in the Julia

set, there is a point z surrounded by γ such that Rk(z) is a pole of R. Without

loss of generality, assume that k is the smallest natural number such that Rk(z) is a

pole. Then the curve Rk(γ) surrounds a pole of R by the Open mapping theorem.

The set Rk(γ) is completely contained in the Fatou set whereas there is a Julia
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component containing ∞ and all the poles of R. This is not possible proving that

all the Fatou components are simply connected. In other words, the Julia set of R

is connected.

Remark 4.1. It can follow from the arguments used in the above proof that even

if A is not simply connected, all the Fatou components other that itself are simply

connected whenever the boundary of A contains all the poles of R.

Proposition 4.4. Let p be a cubic polynomial.

1. If p is unicritical then its Chebyshev’s method is conjugate to 5z6+5z3−1
9z5

and its

Julia set is connected.

2. If p is not generic then its Chebyshev’s method is conjugate to 5z4+15z3+24z2+22z+6
9(z+1)3

and its Julia set is connected.

Proof. 1. Let p(z) = (z − α)3 + β for some α, β ∈ C, β 6= 0. If β = reiθ for r > 0

and θ ∈ [0, 2π) then (p ◦ T )(z) = −reiθ(z3 − 1) where T (z) = −r 1
3 ei

θ
3 z + α.

In view of the Scaling theorem, we assume without loss of any generality that

p(z) = z3 − 1. Its Chebyshev’s method is

Cp(z) =
5z6 + 5z3 − 1

9z5
and C ′p(z) =

5(z3 − 1)2

9z6
.

Note that a rational map with degree d has 2d − 2 critical points counting

multiplicity. As deg(Cp) = 6, there are ten critical points counted with multi-

plicities and those are the three roots of p each with multiplicity two and the

pole 0 with multiplicity four.

As∞ is a repelling fixed point, it is in the Julia set of Cp giving that 0 ∈ J (Cp).

Hence none of the superattracting immediate basins contains any critical point

other than the superattracting fixed point. Hence each immediate basin is

simply connected by Theorem 3.9 [8]. These are the only periodic Fatou

components by Lemma 4.1. Every Fatou component different from these are

simply connected by the Riemann-Hurwitz formula (Lemma 4.2).

2. Let p(z) = (z−a)2(z−b) for some a, b ∈ C and a 6= b. Then for the affine map

T (z) = a−b
3
z + 2a+b

3
,
(

3
a−b

)3
p(T (z)) = (z − 1)2(z + 2). In view of the Scaling

theorem, we assume without loss of generality that p(z) = (z − 1)2(z + 2).

Then

Cp(z) =
5z4 + 15z3 + 24z2 + 22z + 6

9(z + 1)3
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and C ′p(z) = (z+2)2(5z2+1)
9(z+1)4

. The critical points are −1,−2 and ± i√
5
. Also −2 is

a superattracting fixed point of Cp whereas 1 is an attracting fixed point. Let

A−2 and A1 be the immediate basins of attraction of −2 and 1 respectively.

Note that −1 ∈ J (Cp). Since A1 must contain a critical point of Cp, it is

either i√
5

or − i√
5
. Since all the coefficients of Cp are real, Cn

p (z) = Cn
p (z)

for all n and z ∈ C. This gives that each Fatou component intersecting the

real line is symmetric with respect to R. In particular, A1 is symmetric with

respect to R. This gives that A1 contains both these critical points ± i√
5
. Thus

the only periodic Fatou components of Cλ are A1 and A−2, by Lemma 4.1.

If Cp(x) < x for any x < −2, then strictly increasingness of Cp in (−∞,−2)

will give that limn→∞C
n
p (x) = ∞, which is not possible as ∞ is a repelling

fixed point. Therefore, Cp(x) > x for all x < −2 and limn→∞C
n
p (x) = −2. In

other words, (−∞, 2) ⊂ A−2 showing that A−2 is unbounded. By Lemma 4.3,

there is a pole of Cp on the boundary of A−2. But Cp has only one pole. As

A−2 does not contain any critical point other than −2, it is simply connected

(Theorem 3.9, [8]). Now it follows from Lemma 4.3 that the Julia set of Cp is

connected.

