
Romanian Reports in Physics, Vol. 62, No. 2, P. 405–413, 2010 

THE JULY 2008 RAINFALL ESTIMATION FROM BARNOVA 
WSR-98 D RADAR USING ARTIFICIAL NEURAL NETWORK* 

GINA TIRON1, STELUŢA GOSAV2 

1Faculty of Physics, “Al.I.Cuza’’ University of Iasi, 11 Carol I Boulevard, Romania,  
E-mail: tiron.gina@.yahoo.com 

2Physics Department, Faculty of Science, “Dunărea de Jos” University of Galati, Domnească St.47, 
Romania, E-mail: stelagosav@yahoo.com 

(Received July 30, 2009) 

Abstract. In the last years, the artificial neural networks (ANN) have proved an attractive 
approach to non-linear regression problems arising in environmental modelling, such as short-term 
forecasting of atmospheric pollutant concentrations, rainfall run-off modelling and precipitation 
nowcasting using radar, satellite or meteorological data. The term nowcasting reflects the need of 
timely and accurate predictions of risk situations related to the development of severe meteorological 
events. The objective of this work is the very short term prediction of the rainfall field from radar data 
based on feed forward neural network approach. The radar dates used in this study were measured by 
the WSR-98D Doppler radar in North-East of Romania. The reflectivity data sets extend over July 
2008. The ANN system with reflectivity values as input variables was trained to predict the rain rate 
on the ground. The output vector consists of one variable namely the rain rate measured by a rain 
gauge on ground level. The two available rain gauges provided the rain rate in millimetres every one 
hour. Data-preprocessing or the selection of input variables was performed when necessary. The 
efficiency of ANN network in the estimation of the rain rate on the ground in comparison with that 
supplied by the weather radar is evaluated.   
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1. INTRODUCTION 

Rainfall forecasting is one of the most difficult but very important tools in 
meteorology and hydrology. Rainfall estimation on the ground based on radar 
measurements is a challenging problem due to space-time variability of rainfall 
fields. The rainfall on the ground is dependent on the four-dimensional (space-
time) structure of the precipitation aloft. Recent research has shown that neural 
network techniques can be successfully used for ground rainfall estimation from 
weather radar data [–15]. In addition, in the last years Artificial Neural Networks 
(ANNs) have been used in various scientific fields such as environmental 
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protection [6, 7], spectroscopy [8], wind meteorology and precipitation estimations 
[9, 10], etc. 

This paper describes an approach meant to estimate ground rainfall based on 
a feed-forward neural network technique to model the relationship between 
weather radar data aloft and rain gauge measurements on the ground. The ANN 
system accepts radar data as an input and is trained to predict the rain rate as 
measured by the rain gauge. Xiao and Chandrasekar [11] applied a backpropagation 
neural network for rainfall estimation from radar data. Liu et all. [12], Xu and 
Chandrasekar [1] developed a radial basis function neural network to estimate 
ground rainfall. 

The ANN technique includes two stages, namely, 1) the training and 2) the 
validation stage. In the training stage, the neural network learns the potential 
relationship between the rainfall rate and the radar measurements from a training 
dataset. When a radar measurements set is applied to neural network, the network 
yields a rainfall rate (RR) estimated as output. This output is compared with the 
rain gauge measurement, and their difference or the error is propagated back to 
adjust the parameters of the network. This learning process is continued until the 
network converges. Once the training process is complete, a relationship between 
the rainfall rate and the radar measurements is established and the network is ready 
for operation [12]. In addition, we have achieved a sensitivity analysis of the input 
weather radar data for the artificial neural network. 

2. RAIN GAUGE. WEATHER RADAR 

2.1. DATA AVAILABLE 

For this study rain-gauge and radar data from the province of Moldova, 
Romania, were available. The data sets extend over a one year period. The rain 
gauges work on the tipping bucket principle with a resolution of 0.2 mm. Their 
locations are showed in Fig. 1, respectively Botosani and Vaslui. Their temporal 
resolution is 60 minutes. 

Reflectivity measurements are gained from the Doppler WSR-98D weather 
radar station at Barnova, Iasi (Fig. 1). Radar is a high-resolution S – band weather 
radar situated on an altitude of 396 m above m.s.l. The distance between the radar 
station and the rain gauge in Botosani is about 106 Km, while the one between the 
radar station and the rain gauge in Vaslui is about 43 Km. 

The radar has the following specifications: 
• Time interval between measurements: 6 minutes; 
• Beamwidth: 10;  
• Minimum elevation angle: 0.5 gr.; 
• Spatial resolution of the volume element: 1 km3   

(1 km × 1 km × 1 km); 



3 Rainfall estimation using artificial neural network 407 

• Resolution in measured reflectivity: 14 levels of reflectivity; 
• Instrumented range: 230 km. 

