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Processing Issues and First Thematic Results
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Masanobu Shimada, Fellow, IEEE, Stefano Monaco, and Ake Rosenqvist

Abstract—The Japan Space Exploration Agency Kyoto and
Carbon (K&C) Initiative seeks to demonstrate the potential of
the Advanced Land Observing Satellite (ALOS) Phased Arrayed
L-band Synthetic Aperture Radar (PALSAR) data for addressing
regional applications relating to climate change, carbon cycle
science, and environmental conservation. This paper outlines the
generation of a regional dual-polarization (HH and HV) mosaic
for the entire African continent at spatial resolution on the order
of 100 m. The main computational and radar science issues under-
taken to generate a seamless mosaic with good radiometric and
geometric accuracy are summarized. Preliminary investigations
into the thematic information provided by the K&C Africa mosaic
and comparisons with the JERS-1 SAR mosaic generated as part
of the Global Rain Forest Mapping Project are reported, with
emphasis placed on characterizing and detecting change in forests
and savannas.

Index Terms—Continental-scale radar mapping, Phased-Array
L-Band Synthetic Aperture Radar (PALSAR), synthetic aperture
radar (SAR) mosaic processing, vegetation monitoring.

I. INTRODUCTION

THE KYOTO and Carbon (K&C) Initiative [1], [2] is an

international collaborative project of the Japan Aerospace

Exploration Agency (JAXA) which aims to support terrestrial

carbon science, environmental conservation, and related inter-

national conventions through provision of global systematic

observations of Phased Array L-band Synthetic Aperture Radar

(PALSAR) aboard the Advanced Land Observing Satellite

(ALOS) [3], [4]. A key component of the K&C Initiative is to

generate mosaics from hundreds of ALOS PALSAR orbits and

to derive thematic information that is spatially consistent over

very large areas and for a similar time frame.

In this paper, we report on our experience gained in devel-

oping a wide-area PALSAR mosaic over the entire African
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Fig. 1. K&C continental-scale Africa mosaic. The mosaic was assembled
from PALSAR fine-beam dual-polarization (FBD) images (HH band shown),
which were geocoded using a latitude–longitude geographic unprojected co-
ordinate system with a pixel spacing of 0.8333 mdeg (roughly 100 m at the
equator).

continent. A snapshot of the prototype mosaic, which was

completed at the time of this writing, is shown in Fig. 1.

The mosaic is a dual-band (HH–HV) data set referenced to

a latitude–longitude coordinate system with pixel spacing of

8.333 10−4◦ (roughly 100 m at the equator).

The compilation of large numbers of SAR images into a

synoptic view of a wide planetary surface to support studies

of global geophysical processes is certainly not new. One of

the first—and most spectacular—of such technical endeavors

was the mapping of the planet Venus surface by the imaging

radar aboard the Magellan spacecraft in 1989 [5]. More akin

to the work presented in this paper has been the generation

of the Central Africa mosaic of C-band ERS-1 imagery in the

framework of a joint European Space Agency and Joint Re-

search Center initiative [6] and mosaics of JAXA JERS-1 SAR

data over the whole tropical and boreal forest ecozones of the

world, with their generation undertaken through international

collaborative projects [7]–[11]. These projects were indeed the
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precursors of the K&C Initiative, and they set the stage for

building the technical know-how required for the development

and analysis of wide-area medium (< 100 m) spatial resolution

radar mosaics. However, the K&C is a further development in

the scale of performance—hence complexity—with respect to

its precursors because of the availability of the following.

1) Both cross-polarized (HV) and cross-polarized (HH)

backscatter data.

2) High-quality digital elevation model (in the form of the

Shuttle Radar Topographic Mission (SRTM) DEM) with

comparable spatial resolution over the whole mosaic’s

extent.

3) New type of SAR image product developed by JAXA,

based on focusing the raw data along extended segments

of the sensor’s orbit, which is more convenient for large

area coverage [12].

4) Improved sensor performance with respect to radiometric

stability and geometric accuracy.

5) Optimized acquisition plan, which guaranteed full cover-

age of the area of interest (continent) in the shortest time

compatible with the sensor’s orbital cycle (two months in

the case of Africa).

In comparison to the JERS-1 SAR, the availability of the

cross-polarized channel increases opportunities for forestry-

based applications, including detecting and monitoring defor-

estation and retrieving biomass. The provision of a high-quality

DEM paves the way for the utilization of precision geocoding,

radiometric corrections for effects induced by topography and

terrain morphology measures as additional training sets in

classification procedures. Improving sensor performance and

optimizing data acquisition are of paramount importance for the

generation of seamless mosaics which, in turn, is a prerequisite

for successful thematic exploitation of the data at regional

scales.

The large amount of data available for generating wide-area

radar mosaics and the improved characteristics of these data

call for new approaches to processing and analysis. While the

cost of generating the data mosaics is high, this should be

weighed against the subsequent benefits in relation to thematic

applications at regional or continental scales. For Africa, such

applications include the detection of deforestation activity, clas-

sification of vegetation types, and retrieval of woody biomass.

This paper provides an overview of how the K&C mosaic

of Africa was generated, an assessment of the data set quality,

and the preliminary observations relating to the richness in

information content and potential for future thematic appli-

cations. In Section II, the bespoke processing chain designed

for generating the mosaic is outlined, and the main processing

issues which arose in the implementation phase are discussed.

In Section III, the effects of seasonality (and particularly on soil

and vegetation moisture) on radiometry and vegetation cover

are considered, and their possible causes in terms of underly-

ing scattering physics are discussed with reference to passive

microwave measurements. In Section IV, some preliminary

thematic observations obtained mainly by visual inspection are

made. The conclusion and recommendations for this paper are

provided in Section V.

