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Abstract Recently, more and more social network data have been published in one way or
another. Preserving privacy in publishing social network data becomes an important concern.
With some local knowledge about individuals in a social network, an adversary may attack
the privacy of some victims easily. Unfortunately, most of the previous studies on privacy
preservation data publishing can deal with relational data only, and cannot be applied to
social network data. In this paper, we take an initiative toward preserving privacy in social
network data. Specifically, we identify an essential type of privacy attacks: neighborhood
attacks. If an adversary has some knowledge about the neighbors of a target victim and the
relationship among the neighbors, the victim may be re-identified from a social network
even if the victim’s identity is preserved using the conventional anonymization techniques.
To protect privacy against neighborhood attacks, we extend the conventional k-anonymity
and l-diversity models from relational data to social network data. We show that the problems
of computing optimal k-anonymous and l-diverse social networks are NP-hard. We develop
practical solutions to the problems. The empirical study indicates that the anonymized social
network data by our methods can still be used to answer aggregate network queries with high
accuracy.
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1 Introduction

Recently, more and more social network data have been made publicly available in one way
or another [1,2,21,22]. Preserving privacy in publishing social network data becomes an
important concern. Is it possible that releasing social network data, even with individuals in
the network anonymized, still breaches privacy?

1.1 Motivation example

With some local knowledge about individual vertices in a social network, an adversary may
attack the privacy of some victims. As a concrete example, consider a synthesized social
network of “friends” shown in Fig. 1a. Each vertex in the network represents a person.
An edge links two persons who are friends.

Suppose the network is to be published. To preserve privacy, is it sufficient to remove all
identities as shown in Fig. 1b? Unfortunately, if an adversary has some knowledge about the
neighbors of an individual, the privacy may still be leaked.

If an adversary knows that Ada has two friends who know each other, and has another
two friends who do not know each other, that is, the 1-neighborhood graph of Ada as shown
in Fig. 1c, then the vertex representing Ada can be identified uniquely in the network since
no other vertices have the same 1-neighborhood graph. Similarly, Bob can be identified in
Fig. 1b if the adversary knows the 1-neighborhood graph of Bob.

Identifying individuals from released social networks intrudes privacy immediately. In
this example, by identifying Ada and Bob, an adversary can even know from the released
social network (Fig. 1b) that Ada and Bob are friends, and they share one common friend.
Other information regarded as privacy can be further derived such as how well a victim is
connected to the rest of the network and the relative position of the victim to the center of
the network.

To protect the privacy, one attempt is to guarantee that any individual cannot be identified
correctly in the anonymized social network with a probability higher than 1

k , where k is a
user-specified parameter carrying the same spirit in the k-anonymity model [35]. By adding a
noise edge linking Harry and Irene, the 1-neighborhood graph of every vertex in Fig. 1d is not

(c) the 1−neighborhood
graph of Ada

(a) the social network (b) the network with anonymous nodes

(d) a 2−anonymous network

Dell
Bob Cathy

Ed

George

AdaFred

Harry Irene

Ada

Fig. 1 Neighborhood attacks in a social network
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unique. An adversary with the knowledge of 1-neighborhood cannot identify any individual
from this anonymous graph with a confidence higher than 1

2 .

1.2 Challenges

Although privacy preservation in data publishing has been studied extensively and several
important models such as k-anonymity [35] and l-diversity [27] as well as many efficient
algorithms have been proposed, most of the existing studies can deal with relational data
only. Those methods cannot be applied to social network data straightforwardly.

As elaborated in Sect. 1.1, privacy may be leaked if a social network is released improp-
erly to public. In practice, we need a systematic method to anonymize social network data
before it is released. However, anonymizing social network data is much more challenging
than anonymizing relational data due to the following issues.

The first issue is that modeling background knowledge of adversaries and attacks about
social network data is much more challenging than that about relational data. For relational
data, a set of attributes form a quasi-identifier. The attackers can use the quasi-identifier
to identify individuals from multiple tables. However, for social network data, it is much
more complicated and much more difficult. The reason is that many pieces of information
in a social network can be used to identify individuals, such as labels of vertices and edges,
neighborhood graphs, induced subgraphs, and their combinations.

The second issue is that measuring information loss in anonymizing social network data
is much more challenging than that in anonymizing relational data. The information loss in
relational data can be measured tuple by tuple. Given one tuple in the original table and the
corresponding tuple in the anonymized table, the distance between the two tuples is used to
measure the information loss at the tuple level. The sum of information loss in individual
tuples is used to measure the information loss at the table level. However, for social network
data, there can be many different ways to define the measures of information loss and anony-
mization quality. For example, a social network consists of a set of vertices and a set of edges.
Unlike the case of relational data, we cannot compare two social networks by simply com-
paring the vertices and edges individually, since two social networks may be quite different
even if they have the same number of vertices and the same number of edges. Therefore, we
need to consider more network-wise properties such as connectivity, betweenness, diameter,
and network structure.

The third issue is that devising anonymization methods for social network data is much
more challenging than that for relational data. For relational data, anonymizing a group of
tuples does not affect other tuples in the table. Thus, divide-and-conquer methods are exten-
sively used to anonymize relational data. However, divide-and-conquer methods may not be
useful for social network data, since changing labels of vertices and edges may affect the
neighborhoods of other vertices, and removing or adding vertices and edges may affect other
vertices and edges as well as the properties of the network. Therefore, specific techniques
have to be taken to anonymize social network data.

1.3 Contributions and organization

Privacy preservation in publishing social networks is a new challenging problem that cannot
be solved completely by one shot. In this paper, we take the initiative to tackle the problem.
We identify an essential type of privacy attacks in social networks: neighborhood attacks,
which are illustrated in Sect. 1.1. To protect privacy against neighborhood attacks, we extend
the conventional k-anonymity and l-diversity models from relational data to social network
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data. We show that the problems of computing optimal k-anonymous and l-diverse social
networks are NP-hard. We develop practical solutions to the problems. We conduct an empir-
ical study, which indicates that the anonymized social networks generated by our method
can still be used to answer aggregate network queries with satisfactory accuracy.

The rest of the paper is organized as follows. In Sect. 2, we model neighborhood attacks
and extend the k-anonymity and l-diversity models to social networks. We review related
work in Sect. 3. The practical solutions to k-anonymity and l-diversity are developed in
Sects. 4 and 5, respectively. The proposed anonymization methods are examined empirically
using both a real dataset and a series of synthetic datasets in Sect. 6. In Sect. 7, we discuss
some other related privacy attacks in social networks for future work, and conclude the paper.

2 Problem definition

In this section, we model neighborhood attacks in social network and formulate the
k-anonymity and the l-diversity problems of privacy preservation in social networks against
neighborhood attacks. We also show that the two problems are NP-hard.

2.1 Preliminaries

In this paper, we model a social network as a simple graph G = (V, E, L , L), where V is
a set of vertices, E ⊆ V × V is a set of edges, L is a set of labels, and a labeling function
L : V → L assigns each vertex a label. For a graph G, V (G), E(G), LG , and LG are,
respectively, the set of vertices, the set of edges, the set of labels, and the labeling function
in G. To keep our discussion simple, we assume that edges do not carry labels. However, our
methods can be straightforwardly extended to remove this assumption.

The items in the label set L form a hierarchy. For example, if occupations are used as
labels of vertices in a social network, L contains not only specific occupations such as den-
tist, general physician, optometrist, high school teacher, and primary school teacher, but also
general categories like medical doctor, teacher, and professional. We assume a meta symbol
∗ ∈ L which is the most general category generalizing all labels. For two labels l1, l2 ∈ L ,
if l1 is more general than l2, we write l1 ≺ l2. For example, medical doctor ≺ optometrist.
Moreover, l1 � l2 if and only if l1 ≺ l2 or l1 = l2. � is a partial order on L .

For a graph G and a set of vertices S ⊆ V (G), the induced subgraph of G on S is
G(S) = (S, ES, LG , LG) where ES = {(u, v)|(u, v) ∈ E(G) ∧ u, v ∈ S}.

In a social network G, the neighborhood of u ∈ V (G) is the induced subgraph of the
neighbors of u, denoted by NeighborG(u) = G(Nu) where Nu = {v|(u, v) ∈ E(G)}.

Given a graph H = (VH , EH , L , L) and a social network G = (V, E, L , L), an instance
of H in G is a tuple

(
H ′, f

)
where H ′ = (VH ′ , EH ′ , L , L) is a subgraph in G and f :

VH → VH ′ is a bijection function such that (1) for any u ∈ VH , L( f (u)) � L(u), and (2)
(u, v) ∈ EH if and only if ( f (u), f (v)) ∈ EH ′ . Literally, the first condition states that the
corresponding labels in H ′ can be more general than those in H .

2.2 Neighbor attacks in social networks

To model privacy attacks and protection in social networks, we need to formulate three issues.
First, we need to identify the privacy information under attack. Second, we need to model
the background knowledge that an adversary may use to attack the privacy. Last, we need to
specify the usage of the published social network data so that an anonymization method can
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try to retain the utility of the data as much as possible while the privacy information is fully
preserved.

In this paper, we are interested in preserving the privacy of individuals which are rep-
resented as vertices in a social network. Specifically, how a small subset of vertices are
connected in a social network is considered as the privacy of those vertices.

Particularly, we address re-identification attacks. That is, we want to protect individuals
from being re-identified from a published social network by adversaries. In order to attack
the privacy of a target individual by analyzing the released anonymization network and
re-identify the vertex, an adversary needs some background knowledge. Equipped with dif-
ferent background knowledge, an adversary may conduct different types of attacks against
privacy. Therefore, the assumptions of adversaries’ background knowledge play a critical
role in both modeling privacy attacks on social networks and developing anonymization
strategies to protect privacy in social network data.