The measuring unit of the radar is the reflectivity factor Z. 
The reflectivity factor Z is used to estimate the rain rate using relationships of 

the form: 

 Z = a·R b,   (1) 

where a and b empirical parameters; R – rain rate in mm/h; Z – reflectivity factor in 
mm6·m-3. 

In this paper, we have used the reflectivity measurements at four elevations: 
0.5, 1.5, 2.4 and 3.4. For each elevation we have obtained nine adjacent 
measurements with the rain gauge at the centre of the quadratic grid that is 36 
reflectivity measurements. Since the radar data are available every 6 minutes, the 
reflectivities and rain gauge were transferred into the same temporal resolution (60 
minutes) by averaging the radar data. Finally, we have obtained 36 average 
reflectivity measurements for each precipitation event.  

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig.1. – Study area in the province of Moldova, Romania,  
showing radar and rain gauge location. 

3. EXPERIMENTAL 

3.1. DEVELOPMENT OF THE ANN SYSTEM 

The structure of the ANN system used in this paper consists of three node 
layers: an input layer, a hidden layer and an output layer. The nodes in the input 
layer transfer the input data (average reflectivity measurements) to all the nodes in 

Botosani 
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the hidden layer. These nodes calculate a weighted sum of the inputs that is 
subsequently subjected to a nonlinear transformation:  
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where xi is the input to the node i in the input layer, m is the number of nodes in the 
input layer, wji (weights) are the connection between each node i in the input layer 
and each node j in the hidden layer, yj is the output of the node j in the hidden layer, 
b is the bias for the input layer and f is a sigmoid function:  

 ( ) ( )z
zf

−+
=

exp1
1

,  (3) 

where z is the final response (rain rate) of the ANN.  
The great power of neural networks stems from the fact that it is possible to 

“train” them. Training is affected by continually presenting the networks with the 
“known” inputs and outputs (targets) and modifying the connection weights 
between the individual nodes and the biases. The output of the network is a 
weighted sum of the outputs of the hidden layer. In our case, the ANN network was 
trained with the learning algorithm based on the back-propagation of errors [14]. 

Learning by error back-propagation (like in all supervised methods) is carried 
out in cycles, called “epochs”. One epoch is a period in which all input-target pairs 
{xi, ti} are presented once to the network. The weights are corrected after each 
input-target pair (xi, ti) produces an output vector zi and the errors from all output 
components zs are squared and summed together. After each epoch, the root-mean-
squared error (RMSE) is reported: 
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where m and n denote the number of input data and the number of output nodes, 
respectively. 

In conclusion, the RMSE value measures how good the outputs zi (produced 
for the entire set of m input vectors xi) are in comparison with all m, n-dimensional 
target values ti. The aim of the supervised training, of course, is to reach a RMSE 
value as small as possible in the shortest time.  

The back-propagation algorithm follows the gradient descent on the error 
surface. This process is controlled by two parameters: the learning rate α and 
momentum µ. The learning rate scales the magnitude of each step, down the error 
surface, taken after each complete calculation in the network (epoch). The 
momentum acts like a low pass filter, smoothing out progress over some small 
bumps in the error surface by remembering the previous weight change [14, 15]. 
Thus, the correction of weights ∆wji is defined as: 
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where jδ  is the error that occurs on the j-th node of the -th  layer. 
The neural networks are often affected by the effect called overtraining or 

overfitting. An overtrained neural network memorizes the small training set instead 
of generalizing the data and consequently performs badly on new data e.g. on the 
validation set. In this work, the overtraining (or overfitting) was anticipated by the 
so-called early stopping. Early stopping was implemented by stopping the training 
when the error of cross-validation of the training data starts going up, as the neural 
network may loose its generalization ability at this moment [14]. 

Concerning the topology of the ANN network, the number of neurons in the 
input layer is equal with the input variables (36 average reflectivity measurements and 
normalized), the number of neurons in output layer is equal with the number of 
precipitation classes (3 output neurons representing the following classes: the class 1 
has the rainfall rate comprised between 0–5 mm·h-1, the class 2 has the rainfall rate 
comprised between 5–10 mm·h-1 and the class 4 has the rainfall rate comprised 
between 15–20 mm·h-1), but the optimum number of neurons for the hidden layer must 
be determined. Thus, the number of neurons for the hidden layer and the weight of the 
connections were optimized at 13 hidden neurons and 507 weight connections. Also, 
the learning rate α = 0.7 and the momentum µ = 0.8 were fixed after optimization.  

The neural networks have been programmed to stop the training process 
when the average error of training drops below the target error. The target error 
was set up at 0.01 for both networks. Convergence was touched after 156 training 
epochs (Fig. 2).  

 

        RMSE 

 
                                                                                                                            Number of epochs 

Fig. 2 – The root-mean-squared error (RMSE) of training in function of the number of epochs. 
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The training set consisted of 12 precipitation events. In our case, we have 
chosen the same number of events for each class of precipitation: 4 events for class 
1, 4 events for class 2 and 4 events for class 4. The remaining 31 precipitation 
events were included in the validation set. 