(a) Unicritical: p(z) = z3 − 1 (b) Non-generic: p(z) = (z − 1)2(z + 2)

Figure 4: The Julia set of Cp for unicritical and non-generic p

The Fatou set of the unicritical polynomial z3 − 1 is given in Figure 4(a). The

three superattracting basins are shown in blue, yellow and green. The two basins

of the roots of the non-generic polynomial (z − 1)2(z + 2) are shown in yellow and

blue in Figure 4(b).
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Remark 4.2. The Chebyshev’s method of each unicritical cubic polynomial has three

finite extraneous fixed points, each with multiplier 5. For each non-generic cubic

polynomial p, the finite extraneous fixed points of Cp are with multipliers 9 and 49
9

.

This is because the multipliers of fixed points remain unchanged under conformal

conjugacy.

Note that ∞ is always an extraneous fixed point of Cp and its multiplier is
2d2

2d2−3d+1
where d = deg(Cp). In order to deal with all non-unicritical and generic

cubic polynomials, we use a parameterization in terms of the multiplier of a finite

extraneous fixed point of the Chebyshev’s method. The forbidden value 5 in the

following lemma corresponds precisely to unicritical polynomials whereas there is

no cubic polynomial whose Chebyshev’s method has a finite extraneous fixed point

with multiplier 6. In fact, the multiplier of ∞ can also never be 6.

Lemma 4.5. For λ ∈ C−{5, 6}, if p is a non-unicritical and generic cubic polyno-

mial whose Chebyshev’s method Cp has a finite extraneous fixed point with multiplier

λ then Cp is conjugate to the Chebyshev’s method of pλ(z) = z3 + 3z + ψ(λ), where

ψ(λ) = 3λ2−39λ+124
(5−λ)

√
5−λ and

√
5− λ denotes the principal branch.

Proof. Let p be a non-unicritical and generic cubic polynomial. Then p(z) = z3 +

az + b where a 6= 0, b ∈ C and all the roots of p are simple. Further, Lp(z) =
6z(z3+az+b)

(3z2+a)2
and Lp′(z) = 3z2+a

6z2
. If z is a finite extraneous fixed point of Cp with

multiplier λ then, in view of Equation (2),

5− a

3z2
= λ. (6)

Note that the above equation has no finite solution for λ = 5. Now either
√

a
3(5−λ)

or −
√

a
3(5−λ)

is the extraneous fixed point of Cp. Recall that, a fixed point z of

Cp is extraneous if and only if p(z) 6= 0 and Lp(z) = −2. Since p is cubic, generic

and non-unicritical, neither p and p′ nor p′ and p′′ have any common root. A finite

extraneous fixed point of Cp is a solution of

p(z)p′′(z)

[p′(z)]2
= −2, (7)

and any such solution is neither a root of p nor a root of p′. Equation (7) becomes

12z4 + 9az2 + 3bz + a2 = 0. (8)

For λ = 6, the point ±
√

a
3(5−λ)

= ±i
√

a
3

becomes a root of p′ and hence has been

avoided.
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Considering −
√

a
3(5−λ)

to be an extraneous fixed point, from Equation (8), we

have b = a
√
a

3
√

3
ψ(λ). Similarly assuming that

√
a

3(5−λ)
is the extraneous fixed point

we have b = −a
√
a

3
√

3
ψ(λ).

Let p1(z) = z3 + az + a
√
a

3
√

3
ψ(λ) and p2(z) = z3 + az − a

√
a

3
√

3
ψ(λ). Then p1(z) =

−p2(−z) and by the Scaling Theorem, Cp1 and Cp2 are conformally (in fact, affine)

conjugate. Now, for φ(z) =
√
a√
3
z, p1(φ(z)) = a

√
a

3
√

3
(z3 + 3z + ψ(λ)). Again applying

the Scaling Theorem, we conclude that the Chebyshev’s methods applied to p1 and

z3 + 3z + ψ(λ) are conjugate.