II. PROCESSING ISSUES

A. Mosaic Processing Chain

The K&C PALSAR raw data used to generate the mosaic

were acquired in 2007 and focused by JAXA using a proprietary

SAR processor (SigmaSAR). The processor generates path

images in slant range, amplitude data at two polarizations (HH

and HV; with 16 looks in azimuth and 4 looks in range), a

pixel spacing of 37.5 m in range and 50.67 m in azimuth, and

an image size corresponding to approximately 70 km in range

(ground) and up to 2000–3000 km in cross-range.

A number of features of the K&C path data (i.e., large

volumes, nonlinear geometry, and radiometric anomalies) re-

quired the development of dedicated processing chains for the

assemblage of wide-area mosaics of acceptable geometric and

radiometric quality. For this purpose, a number of algorithms

for geometrically and radiometrically revising and combining

path image assembly were developed and implemented.

The functionalities implemented in the K&C Africa mo-

saicking software include the following.

1) Housekeeping routines to handle the ingestion and the file

structure of the JAXA path image data sets.

2) Adaptive calibration revision of the original slant range

data sets. This module automatically checks for the pres-

ence of radiometric anomalies and accordingly calibrates

the data (see Section II-B).

3) Extraction of subsets corresponding to the geographical

extent of each projected strip image from the SRTM

continent-wide DEM [13] generated for Africa.

4) Geocoding into a geographic reference coordinate system

(e.g., unprojected latitude–longitude) using the solution

of the range-Doppler equations. This step also produces

auxiliary data containing the effective local incidence

angles for each pixel of the backscatter amplitude image

(see Section II-E)

5) Compression/decompression of the geocoded imagery to

optimize data volume and processing time.

6) Assemblage of the geocoded strips within a geographic

bounding box. The module uses an interstrip amplitude

blending algorithm to avoid edge effects.

7) Radiometric revision of the mosaic to correct for sea-

sonality effects and residual calibration errors, with

this based on the estimation of backscatter differences

along overlapping borders of neighboring strips (see

Section II-D).

The special-purpose modules are interfaced through a batch

processor to the underpinning functions (e.g., geocoding) pro-

vided by the commercially available software SARscape [15].

In this way, large batches of data could be processed in the

background, with the operator’s intervention then limited to

some critical steps such as revision of the mosaic’s calibration.

Indeed, optimization of processing resources (memory and disc

space) and processing time was one of the challenges posed by

the construction of the medium spatial resolution continental-

scale data set.

In the following sections and in connection with the charac-

teristics of the data used to generate the Africa mosaic, the main
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Fig. 2. Range profile as a function of incidence angle, showing the power loss
at the end of swath and the linear negative trend within the swath (black line
in graph). The red line shows the corrected profile after the adaptive calibration
procedure, which is based on linear fitting of the most homogeneous block-
averaged (in azimuth) range profiles (linear fitting function in green).

issues that had to be resolved in the design and implementation

of the processing chain are described in more detail.

B. Radiometric Revision of Path Slant Range Images

Insight into the radiometric fidelity of the K&C path data

sets can be gained by considering average slant range profiles.

The profiles are computed by selecting areas which are as

homogeneous as possible in terms of the illuminated target

from near to far range. An example is shown in Fig. 2. The

related data set is KC_004-13611N17S10FBDSLT1 (according

to JAXA file naming convention) at HH polarization. The range

(black line) and corrected profiles (red line) were extracted from

a block of 512 lines (amplitude slant range data) bracketing an

area of homogeneous dense tropical forest extending from near

to far range. On close inspection, two features are strikingly

evident: a linear negative trend of the amplitude signal from

near to far range and an abrupt almost complete loss of power

at the end of the swath. Quantitatively, the power ratio between

the near and far ranges is approximately −2 dB. This amount

of power loss cannot be justified either by the dependence on

ground scattering area or by the radar cross section on incidence

angle. In the first case, assuming that the data provided by

JAXA are proportional to power per unit area in slant range

β0, the power ratio for the range of incidence angles in this

data set should be roughly −0.04 dB. In the second case, wave

scattering modeling of the dense tropical forest indicates that

the power ratio at HH due to dependence of the radar cross

section on incidence angle should be on the order of −0.13 dB.

Similar considerations apply for areas dominated by surface

scattering (e.g., bare soil and water).

This analysis suggests that two radiometric anomalies affect

the data and should be taken into consideration in a revision

process: 1) a complete loss of signal at image margin in range

direction and 2) a linear signal drop from near to far range

within the segment with a valid signal. However, the problem is

compounded by the fact that such anomalies are not observed

systematically and consistently throughout the data sets used

in the compilation of the mosaics. The abrupt power drop

sometimes happens at far range, at near range, or even both

(presumably as a function of latitude in the geographic position

of the strip image). The linear negative trend in range is not

consistent in terms of the rate of decay throughout data sets and,

within the same set, depends on average backscatter. Moreover,

in many cases, the anomaly is not present at all.

This scenario strongly suggests that the radiometric revision

process of the K&C strip data cannot be based on theoreti-

cal global correction functions, even if parameterized by free

variables, but must, per force, rely on an adaptive algorithm

driven by local estimation of the radiometric trends and anoma-

lies. The basic assumptions underlying the algorithm are the

following.

1) The negative linear trend in range is system induced by a

multiplicative gain function such that

g(r) = g(0) +m× r (1)

where r is the range coordinate (pixel index in the column

direction of the slant range data) and m and g(0) are the

parameters of the linear fit. This function can be estimated

from averaged range profiles in homogeneous regions.