In this paper, we assume that an adversary may have the background knowledge about the
neighborhood of some target individuals. This assumption is realistic in many applications.
Among many types of information about a target victim that an adversary may collect to
attack the victim’s privacy, one essential piece of information easy to be collected is the
neighborhood, that is, what the neighbors of the victim are and how those neighbors are
connected. For example, several online social networking sites such as facebook allow a
“lookahead” function [20] such that a user can reach the neighbors of her/his neighbors, and
so on. Thus, an attacker may easily collect the neighborhood structure of a target vertex by
conducting several lookahead operations.

We assume that an adversary only knows the network topology of the neighborhood and
does not have the background knowledge of vertex labels. This assumption is also realistic
in some applications. For example, a large number of users do not want to put too much
personal information in facebook due to privacy concerns. Therefore, it is impossible for
the adversary to collect the textual attributes of those users in the network. Please note that
the second assumption can be easily removed by extending the techniques developed in this
paper straightforwardly.

Generally, we can consider the d-neighbors of the target vertex, that is, the vertices within
distance d to the target vertex in the network where d is a positive integer. However, when d
is large, collecting information about the d-neighbors of a target vertex may often be imprac-
tical for an adversary since the adversary may often have a limited access to a large social
network. Moreover, as found in many social networks, the network diameter is often small. In
other words, when d > 1, an adversary may have to collect information about many vertices.
Furthermore, by default privacy settings, those popular online social networking sites (for
example, facebook, myspace, LinkedIn) usually only allow a user to reach his/her
immediate neighbors. A user does not have the privilege to access the information of his/her
friends’ friends in the network. Thus, a user cannot infer d-neighbors of a target vertex when
d > 1. Therefore, we confine our discussion in this paper to the essential case where only
the immediate neighbors, that is, vertices in NeighborG(u), are considered.

It is interesting to notice that a few recent studies on privacy preserving publishing of
social network data consider that the attackers have the background knowledge of vertex
degrees [16,17,24,45], node pair similarities [46,47], and link types [4,5,8,48]. Those types
of background knowledge can be regarded as special cases of the background knowledge
of neighborhoods. Under those assumptions, the attackers have weaker capability to attack
privacy than the adversaries assumed in this paper. Moreover, some other recent studies also
consider neighborhood information as the attackers background knowledge [16,17,45,51].
However, only network structures of neighborhood information are considered, and textual
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attributes of neighborhood information, such as vertex labels, are ignored. To the best of
our knowledge, assuming neighborhood information of both network structures and textual
attributes as the adversary background knowledge is so far the strongest. Consequently, our
model can protect privacy better than those taking a weaker assumption.

The models such as k-anonymity and l-diversity make assumptions about attackers’ back-
ground knowledge. Recently, the differential privacy model [10,32] removes such assump-
tions. Generally speaking, the differential privacy model ensures that the addition or removal
of a single database item does not substantially affect the distributional information for data
analysis. However, Xiao and Tao [41] showed that verifying differential privacy of the tabu-
lar data is NP-hard. Machanavajjhala et al. [28] found that so far no deterministic algorithm
can satisfy differential privacy and some randomized algorithms can only with a very small
probability return the anonymized data that are totally unrepresentative of the original tabular
data. Moreover, the differential privacy model is unable to quantify exactly what sensitive
information will be breached by releasing the data [9]. As outlined in Dwork and Smith
[11], for tabular data, the differential privacy model uses a more general guarantee that no
additional harm will happen if a record is added or deleted. However, social networks con-
tain nodes and edges. It is an open problem to provide clear definitions of the privacy and
the utility of social network data under the differential privacy model. Furthermore, most
recently, Hay et al. [18] applied the differential privacy model to social network data. How-
ever, the technique in Hay et al. [18] can only provide approximated estimates of the degree
distributions and it does not release a graph. In some data analysis applications, the structural
properties of the network data are of great interest. Thus, releasing an anonymized graph is
preferred.

Undoubtedly, the differential privacy model brings new opportunities and also new chal-
lenges for privacy preserving social network publishing. It is an interesting direction for
future research. In this paper, we focus our discussion on privacy models of k-anonymity and
l-diversity, and our goal is to generate an anonymized graph.

An important aspect of anonymizing social network data is how the anonymized net-
works are expected to be used. Different applications may have different expectations. In
some situations, anonymized networks may be used to analyze the global structures. In some
other situations, anonymized networks may be used to analyze the micro-structures. Clearly,
different usage expectations may lead to different anonymization schemes.

In this paper, we focus on using anonymized social networks to answer aggregate network
queries. An aggregate network query computes the aggregate on selected paths or subgraphs
based on some given conditions. As an example, suppose a user is interested in the average
distance from a medical doctor vertex to a nurse vertex in a network. For each doctor vertex,
we can find the nearest neighbor vertex that is a nurse. Then, the aggregate network query
returns the average distance between a doctor vertex to its nearest nurse neighbor.

Aggregate network queries are useful in many applications, such as customer relationship
management. For example, a mobile phone company may want to promote a new phone plan
to its targeted customers of medical doctors. The company may also want to know the other
potential customers for this new plan, that is, who are closely connected to medical doctors
in a mobile communication network. An aggregate network query on the mobile communi-
cation network may return the result that medical doctors and nurses are highly connected.
Thus the company can promote their new service to its customers of nurses as well. While
many types of queries on social networks are interesting, we are particularly interested in
aggregate network queries in this paper since typically detailed data are needed to answer
such queries accurately. Using aggregate network queries, we can examine the effectiveness
of social network anonymization in a meaningful way.
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There are many possible ways to anonymize a social network, such as adding and/or
deleting edges/vertices. Consider a social network G = (V, E, L , L) and the anonymization
G ′ = (

V ′, E ′, L ′, L′) for publishing. We assume that in the anonymization, no fake vertices
are added and no vertices in the original graphs are deleted. That is, there is a bijection
function A : V → V ′. This assumption is often desirable in applications since all actors are
retained in the published social network.

Moreover, we assume that for (u, v) ∈ E, (A(u), A(v)) ∈ E ′. That is, the connections
between vertices in G are retained in G ′. During the anonymization, only edges can be added
and no edges can be deleted. This assumption is realistic in some application scenarios. For
example, in a friendship network for customer-relationship management, we do not want
to remove the connections between customers so that a possible customer referring channel
may be missed. This assumption is due to the technical concern. In real social networks with
vertex degree in power law distribution, the vertices with large degrees are the major subjects
of anonymization operations. If edges can be deleted, the degrees of those head vertices may
drop substantially. Moreover, it is challenging to define a meaningful quality measure for
anonymized graphs with both edges added and deleted.

We believe that a general model of allowing both adding and deleting edges can be
highly desirable. It is possible that the neighborhood information of both network structures
and textual attributes is used as the attackers’ background knowledge. However, under this
assumption of the attackers’ background knowledge, privacy preservation in social network
publishing so far remains an open problem in both the model design and the anonymization
algorithm development.

2.3 k-Anonymity in social networks

An adversary may attack the privacy using the neighborhoods. For a social network G, sup-
pose an adversary knows NeighborG(u) for a vertex u ∈ V (G). If NeighborG(u) has k
instances in G ′ where G ′ is an anonymization of G, then u can be re-identified in G ′ with
confidence 1

k .
Similar to the philosophy in the k-anonymity model [35], to protect the privacy of vertices

sufficiently, we want to keep the re-identification confidence lower than a threshold. Let k be a
positive integer. For a vertex u ∈ V (G), u is k-anonymous in anonymization G ′ if there are at
least (k −1) other vertices v1, . . . , vk−1 ∈ V (G) such that NeighborG ′(A(u)), NeighborG ′
(A(v1)), . . . , NeighborG ′(A(vk−1)) are isomorphic. G ′ is k-anonymous if every vertex in
G ′ is k-anonymous.

Analogous to the correctness of k-anonymity model [35] on relational data, we have the
following claim.

Property 1 (K -anonymity) Let G be a social network and G ′ an anonymization of G. If G ′
is k-anonymous, then with the neighborhood background knowledge, any vertex in G cannot
be re-identified in G ′ with confidence larger than 1

k .

An adversary knowing the neighborhood of a target vertex is a strong assumption. Pro-
vided privacy is preserved under this assumption, privacy is also preserved when an adversary
knows only part of the neighborhood (that is, only some neighbors and some connections
among neighbors) of a target vertex.

Given a social network G, the k-anonymity problem studied in this paper is to compute
an anonymization G ′ such that (1) G ′ is k-anonymous; (2) each vertex in G is anonymized
to a vertex in G ′ and G ′ does not contain any fake vertex; (3) every edge in G is retained in
G ′; and (4) the number of edges to be added is minimized. Heuristically, when the number
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Fig. 2 Transforming a relational
table to a graph A B C

0 1 1
1 1 1
0 0 0
1 0 0

of edges added is as small as possible, G ′ can be used to answer aggregate network queries
accurately.

The k-anonymity problem in social networks is challenging. We show that a simplified
version of the k-anonymity problem in social networks is NP-hard where all vertices in G
carry the same label, or equivalently, G is not labeled.

Theorem 1 (Complexity of k-anonymity in Social Networks) The following k-anonymity
problem in social network is NP-hard.
Instance: a social network G = (V, E, L , L), positive integers k and n.
Question: is there an anonymized social network G ′ = (

V, E ′, L , L)
such that E ⊂

E ′,
∣∣E ′ − E

∣∣ ≤ n, and G ′ is k-anonymous?