Remark 4.3. 1. The extraneous fixed point of Cλ, λ 6= 5, 6 having its multiplier

equal to λ is − 1√
5−λ .

2. If λ = 5 then Equation (6) gives that a = 0 and p(z) = z3 + b becomes an

unicritical polynomial.

3. For λ = 6, the point that qualifies to be a finite extraneous fixed point of Cp
is ±i

√
a
3
. But p′ is zero whereas p′′ is not zero at this point. It cannot be a

solution of Equation (7). This gives that there is no extraneous fixed point of

Cp with multiplier equal to 6 for any non-unicritical and generic polynomial

p. As seen in Proposition 4.4 and the remark following it, there is also no

unicritical or non-generic cubic polynomial with an extraneous fixed point with

multiplier equal to 6.

4. Since ψ′(λ) = −3
2

(6−λ)(1−λ)

(5−λ)2
√

5−λ , ψ′(λ) < 0 for all λ < 1 and is > 0 for all

1 < λ < 5. The function ψ : (−∞, 5) → [11,∞) is strictly decreasing in

(−∞, 1), attains its minimum at 1 and then it strictly increases. The minimum

value is ψ(1) = 11. See Figure 5 for the graph of ψ.

5. For all λ < 5, ψ(λ) is a real number and pλ(z) = z3 + 3z +ψ(λ) preserves the

real axis. In fact, all the coefficients in the numerator and the denominator

of Cλ are real and therefore Cλ(z) = Cλ(z) for all z. This gives that Cn
λ (z) =

Cn
λ (z) for all n. In other words, the Fatou set of Cλ is symmetric about the

real line. If a Fatou component of Cλ intersects the real line then it is also

symmetric about the real line.

Now onwards, we consider pλ(z) = z3 + 3z +ψ(λ) and let Cpλ be denoted by Cλ
for λ ∈ C \ {5, 6}. Then Lpλ(z) = pλ(z)2z

3(z2+1)2
,

Cλ(z) =
5z7 + 6z5 − 5ψ(λ)z4 − 3z3 − 12ψ(λ)z2 − ψ(λ)2z − 3ψ(λ)

9(z2 + 1)3
, (9)
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Figure 5: Graph of ψ

and

C ′λ(z) =
[pλ(z)]2(5z2 − 1)

9(z2 + 1)4
. (10)

The following are some consequences of the above expressions.

Lemma 4.6. 1. For λ < 5, the polynomial pλ has a unique real root rλ and the

other two roots are complex conjugates of each other.

2. For λ ∈ [−1, 1), in addition to − 1√
5−λ there are three extraneous fixed points,

one is real, we denote it by αλ and the other two are complex conjugates of

each other.

3. For λ = 1, the extraneous fixed point −1
2

is multiple with multiplicity two and

the other two are complex conjugates of each other.

4. For λ ∈ [−1, 1], all the three roots of pλ and the poles ±i are critical points of

Cλ each with multiplicity two. The other two simple critical points of Cλ are
1√
5

and − 1√
5
.

Proof. 1. Since pλ is monic and is of odd degree and also preserves the real line,

limx→∞ pλ(x) = ∞ and limx→−∞ pλ(x) = −∞. Since p′λ(x) > 0 for all x ∈ R,

it is strictly increasing and hence it has a unique real root. Clearly the other

two roots are complex conjugates of each other as all the coefficients of pλ are

real for all λ < 5.

2. Putting a = 3 and b = ψ(λ) in Equation (8) we get that the extraneous fixed

points of Cλ are the solutions of

4z4 + 9z2 + ψ(λ)z + 3 = 0. (11)
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These are nothing but the solutions of (z + 1√
5−λ)q(z) = 0 where q(z) =

4z3 − 4z2√
5−λ + (49−9λ)z

5−λ + 3
√

5− λ. Note that q′(z) = 12z2 − 8z√
5−λ + 49−9λ

5−λ and

its discriminant is −16(27 + 8
5−λ), and that is negative for −1 ≤ λ < 1. The

two roots of q′ are non-real. This gives that q′(z) 6= 0 and is either positive or

negative for all z ∈ R, i.e., q is either strictly increasing or strictly decreasing

on the real line. Since q : R→ R, limz→−∞ q(z) = −∞ and limz→∞ q(z) =∞,

q is strictly increasing on R and hence has a unique real root. This is the other

real extraneous fixed point αλ of Cλ. As all the coefficients of q are real, the

other two roots are complex conjugates of each other which are nothing but

the non-real extraneous fixed points of Cλ for λ ∈ [−1, 1).