Homogeneous regions are defined as along-track blocks

(consecutive image lines) where targets with similar and

constant radar reflectivities are present at near and far

ranges. The best candidate region for the range profile

estimation is searched by dividing the strip image into

along-track segments and by selecting the one where two

conditions are verified: minimum global backscatter vari-

ance and normalized difference between mean backscat-

ter values at near and far ranges less than 10%. The range

profile is fitted linearly, and a correction multiplicative

function is defined as

c(r) = 1−
m× r

g(0)
. (2)

2) In the same data set, the rate of decay of the linear

trend (if present) can be characterized by two functions,

namely, g1(r) and g2(r), corresponding (in a loose sense)

to areas dominated by volume scattering (e.g., forests

and woodlands) and surface scattering (e.g., bare soil

and sparse vegetation) respectively. These areas can be

identified by segmenting the range of backscatter values

in the data set into two classes: high and low backscatters.

Specific threshold values for identifying the two classes

must be chosen as a function of the polarization. The

two-class segments are disjoint. Therefore, the region

in-between is characterized by a continuous functional

F (g1, g2) of the two functions g1 and g2.

In a nutshell, the algorithm is composed of the following

three steps.

1) The detection and removal of the power drop at the data

set margins.

2) The estimation of the linear power trend in range by

a search of the most homogeneous block and for two

backscatter classes (a proxy for volume and surface

scattering).
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Fig. 3. Range profile of an FBD (slant range) HV data set estimated in a block
corresponding to a homogeneous (along the full swath) target featuring low
backscatter. The corresponding average backscattering coefficient σ0 is on the
order of the noise equivalent backscattering coefficient (−29 dB). The impact of
system thermal noise (generated by electron conduction in the system) becomes
relevant and results in a nonlinear increasing trend in intensity data (black
line in the graph). An empirical additive correction function is derived by
polynomial fitting of this range profile (red line), and it is applied to calibrate all
HV data sets. The green line shows the same range profile after the correction
for thermal noise.

3) The application of an inverse gain function based on the

estimated trends.

The automatic calibration procedure reports an error status

when a homogeneous region cannot be detected. In this case,

the range profile is evaluated by a manual procedure based on

the search of the best homogeneous block by visual inspection

of the strip image. In practice, only a few such cases occurred

during the mosaic processing.

C. Thermal Noise

The noise equivalent σ0 (NES) for PALSAR dual-pol im-

agery is rated at −29 dB. In some desert areas of Northern

Africa, the response at cross-polarization falls below such a

figure. Therefore, the contribution of thermal noise becomes

noticeable in areas of low backscatter and is dependent on

the incidence angle. The theoretical noise floor is a nonlinear

function of the antenna pattern, the range distance, and the

incidence angle [16]. In our approach, the additive noise com-

ponent was estimated using an empirical method based on a

second-degree polynomial fitting of a range intensity profile

measured over a homogeneous (from near to far range) area

with a backscatter coefficient lower than the NES and assumed

constant throughout the swath. The estimated additive noise

component was then used to compensate the trend in range of

all HV data sets. A typical range profile corresponding to a dark

area before and after the correction is shown in Fig. 3.

D. Radiometric Interstrip Mosaic Balancing

Within the mosaic compiled from the geocoded and range

calibrated strips, radiometric discontinuities between strips

were evident. In particular, differences in backscatter values

between strips were on the order of 2 dB (see Fig. 4). Such

discontinuities were related to seasonality and local weather

Fig. 4. West Africa part of the mosaic. Relevant radiometric differences
(on the order of 2 dB) are clearly visible between adjacent strips in the
(a) original (uncorrected) mosaic. The mosaic after radiometric balancing,
based on interstrip discrepancy measures, is shown in (b).

conditions, as documented in Section III. Indeed, to assure

spatial continuity, part of the 2007 acquisitions corresponding

to the dry season within tropical Central Africa was necessarily

complemented with acquisitions during the wet season. This

difference in acquisition time can account for differences in

radar reflectivity because of the evolution of the target’s prop-

erties (e.g., change in vegetation cover or soil and vegetation

moisture).

In the overlap area between two adjacent strips, the same

target on the ground is seen by the radar with a different incident

angle (far and near ranges). Assuming a cosine law for the radar

cross section dependence on incidence angle, the difference in
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backscatter due to the near–far range incidence angle difference

is roughly 0.78 dB and is on the order of the PALSAR radio-

metric accuracy. However, this figure in decibels corresponds

to a power DN ratio of 1.196, which would still result in visible

edge effects in the imagery. Other minor interstrip unbalancing

is produced by residual errors in range calibration.

For this reason, the first approximation mosaic needs to be

corrected to arrive at a more radiometrically homogeneous

version, which could be suitable for successive automatic inter-

pretation or the retrieval of biophysical parameters (e.g., forest

biomass). This correction is achieved by an interstrip balancing

algorithm which relies on information derived by along-track

profiles of the backscatter values estimated within the area of

overlap between one strip and those surrounding.

