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ABSTRACT

Numerous graph mining applications rely on detecting sub-
graphs which are large near-cliques. Since formulations that
are geared towards finding large near-cliques are NP-hard
and frequently inapproximable due to connections with the
Maximum Clique problem, the poly-time solvable densest
subgraph problem which maximizes the average degree over
all possible subgraphs “lies at the core of large scale data
mining”[10]. However, frequently the densest subgraph prob-
lem fails in detecting large near-cliques in networks.
In this work, we introduce the k-clique densest subgraph

problem, k ≥ 2. This generalizes the well studied dens-
est subgraph problem which is obtained as a special case for
k = 2. For k = 3 we obtain a novel formulation which
we refer to as the triangle densest subgraph problem: given
a graph G(V,E), find a subset of vertices S∗ such that

τ(S∗) = max
S⊆V

t(S)
|S|

, where t(S) is the number of triangles

induced by the set S.
On the theory side, we prove that for any k constant,

there exist an exact polynomial time algorithm for the k-
clique densest subgraph problem. Furthermore, we propose
an efficient 1

k
-approximation algorithm which generalizes the

greedy peeling algorithm of Asahiro and Charikar [8, 18] for
k = 2. Finally, we show how to implement efficiently this
peeling framework on MapReduce for any k ≥ 3, generaliz-
ing the work of Bahmani, Kumar and Vassilvitskii for the
case k = 2 [10]. On the empirical side, our two main find-
ings are that (i) the triangle densest subgraph is consistently
closer to being a large near-clique compared to the densest
subgraph and (ii) the peeling approximation algorithms for
both k = 2 and k = 3 achieve on real-world networks ap-
proximation ratios closer to 1 rather than the pessimistic 1

k
guarantee. An interesting consequence of our work is that
triangle counting, a well-studied computational problem in
the context of social network analysis can be used to de-
tect large near-cliques. Finally, we evaluate our proposed
method on a popular graph mining application.
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1. INTRODUCTION
A wide variety of data mining applications relies on ex-

tracting dense subgraphs from large graphs. In bioinformat-
ics dense subgraphs are used for detecting protein complexes
in protein-protein interaction networks [9] and for finding
regulatory motifs in DNA [24]. They are also used for de-
tecting link spam in Web graphs [26], graph compression
[17] and mining micro-blogging streams [6].

Among the various formulations for finding dense sub-
graphs, the densest subgraph problem (DS-Problem) stands
out for the facts that is solvable in polynomial time [28]
and 1

2
-approximable in linear time [18, 40]. To state the

DS-Problem we first introduce the necessary notation. In
this work we focus on simple unweighted, undirected graphs.
Given a graph G = (V,E) and a subset of vertices S ⊆ V ,
let G(S) = (S,E(S)) be the subgraph induced by S, and let
e(S) = |E(S)| be the size of E(S). Also, the edge den-

sity of the set S is defined as fe(S) = e(S)/
(

|S|
2

)

. The

DS-Problem maximizes the degree density e(S)
|S|

over all

subgraphs S ⊆ V . Notice that this is equivalent to maxi-
mizing the average degree1. The DS-Problem is a powerful
primitive for many graph applications including social pig-
gybacking [27], reachability and distance query indexing [19,
37]. However, a large number of applications aims to find
subgraphs which are large near-cliques rather than the sub-
graph that maximizes the average degree. Frequently the
DS-Problem fails in finding large near-cliques because it
favors large subgraphs with low high edge density fe. For

1 In graph theory the term edge density refers by default

to fe = e(S)/
(

|S|
2

)

∈ [0, 1]. However, since direct maxi-
mization of fe is not a meaningful problem (even a single
edge achieves the maximum possible edge density), the DS-
Problem maximizes the average degree. In the following,
we refer to the average degree of a set as its degree density.



this reason other formulations have been proposed, see Sec-
tion 2. Unfortunately, these formulations are NP-hard and
also inapproximable due the connections with the Maximum

Clique problem [32].
The main contribution of this work is a family of tractable

formulations which attacks efficiently the problem of ex-
tracting large near-cliques and in contrast to well-performing
heuristics comes with strong theoretical guarantees. In de-
tail, our contributions are summarized as follows.