4. RESULTS AND DISCUSSION 

The network was validated using all the events from the database. The 
method was full cross-validation, as the number of events in the database is 
relatively small. In order to evaluate the performance of the ANN system, several 
figures of merit were calculated: the rate of classification (C), of correctly 
classified events (CC), and of correctly classified events for each class (CC1 for the 
class 1, CC2 for the class 2 and CC4 for the class 4). We should specify that the C 
rate represents the percentage of events that were correctly or incorrectly classified. 
The values of these parameters are presented in Table 1 and offer a complete image 
of the validation results.  

Analyzing the values of validation parameters, we have observed that the 
ANN system has a very good percentage for the rate of classification of 
precipitation events (C = 95.35%) so that only two events were unclassified. The 
values for the CC1, CC2 and CC4 rates are quite encouraging (Table 1), as these 
are initial results, obtained without any optimization of the nature and/or number of 
events included in the training set. Thus, the biggest value is for the CC4 rate 
(81.82%), then follows the CC2 rate which has 62.5%, and finally comes the CC1 
rate which has the smallest value (CC1 = 54.55%). In our case, the smaller values 
obtained for the CC1 and CC2 rates do not constitute a disadvantage because the 
events included in classes 1 and 2 correspond to small rainfall rates i.e. RR is from 
0 to 5 mm·h-1for class 1 and RR is from 5 to 10 mm·h-1for class 2.  

Table1 

The results of validation 

Validation 
parameter 

Value (%) 

C 95.35 
CC 63.34 

CC1 54.55 
CC2 62.5 
CC4 81.82 

 
Finally, it is worth emphasizing the fact that the precipitation events with 

rainfall rate comprised between 15 and 20 mm·h-1(class 4) were very well classified 
by the artificial neural network.   
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4.1. SENSITIVITY ANALYSIS 

Sensitivity analysis should be considered an essential pace to all 
mathematical-based modeling. The main advantage of performing sensitivity 
analysis is to identify sensitive parameters or processes associated with model 
output [13]. In ANN modeling, like any mathematical-based model, sensitivity 
analysis provides feedback as to which input parameters are the most significant.   

In order to find the most sensitive input variables, we have achieved a 
sensitivity analysis (Fig. 3). The absolute sensitivity is a measure of how much the 
outputs change when the inputs are changed. The change in the outputs is measured 
as each input is increased from the lowest to the highest to establish the sensitivity 
to change. The sensitivity analysis is a method for measuring the cause - effect 
relationship between the input layer and the output layer.  

 

 
Fig. 3 – The sensitivity analysis of input weather data. 

Figure 3 shows us that the majority average reflectivity measurements (input 
data) corresponding to the elevation 4 (h48, h46, h45, h47, h44, h49 and h43) has 
the highest values for the relative sensitivity (from 0.0021 to 0.0062). This fact 
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proves that the rate of correctly classified events in the case of class 4 has the 
highest value (CC4 = 81.82%, Table 1). Class 4 has the rainfall rate comprised 
between 15–20 mm·h-1. From the meteorological point of view, the importance of 
this result is confirmed by the fact that the reflectivity measurements from the 
elevation 4 are very important in the rainfall estimation.  

Using relation (1), when a = 300 and b = 1.4, for a rate of precipitation 
between 15-10 mm·h-1 we get a reflectivity factor of about 45 dBZ. Reflectivity 
values of 45 dBZ represent a sign of the presence of a severe convection [16]. For 
the clouds with vertical development, the highness to which we find the radar beam 
corresponds to elevation 4.  

5. CONCLUSIONS 

The results of the present study indicate that the use of artificial neural 
network as a rainfall forecasting system is feasible and efficient. The exploratory 
analysis of the ANN system specialized in the identification of the precipitation 
classes proved that discrimination between class 1, class 2 and class 4 is possible.  

The evaluation of the performance of the ANN network was carried out by 
calculating several figures of merit characterizing the class identity assignment. 
Thus, for the classification rate of the precipitation events we have obtained a very 
good value (C = 95.35%). The precipitation events belonging to classes 1 and 2 
were satisfactorily classified (CC1 = 54.55% and CC2 = 62.5%) while those 
belonging to class 4 were much better classified (CC4 = 81.82%).  

From the sensitivity analysis of the input variables, it has ensued that the 
most sensitive reflectivity measurements (input variables) are those from the 
elevation 4. This result confirms the good percentage of the CC4 rate i.e. the fact 
that the ANN system has a better modeling power in the case of precipitation 
events with higher rainfall rates.  

As the precipitation events with heavy rain accumulations generate damages, 
we intend to continue the research regarding the rates improvement of correctly 
classified events especially in the case of these events (i.e. CC4, CC5, etc.) using 
the artificial neural network.   
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