Since the radiometric discrepancies depend on the position

within the strip (land cover and conditions), it was not possible

to define a global stripwise gain factor. Therefore, a gain

function was defined for each strip which depended linearly

on the column coordinate (approximate range direction) of the

strip frame and was a piecewise linear approximation along

the line coordinate (along-track direction) of the ratio between

the strip border profile and the corresponding profiles of the

neighboring strips. A strip frame was defined as the area where

values were available in the geocoded image. Thus, calling

P left
k (i) and P

right
k (i) estimates of the mean DN values along

the left and right borders at position i along track of strip k and

P
right
k−1 (i) and P left

k+1(i) estimates of the corresponding profiles

of adjacent strips at the left and right of strip k, we define the

discrepancy measures as

Dleft(i) =
P

right
k−1 (i)

P left
k (i)

Dright(i) =
P left
k+1(i)

P
right
k (i)

. (3)

An example of the discrepancy measure and the related

gain function is shown in Fig. 5. These discrepancy measures

formed the basis for the mosaic correction algorithm. As the

first step, the measures D(i) were used to locate the strips

affected by large radiometric discrepancies. For this purpose,

the mode of the distribution (density function) of Dleft and

Dright was computed. This figure of maximum discrepancy

between adjacent strips was further screened by an operator and

used to flag the strips as anomalous. Automatic detection of

anomalous strips was difficult because the eventual occurrence

in the same mosaic of strips with higher and lower than normal

DN values led to ambiguities in the discrepancy measures.

Once the anomalous strips had been flagged, the algo-

rithm proceeded according to the following principle. Gain

functions were defined for the anomalous strips using Dleft(i)
and Dright(i) measures with respect to normal adjacent strips.

In the event that a second anomalous strip was present near to

the first, then the gain function was computed from the only

available measure (left or right) and assumed constant in range.

This approach limited the possible number of consecutive

anomalous strips to two. Indeed, this condition was satisfied in

the processing of the whole Africa mosaic.

Fig. 5. Profiles in the along-track direction of mean DN values within the
overlap area at the margin between two adjacent strips (the black line is the first
strip profile, and the red line is the overlapping second strip profile in graph a).
The radiometric differences are not constant along track, which is a fact that
suggests the use of a variable gain function. This gain function is estimated by
a piecewise linear fitting of a smoothed version of the ratio between the two
along-track profiles (red line in graph b). The segments in black are the gain
function resulting from the piecewise linear fitting algorithm.

These gain functions balanced the radiometry of the anoma-

lous strips to match that of adjacent strips. Next, the residual

trends in range calibration and other minor interstrip unbalances

were corrected by sharing the correction weight between the

neighboring strips (moving the trend half way up and half way

down). In this way, the propagation of errors was avoided. In

more detail, the mosaic balancing algorithm is comprised of

the following steps.

1) Construction of a data structure that held information

on the neighbors of each strip. This was achieved by

assigning each strip position in the mosaic’s canvas with

a unique identifier.

2) Computation, for each geocoded strip k, of profiles Pk

and discrepancy measures Dk. Since one strip can have

several neighbors at the left or right, a data structure ID

was also generated, which kept track of the neighbor for

each value of the profile and how the line coordinates

of the two strips were related. Thus, Pk(i) ⇔ ID(i).
The structure ID was used when a discrepancy measure

needed to be updated (e.g., where an anomalous strip was

corrected by a gain function). This was the only step that

required ingestion of the actual strip data sets.
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3) Discrepancy analysis and choice of the anomalous strips

based on an interactive procedure.

4) Generation of gain functions for the correction of anoma-

lous strips. As explained previously, these functions were

derived from the discrepancy measures relative to adja-

cent normal strips. The gain functions were computed by

a piecewise linear fitting of the Dk functions. In fact, the

Dk functions, being ratios of two samples from speckle

noise, would introduce artifacts if used as multiplicative

factors of the strip amplitude data. The Dk functions were

first low-pass filtered and downsampled by a factor of 64

to obtain a slow-varying trend. This trend function was

then approximated by a piecewise linear function by an

iterative algorithm. At each step of the iteration, the trend

function was split into an increasing number of consec-

utive segments by halving the length of each segment.

Each segment was fitted linearly, and the global root mean

square (rms) differences between the trend function and

the piecewise linear approximation were computed. The

procedure was halted when the rms differences between

two successive iterations increased or a predefined max-

imum number of divisions was reached. The piecewise

linear trend was then upsampled to the original resolution

by spline interpolation. The gain functions for anomalous

strips were stored as vectors in files to be used later by

the mosaicking procedure and in the compilation of the

second approximation revised mosaic.

5) Upgrade the profiles Pk of the anomalous strips with

respect to the gain functions defined in the preceding step,

and recompute the discrepancy measures Dk which had

been affected by a change of Pk.

6) Generate gain functions for all strips from the Dk func-

tions as

gleftk (i) =
1

2
LININTERP

(

Dleft
k (i)

)

+
1

2

g
right
k (i) =

1

2
LININTERP

(

D
right
k (i)

)

+
1

2
. (4)

The gain function used by the mosaicking procedure for

mosaic balancing was finally

gk(i, j) =
g
right
k (i)− gleftk (i)

∆j
j + gleftk (i). (5)

The results obtained by the strip balancing algorithms are

shown in Fig. 6. Note that the automatic balancing algorithm

could introduce local artifacts while still adjusting globally

the radiometric balance. This problem can, in particular, be

expected when the margin of one strip is corrupted, for instance,

by a residual power drop at far range. In this case, the error

would propagate to the neighboring strip. Given the extent of

the data set, these local artifacts are difficult to evaluate by

visual inspection. Manual fine tuning of the mosaic radiometric

balancing will be necessary at the stage when continental-

scale thematic products will be generated by automatic pattern

classification.

Fig. 6. Result of the strip balancing algorithm (b) when applied to a set
of strips with one radiometric anomaly viz. higher backscattering coefficient
(a) possibly due to vegetation water content and soil moisture change (see
Section III for related analysis).

E. Geocoding

Terrain geocoding of the slant range path data sets was

performed using a module of the SARscape software [15].