New formulation: We introduce the k-clique densest sub-
graph problem (k-Clique-DS-Problem) which generalizes
the well-studied DS-Problem [18, 25, 28, 40]. The goal is
to maximize the average number of k-cliques induced by a
set S ⊆ V over all possible vertex subsets. Notice that the
DS-Problem is obtained as a special case for k = 2. We
introduce also the special case obtained for k = 3 as the
triangle densest subgraph problem (TDS-Problem).

Exact algorithms. We present two exact algorithms for
the TDS-Problem. The algorithm which achieves the best
running time is based on maximum flow computations and
uses O(n + t) space. It is worth outlining that Goldberg’s
network construction for theDS-Problem which uses O(n+
m) space [25, 28] does not generalize to the TDS-Problem.
The slower one is based on supermodular maximization and
uses linear space O(n+m). Here, n,m, t are the number of
vertices, edges and triangles in the input graph. Our algo-
rithms can be modified to yield polynomial time algorithms
for the k-Clique-DS-Problem when k = Θ(1).

Approximation algorithm. We propose a 1
3
-approximation

algorithm for the TDS-Problem which runs asymptotically
faster than any of the exact algorithms. We also propose a

1
3+3ǫ

-approximation algorithm for any ǫ > 0 which can be
implemented efficiently in MapReduce. The algorithm re-
quires O(log(n)/ǫ) rounds and is MapReduce efficient [39]
due to the existence of efficient MapReduce triangle count-
ing algorithms, e.g., [48]. Our algorithms can be adapted to
the k-Clique-DS-Problem for any k = Θ(1).

Experimental evaluation. We evaluate our exact and ap-
proximation algorithms on numerous real-world networks.
Among our findings, we observe that the optimal triangle
densest subgraph is consistently closer to being a large near-
clique compared to the optimal densest subgraph. For in-
stance, in the Football network (see Table 1 for a description
of the dataset) the DS-Problem returns the whole graph
as the densest subgraph, with fe = 0.094 whereas the TDS-
Problem returns a subgraph on 18 vertices with fe = 0.48.
We also observe that the peeling approximation algorithms
for both k = 2 and k = 3 achieve on real-world networks
approximation ratios closer to 1 rather than the pessimistic
1
k
guarantee.

Graph mining application. We propose a modified ver-
sion of the TDS-Problem, the constrained triangle densest
subgraph problem (Constrained-TDS-Problem), which
aims to maximize the triangle density subject to the con-
straint that the output should contain a specified set of ver-
tices Q. We show how to solve exactly the TDS-Problem.
This variation is useful in various data-mining and bioinfor-
matics tasks, see [49].

2. RELATED WORK
Since dense subgraph discovery constitutes a main re-

search topic in graph analysis, a wide variety of related

methods exists: heuristics [49, 52, 54], algorithmic contri-
butions on NP-hard formulations [5, 12, 22, 40, 49] and
poly-time solvable formulations [18, 40, 49]. We focus on
the latter.

Densest Subgraph. In the densest subgraph problem we
are given a graph G and we wish to find the set S ⊆ V
which maximizes the average degree [28, 38]. The densest
subgraph can be identified in polynomial time by solving
a maximum flow problem [25, 28]. Charikar [18] proved
that the greedy algorithm proposed by Asashiro et al. [8]
produces a 1

2
-approximation of the densest subgraph in lin-

ear time. Asashiro et al. study the complexity of finding
dense subgraphs by introducing a generalization of the DS-
Problem and the maximum clique problem [7]. A k-core
is a maximal connected subgraph of G in which all vertices
have degree at least k. It is worth remarking that the same
algorithm provides a k-core decomposition of the graph and
solves the problem of finding the degeneracy [11]. In the case
of directed graphs, the densest subgraph problem is solved
in polynomial time as well [18]. Khuller and Saha [40] pro-
vide a linear time 1

2
-approximation algorithm for the case of

directed graphs among other contributions. Two interesting
variations of the DkS problem were introduced by Ander-
sen and Chellapilla [5]. The two problems ask for the set
S that maximizes the density subject to |S| ≤ k (DamkS)
and |S| ≥ k (DalkS). When restrictions on the size of S
are imposed the problem becomes NP-hard [40]. Finally,
the densest subgraph problem has been considered in vari-
ous settings, including MapReduce [10], the streaming [10],
the dynamic setting [21, 45] and their combination recently
[13].