3. For λ = 1, it follows from Equation (11) that −1
2

is a double root of 4z4 +

9z2 + 11z + 3 = 0. The other two roots are found to be β1 = 1
2
(1 + i

√
11) and

β2 = 1
2
(1− i

√
11). These are the extraneous fixed points of C1.

4. Since pλ is generic, its three roots are simple and are superattracting fixed

points of Cλ, each of which is a critical point with multiplicity two. The rest

follows from Equation (9) and Equation (10).

Some estimates are going to be useful.

Lemma 4.7. Let −1 ≤ λ ≤ 1.

1. If rλ is the real root of pλ then −2 < rλ < −1 and Cλ(
1√
5
) < rλ. Further, there

is x0 ∈ (− 1√
5
, 0) such that Cλ(x0) = rλ.

2. If −1 ≤ λ < 1 and αλ is the real extraneous fixed point of Cλ different from

− 1√
5−λ then − 2√

5−λ < αλ < − 1√
5−λ . For λ = 1, αλ = − 1√

5−λ .

Proof. For −1 ≤ λ ≤ 1, 11 ≤ ψ(λ) ≤ ψ(−1) ≈ 11.294.

1. Note that pλ(−1) = −4 + ψ(λ) > 0 and pλ(−2) = −14 + ψ(λ) < 0 for

−1 ≤ λ ≤ 1. This gives that −2 < rλ < −1. For −1 ≤ λ ≤ 1, ψ(λ) ≥ 11 and

we have Cλ(
1√
5
) = −

√
5[25ψ(λ)2+140

√
5ψ(λ)+8]

1944
< −7.449. Consequently, we have

Cλ(
1√
5
) < rλ.

It follows from Equation (9) that Cλ(z) = rλ if and only if S(z) = 5z7 +

6z5 − 5ψ(λ)z4 − 3z3 − 12ψ(λ)z2 − ψ(λ)2z − 3ψ(λ) − 9rλ(z
2 + 1)3 = 0. Note

that S(0) = −3(ψ(λ) + 3rλ) < 0 (because ψ(λ) ≥ 11). Further, S(− 1√
5
) =

8
25
√

5
− 1944rλ

125
+ ψ(λ)√

5
(ψ(λ) − 28√

5
). Note that 15 < 8

25
√

5
− 1944rλ

125
< 31 and the
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last term ψ(λ)√
5

(ψ(λ) − 28√
5
) is increasing as a function of ψ(λ) (not of λ) with

its minimum value 11√
5
(11− 28√

5
) ≈ −7.487. Thus S(− 1√

5
) > 7 and we are done

by the Intermediate value Theorem.

2. Recall from the previous lemma that q(z) = 4z3− 4z2√
5−λ +(9+ 4

5−λ)z+3
√

5− λ
and the real extraneous fixed point of Cλ different from − 1√

5−λ is a root of q.

As q(− 2√
5−λ) = − 1

(5−λ)
√

5−λ(71+12λ−3λ2) and 71+12λ−3λ2 > 0 for all λ ≤ 1,

we have q(− 2√
5−λ) < 0. Similarly, q(− 1√

5−λ) = 1
(5−λ)

√
5−λ(3(6− λ)(1− λ)) > 0

for −1 ≤ λ < 1. It is already observed in Lemma 4.6(2) that q is strictly

increasing on R. Therefore − 2√
5−λ < αλ < − 1√

5−λ .

For λ = 1, αλ = − 1√
5−λ (See Lemma 4.6).