The continent-wide DEM of Africa derived from the SRTM

[13] was adopted. This DEM was provided in a geographic

projection (latitude/longitude coordinates) using the WGS-84

horizontal datum, with a pixel size of 3′′ (i.e., 0.8333 mdeg

equating to approximately 100 m at the equator). The geocoded

PALSAR imagery of the Africa mosaic was generated in the

same projection and spatial resolution of the DEM. This choice

assured the best geometric and radiometric accuracy (see also

Section II-F). Moreover, past experience with thematic applica-

tions based on the Global Rain Forest Mapping (GRFM) data

sets indicated that the adopted pixel spacing was best suited

for regional-scale vegetation mapping studies. Higher spatial

resolution data are more suited to local-scale applications, such

as the detection of selective logging.

The vertical error in the C-band SRTM DEM varies as a

function of the physiographical features and the land cover type.

For instance, the rms vertical errors reported in the literature are

around 5 m over forested areas and around 3 m for bare ground

and water bodies [14]. However, this range of vertical errors

in the DEM would propagate into horizontal displacements on

the order of 4.5 m for the PALSAR observational geometry and
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for elevations up to 1000 m. Since the mosaic was geocoded

with a pixel size of approximately 100 m, the variation in

DEM vertical error was not considered to be an important error

source, and no action was taken to compensate for it.

SARscape geocoding was based on the classical range-

Doppler approach, with this being the only appropriate way to

obtain precision geocoding of SAR data. SAR systems cause

nonlinear distortions (particularly because of the presence of

topography), and unlike in the case of optical data, affine

polynomial transformations (which assume a flat earth) are

insufficient for converting coordinates into a cartographic ref-

erence system.

Mapping from the slant range SAR geometry into a carto-

graphic projection was achieved by considering the parameters

of the synthetic aperture imaging. Therefore, the range-Doppler

approach called for the solution of the following relations:

�RS = �S − �P (6)

fD =
2(�vp − �vs) • �RS

λ|RS |
(7)

where �S and �P are the sensor and target position vectors, �vp −
�vs is the velocity of the target relative to the sensor, and λ is the

wavelength of the carrier.

Geocoding was implemented by a backward solution of

the range-Doppler equations. Starting from each point within

the DEM reference system, the corresponding point in the

slant range radar geometry was found using the range-Doppler

equations. Elements from the SAR geometry frame were then

resampled into the earth projection (DEM) coordinate system.

The JAXA K&C path products were not processed at zero-

Doppler and hence, the proper values of the Doppler centroid

had to be used in the solution of (7), with these provided by

JAXA in an auxiliary file in the form of a polynomial approxi-

mation of the Doppler dependence on slant range distance.

Sources of geometric errors in SAR geocoding propagate

from satellite orbit, range time, Doppler frequency and DEM

accuracies [17]. In our case, the assessment of the geocoding

accuracy was conducted a posteriori by establishing common

features within the same DEM used in the geocoding procedure.

As such, the measures of accuracy are relative. Difference

vectors between control points in the SAR image and reference

DEM image were defined through visual inspection, with the

maximum difference vector magnitude being < 1 pixel.

F. Radiometric Correction for Topographic Effects

SAR radiometry is affected by topography due to changes

of the ground scattering area and local incidence angle, which,

in turn, has an impact on the backscattering properties of the

targets. Correction of these effects is important if the data

are to be used in automatic classification [18], [19]. On the

other hand, such corrections tend to smooth features related to

terrain morphology and render the data set less amenable to

visual interpretation by the expert, at least for certain thematic

applications. Therefore, in our implementation, radiometric

normalizations for topography were applied a posteriori.

Fig. 7. Effect of the radiometric correction for topographic effects portrayed
in a scene at the border between the Democratic Republic of Congo and
Gabon, featuring moderate relief. The images are a composite of HH–HV–HH
PALSAR mosaic amplitude data.

The normalization entailed two corrections, with these ac-

counting for the effective scattering area and radar cross section

dependence on local incidence angle. The effective ground

scattering area Aslope was obtained by projecting the pixel area

in slant geometry to the corresponding tilted terrain surface, as

derived by finite differences of DEM adjacent values

Aslope =
rars

sin θloc
(8)

where θloc is the SAR local incidence angle (i.e., the angle

between the incident electromagnetic wave vector �d and the

normal at the terrain surface �n). In our case, �n was derived

directly from the DEM at each pixel (x, y) by calculating the

cross-product of the two 3-D vectors formed by the adjacent

pixels in longitude and latitude, respectively

�n = �v1 ∧ �v2. (9)

These two vectors are given by

�v1=

⎛

⎝

2 · pm
0

Hx+1,y−Hx−1,y

⎞

⎠ �v2=

⎛

⎝

0
2·pm

Hx,y−1−Hx,y+1

⎞

⎠ (10)
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Fig. 8. Subset of the mosaic (RGB channels HH, HV, and HV/HH) portraying an area in the Democratic Republic of Congo (a) before and (b) after topographic
correction. K-means unsupervised clustering and supervised class labeling were applied to this data set to test the impact of the radiometric corrections on the
classification accuracy. Classification from the original data in (c) and from the corrected data in (d).

where pm represents the pixel size in meters and Hx,y is

the altitude of the terrain at pixel (x, y) as given by the

DEM. Finally, the correction factor for the effective scattering

area was

Carea =
sin θloc
sin θ

(11)

where θ is the nominal incidence angle for flat terrain.