Triangle Counting and Listing. The state of the art
algorithm for exact triangle counting is due to Alon, Yuster

and Zwick [4] and runs in O(m
2ω

ω+1 ), where currently the
fast matrix multiplication exponent ω is 2.3729 [53]. Thus,
their algorithm currently runs in O(m1.4081) time. The best
known listing algorithm until recently was due to Itai and
Rodeh [33] which runs in O(mα(G)) time, where α(G) is the
graph arboricity. Since α(G) = O(

√
m), the running time is

always O(m3/2). Recently, Björklund, Pagh, Williams and
Zwick gave refined algorithms which are output sensitive
algorithms [14]. Finally a wealth of approximate triangle
counting methods exist [35, 41, 44, 51].

3. PROBLEM DEFINITION
We define the notion of average triangle density.

Definition 1 (Triangle Density). Let G(V,E) be an undi-
rected graph. For any S ⊆ V we define its triangle density

τ(S) as τ(S) = t(S)
s

, where t(S) is the number of triangles
induced by S and s = |S|.

Notice that 3τ(S) is the average number of (induced) trian-
gles per vertex in S. The optimization problem we focus on
follows.

Problem 1 (TDS-Problem). Given G(V,E), find a
subset of vertices S∗ such that τ(S∗) = τ∗

G where τ∗
G =

maxS⊆V τ(S).

It is clear that the DS-Problem and the TDS-Problem
in general can result in radically different solutions. Con-
sider for instance a graph G on 2n + 3 vertices which is



the union of a triangle K3 and of a bipartite clique Kn,n.
The optimal solutions of the DS-Problem and the TDS-
Problem are the bipartite clique and the triangle respec-
tively. Therefore, the interesting question is whether maxi-
mizing the average degree and the triangle density result in
different results in real-world networks. Our results in Sec-
tion 5 indicate that the answer is positive since the triangle
densest subgraph compared to densest subgraph is smaller
which exhibits a stronger near-clique structure.

4. PROPOSED METHOD
Section 4.1 provides two algorithms which solve the TDS-

Problem exactly. Sections 4.2 and 4.3 provide two approx-
imation algorithms for the TDS-Problem. Finally, Sec-
tion 4.4 provides a generalization of the DS-Problem and
the TDS-Problem to maximizing the average k-clique den-
sity and shows how the results from previous Sections adapt
to this problem.

4.1 Exact Solutions
Let n,m, t be the number of vertices, edges and triangles

in graph G respectively. The algorithm presented in Sec-
tion 4.1.1 achieves the best running time. We present an
algorithm which relies on the supermodularity property of
our objective in Section 4.1.2. The latter algorithm, even if
slower, requires O(n+m) space, whereas the former O(n+t)
space. In real-world networks, typically m≪ t. Finally, it is
worth mentioning that Charikar’s linear program, see §2 in
[18], can be extended to a linear program (LP) which solves
the TDS-Problem, see [50] for the details.

4.1.1 An O
(

m3/2+nt+min (n, t)3
)

-time exact solution

Algorithm 1 triangle-densest subgraph(G)

1: List the set of triangles T (G), t = |T (G)|
2: l← t

n
, u← (n−1)(n−2)

6
3: S∗ ← ∅
4: while u ≥ l + 1

n(n−1)
do

5: α← l+u
2

6: Hα ← Construct-Network(G,α, T (G))
7: (S, T )← minimum st-cut in Hα

8: if S = {s} then
9: u← α
10: else
11: l← α
12: S∗ ←

(

S\{s}
)

∩ V (G)
13: end if
14: Return S∗

15: end while

Our main theoretical result is the following theorem. Its
proof is constructive.

Theorem 1. There exists an algorithm which which solves
the TDS-Problem and runs in O

(

m3/2 + nt+min (n, t)3
)

time.