Remark 4.4. Let −1 ≤ λ ≤ 1. Then

1. pλ(
−3√
5−λ) = 3λ2−30λ+52

(5−λ)(
√

5−λ)
> 0, rλ <

−3√
5−λ < −

1√
5
, and

2. rλ < − 3√
5−λ < −

2√
5−λ < αλ.

Note that the real root of pλ is a superattracting fixed point of Cλ. The following

lemma describes its immediate basin.

Lemma 4.8. For −1 ≤ λ ≤ 1, let rλ be the real root of pλ. Then it is a super-

attracting fixed point of Cλ and its immediate basin Aλ is unbounded. Further, it is

simply connected and both the poles of Cλ are on its boundary.

Proof. Clearly, the root rλ of pλ is simple and is a superattracting fixed point of Cλ.

Note that Cλ is strictly increasing in (−∞,− 1√
5
), strictly decreasing in (− 1√

5
, 1√

5
)

and strictly increasing thereafter. Let c = 1√
5
. Since rλ < −c (by Remark 4.4(1)), Cλ

is strictly increasing in (−∞, rλ]. Further, by the preceeding remark, the only other

real extraneous fixed point of Cλ is greater than rλ. Therefore, for all x ∈ (−∞, rλ),
either Cλ(x) < x or Cλ(x) > x. The first possibility leads to a strictly decreasing

sequence {Cn
λ (x)}n>0 which must converge to −∞. But this is not possible as ∞ is

a repelling fixed point of Cλ. Therefore Cλ(x) > x and Cn
λ (x) → rλ as n → ∞ for

all x ∈ (−∞, rλ] giving that (−∞, rλ] ⊂ Aλ. In other words, Aλ is unbounded.

It follows from Lemma 4.7(1) that the critical value Cλ(c) ∈ Aλ. As the ex-

traneous fixed point − 1√
5−λ is either attracting or parabolic, its basin (attracting

or parabolic) contains a critical point. But, the only available critical point is −c.
Therefore −c is in the immediate basin of attraction or immediate parabolic basin
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(a) λ = −1 (b) λ = 0

(c) λ = 1

Figure 6: The fixed point and the preimages of rλ under Cλ

of − 1√
5−λ . So Aλ contains at most one critical point other than rλ and that can be

c only. We are going to show that this is not the case, i.e., c /∈ Aλ.
Suppose on the contrary that c ∈ Aλ. Then Cλ([x0, c]) = [Cλ(c), rλ] and it gives

that Cλ([x0, c]) ⊂ Aλ. Note that there is a real pre-image of rλ in (c,∞). Let it

be x1. Then Cλ maps [c, x1] onto the same interval [Cλ(c), rλ] giving that x1 ∈ Aλ
whenever c ∈ Aλ. The locations of x0, x1, rλ and the critical points are shown in

Figure 6 for λ = −1, 0 and 1, where the red dots represent the critical points.

The Bottcher coordinate φ is locally defined and univalent at rλ (See Theorem

9.3, [8]), i.e., there is a simply connected domain Ũ ⊆ Aλ such that φ : Ũ →
φ(Ũ) ⊆ {z : |z| < 1} is conformal. Since the critical point c is assumed to be in
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Aλ, φ cannot be extended conformally to the whole of Aλ. In other words, there

is a maximal r ∈ (0, 1) such that φ−1 is well-defined on Dr = {z : |z| < r}. Let

U = φ−1(Dr). Clearly c ∈ ∂U . Let V = Cλ(U). Then V ⊂ U because φ(U) = Dr

and φ ◦Cλ ◦φ−1(z) = z3 on Dr (by Theorem 9.3, [8]), and Dr3 ⊂ Dr. It also follows

that Cλ : U → V is a proper map of degree three. Since φ−1 is well-defined and

conformal on Dr ) Dr3 , φ
−1(Dr3) = V is a Jordan domain. Let γ = ∂V \ {Cλ(c)}.