The effect of incidence angle on the backscattering coef-

ficient depends on the nature of the target as well as on the

polarization. These effects can be accounted for by the follow-

ing: 1) Postponing the correction to the classification phase,

given that a priori information on the target type at the scale

of the whole mosaic will be available from auxiliary data sets

(e.g., MODerate resolution Imaging Spectrometer (MODIS)

optical data) or 2) Tailoring the correction to one specific

thematic application, accepting that this may be suboptimal for
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Fig. 9. Radiometric correction (mean difference in decibels between HH intensity after interstrip balancing and HH intensity before interstrip balancing) for
each thematic class defined in the global land cover (GLC) map and computed for strip images acquired at different dates. This analysis indicates how different
land-cover classes are affected by strip balancing. For dense vegetation (forest), there is almost no correction (the ground is not reached by radiation; therefore,
moisture does not affect backscatter), while for more open vegetation (woodlands, shrublands, and grasslands), there are large corrections (more than 1.5 dB),
which regard strips acquired mostly from June to mid-July (dry season strips whose intensity need to be increased to match the intensity of adjacent wet season
strips).

a general land cover mapping task. In view of our applications

of interest (primarily mapping of tropical forest and savanna

woodlands where volume scattering is more dominant), the

latter correction was applied.

The angular dependence of forest backscatter is quite well

represented by a cosine function, which accounts for the mod-

ified path length of the wave into the canopy [20]. Therefore,

the related correction factor was

Cangle =
cos θ

cos θloc
. (12)

The backscatter coefficient corrected for the overall effect of

topography was

σ0
corr(dB) = 20Log10(DN) + 10Log10

(

tan θloc
tan θ

)

− 83 dB.

(13)

The cosine law, when applied globally, will introduce a

distortion of the intensity values for those land cover classes

for which this specific dependence does not apply (e.g., when

surface scattering dominates). As a consequence, care must be

taken for data analysis based on wave scattering modeling (e.g.,

biophysical parameter retrieval by model inversion). Data mod-

ified by the cosine law are intended for specific thematic ap-

plications and supervised class labeling techniques (i.e., when

the relative intensity values are used), while for more physically

based applications (when the absolute backscatter coefficient is

important), the original intensity data, complemented by a local

incidence angle map, should be used. A discussion on the merits

and problems related to cosine function correction can be found

in [21].

The efficacy of the topographic corrections in our thematic

context of interest is documented by the following cases. For a

small subset of the mosaic on the border between Congo and

Gabon (Fig. 7), non-forest areas are more visible in the topo-

graphically corrected image (see, for example, the circled area),

where the backscatter variation associated with relief distortion

is removed. The impact of the topographic correction is also

illustrated for the Democratic Republic of Congo (Fig. 8). Here,

an unsupervised classification based on K-means clustering has

been applied to both uncorrected and corrected HH and HV

images. Greater consistency in the classification using the latter

was obtained.
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III. SEASONALITY EFFECTS

Seasonal effects (and particularly the change in soil/

vegetation moisture and vegetation cover from the dry to the

wet season) can influence the SAR backscatter [22]. As a

consequence, the backscatter can change abruptly from one

strip to another, particularly if the acquisition dates are far

apart. Such an effect is particularly evident in the west of

Africa, where the acquisition dates of PALSAR (June to Au-

gust 2007) spanned over the dry and wet seasons, with the

transition period being around mid-June. Such abrupt changes

in radiometry were balanced (see Section II) to obtain a

seamless data set suitable for regional-scale land cover clas-

sification. Nevertheless, the uncorrected mosaic can provide

information on the biophysical properties of the surface in

terms of soil/vegetation moisture and surface roughness (e.g.,

presence of tussock grasses), although this is a topic of further

research.

To investigate the effects of surface moisture as a function of

surface cover, differences in corrected and uncorrected L-band

HH data at the time of ALOS PALSAR acquisitions (which

were more evident compared to L-band HV) are shown in Fig. 9

for a range of land cover types given by the GLC2000 land

cover map [23]. Radiometric differences of more than 2 dB

were observed for the more open vegetation types (e.g., wooded

savannas) but less for forests. In Fig. 10, a map of the per-

strip radiometric discrepancies is shown [Fig. 10(a)] together

with the corresponding acquisition date (Fig. 10(b); color coded

from August 2007 to June 2008). The map highlights that such

effects are most evident in the data acquired from June to

mid-July.

Lucas et al. [22] highlighted that the backscatter variation

over time was attributed to differences in the moisture content

of the soil (surface and subsurface) and vegetation. As with

this paper, Advanced Microwave Scanning Radiometer—EOS

(AMSR-E) brightness polarization ratio data were obtained for

dates corresponding to acquisitions of the ALOS PALSAR data.

The microwave polarization difference index (MPDI) is defined

as [24], [25]

MPDI =
Tbv − Tbh

Tbv + Tbh

(14)

where Tbp is the brightness temperature at polarization p. At

6.6 GHz, the MPDI contains information both on the canopy

optical depth and soil dielectric properties through emission.

Therefore, a trend in a yearly time series of MPDI can be

related to changes in vegetation development and water content,

while the residual response, which is more random in time, can

be linked to variations in soil moisture (see Fig. 11). As an

example, the MPDI has been shown to effectively capture the

soil moisture dynamics in the Sahelian region [26].