The first term O(m3/2) comes from using the Itai-Rodeh al-
gorithm [33] as our triangle listing blackbox. If we use the
naive O(n3) triangle listing algorithm then the running time
expression is simplified to O(n3 + nt). On the other hand,
if we use the algorithms of Björklund et al. [14] the first term

Algorithm 2 Construct-Network (G,α, T (G))

1: V (H)← {s} ∪ V (G) ∪ T (G) ∪ {t}.
2: For each vertex v ∈ V (G) add an arc of capacity 1 to

each triangle ti it participates in.
3: For each triangle ∆ = (u, v, w) ∈ T (G) add arcs to

u, v, w of capacity 2.
4: Add directed arc (s, v) ∈ A(H) of capacity tv for each

v ∈ V (G).
5: Add weighted directed arc (v, t) ∈ A(H) of capacity 3α

for each v ∈ V (G).
6: Return network H(V (H), A(H), w), s, t ∈ V (H).

becomes for dense graphs Õ
(

nω+n3(ω−1)/(5−ω)t2(3−ω)/(5−ω)
)

and for sparse graphs Õ
(

m2ω/(ω+1)+m
3
ω−1
ω+1 t

3−ω
ω+1

)

, where ω
is the matrix multiplication exponent. Currently ω < 2.3729
due to [53]. We maintain [33] as our black-box to keep the
expressions simpler. However, the reader should keep in
mind that the result presented in [14] improves the total
running time of the first term.

We work our way to proving Theorem 1 by first prov-
ing the next key lemma. Then, we remove the logarithmic
factor.

Lemma 1. Algorithm 1 solves the TDS-Problem and runs
in O

(

m3/2 + (nt+min (n, t)3) log(n)
)

time.

Algorithm 1 uses maximum flow computations to solve
the TDS-Problem. It is worth outlining that Goldberg’s
maximum flow algorithm [28] for the DS-Problem is based
on a network construction that does not adapt to the case
of the TDS-Problem. Algorithm 1 returns an optimal sub-
graph S∗, i.e., τ(S∗) = τ∗. The algorithm performs a binary
search on the triangle density value α. Specifically, each bi-
nary search query corresponds to querying does there exist a
set S ⊆ V such that t(S)/|S| > α?. For each binary search,
we construct a bipartite networkH by invoking Algorithm 2.
Let T (G) be the set of triangles in G. The vertex set of H is
V (H) = {s}∪A∪B∪{t}, where A = V (G) and B = T (G).
Notice that we overload the notation in order to use the fre-
quently used notation for the sink vertex t. It should always
be clear from the context to which entity (number of trian-
gles vs. sink vertex) we refer to. For the purpose of finding
T (G), a triangle listing algorithm is required [14, 33]. The
arc set of graph H is created as follows. For each vertex
r ∈ B corresponding to triangle ∆(u, v, w) we add three in-
coming and three out-coming arcs. The incoming arcs come
from the vertices u, v, w ∈ A which form triangle ∆(u, v, w).
Each of these arcs has capacity equal to 1. The outgoing
arcs go to the same set of vertices u, v, w, but the capacities
are equal to 2. In addition to the arcs of capacity 1 from
each vertex u ∈ A to the triangles it participates in, we add
an outgoing arc of capacity 3α to the sink vertex t. From
the source vertex s we add an outgoing arc to each u ∈ A
of capacity tv, where tv is the number of triangles vertex v
participates in G. As we have already noticed, H can be
constructed in O(m3/2) time [33]. It is worth outlining that
after computing H for the first time, subsequent networks
need to update only the arcs that depend on the parameter
α, something not shown in the pseudocode for simplicity.
To prove that Algorithm 1 solves the TDS-Problem and
runs in O

(

m3/2 + (nt+min (n, t)3) log(n)
)

time we proceed
in steps.



For the sake of the proof, we introduce the following def-
initions and notation. For a given set of vertices S let ti(S)
be the number of triangles that involve exactly i vertices
from S, i ∈ {1, 2, 3}. Notice that t3(S) is the number of
induced triangles by S, for which we have been using the
simpler notation t(S) so far.
We use the following claim as our criterion to set the initial

values l, u in the binary search.

Claim 1. t
n
≤ τ(S) ≤ (n−1)(n−2)

6
for any S ⊆ V .

The lower bound is obvious since τ(V ) = t
n
. The upper

bound also follows trivially by observing that τ(S) ≤
(

n
3

)

/n
for any ∅ 6= S ⊆ V . This suggests that the optimal value τ∗

is always O(n2).
The next claim serves as a criterion to decide when to stop

the binary search.
Claim 2 The smallest possible difference among two distinct
values τ(S1), τ(S2) is equal to

1
n(n−1)

.