Proof The k-anonymity problem in relational data [29] as follows is proved NP-hard by an
induction from the k-Dimensional Perfect Matching problem [19].
Instance: a table T = (A1, . . . , Al) where each attribute is in domain {0, 1}, positive integers
k and n.
Question: an entry is an attribute value in a tuple. Can we suppress at most n entries in T
such that after the suppression the table is k-anonymous (that is, each tuple is identical to
(k − 1) other tuples in the table after suppression)?

Here, we prove the theorem by reducing the k-anonymity problem in relational data to
the k-anonymity problem in social networks.

Consider integer k and a table T = (A1, . . . , Al) where each attribute is in domain {0, 1}.
We transform T into a graph G as follows.

– For each attribute Ai (1 ≤ i ≤ l), we create k vertices in G with label 0i and k vertices
in G with label 1i .

– For each tuple t in T , we create a vertex of label data in G. That is, all vertices for
tuples carry the same label. Moreover, for each attribute Ai , if t.A1 = 0, we add k edges
between the vertex of t and the k vertices of label 0i . Similarly, if t.A1 = 1, we add k
edges between the vertex of t and the k vertices of label 1i .

For example, consider table T in Fig. 2a and k = 2. Figure 2b shows the graph transformed
from the table.

Apparently, the above transformation is of complexity O(2l + kl|T |), where |T | is the
number of tuples in T .

A graph G obtained as such has the following property: vertices 0i ’s and 1i ’s (1 ≤ i ≤ l)
are k-anonymous. In the rest of this proof, we consider only anonymizations of G which
keep the class labels of the vertices unchanged.

Let G ′ be a k-anonymization of G. We have two important observations. First, if G ′ con-
tains any edge between vertices of label data, removing all of those edges does not affect
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(a) a social network

K08)K08 ,derF(

(Dell, 60K) (Ed, 80K)

(Bob, 100K)
(Cathy, 130K)

(George, 70K)
(Ada, 100K)

(Harry, 60K) (Irene, 100K)

60K
100K 130K

80K

70K

60K

100K

100K
(b) a 2−anonymous network still leaks privacy

Fig. 3 Neighborhood attacks in a social network with sensitive labels

the k-anonymity of the graph. Second, if a vertex u of label data is connected with a vertex
v of label 0i (1i ), u must be connected with all other k − 1 vertices of label 0i (1i ) as well.

If T has a k-anonymization T ′ where at most n entries are suppressed, then there exists
a k-anonymization G ′ of G where

∣
∣E

(
G ′) − E(G)

∣
∣ ≤ kn—when an entry is suppressed in

T ′, we add k edges in G ′ to link the corresponding vertex with label data to the k 0i or 1i

vertices.
On the other hand, let G ′ be a k-anonymization of G and

∣∣E
(
G ′) − E(G)

∣∣ ≤ kn. Based
on the first property, we remove from G ′ all edges between vertices of label data and obtain
G ′′. G ′′ is also a k-anonymization of G and

∣∣E
(
G ′′) − E(G)

∣∣ ≤ ∣∣E
(
G ′) − E(G)

∣∣ ≤ kn.
Based on the second property, we know that

∣∣E
(
G ′′) − E(G)

∣∣ must be a multiple of k.
We construct a table T ′ = (A1, . . . , Al) from graph G ′′ as follows. For each vertex u in G ′′

of label data, we create a tuple t in T ′. For each attribute Ai (1 ≤ i ≤ l), if u is connected
with vertices of labels both 0i and 1i , the value of t.Ai is suppressed. Otherwise, t.A1 = 0(1)

if u is connected with vertices of label 0i (1i ) only. Clearly, T ′ is a k-anonymization of T
where at most n entries are suppressed.

We show that the k-anonymity problem in relational data can be reduced to the
k-anonymity problem in social networks. �


In Sect. 4, we will develop a practical solution to the k-anonymity problem, which can
obtain k-anonymous social networks with low information loss in practice.

2.4 l-Diversity in social networks

As shown in Machanavajjhala et al. [27], a k-anonymized relational table may not preserve
privacy sufficiently if it lacks diversity in sensitive attributes. Similarly, k-anonymized social
network data still may leak privacy. If an adversary can link a victim to a group of vertices
anonymized together all associated with a sensitive attribute value, then the adversary still
can link the victim to the sensitive attribute value.

As a concrete example, consider the social network in Fig. 3a. Each vertex in the social
network carries two labels: the name and a sensitive attribute value Salary. Figure 3b is a
2-anonymous network of Fig. 3a. Does Fig. 3b preserve the privacy on the sensitive salary
information sufficiently?

If an adversary is equipped with the background knowledge of the 1-neighborhood of Ada,
due to the 2-anonymity, the adversary cannot identify the vertex of Ada in Fig. 3b. However,
since Ada, Bob and Irene have the isomorphic 1-neighborhood in Fig. 3b, and no one else has
the same 1-neighborhood, the adversary is sure that Ada must be one of the three vertices.
Importantly, since Ada, Bob and Irene all have salary 100K , the adversary can accurately
determine the salary of Ada.
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The above example clearly demonstrates that a k-anonymized social network may still
disclose sensitive information due to the lack of diversity. We model the attack illustrated in
the example as follows.

In a social network G, a set S of m vertices {v1, v2, . . . , vm} ⊆ V (G) is said to form an
equivalence group if their 1-neighborhood structures NeighborG(v1), NeighborG(v2), . . . ,

NeighborG(vm) are isomorphic.
Following the philosophy of the l-diversity principle [27] in relational data, in order to

protect the privacy of the vertices sufficiently in an equivalence group, we have to make sure
that the distribution of the sensitive values in each equivalence group are sufficiently diverse.

Technically, let G be a social network and G ′ be an anonymization of G. G ′ is said to be
l-diverse if in every equivalence group of vertices, at most 1

l of the vertices are associated
with the most frequent sensitive label.1

As a result, an adversary with the background knowledge of 1-neighborhood structure
only can infer the sensitive label for a target victim with the probability not large than 1

l . The
larger the value of l, the better privacy is protected.

For simplicity, suppose each vertex in a social network carries only one sensitive label.2

Obviously, an l-diverse social network is also l-anonymous. The complexity of the l-diversity
problem in social networks can be shown to be NP-hard.

Theorem 2 (Complexity of l-diversity in Social Networks) The following l-diversity prob-
lem in social networks is NP-hard.
Instance: a social network G = (V, E, L , L), positive integers l and n.
Question: is there an anonymized social network G ′ = (

V, E ′, L , L)
such that E ⊂

E ′,
∣∣E ′ − E

∣∣ ≤ n, and G ′ is l-diverse?

Proof We reduce the problem of k-anonymity in social networks to k-diversity in social net-
works. For a given social network G that we want to compute its k-anonymization by adding
at most n edges, we construct a new social network G ′ by assigning each vertex in G a unique
sensitive label. Clearly, there is a k-anonymization of G1 such that |E(G1) − E(G)| ≤ n if
and only if there is a k-diverse anonymization G2 of G ′ such that

∣∣E(G2) − E
(
G ′)∣∣ ≤ n.

�


3 Related work

Privacy becomes a more and more serious concern in many applications. The development
of privacy preserving data processing techniques has become a fruitful direction for database
and data mining research.

One of the privacy concerned problems is publishing microdata for public use [33], which
has been extensively studied recently. The major goal of privacy preserving research is how to
hide sensitive knowledge [15]. A large category of privacy attacks is to re-identify individuals
by joining the published table with some external tables modeling the background knowl-
edge of users. To battle this type of attacks, the mechanism of k-anonymity was proposed in
Samarati and Sweeney [34], Sweeney [35]. Specifically, a data set is said to be k-anonymous
(k ≥ 1) if, on the quasi-identifier attributes (that is, the minimal set of attributes in the table

1 The original definition of l-diversity in Machanavajjhala et al. [27] is more general. For simplicity, we adopt
the frequency-based l-diversity, as most of the previous studies [23,38,40] did.
2 This assumption can be easily removed by expanding the cardinality of the sensitive label set, that is,
considering a combination of multiple sensitive labels as a new sensitive label.
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that can be joined with external information to re-identify individual records), each record is
indistinguishable from at least k − 1 other records within the same data set. The larger the
value of k, the better the privacy is protected.

Machanavajjhala et al. [27] showed that a k-anonymized dataset has some subtle but
severe privacy problems due to the lack of diversity in the sensitive attributes. In particular,
they showed that, the degree of privacy protection does not really depend on the size of
the quasi-identifier attribute set. Instead, it is determined by the number of distinct sensitive
values associated with each quasi-identifier attribute set. The observation leads to the notion
of l-diversity [27]. Xiao and Tao [39] proved that l-diversity always guarantees stronger
privacy preservation than k-anonymity.

While the privacy models ensure that the anonymized data can protect privacy, the utility
of anonymized data also plays an important role. Many previous studies have been conducted
on anonymized data for specific data mining tasks, such as Luo et al. [26], Qiu et al. [31].

In this paper, we focus on k-anonymity and l-diversity since they are the most essential
and most applicable privacy models. Particularly, k-anonymity can be used even when sen-
sitive attributes are not defined. A few governmental privacy regulations including HIPAA
and European Union Data Directive adopted k-anonymity.