Preliminary comparisons gave some insight into the

cause–effect relation. The anomaly signature (proportional to

soil moisture) and the seasonal trend (an indicator of vegeta-

tion water content) were mapped for each strip at PALSAR

acquisition dates (see Fig. 12). From these data, regions were

identified, where the vegetation water content was low with

Fig. 10. Map of the radiometric corrections applied to each strip (a) and
corresponding acquisition date (b). The dates are color coded: June to mid-
July 2007 and 2008 in light green, mid-July to end of July 2007 in dark green,
August to September 2007 in blue, and November 2007 in white. This color
scheme highlights the fact that large radiometric corrections [white in (a)]
concern only the dry season strips (light green) which are surrounded by wet
season strips (blue).

respect to the annual mean [red areas in Fig. 13(a)] and where

the soil moisture was high with respect to the annual mean [blue

areas in Fig. 13(b)]. Assuming a correlation between vegetation

water content, soil moisture, and strip image radiometric imbal-

ance, the red areas should correspond to strip images featuring

a lower backscattering coefficient and requiring a positive cor-

rection, while the blue areas should correspond to strip images

requiring a negative radiometric correction. Comparison with

the actual radiometric correction map (Fig. 10) suggests the
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Fig. 11. Use of AMSR-E polarization difference index (MPDI) to assess
the vegetation water content (seasonal trend) and soil moisture (anomaly).
(a) MPDI profile (fine line) and seasonal trend (thick line). (b) MPDI anomaly.

following conclusion. Matching between the areas affected by

water content and radiometric corrections can be found only

in the western part of the mosaic. Here, at higher latitudes

(where there is a presence of more open vegetation cover), the

radiometric discrepancies between adjacent strips seem to be

mostly caused by the effect of vegetation water content [red

patterns in Fig. 13(a) and high correction values in Fig. 10],

except when this effect is compensated by higher than usual

soil moisture [blue patterns in Fig. 13(b)]. At lower latitudes,

the radiometric imbalance cannot be explained so far by this

type of analysis.

IV. PRELIMINARY THEMATIC ANALYSIS

Preliminary thematic analysis of the Africa mosaic was

conducted with the objective of assessing the potential of

the data set for regional scale (e.g., mapping forest resources

and forest cover changes) and/or local thematic applications.

Fig. 12. Maps of (a) anomaly and (b) seasonal trend derived from AMSR-E
data at PALSAR acquisition dates.

The analysis was also undertaken to establish the potential of

using the ALOS PALSAR mosaic in combination with optical

remote sensing (e.g., MODIS and Landsat TM) for generating

a vegetation map of the Africa continent with added-value

indicators (e.g., biomass of wooded savannas). In this section,

results and observations relating to characterization, mapping,

and monitoring of vegetation in the central and western part

of the continent are reported. These observations indicate that

the Africa mosaic offers a rich source of thematic informa-

tion, especially for characterizing the humid forest/savanna

interface, detecting deforestation and logging patterns, and

characterizing dry forest and woodlands at the margin with

Saharan Africa.
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Fig. 13. Map of regions where vegetation water content is low with respect
to the mean annual value [red areas in (a)]. These regions should correspond to
strip images featuring a positive correction. Map of regions where soil moisture
is high with respect to the annual mean [blue areas in (b)]. These areas should
correspond to strip images where a negative correction would be needed.

A. Class Separability and the Role of Polarization Diversity

A first approximation test was performed to assess the sep-

arability of some land-use classes of interest in the feature

space of each polarization channel (HH and HV) and of the

combination of two polarization channels. This test highlighted

the importance of polarization diversity.

A supervised classification of L-band HH and HV polariza-

tion data, as well as the HV/HH power ratio, was undertaken

based on training areas for the following classes: lowland rain

forest, mountain forest, savanna, secondary forest, agriculture,

Fig. 14. Estimates of mean backscattering coefficients and standard deviation
of the mean for selected classes and for HH and HV polarizations and the
polarization ratio HV/HH. These class-separability measures indicate that the
polarization ratio performs much better in this context.

and swamp grassland. Secondary forest refers to a mixture of

degraded forest and rural complex.

The mean of the backscatter values and the backscatter

ratio, together with the standard deviation of the mean, are

shown in Fig. 14. Using single polarimetric channels, land
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Fig. 15. Capability of the HV/HH polarization ratio in reducing topographic
effects.

covers with relatively low backscatter (agriculture, savanna, and

swamp grasslands) could be separated from those of higher

backscatter (secondary forest, mosaic agriculture/forest, and

forest), although, within each group, confusion occurred among

all classes at HH (in line with the analysis reported in [27]),

while at HV, the rainforest class was well discriminated.

However, the HV/HH power ratio provided better overall

separation, which was attributed partly to reduced dependence

on topographic variation. In particular, the ratio decreased the

effect of terrain slope as the same effective area is illuminated

in both channels and the difference in the radar cross section

to local incidence angle between the HH and HV channels

Fig. 16. (a) PALSAR Africa mosaic’s subset of an area near the town
of Pokola, Republic of Congo (1.868 N, 16.252 E), acquired in 2007 and
(b) corresponding image acquired by JERS-1 in the context of the GRFM
project in 1997.

is low. The effectiveness of the HV/HH ratio in reducing

the topographic effects is shown in Fig. 15. Furthermore, use

of the ratio increased vegetation class separability because

relative differences in diffuse versus surface scattering were

considered.

B. Comparison With the GRFM Africa Data Set

The availability of the GRFM radar mosaic, derived from

JERS-1 acquisitions at HH polarization in 1997 [7], allows

ecosystem changes in Central and West Africa over a time span

of ten years to be investigated. Automatic change detection

between the two data sets will pose some challenges since

the two sets were acquired by opposite satellite viewpoints

(ascending orbit for PALSAR and descending for JERS-1).

However, in flat or gently undulating areas, some comparisons

are possible through simple comparison of the imagery, as

highlighted in Figs. 16 and 17.

At the northern part of the Republic of Congo, containing

the town of Pokola, thin linear features are observed (within

the composite of HH, HV, and HV/HH in RGB), with these

corresponding to logging roads (Fig. 16). Such features are not

detected within the GRFM data sets, which suggests change

associated with logging. However, such features may be better
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Fig. 17. (a) PALSAR mosaic’s subset of an area at the margin between the
rain forest and savanna in Central Africa (40◦ 45′ 36′′ N, 160◦ 49′ 37′′ E).
The corresponding JERS-1 image acquired in 1997 is shown in (b).

detected within the PALSAR because of the better radiometric

resolution compared to the JERS-1 SAR.