As the local degree of Cλ at c is two, there are two branches of C−1
λ and each is

well-defined on γ by the Monodromy theorem. Since there is no critical value of

Cλ on γ, the images of γ under each of these branches are Jordan arcs. Let these

images be σ and σ′. Then σ ∩ σ′ = ∅ and each of σ and σ′ is a Jordan curve with

σ ∩ σ′ = {c}. In fact, the bounded components of Ĉ \ σ and Ĉ \ σ′ are the images

of V under the two branches of C−1
λ . This is because the unbounded components of

Ĉ \ σ and Ĉ \ σ′ contains a point of the Julia set of Cλ, namely ∞ and therefore no

such unbounded component can be mapped into V , which is in the Fatou set of Cλ.

Clearly, these complementary bounded components are disjoint. One of these must

be U . Assume without loss of generality that U is the bounded component of Ĉ \σ.

The possible figures of U and U ′ is given in the lefthand side image of Figure 7.

Figure 7: The possible position of U and U ′.

Let U ′ be the bounded component of Ĉ \ σ′. Now rλ ∈ U and U ′ contains a

pre-image, say x∗ of rλ such that x∗ 6= rλ.

Now consider a simply connected open set W0 containing the closure of U ∪ U ′
and let W1 be the component of C−1

λ (W0) containing rλ. Then Cλ : W1 → W0

is a proper map with some degree d. Clearly d ≥ 4 as there are at least four

pre-images of rλ in W1 counting multiplicity, namely rλ itself with multiplicity 3

and x∗ with multiplicity 1. Since Cλ is a proper map (of degree 7) from Ĉ onto
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itself and W1 6= Ĉ, the connectivity of W1 is non-zero and finite. In fact, each

component of Ĉ\W1 is mapped onto Ĉ\W0 and there cannot be more than seven such

components. Since W1 contains two critical points, namely rλ with multiplicity 2

and c with multiplicity 1, it follows from the Riemann-Hurwitz formula (Lemma 4.2)

that c(W1) − 2 = d(c(W0) − 2) + 3 = 3 − d. This gives that the connectivity of

W1 is less than or equal to 1. Thus W1 is simply connected and d = 4. Note

that W1 contains only one pre-image of rλ different from itself and this must be x∗.

Applying this argument again we get that Cλ : W2 → W1 is a proper map of degree

4, W2 is simply connected and x∗ is the only pre-image of rλ different from itself,

belonging to W2 where W2 is the component of C−1
λ (W1) containing rλ. It follows

by induction that for each n ≥ 1, if Wn is the component of C−1
λ (Wn−1) containing

rλ then Cλ : Wn → Wn−1 is a proper map of degree 4, Wn is simply connected and

x∗ is the only pre-image of rλ, different from rλ belonging to Wn.

Since x0, x1 ∈ Aλ, one of them, say x1 is different from x∗. Thus x1 /∈ Wn for

any n. Consider an arc in Aλ joining rλ with x1. This arc cannot be contained

in Wn and intersects its boundary for each n. Let wn be a point of such intersec-

tion. Then wn has an accumulation point, say w in Aλ. Considering a sufficiently

small neighborhood Nw of w contained in Aλ we observe that Cn
λ (Nw) intersects

the boundary of W0 for all sufficiently large n. However, there is an n0 such that

Cn
λ (Nw) ⊂ V ( V ⊂ W0 for all n > n0. This is a contradiction and we prove that

c /∈ Aλ.
It now follows from a well-known result (Theorem 9.3, [8]) that Aλ is simply

connected.

By Lemma 4.3, there is a pole of Cλ on the boundary of Aλ. The Fatou com-

ponent Aλ is symmetric about the real line by Remark 4.3 (5). Since the poles are

complex conjugates of each other, the other pole is also on the boundary of Aλ.

We now present the proof of Theorem 1.2.

Proof of Theorem 1.2. Note that Cλ has a fixed point at ∞ and that is repelling.