Beyond microdata, some other data sources such as social network data also have pri-
vacy concerns when they are published for public use. In online social networking sites,
privacy breaching may happen in many scenarios. Muhlestein and Lim [30] considered
the privacy issue when people in the online community try to share common interests.
A thorough survey on the recent work of anonymization techniques for privacy preserv-
ing publishing of social network data is provided in Liu et al. [25], Zhou et al. [50]. In
the following, we briefly review some representative studies and point out the differences
between those studies and ours.

Typically, social network data can be represented as a graph, in which vertices correspond
to people or other social entities, and edges correspond to social links between them [37].
As a first step to hide information about social entities while preserving the global network
properties, the released social network data have to go through the anonymization procedure
which replaces social entity names with meaningless unique identifiers [3]. Although this
kind of anonymization can exactly preserve the unannotated structure of the social network,
it may still leak a lot of privacy information of individuals.

Attacks in social network data can be regarded as one kind of link mining [14]. Specifi-
cally, as a pioneer work about privacy in social network data, Backstrom et al. [3] described
a family of attacks based on random graph theory. For example, an attacker may plant some
well-constructed sub-structures associated with the target entities in advance. Once the social
network data are collected and published, the attacker can first try to identify the planted struc-
tures and thus peek the linkage between the target vertices. However, there is no practical
solution proposed in Backstrom et al. [3] to counter those attacks.

The attacks proposed in Backstrom et al. [3] are different from the neighborhood attacks
addressed in this paper. The attacks in Backstrom et al. [3] need to plant a set of deliberative
structures before the social network data are anonymized, which is a task hard to achieve in
some situations. As shown before, even without planting deliberative structures, the released
social network data are still in danger, as neighborhood attacks are still possible.

Wang et al. [36] adopted description logic as the underlying knowledge representation
formalism and proposed some metrics of anonymity for assessing the risk of breaching con-
fidentiality by disclosing social network data. However, they did not give any anonymization
algorithms for social network data.
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Recently, Zheleva and Getoor [48] proposed a model different from ours. They focused
on social networks where nodes are not labeled but edges are labeled. Some types of edges
are sensitive and should be hidden. They provided the edge anonymization methods based
on edge clustering and removal to prevent link re-identification.

Very recently (after the preliminary version of this paper [49] was published), Liu and
Terzi [24] studied the graph k-degree anonymous problem. Specifically, they address the pos-
sible re-identification attacks against individuals by an adversary using the prior knowledge
of the degree of a victim vertex. A graph is said to be k-degree anonymous if for every node
v, there exist at least k −1 other nodes in the graph with the same degree as v. Generally, their
privacy requirement is weaker than ours. They only consider the node degrees, but ignore
the link structures among those 1-neighbor nodes. The 1-neighborhood attacks considered
in this paper are more general.

For example, the network in Fig. 1 is 2-degree anonymous. However, as shown in Sect. 1.1,
it is not 2-anonymous. Ada in the network still can be re-identified by her 1-neighborhood.

Liu and Terzi [24] proposed to modify the graph by adding and deleting edges from the
graph to achieve k-degree anonymity. As pointed out in Liu and Terzi [24], due to the differ-
ence in problem formulation, the approaches in Liu and Terzi [24] cannot be used to tackle
the problem studied in this paper.

Simultaneous to our study, Hay et al. [16,17] presented a framework for assessing the pri-
vacy risk of sharing anonymized network data. They modeled the adversaries’ background
knowledge as vertex requirement structural queries and subgraph knowledge structural que-
ries, and proposed a privacy requirement k-candidate anonymity that is similar to k-anonymity
in tabular data. They developed a random graph perturbation method by randomly deleting
or adding edges to anonymize a social network. Their model assumes that the nodes and the
edges in a social network are not labeled.

Zou et al. [51] proposed a k-automorphism framework to anonymize social networks.
Given an original network, the algorithm in Zou et al. [51] converts the network into a
k-automorphic network, which is then published. The networks considered in Zou et al. [51]
are unlabeled. However, we consider the case that each vertex in the network carries sensitive
labels and nonsensitive labels.

In some applications, entities and their relationships can be modeled as a bipartite graph,
such as customers and medical products used. The edges in such a bipartite graph may be
considered as privacy. Cormode et al. [8] focused on the problem of anonymizing bipartite
graphs. The method proposed in Cormode et al. [8] cannot be extended to social networks.
Later on, Bhagat et al. [4] studied a much richer class of graphs called interaction graphs that
can handle many different types of entities and edge types. Bhagat et al. [4] represented the
interaction graphs as bipartite graphs over the sets of entities and interactions. However, we
consider more general social networks in which edges do not carry type information. The
grouping method proposed in Bhagat et al. [4] cannot be used to solve our problem.

4 A k-anonymity method

In this section, we introduce a practical method to anonymize a social network to satisfy the
k-anonymity requirement. The method is in two steps.

First, we extract the neighborhoods of all vertices in the network. To facilitate the compar-
isons among neighborhoods of different vertices including the isomorphism tests, which will
be conducted frequently in anonymization, we propose a simple yet effective neighborhood
component coding technique to represent the neighborhoods in a concise way.
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Fig. 4 Neighborhood and
neighborhood components (the
dashed edges are just for
illustration and are not in the
neighborhood subgraph)

In the second step, we greedily organize vertices into groups and anonymize the neigh-
borhoods of vertices in the same group. Due to the well-recognized power law distribution of
the degrees of vertices in large social networks, we start with those vertices of high degrees.

4.1 Neighborhood extraction and coding

In order to meet the k-anonymity requirement, we need to put vertices into groups and
anonymize the neighborhoods of vertices in a group. Ideally, vertices having similar neigh-
borhoods should be grouped together. As the first step, we extract neighborhoods of vertices
and represent them in a concise way.

Extracting the neighborhood of a vertex is straightforward. The challenge is how we can
represent the neighborhood information to facilitate the later operations in anonymization.
Since we need to anonymize all neighborhoods of the vertices in one group to the same,
isomorphism tests are frequently conducted.

The general graph isomorphism problem that determines whether two graphs are isomor-
phic is NP (which is neither known to be solvable in polynomial time nor NP-complete)
[13]. Here, we propose a coding technique for neighborhood subgraphs so that whether two
neighborhoods are isomorphic can be determined by the corresponding coding.

In a social network G, a subgraph C of G is a neighborhood component of u ∈ V (G) if
C is a maximal connected subgraph in NeighborG(u).

Example 1 (Neighborhood component) Figure 4 shows NeighborG(u), the neighborhood
of a vertex u. NeighborG(u) contains three neighborhood components, C1, C2, and C3 as
shown in the figure.

Clearly, the neighborhood of a vertex can be divided into neighborhood components. To
code the whole neighborhood, we need to first code each component.

The depth-first search tree (DFS-tree for short) [7] is popularly used for navigating con-
nected graphs. Thus, it is natural to encode the edges and vertices in a graph based on its
DFS-tree. All the vertices in G can be encoded in the pre-order of T . However, the DFS-tree
is generally not unique for a graph. That is, there can be multiple DFS-trees corresponding
to a given graph.

For example, Fig. 5b and c show two DFS-trees of the graph G in Fig. 5a. The thick edges
in Fig. 5b and c are those in the DFS-trees, and are called the forward edges, while the thin
edges are those not in the DFS-trees, and are called the backward edges. The vertices in the
graph are encoded v0 to v3 according to the pre-order of the corresponding DFS-trees.

To solve the uniqueness problem, a minimum DFS code notation is proposed in Yan and
Han [43]. For any connected graph G, let T be a DFS-tree of G. Then, an edge is always
listed as

(
vi , v j

)
such that i < j . A linear order ≺ on the edges in G can be defined as

follows. Given edges e = (
vi , v j

)
and e′ = (

vi ′ , v j ′
)
. e ≺ e′ if (1) when both e and e′ are

forward edges (that is, in DFS-tree T ), j < j ′ or
(
i > i ′ ∧ j = j ′

)
; (2) when both e and e′
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Fig. 5 DFS codes, starting from
different vertices

are backward edges (that is, edges not in DFS-tree T ), i < i ′ or
(
i = i ′ ∧ j < j ′

)
; (3) when

e is a forward edge and e′ is a backward edge, j ≤ i ′; or (4) when e is a backward edge and
e′ is a forward edge, i < j ′.

For a graph G and a DFS-tree T , a list of all edges in E(G) in order ≺ is
called the DFS code of G with respect to T , denoted by code(G, T ). For exam-
ple, the DFS code with respect to the DFS-tree T1 in Fig. 5b is code(G, T1) =
〈(v0, v1, x, x)-(v1, v2, x, z)-(v2, v0, z, x)-(v1, v3, x, y)〉, where an edge

(
vi , v j

)
is written as(

vi , v j , L(vi ), L (
v j

))
, that is, the labels are included. Similarly, the DFS code with respect

to the DFS-tree T2 in Fig. 5c is code(G, T2) = 〈(v0, v1, y, x)-(v1, v2, x, x)-(v2, v3, x, z)-
(v3, v1, z, x)〉.

Suppose there is a linear order over the label set L . Then, for DFS-trees T1 and T2 on the
same graph G, their DFS codes can be compared lexically according to the vertex pairs as
labels of edges. For example, we have code(G, T1) < code(G, T2) in Fig. 5b and c.

The lexically minimum DFS code is selected as the representation of the graph, denoted
by DF S(G). In our example in Fig. 5, DF S(G) = code(G, T1).

Minimum DFS code has a nice property [43]: two graphs G and G ′ are isomorphic if and
only if DF S(G) = DF S

(
G ′). Using minimum DFS code, we can code every component of

the neighborhood of a vertex. Now, the problem becomes how we can combine the minimum
DFS codes of all components in a neighborhood into one code.