At the interface between the rainforest and savanna

(at ∼ latitude 4.4◦ N), encroachment of the savanna into the

rainforest domain is evident, with this attributed to changes

in fire and management regimes. However, detection of low

biomass vegetation (e.g., savannas) is better using the HV

channels, and so, some caution is needed in interpreting these

observations.

C. Differentiation of Vegetation Types

A preliminary investigation into the ALOS PALSAR mosaics

indicates that differentiation of grass and woody savannas

and mapping of flooded forests, mangroves, plantations, and

secondary forests are achievable. Within the Congo Basin,

differences between forests (bright azure), woody (shrub/tree),

savannas (orange), and grass savannas (brown) were evident

within the ALOS PALSAR data (Fig. 18), with these confirmed

through reference to Google Earth optical imagery. ALOS

PALSAR observations of swamp forest along the Congo River

near Brazzaville (Fig. 19) highlight the enhancement of L-band

HH backscatter from inundated forests. The different shades

of orange relate to the state of the surface, with this varying

from very wet to flooded. When standing water is present under

the canopy, the double-bounce interaction between the surface

Fig. 18. Mosaic of savanna patches intertwined with the rain forest as
portrayed (a) by a PALSAR image (color composite RGBs are HH, HV, and
HV/HH) and (b) by a Google Earth optical image.
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Fig. 19. (a) PALSAR image (color composite RGBs are HH, HV, and
HV/HH) of the swamp forest along the Congo river near Brazaville. The
different orange shades in the swamp forest at the center of the image indicate
the soil state: from very wet to flooded. (b) Optical image from Google Earth is
shown for comparison.

and tree trunks increases, leading to greater HH scattering.

By contrast, the HV scattering coefficient, which is associated

largely with volume scattering from the canopy, remains similar

Fig. 20. Coastline with mangrove forests near the Nigeria–Cameroon border
as portrayed (a) by a PALSAR image (color composite RGBs are HH, HV,
and HV/HH) and (b) by a Landsat image. Radar backscatter distinguishes
two types of mangroves (flooded in orange shades and nonflooded in blue
shades). Comparison with the Landsat image indicates that this distinction is
not possible using optical data.

or can increase only if the crown-stem interaction term is not

negligible. Logging roads are also visible within the primary

forest (blue) at the left of the image.
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Fig. 21. Analysis of the thematic classes’ separability provided by the HV/HH
ratio for the data set in Fig. 20. Flooded and nonflooded vegetation classes can
be well discriminated using the polarization ratio.

Similarly, mangroves near the border of Nigeria and

Cameroon (Fig. 20) are discernible, with variations in backscat-

ter attributed to different structures associated with different

species types but also different levels of tidal inundation. Such

differences are less evident within the Landsat imagery avail-

able through Google Earth. Mangroves can be discriminated

from rain and swamp forests by the lower HV backscatter-

ing coefficient (about 1.5 dB lower). Flooded and nonflooded

vegetation can be discriminated by using the HV/HH ratio, as

documented by estimates of the class HV/HH mean and vari-

ance shown in Fig. 21. The swamp and the rain forest classes

cannot be mapped using only one-point statistics (they are

not radiometrically pure classes). Two-point statistics (texture)

need to be called into play [28].

Plantations are also evident within the PALSAR data, with

an example given for an area near Kribi, Cameroon (Fig. 22).

The palm oil plantations in this area are evident (bright orange)

within the composite of HH, HV, and HV/HH but are not within

the corresponding Landsat image. By contrast, plantations of

Hevea species are less evident. The combination of ALOS

PALSAR and data from optical satellite sensors is therefore

advocated for classifying plantation developments. As in other

studies [27], differentiation of secondary from primary forest

using L-band SAR data is complex and cannot be achieved

easily using single-channel data alone. However, the HV/HH

ratio (Fig. 23) shows differences between the rural complex

(with secondary forests) and the surrounding primary forests,

as observed within the Google Landsat image (at the right),

although delineation is likely to be a significant challenge.

V. SUMMARY AND CONCLUSION

Using ALOS PALSAR L-band HH and HV strip data ac-

quired in 2007 and as part of the JAXA K&C Initiative, a

mosaic of the African continent was generated at 100-m spa-

tial resolution. A range of preprocessing routines (radiometric

calibration, geocoding, incidence angle, and topographic cor-

rection) was implemented to facilitate combining the strip data

into the mosaic. However, the backscatter (particularly at HH

Fig. 22. (a) Plantation area near Kribi, Cameroon, as seen in a PALSAR color
composite image. (b) Same area is shown in the Landsat color composite image
(band 4–band 5–band 6 in the RGB channels). Bright orange patches represent
palm oil plantations in the PALSAR image, but they cannot be detected in
the optical image. On the other hand, Hevea plantations appear in the Landsat
image (orange patches) but cannot be seen in the PALSAR image.

polarization) was enhanced in some strips, with this attributed

to increased vegetation and soil moisture at the time of the

ALOS PALSAR data acquisition.
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Fig. 23. Area in South East Cameroon where a secondary forest (a rural
complex) emerges from the primary forest as seen (a) from a PALSAR
polarization ratio image and (b) from a Landsat image.

A number of potential applications for the mosaic have

been highlighted, including mapping of mangroves, plantations,

secondary forests, and boundary between savannas and forests.

Comparison with the JERS-1 SAR mosaics suggests significant

potential for detecting changes in vegetation cover associated

with deforestation and encroachment.
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