It follows from Lemma 4.8 that the immediate basin Aλ of the real superattracting

fixed point of Cλ corresponding to the real root of pλ is unbounded, simply connected

and contains both the poles of Cλ on its boundary. Now it follows from Lemma 4.3

that the Julia set of Cλ is connected.
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5 Concluding remarks

For Cλ, λ ∈ [−1, 1], all the critical points except the poles are in the attracting or

parabolic basins. In fact, the Fatou set of Cλ is the union of the basins of the three

superattracting fixed points corresponding to the three roots of pλ and the basin of

the extraneous fixed point (which is parabolic for λ = ±1 and attracting otherwise).

In particular, the Fatou set of Cλ does not contain any Siegel disk or any Herman

ring.

It is observed from the graph of ψ(λ) (Figure 5) that for each λ ∈ [−1, 1)

there is a λ′ ∈ (1, δ] where δ is the positive number satisfying ψ(δ) = ψ(−1) such

that ψ(λ) = ψ(λ′). This gives that pλ = pλ′ and consequently, Cλ = Cλ′ . Thus

Theorem 1.2 is true for all λ ∈ [−1, δ]. In terms of the real extraneous fixed points

it means the following. For λ ∈ [−1, 1), the multiplier of − 1√
5−λ is λ whereas

the multiplier of the second real extraneous fixed point αλ is in (1, δ) and hence

is repelling. For λ ∈ (1, δ), the extraneous fixed point − 1√
5−λ becomes repelling

making αλ attracting.

For λ ∈ [−1, 1], the forward orbits of the critical points, ± 1√
5

remains in the

real line. This along with Lemma 4.1 gives that the two non-real extraneous fixed

points cannot be attracting or parabolic. These are in fact, repelling. To see it,

recall that each extraneous fixed point other than − 1√
5−λ is a solution of q(z) =

4z3− 4√
5−λz

2 + 49−9λ
5−λ z+3

√
5− λ = 0. Among them one, namely αλ is already known

to be real and other two say, ζ and ζ̄ are complex conjugates of each other. Since

q(z) = 4(z−αλ)(z−ζ)(z−ζ), comparing the constant terms we get, αλζζ̄ = −3
√

5−λ
4

.

In other word, |ζ|2 = −3
√

5−λ
4αλ

. Since − 2√
5−λ < αλ < − 1√

5−λ (by Lemma 4.7 (2) ), we

have 3(5−λ)
8

< −3
√

5−λ
4αλ

< 3(5−λ)
4

. Consequently, 3
2
< |ζ|2 < 9

2
and 13

3
< 5− 1

|ζ|2 <
43
9

.

Recall that |λζ̄ | = |λζ | and this is |5− 1
ζ2
| ≥ 5− 1

|ζ|2 >
13
3

.

We conclude by presenting several problems for further investigation.

1. The Julia set of the Chebyshev’s method applied to a cubic polynomial with an

attracting extraneous fixed point (with non-real multiplier) may be connected.

But the arguments used in this article seems to be insufficient to verify it.

2. The images in Figure 1, Figure 2 and Figure 3 suggest that the attract-

ing/parabolic domain corresponding to the extraneous attracting/parabolic

fixed point is bounded. However, this is yet to be proved.

3. We believe that all the immediate basins of attractions of the superattracting

fixed points corresponding to the roots of pλ are unbounded for λ ∈ [−1, 1].

This article proves it only for the real root of pλ.
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4. A rational map is called geometrically finite if the postcritical set PR ∩ J (R)

is finite where PR is the union of all the forward orbits of all the critical points

of R. It follows from the proof of Theorem 1.2 that Cλ is geometrically finite

for λ ∈ [−1, 1]. It is also clear from Proposition 4 that Cp is geometrically

finite for all cubic unicritical and non-generic polynomials. Since the Julia set

is connected in each of these cases, it is locally connected by [10]. The nature

of the boundaries of the Fatou components can be explored.

5. For λ ∈ (−∞,−1)∪(δ, 5), ψ(λ) is a real number and pλ preserves the real line,

and it has a unique real root. The dynamics of Cλ is symmetric about the real

line by Remark 4.3(5). The forward orbits of the two real critical points of Cλ
remain in the real line. It seems plausible to analyze these forward orbits and

determine the dynamics of Cλ.
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