For two neighborhood components Ci and C j in NeighborG(u), we define Ci ≺ C j

if (1) |V (Ci )| <
∣∣V

(
C j

)∣∣; or (2) |V (Ci )| = ∣∣V
(
C j

)∣∣ and |E(Ci ) <
∣∣E

(
C j

)∣∣; or (3)
|V (Ci )| = ∣∣V

(
C j

)∣∣ , |E(Ci ) = ∣∣E
(
C j

)∣∣, and DF S(Ci ) is smaller than DF S
(
C j

)
.

Based on the neighborhood component order, we can assign a canonical label for each
neighborhood. In a social network G, for vertex u ∈ V (G), the neighborhood component code
of NeighborG(u) is a vector NCC(u) = (DF S(C1), . . . , DF S(Cm)) where C1, . . . , Cm

are the neighborhood components of NeighborG(u), that is, NeighborG(u) = ∪m
i=1Ci ,

Ci � C j for 1 ≤ i < j ≤ m.

Example 2 (Neighborhood component code) In Fig. 4, the neighborhood component code
of NeighborG(u) is NCC(u) = (DF S(C1), DF S(C2), DF S(C3)).

Using neighborhood component code, we can easily identify isomorphic neighborhoods.

Theorem 3 (Neighborhood component code) For two vertices u, v ∈ V (G) where G is a
social network, NeighborG(u) and NeighborG(v) are isomorphic if and only if NCC(u) =
NCC(v).

Proof Yan and Han [43] showed that two graphs G and G ′ are isomorphic if and only if
their minimal DFS codes are identical. In neighborhood component codes, each component
is represented using its minimum DFS code. Consider vertices u and v. The isomorphism
test of the two neighborhoods can be replaced by examining whether the corresponding
neighborhood component codes are identical. �
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As pointed out in Yan and Han [43], a graph may have multiple DFS codes. Two graphs
are isomorphic if and only if their minimum DFS codes are identical. As the general graph
isomorphism problem is NP, that is, it is neither known to be solvable in polynomial time nor
NP-Complete, computing the minimum DFS code for a graph in general carries the same
complexity nature as the general graph isomorphism problem. The time complexity of the
general graph isomorphic problem is not improved by minimum DFS code.

However, using neighborhood component code to label and index neighborhoods has some
advantages. First, it is easy to test whether a group of neighborhoods are isomorphic once
their neighborhood component codes are pre-computed. Without any coding techniques, we
need to conduct graph isomorphic tests for many pairs of neighborhood graphs. With the help
of neighborhood component codes, we can easily identify which set of neighborhoods are
isomorphic by examining whether their corresponding indices are identical. Second, since
each neighborhood is decomposed into several neighborhood components, it is easy to calcu-
late the structure similarity between two neighborhoods by calculating the similarity between
different components. Third, we can find similar components between two neighborhoods.
Due to the specific characteristics of minimum DFS code, the problem of finding isomorphic
connected subgraphs from two neighborhoods is equivalent to finding equivalent minimum
DFS codes from the corresponding neighborhood component codes. As a result, anonymiz-
ing similar components can lead to low information loss and high similarity between the
anonymization and the original social network.

In summary, in the first step, we extract the neighborhood for each vertex, and compute
its neighborhood component code.

4.2 Social network anonymization

One major challenge in anonymizing a social network is that changing labels of vertices and
adding edges may affect the neighborhoods of some other vertices as well as the properties
of the network. It has been well recognized that the following two properties often hold in
practical social networks. The properties help us in designing anonymization methods.

Property 2 (vertex degree in power law distribution) The degrees of vertices in a large
social network often follow the power law distribution [12]. Such degree distributions
have been identified in various social networks including Internet, biological networks, and
co-authorship networks.

Property 3 (the “small-world phenomenon” [37]) It is also popularly known as “six degrees
of separation”, which states that large social networks in practice often have surprisingly small
average diameters.

Our social network anonymization method processes vertices in the degree descending
order and utilizes the above two properties of large social networks in practice.

The k-anonymity requires that each vertex u ∈ V (G) is grouped with at least (k −1) other
vertices such that their anonymized neighborhoods are isomorphic. For a group S of vertices
having the isomorphic anonymized neighborhoods, all vertices in S have the same degree.
Since the degrees of vertices in a large social network follow a power law distribution, only
a small number of vertices have a high degree. Processing those vertices of high degrees first
can keep the information loss about those vertices low. There are often many vertices of a low
degree. It is relatively easy to anonymize those low degree vertices and retain high quality.
Moreover, as will be shown soon, low degree vertices can be used to anonymize those high
degree vertices and do not affect the diameters of the network too much.
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4.2.1 Anonymization quality measure

In our social network anonymization model, there are two ways to anonymize the
neighborhoods of vertices: generalizing vertex labels and adding edges. Each of the two
methods leads to some information loss.

The information loss due to generalization of vertex labels can be measured by the nor-
malized certainty penalty [42]. Consider a vertex u of label l1, where l1 is at the leaf level
of the label hierarchy, that is, l1 does not have any descendant. Suppose l1 is generalized
to l2 for u where l2 ≺ l1. Let si ze(l2) be the number of descendants of l2 that are leafs in
the label hierarchy, and si ze(∗) be the total number of leafs in the label hierarchy. Then, the
normalized certainty penalty of l2 is NC P(l2) = si ze(l2)

si ze(∗)
.

The information loss due to adding edges can be measured by the total number of edges
added and the number of vertices that are not in the neighborhood of the target vertex and
are linked to the anonymized neighborhood for the purpose of anonymization.

Consider two vertices u1, u2 ∈ V (G) where G is a social network. Suppose
NeighborG(u1) and NeighborG(u2) are generalized to NeighborG ′(A(u1)) and
NeighborG ′(A(u2)) such that NeighborG ′(A(u1)) and NeighborG ′(A(u2)) are isomor-
phic. Let H = NeighborG(u1) ∪ NeighborG(u2) and H ′ = NeighborG ′(A(u1)) ∪
NeighborG ′(A(u2)). The anonymization cost is

Cost (u, v) = α ·
∑

v′∈H ′
NC P

(
v′)

+β · ∣∣{(v1, v2)|(v1, v2) �∈ E(H), (A(v1), A(v2)) ∈ E
(
H ′)}∣∣

+γ · (|V (
H ′) | − |V (H)|)

where α, β and γ are the weights specified by users. Literally, the cost consists of three parts.
The first part is the normalized certainty penalty measuring the information loss of general-
izing labels of vertices. The second part measures the information loss due to adding edges.
The last part counts the number of vertices that are linked to the anonymized neighborhoods
to achieve k-anonymity.

The anonymization cost of two vertices u and v measures the similarity between
NeighborG(u) and NeighborG(v). The smaller the anonymization cost, the more similar
the two neighborhoods.

4.2.2 Anonymizing two neighborhoods

Now, let us consider a greedy method to anonymize two neighborhoods NeighborG(u) and
NeighborG(v).

We first find all perfect matches of neighborhood components in NeighborG(u) and
NeighborG(v). Two components perfectly match each other if they have the same mini-
mum DFS code. Those perfect matches are marked as “matched” and pass over for further
consideration.

For example, consider two vertices u and v whose neighborhoods are shown in Fig. 6.
Each vertex is shown in the form of (id, label). The neighborhood component C2(u) ∈
NeighborG(u) perfectly matches C3(v) ∈ NeighborG(v).

For those unmatched components, the anonymization algorithm tries to pair similar com-
ponents and anonymize them. The similarity between two components is based on the anon-
ymization cost. To calculate the similarity between two components, we try to match similar
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Fig. 6 Anonymizing two neighborhoods

vertices in the two components as much as possible. This is a traditional substructure similar-
ity search problem, which has been proved NP-hard [44]. Instead of computing the optimal
matching, we conduct a greedy match.

To start with, we first try to find two vertices with the same degree and the same label in
the two components to be matched. If there are multiple matching vertex pairs, the pair with
the highest vertex degree is chosen. If there is no such a pair of matching vertices, we relax the
matching requirement (vertex degree and label), calculate the difference of degrees and the
normalized certainty penalty of generalizing the labels in the label hierarchy, and choose
the one with the minimum anonymization cost. Then, we conduct a breadth-first search to
match vertices one by one, until all possible vertex matchings are found. The anonymization
cost is calculated according to the matching, and is used to measure the similarity of the two
components.

Consider components C1(u) and C1(v) in Fig. 6. Vertices u1 and v1 match. We start from
these two vertices and conduct a breadth-first search. Vertex v2 partially matches vertex u2.
Vertex v3 partially matches vertex u3. The vertex matching stops since all possible vertex
matchings are found. However, vertex u4 does not find any vertex matching in C1(v). Thus,
we have to find a vertex w1 ∈ V (G) that is neither in C1(v) nor in C1(u), and add it into
C1(v), so that C1(u) and C1(v) can be anonymized to the same.

When a vertex has to be introduced into the neighborhood for the sake of anonymization,
the following rules are used: we first consider those vertices in V (G) that are unanonymized.
The vertex with smallest degree has the highest priority. If there are more than one candidate
with the same smallest degree, we choose the one having the closest label in terms of nor-
malized certainty penalty. If we cannot find any other vertex that is unanonymized, we select
one anonymized vertex w with the smallest degree and satisfying the label requirement, and
mark w and its (k − 1) other vertices anonymized in the same group as “unanonymized”.
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In our example, suppose we can find an unanonymized vertex (w1, l4) to be added to
C1(u), the anonymization cost of C1(u) and C1(v) is α·

∑

v′∈V (C1(u))∪V (C1(v))

NC P(L(A(v′)) + β · 1 + γ · 1 = α · 4

5
+ β + γ.