To see why, notice that the difference δ between two possible
different triangle density values is

δ =
t(S1)|S2| − t(S2)|S1|

|S1||S2|
.

If |S1| = |S2| then |δ| ≥ 1
n

> 1
n(n−1)

, otherwise |δ| ≥
1

|S1||S2|
≥ 1

n(n−1)
. Notice that combining the above two

claims shows that the binary search terminates in at most
⌈4 log n⌉ queries. The following lemma is a structural lemma
for the optimal s− t cut the network Hα.

Lemma 2. Consider any minimum st-cut (S, T ) in the
network Hα. Let A1 = S ∩ A,B1 = S ∩ B and A2 = T ∩
A,B2 = T ∩B. The cost of the min-cut is equal to

∑

v/∈A1

tv + 2t2(A1) + t1(A1) + 3α|A1|.

Proof. Case I: A1 = ∅: In this case the proposition triv-
ially holds, as the cost is equal to

∑

v∈A

tv = 3t. It is worth

noticing that in this case B1 has to be also empty, otherwise
we contradict the optimality of (S, T ). Hence S = {s}, T =
A ∪B ∪ {t}.
Case II: A1 6= ∅: Consider the cost of the arcs from A1∪B1

to A2 ∪ B2. We consider three different subcases, one per
each type of triangle with respect to set A1.
Type 3: If there exist three vertices u, v, w ∈ A1 that form

a triangle ∆(u, v, w), then the vertex r ∈ B corresponding
to this specific triangle has to be in B1. If not, then r ∈ B2,
and we could reduce the cost of the min-cut by 3, if we move
the triangle to B1. Therefore the cost we pay for triangles
of type three is 0.
Type 2: Consider three vertices u, v, w such that they form

a triangle ∆(u, v, w) and u, v ∈ A1, w ∈ A2. Then, the
vertex r ∈ B corresponding to this triangle can be either in
B1 or B2. In both cases we always pay 2 in the cut for each
triangle of type two.
Type 1: Finally, in the case u, v, w form a triangle, u ∈

A1, v, w ∈ A2 the vertex r ∈ B corresponding to triangle
∆(u, v, w) will be in B2. If not, then it lies in B1 and we
could decrease the cost of the cut by 3 if we move it in B2.
Hence, we pay 1 in the cut for each triangle of type one.
Therefore the cost due to the various types of triangles

with respect to A1 is equal to 2t2(A1) + t1(A1).
Furthermore, the cost of the arcs from source s to T is

equal to
∑

v∈A2
tv =

∑

v/∈A1

tv. The cost of the arcs from A1

to T is equal to 3α|A1|. Summing up the individual cost
terms, we obtain that the total cost is equal to

∑

v/∈A1

tv +

2t2(A1) + t1(A1) + 3α|A1|.
The next lemma proves the correctness of the binary search
in Algorithm 1.

Lemma 3. (a) If there exists a set W ⊆ V (G) such that
t3(W ) > α|W | then any minimum st-cut (S,T) in Hα sat-
isfies S\{s} 6= ∅. (b) Furthermore, if there does not exists a
set W such that t3(W ) > α|W | then the cut ({s}, A∪B∪{t})
is a minimum st-cut.

Proof. (a) Let W ⊆ V be such that

t3(W ) > α|W |. (1)

Suppose for the sake of contradiction that the minimum
st-cut is achieved by ({s}, A ∪ B ∪ {t}). In this case the
cost of the minimum st-cut is

∑

v∈A tv = 3t. Now, consider
the following (S, T ) cut. Set S consists of the source vertex
s, A1 = W and B1 be the set of triangles of type 3 and 2
induced by A1. Let T be the rest of the vertices in H. The
cost of this cut is

cap(S, T ) =
∑

v/∈A1

tv + 2t2(A1) + t1(A1) + 3α|A1|.

Therefore, by our assumption that the minimum st-cut is
achieved by ({s}, A ∪B ∪ {t}) we obtain

3t ≤
∑

v/∈A1

tv + 2t2(A1) + t1(A1) + 3α|A1|. (2)

Now, notice that by double counting

∑

v∈A1

tv = 3t3(A1) + 2t2(A1) + t1(A1).

Furthermore, we observe
∑

v∈A1

tv +
∑

v/∈A1

tv = 3t.