Based on the component similarity, we can pair similar components. We start with the
component with the largest number of vertices. This component is paired with the most simi-
lar component in the other neighborhood. The two paired components are anonymized to the
same, marked “matched”, and removed from consideration. The matching continues until all
components in one neighborhood are marked “matched”.

If there are some components left in the other neighborhood say NeighborG(u), we use
some other vertices in V (G) that are not in NeighborG(u) to construct a component and add
it to NeighborG(u) to construct the matching and anonymization. The vertices are selected
using the same criteria as selecting vertices to match two components.

We anonymize each pair of matched neighborhood components to the same. The two
neighborhoods then are anonymized. For example, in Fig. 6, the algorithm matches compo-
nents C1(u) and C1(v), and C2(v) and C3(u) in turn. As a result, two vertices w1 and w2

from V (G) have to be added into components C1(v) and C3(u), respectively.
Once two neighborhoods are anonymized, the neighborhoods of some vertices may be

changed. We need to update the neighborhood component codes for those vertices accord-
ingly. To reduce the frequency of updates and to reduce the cost, we use the following
heuristic. We try to link a vertex to some vertices of the smallest degrees. This heuristic helps
to reduce the number of calculations of neighborhood component codes for updates, since
those linked vertices are not likely to have many neighbors.

4.2.3 Anonymizing a social network

We propose a greedy method to anonymize a social network as shown in Fig. 1.
First, we mark all vertices in the network as “unanonymized”. We maintain a list

VertexList of “unanonymized” vertices in the neighborhood size descending order: for vertices
u, v ∈ V (G), if |V (NeighborG(u))| < |V (NeighborG(v))|, or |V (NeighborG(u))| =
|V (NeighborG(v))| and |E (NeighborG(u))| < |E (NeighborG(v))|, then v precedes u
in the list. If their neighborhoods have the same numbers of vertices and edges, they can be
ordered arbitrarily.

Iteratively, we pick the first vertex SeedVertex in the list VertexList. The anonymization
cost of SeedVertex and any other vertices in VertexList is calculated using the anonymization
method for two vertices discussed in Sect. 4.2.2. If the number of unanonymized vertices in
VertexList is at least 2k −1, we select a set CandidateSet of the top k −1 vertices in VertexList
with the smallest anonymization cost. We can easily give a lower bound of the anonymization
cost based on the number of vertices and the number of edges in two neighborhoods. Since
all vertices in VertexList have a neighborhood size smaller than or equal to that of SeedVertex,
we scan VertexList in the neighborhood size descending order, and stop once the lower bound
of the anonymization cost exceeds the cost of the current (k − 1)-th most similar vertex.

The SeedVertex and the vertices in CandidateSet = {u1, . . . , um} are anonymized in turn
using the anonymization method for two vertices discussed in Sect. 4.2.2. The anonymiza-
tion of SeedVertex and u1 is straightforward. After these two vertices are anonymized, their
neighborhoods are identical. When we anonymize them with respect to u2, any change (for
example, adding an edge or a neighbor node) to the neighborhood of SeedVertex will be
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Algorithm 1 Anonymizing a social network to achieve k-anonymity.
Input: a social network G = (V, E), the anonymization requirement parameter k, the cost function parameters

α, β and γ ;
Output: an anonymized graph G′;
Initialization: initialize G′ = G, and mark vi ∈ V (G) as “unanonymized”;
1: sort vi ∈ V (G) as VertexList in neighborhood size descending order;
2: while VertexList �= ∅ do
3: let SeedVertex = VertexList.head() and remove it from VertexList;
4: for each vi ∈ VertexList do
5: calculate Cost(SeedVertex, vi ) using the anonymization method for two vertices;
6: end for
7: if VertexList.size() ≥ 2k − 1 then
8: let CandidateSet contain the top k − 1 vertices with the smallest Cost ;
9: else
10: let CandidateSet contain the remaining unanonymized vertices;
11: end if
12: suppose CandidateSet= {u1, . . . , um }, anonymize Neighbor(SeedVertex) and Neighbor(u1) as dis-

cussed in Section 4.2.2;
13: for j = 2 to m do
14: anonymize Neighbor(u j ) and {Neighbor(SeedVertex), Neighbor(u1), . . . ,Neighbor(u j−1)} as dis-

cussed in Section 4.2.2, mark them as “anonymized”;
15: update VertexList;
16: end for
17: end while

applied to u1 as well, so that the neighborhoods of SeedVertex, u1 and u2 are anonymized to
the same. The process continues until the neighborhoods of SeedVertex and u1, . . . , um are
anonymized.

During the anonymization of a group of vertices, some changes may occur to some other
vertices v that have been marked as “anonymized” in another group (for example, adding
edges between an anonymized vertex and a vertex being anonymized based on vertex match-
ing). In order to maintain the k-anonymity for those vertices, we apply the same changes to
every other k − 1 vertices having the isomorphic neighborhoods as v. Once those k vertices
are changed, they are marked as “unanonymized” and inserted into the VertexList again.

When the number of unanonymized vertices in VertexList is less than 2k, to satisfy the
k-anonymity, the remaining vertices in VertexList have to be considered together in anony-
mization. They are added to CandidateSet in a batch.

The social network anonymization algorithm continues until all the vertices in the graph
are marked as “anonymized”.

Theorem 4 (Termination) The algorithm in Fig. 1 terminates for a finite social network of
at least k vertices.

Proof Clearly, a clique of n vertices where each vertex is labeled ∗ is k-anonymous provided
n ≥ k. In each iteration such that VertexList is not shortened, the algorithm either adds some
edges into the network, or generalizes the labels of some vertices toward ∗. In the worst case,
the network will be anonymized to a clique. �


Surprisingly, as shown in our experiments, the algorithm can stop very quickly in practice,
and the anonymization cost is relatively small. This is due to the two important properties
of real social networks (vertex degree in power law distribution and small-world phenome-
non). In our algorithm, when the number of unanonymized vertices in VertexList is less than
2k, those vertices have to be considered together in anonymization. We tested the algorithm
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using different synthetic data sets, and found that in most of the time, we even do not need
to conduct any anonymization for those remaining vertices. The reason is that those vertices
have the same labels, very low degree (1 in many sparse social networks), and isomorphic
neighborhoods.

Our algorithm involves graph isomorphism testing. As shown in Theorem 4, up to n(n−1)
2

edges may be added, where n is the number of vertices in the graph. Adding an edge takes
O( f ) time where f is the largest degree in the graph. Without loss of generality, we can
assume f � n. Thus, the anonymization algorithm has the same time complexity as the
graph isomorphism problem.

Although the general framework of Algorithm 1 may be used to tackle the case where
edge additions and deletions are simultaneously allowed, there are several important concerns
when edge deletions are allowed. When only edge additions are allowed, we anonymized
vertices in degree descending order. Each time to construct an equivalence group of vertices
(that is, finding a set of vertices to be anonymized to the isomorphic neighborhoods), we
only need to examine the vertices with smaller degrees which have not been anonymized yet.
However, when edge deletions are also allowed, we need to examine the vertices of larger
degrees as well. Those vertices have been anonymized in the previous steps, and thus may
have to be re-anonymized. Moreover, by allowing edge additions only, the termination of
Algorithm 1 in a finite number of steps is guaranteed as proved in Theorem 4. However,
such a theoretical guarantee disappears if edge additions and deletions are simultaneously
allowed.

5 An l-diversity method

In this section, we extend the k-anonymity method developed in Sect. 4 to tackle the
l-diversity problem.

In order to achieve l-diversity in social networks, vertices have to be partitioned into
equivalence groups, such that in every equivalence group of vertices, at most 1

l of the
vertices are associated with the most frequent sensitive label. Following the philosophy in
Machanavajjhala et al. [27], we introduce the notion of l-diverse partition in social networks.

Given a social network G = (V, E) with n vertices and each vertex is associated with a
non-sensitive label and a sensitive label, an l-diverse partition divides the vertices in V into
m equivalence groups of vertices, such that f req(c)

|EG| ≤ 1
l , where f req(c) is the number of

vertices which carry the most frequent sensitive label c in group EG, and |EG| is the number
of vertices in the corresponding equivalence group.

We have the following result for an l-diverse partition, which is similar to the one in Xiao
and Tao [38].

Theorem 5 (l-diverse partition) In a social network G = (V, E) where |V | = n and each
vertex carries a sensitive label, there exists an l-diverse partition of the n vertices if and only
if there are at most n

l vertices associated with a sensitive label.

Proof (Necessity) Since G has a valid l-diverse partition, we denote the m equivalence groups
of vertices by EG1, EG2, . . . , EGm , respectively. Consider a sensitive label x which appears
in groups EGi1 , . . . , EGiw (1 ≤ i1 < · · · < iw ≤ m), according to the definition of l-diverse
partition, label x appears at most 1

l × ∣∣EGi j

∣∣ times in group EGi j (1 ≤ j ≤ w). As a result,

the total number of occurrences of x is at most
∑w

j=1
1
l × ∣∣EGi j

∣∣ = 1
l

∑w
j=1

∣∣EGi j

∣∣ ≤ n
l .

(Sufficiency) We construct a valid l-diverse partition as follows. First, we put all vertices
into a candidate set Cand . In each iteration, from Cand we find the top-l most frequent
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Algorithm 2 Anonymizing a social network to achieve l-diversity.
Input: a social network G = (V, E), the anonymization requirement parameter l, the cost function parameters

α, β and γ ;
Output: an anonymized graph G′;
Initialization: initialize G′ = G, and mark vi ∈ V (G) as “unanonymized” ;
1: sort vi ∈ V (G) as VertexList in neighborhood size descending order
2: while VertexList �= ∅ do
3: let SeedVertex = VertexList.head() and remove it from VertexList;
4: for each vi ∈ VertexList do
5: calculate Cost(SeedVertex, vi ) using the anonymization method for two vertices;
6: end for
7: if VertexList.size() ≥ 2l − 1 then
8: let CandidateSet = Partition(VertexList);
9: else
10: let CandidateSet contain the remaining unanonymized vertices;
11: end if
12: suppose CandidateSet = {u1, . . . , um }, anonymize Neighbor(SeedVertex) and Neighbor(v j−1) as dis-

cussed in Section 4.2.2;
13: for j = 2 to m do
14: anonymize Neighbor(u j ) and {Neighbor(SeedVertex), Neighbor(u1), . . . ,Neighbor(u j−1)} as dis-

cussed in Section 4.2.2, mark them as “anonymized”;
15: update VertexList;
16: end for
17: end while

Function: Partition(VertexList)
18: initialize S = ∅;
19: place vi ∈ VertexList into chunks such that vertices in each chunk carry the same sensitive label;
20: let S contain top l − 1 vertices from l − 1 different chunks (exclude the chunk whose sensitive label is

same to the one for SeedVertex) with smallest Cost and remove them from VertexList;
21: while not exist a valid l-diverse partition for VertexList do
22: find z with smallest Cost from the chunk of the most frequent sensitive label in VertexList;
23: find z′ in S with largest Cost and different sensitive label of z, replace z′ with z, and place z′ back into

VertexList;
24: end while
25: return S;

labels, and pick a vertex for each of such a label. Those l vertices form an equivalence group
and are removed from Cand . We continue until there are less than 2l vertices left in Cand .
Those remaining vertices form the last equivalence group.

We show by induction that in each iteration except for the last one there must be at least l
different sensitive labels in Cand . The claim holds in the first iteration, otherwise, the most
frequent label must appear more than n

l times according to the pigeon hole theorem. After
the first iteration, the most frequent label must appear at most n

l − 1 times. After iteration i
except for the last one, there are n − l · i vertices left in Cand . The most frequent label can
appear at most n

l − i times. Therefore, there must be at least n−l·i
n
l −i = l different labels left in

Cand .
The last equivalence group contains n−⌊ n

l

⌋
l vertices. The most frequent label can appear

at most n
l − ⌊ n

l

⌋
l ≤ 1 times. Thus, the last equivalence group is an l-diverse group. �


Theorem 5 provides an efficient way to determine whether an l-diverse partition exists
for a given social network. We only need to examine the most frequent sensitive label(s).
By incorporating the method for k-anonymity in Algorithm 1, we can derive a method for
l-diversity in social network data, as shown in Algorithm 2.
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Algorithm 2 follows a framework similar to that in Algorithm 1. In order to achieve
l-diversity, Line 8 is changed. Rather than greedily picking the top l − 1 vertices with the
smallest Cost into CandidateSet, we enforce the constraint that the vertices in CandidateSet
and SeedVertex should contain at least l different sensitive labels. For a selected SeedVertex,
the algorithm identifies l − 1 vertices with the smallest Cost to SeedVertex such that the l − 1
vertices carry unique sensitive labels different from that of SeedVertex. Those vertices form
the CandidateSet.

Once a CandidateSet is formed, the algorithm examines if there exists a valid l-diverse
partition for the remaining vertices in VertexList using Theorem 5. If so, the CandidateSet
is valid and the anonymization can continue on the vertices in CandidateSet. Otherwise, we
need to update CandidateSet. Theorem 5 indicates that we only need to consider the most
frequent sensitive labels in VertexList. The algorithm finds the most frequent sensitive label
in VertexList, and picks the vertex z of the label with the smallest Cost. In CandidateSet, the
vertex z′ with the largest Cost and a sensitive label different from z is replaced by z. The
algorithm iterates until a valid CandidateSet is found, guaranteed by Theorem 5.

6 Empirical evaluation

In this section, we report a systematic empirical study to evaluate our anonymization method
using both real datasets and synthetic datasets. All the experiments were conducted on a
PC running the Microsoft Windows XP SP2 Professional Edition operating system, with a
3.0 GHz Pentium 4 CPU, 1.0 GB main memory, and a 160 GB hard disk. The program was
implemented in C/C++ and was compiled using Microsoft Visual Studio .NET 2005.

Our experiments were conducted in four steps. First, we will show that the neighborhood
attacks exist in real data sets, which lead to a serious privacy problem. Second, we will
examine the anonymization performance of our method, including the number of dummy
edges, the label certainty penalty and the running time. Third, we will evaluate the query
performance for aggregate social queries using our anonymized social network data. Fourth,
we will examine the diversity issues in social network data.

6.1 Neighborhood attacks in real data

We used a real co-authorship data set from KDD Cup 2003 to examine whether neighborhood
attacks may happen in practice. The data set was from the e-print arXiv (http://arXiv.org)and
contains a subset of papers in the high-energy physics section of the arXiv. The LATEX sources
of all papers are provided. We extracted author names from the data sources and constructed
a co-authorship graph. Each vertex in the graph represents an author, and two vertices are
linked by an edge if the two corresponding authors co-authored at least one paper in the data
set. There are 57,448 vertices and 120,64 edges in the co-authorship graph and the average
number of vertex degrees is about 4.

We tested two ways to preserve the privacy of authors by generalizing labels. In the
first method, we removed all labels, that is, author names. In the second method, we
use the author’s affiliation as the label, that is, all authors from the same institution
have the same label. After generalization, for each vertex, we extracted its neighborhood
and counted the number of other vertices in the graph that have the isomorphic neigh-
borhoods. Table 1 shows the percentages of vertices whose neighborhoods violate the
k-anonymity.
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Table 1 The percentages of
vertices violating k-anonymity in
the co-authorship data

k Removing labels (%) Generalizing to affiliations (%)

5 1.3 12.7

10 3.9 16.1

15 7.1 19.4

20 12.0 23.2

Table 1 clearly shows that the neighborhood attacks are a real issue for social network
data publishing. When the value of k increases, the number of vertices violating k-anonym-
ity increases. Moreover, the more specific are the vertex labels, the more vertices fail the
k-anonymity. Anonymizing labels only cannot prevent neighborhood attacks effectively.

6.2 Anonymization performance

We use the R-MAT graph model [6] to generate synthetic data sets. R-MAT can generate
graphs with power law vertex degree distribution and small-world characteristic, which are
the two most important properties for many real-world social networks.

R-MAT takes four probability parameters, namely a, b, c and d . Consider the adjacency
matrix representation A of the graph. Assume that each element ai j in A is non-zero if there
exists an edge between vertices i and j . Given the number of vertices n and the number of
edges m, R-MAT starts with an empty n × n adjacency matrix A. It recursively divides the
adjacency matrix into four equal-size partitions, and distributes edges within these partitions
with a set of unequal probabilities. Each edge chooses one of the four partitions with proba-
bilities a, b, c and d , respectively, such that a + b + c + d = 1. The parameters a, b, c and d
can be determined based on the required community structure and vertex degree distribution,
as detailed in Chakrabarti et al. [6]. Chakrabarti et al. [6] conjectured that the ratios a/b and
a/c are approximately 3/1 in many real-world graphs, and a ≥ d .

We used the default values of 0.45, 0.15, 0.15, and 0.25 for those four parameters, respec-
tively. We generated a series of synthetic data sets by varying the number of vertices from
5,000 to 25,000 and the average vertex degree from 3 to 7. Hereafter, we refer to a synthetic
data set as D(n, d), where n and d are the number of vertices and the average vertex degree,
respectively. The edge weight was set in the range [0, 100] by default. We assigned each
vertex a label based on its average edge weight. A simple two level hierarchy structure for
those labels was generated.

We first examined the effect of parameters α, β and γ in the anonymization quality mea-
sure. β was set to 1 as the base. We changed the values of α and γ , and measured the number
of edges added and the normalized certainty penalty incurred in the anonymized graphs. The
results for data set D(15K , 5) and k = 10 are shown in Fig. 7. The results show that we
can trade off between adding edges and generalizing labels by tuning the three parameters.
Often adding less edges is more desirable in anonymizing a social network since the network
structures can be preserved better. We observed that, on the synthetic data sets, when α = 100
and γ = 1.1, the number of edges added is small and the normalized certainty penalty is
moderate. Hereafter, we use 100, 1, and 1.1 as the default values for α, β and γ .

Figure 8 reports the anonymization quality on various synthetic data sets with respect to
different k values, and shows the anonymization cost in both the number of edges added and
the normalized certainty penalty. First, when the number of vertices increases, the anonymi-
zation cost increases. However, the increase of the number of edges added is sub-linear, since

123



B. Zhou, J. Pei

 1200
 1220
 1240
 1260
 1280
 1300
 1320

 0.8  0.9  1  1.1  1.2

# 
du

m
m

y 
ed

ge
s

gamma

alpha=90
alpha=100
alpha=110

 3180
 3200
 3220
 3240
 3260
 3280
 3300
 3320
 3340

 0.8  0.9  1  1.1  1.2

N
C

P

gamma

alpha=90
alpha=100
alpha=110

Fig. 7 The effect of parameters in anonymization quality measure

 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 5000  10000  15000  20000  25000

# 
du

m
m

y 
ed

ge
s

Number of vertices

k=5
k=10
k=15
k=20

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 5000  10000  15000  20000  25000
N

C
P

Number of vertices

k=5
k=10
k=15
k=20

 1000

 1500

 2000

 2500

 3000

 3500

 5000  10000  15000  20000  25000

# 
du

m
m

y 
ed

ge
s

Number of vertices

k=5
k=10
k=15
k=20

 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 5000  10000  15000  20000  25000

N
C

P

Number of vertices

k=5
k=10
k=15
k=20

Fig. 8 Anonymization cost on various synthetic data sets

 0
 50

 100
 150
 200
 250
 300
 350

 5000  10000  15000  20000  25000R
un

ni
ng

 ti
m

e 
(s

ec
)

Number of vertices

k=5
k=10
k=15
k=20

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 5000  10000  15000  20000  25000R
un

ni
ng

 ti
m

e 
(s

ec
)

Number of vertices

k=5
k=10
k=15
k=20

Fig. 9 The runtime on various synthetic data sets

in a larger network it is more likely to find similar neighborhoods. Second, when k increases,
the anonymization cost also increases, because more neighborhoods need to be anonymized
in a group. Last, when the average number of vertex degree increases, the anonymization
cost increases, too. In a denser network, the neighborhoods are more diverse and more edges
are needed to anonymize different neighborhoods.

Figure 9 shows the runtime on various synthetic data sets with respect to different k values.
The runtime increases when the average vertex degree increases, since the network becomes
denser. Moreover, the larger the k, the longer the runtime since more neighborhoods in a
group need to be anonymized.
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Fig. 10 Anonymizing the KDD cup 2003 co-authorship data set

The roughly linear scalability is due to the following reasons. First, the average cost in
time to compute the neighborhood component code for a vertex does not change substantially
when the number of vertices increases since the graphs are scale free. Second, the number
of times that neighborhood component codes need to be computed is approximately linear
to the number of vertices. Last, once the neighborhood component codes are computed, the
graph isomorphism tests are linear to the number of vertices in the neighborhoods, which is
often much smaller than the number of vertices in the graph and can be practically bounded
by a small integer.

6.3 Anonymizing the co-authorship data set

We built a three-level label hierarchy for the KDD cup 2003 co-authorship data set. The
leaves are the labels of author affiliations. The middle level contains the countries of the
authors’ affiliations. The root is the most general label ∗. We anonymized the co-authorship
data set using our method. The number of edges added, the normalized certainty penalty and
the runtime with different values of k (varied from 5 to 30) are shown in Fig. 10. Comparing
to the total number of edges in the data set (120, 640), the number of edges added is less than
12% even when k = 30. Moreover, the runtime is scalable with respect to k.

We compare our method to the following baseline algorithm which conducts a greedy
degree-based matching. When anonymizing two neighborhoods, we first try to match verti-
ces in the two neighborhoods such that each vertex in one neighborhood is uniquely matched
to one vertex in the other neighborhood. The vertex matching takes a degree-first and label-
later approach. To find a vertex in neighborhood H ′ to match vertex u in neighborhood H ,
we first consider all vertices in H ′ that have the same degree as u. If there are multiple such
vertices, we pick the one whose label is the closest to the label of u. We break any tie by
a random selection. If there are no vertices in H ′ that have the same degree as u, we pick
a vertex v in H ′ which has the largest degree smaller than the degree of u. Again, if there
are multiple available vertices, we make selection based on the labels. Since v has a smaller
degree than u, we link v to vertices of small degrees in VertexList to increase the degree of
v to the same as u. The vertex matching procedure is conducted in the degree descending
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Fig. 11 Query answering on the
KDD Cup 2003 co-authorship
data set
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order of vertices in H . Once all the vertices are matched, we add necessary edges to the
corresponding neighborhoods to make the two neighborhoods isomorphic.

Figure 10 compares our method and the baseline method. Our method outperforms the
baseline method in anonymization quality, since our method takes into account more neigh-
borhood information during matching. The running time of the baseline method is slightly
better than our method when k is small. When k increases, the running time of the baseline
method increases and performs worse than our method. The baseline method often has to
change the neighborhood structures of some vertices which have been anonymized in the
previous steps, thus the algorithm needs to conduct more rounds than our method. The exper-
imental results indicate that the heuristics considered in the paper improve the performance
of anonymization.

6.4 Aggregate query answering and more

To test the utility of the anonymized social networks, we conducted aggregate network que-
ries on the KDD Cup 2003 co-authorship data set, and the anonymized networks. For two
labels l1 and l2 in the data set, we calculated the average distance from a vertex with label l1
to its nearest vertex with label l2. Since labels are organized in a hierarchy structure, when we
calculated the average distance, we also considered distance from vertices with labels l ′1 to

vertices with labels l ′2 such that l1 � l ′1 and l2 � l ′2. The error rate is d−d ′
d , where d and d ′ are

the average distances in the original network and in the anonymized network, respectively.
We randomly picked ten label pairs from the label hierarchy, and calculated the average error
rate of them. The results are shown in Fig. 11. After the anonymization, with some edges
added, the average distance decreases. Therefore, the error rate is always positive. However,
the error rate is small even when k is up to 20, since the number of edges added is small, as
shown in Fig. 10.

As a comparison, in Fig. 11, we also plot the query answering performance using the
anonymized data generated from the baseline method discussed in Sect. 6.3. Our method
achieves a lower error rate.

To further test the utility of the anonymized data, we measure several graph properties
using the original graph data and the anonymized data, including the vertex degree distri-
bution and the clustering co-efficient (CC). Figure 12 shows the results. In the anonymized
data, the clustering co-efficient decreases slightly when k increases. The new edges inserted
during anonymization makes the graph shrink. However, the clustering co-efficient of the
anonymized graph is still quite close to the original value. Even when k = 30, the difference
is only 0.03. We also plot the degree distribution of the original graph and the anonymized
graphs when k is set to 10 and 20. The degree distributions are very similar.
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Fig. 13 Comparisons of anonymization cost using k-anonymity and l-diversity on synthetic data sets

6.5 l-Diversity in social network data

In order to examine the effectiveness of l-diversity in social network data, we used the syn-
thetic data set generated from the R-MAT graph generator in Sect. 6.2. We treated the original
labels in the graph as non-sensitive labels. In order to assign a sensitive label to each vertex in
the graph, we adopted a random number generator. A uniformly distributed random number
in the range [0, 100] was assigned to each vertex as a sensitive label. We used 100, 1, and
1.1 as the default values for α, β and γ in the information loss function.

We first compared the information loss of k-anonymity and l-diversity. The two data sets
we used both contain 25,000 vertices, and the average vertex degree is 3 and 7, respectively.
We varied the number of k and l from 4 to 12, and examined the number of fake edges added,
as well as the normalized certainty penalty. The results are shown in Fig. 13.

Figure 13 reports the anonymization quality on various synthetic data sets with respect
to different k and l values, and shows the anonymization cost in both the number of edges
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Fig. 14 The comparison of runtime using k-anonymity and l-diversity on synthetic data sets

added and the normalized certainty penalty. When the value of k and l increases, the anon-
ymization cost also increases, because more neighborhoods need to be anonymized in a
group. Generally, the cost for achieving l-diversity is slightly larger than that for achieving
k-anonymity. This is because during the l-diversity anonymization, in order to make sure
that each equivalence group of vertices contains at least l different sensitive labels, some
vertices may have large anonymization cost with respect to the seed vertex. Moreover, when
the average number of vertex degree increases, the anonymization cost increases, too. In a
denser network, the neighborhoods are more diverse and more edges are needed to anonymize
different neighborhoods.

Figure 14 shows the runtime on the same synthetic data sets with respect to different
k and l values. The runtime increases when the average vertex degree increases, since the
network becomes denser. Moreover, the larger the k and l, the longer the runtime since more
neighborhoods in a group need to be anonymized. Furthermore, the runtime for l-diversity
is 10% larger than that for k-anonymity. There are two reasons. First, achieving l-diversity
needs additional operations for l-diverse partition. Second, according to the information loss
in Fig. 13, the cost for achieving l-diversity is larger than that for achieving k-anonymity.

7 Discussion and conclusions

In this paper, we tackled the novel and important problem of preserving privacy in social
network data, and took an initiative to combat neighborhood attacks. We modeled the prob-
lem systematically and developed a practically feasible approach.We identified the diversity
issue in social network data anonymization, and proposed an efficient solution. An extensive
empirical study using both a real data set and a series of synthetic data sets strongly indicated
that neighborhood attacks are real in practice, and our method is highly feasible. Moreover,
anonymized social networks can still be used to answer aggregate queries accurately.

As social network data is much more complicated than relational data, privacy preserving
in social networks is much more challenging and needs many serious efforts in the future.
Particularly, modeling adversarial attacks and developing privacy preservation strategies are
critical. Privacy preservation in social networks is a relatively new research direction. There
is much future work needed to be done. For example, in this paper, we modeled the com-
plete 1-neighborhood structure as the background knowledge; in practice, partial background
knowledge of the 1-neighborhood structures is more realistic. This introduces new challenges
for background knowledge modeling, meanwhile opens new opportunities to improve the util-
ity of the anonymized social network data. Moreover, negative 1-neighborhood background
knowledge is also popular in practice (for example, an adversary knows that the number of
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friends of a target victim is not larger than ten, or there doesn’t exist three friends of the target
victim that they know each other, etc.). Considering different kinds of background knowl-
edge, the privacy preservation model and methods in social network data can be completely
different. Furthermore, there may be various kinds of other privacy attacks in the social
network data, thus effective and efficient anonymization methods with respect to different
attacks are quite interesting.
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