By combining these two facts, and the fact that 3t is the
capacity of the minimum cut, we obtain the following con-
tradiction of Inequality (1).

3t ≤
∑

v/∈A1

tv + 2t2(A1) + t1(A1) + 3α|A1| ⇔ t3(W ) ≤ α|W |.

(b) By Lemma 2, for any minimum st-cut (S, T ) the capac-
ity of the cut is equal to

∑

v/∈A1

tv +2t2(A1)+ t1(A1)+3α|A1|,

where A1 = A∩S,A2 = A∩T . Suppose for the sake of con-
tradiction that the cut ({s}, A ∪B ∪ {t}) is not a minimum
cut. Therefore,

cap({s}, A∪B∪{t}) = 3t >
∑

v/∈A1

tv+2t2(A1)+t1(A1)+3α|A1|.

Using the same algebraic analysis as in (a), the above
statement implies the contradiction t3(W ) > α|W |, where
W = A1.



Now we can complete the proof of Lemma 1.

Proof. The termination of Algorithm 1 follows directly
from Claims 1, 2. The correctness follows from Lemmata 2, 3.
The running time follows from Claims 1,2 which show that
the number of binary search queries is O(log(n)) and each
binary search query can be performed in O

(

nt+min (n, t)3
)

time using the algorithm due to Ahuja, Orlin, Stein and
Tarjan [3]2 or Gusfield’s algorithm [31].

The proof of Theorem 1 follows from Lemma 1 and the
fact that the parametric maximum flow algorithm of Ahuja,
Orlin, Stein and Tarjan [3], see also [25], s(h)aves the loga-
rithmic factor from the running time.

4.1.2 An O
(

(n5m1.4081 + n6)) log(n)
)

-time exact solu-
tion

In this Section we provide a second exact algorithm for the
TDS-Problem. First, we provide the necessary theoretical
background.

Definition 2 (Supermodular function). Let V be
a finite set. The set function f : 2V → R is supermodu-
lar if and only if for all A,B ⊆ V

f(A ∪B) ≥ f(A) + f(B)− f(A ∩B).

A function f is supermodular if and only if −f is submodu-
lar.

Sub- and supermodular functions constitute an important
class of functions with various special properties. In this
work, we are primarily interested in the fact that maximiz-
ing a supermodular function is solvable in strongly polyno-
mial time [30, 34, 42, 46]. For our purposes, we state the
following result which we use as a subroutine in our proposed
algorithm.

Theorem 2 ([43]). There exists an algorithm for max-
imizing an integer valued supermodular function f which
runs in O

(

n5EO + n6)
)

time, where n = |V | is the size
of the ground set V and EO is the maximum amount of
time to evaluate f(S) for a subset S ⊆ V .

We show in the following that when the ground set is the
set of vertices V and fα : 2V → R is defined by fα(S) =
t(S)−α|S| where α ∈ R

+, we can solve the TDS-Problem
in polynomial time.

Theorem 3. Function f : V → R where f(S) = t(S) −
α|S| is supermodular.

Proof. Let A,B ⊆ V . Let t : 2V → R be the func-
tion which for each set of vertices S returns the number of
induced triangles t(S). By careful counting

t(A∪B) = t(A)+t(B)−t(A∩B)+t1(A : B\A)+t2(A : B\A),

where t1(A : B\A), t2(A : B\A) are the number of triangle
with one, two vertices in A and two, one vertices in B\A
respectively. Hence, for any A,B ⊆ V

2Notice that the network Hα has O(n + t) arcs, therefore

the running time of [3] is O(min (n, t)(n+ t)+min (n, t)3) =

O(nt+min (n, t)3).

t(A ∪B) + t(A ∩B) ≥ t(A) + t(B)

and the function t is supermodular. Furthermore, for any
α > 0 the function −α|S| is supermodular. Since the sum
of two supermodular functions is supermodular, the result
follows.

Theorem 3 naturally suggests Algorithm 3. The algorithm
will run in a logarithmic number of rounds. In each round we
maximize function fα using Orlin-Supermodular-Opt which
takes as input arguments the graph G and the parameter
α > 0 [43]. We assume for simplicity that within the pro-
cedure Orlin-Supermodular-Opt function f is evaluated using
an efficient exact triangle counting algorithm [4]. The algo-

rithm of Alon, Yuster and Zwick [4] runs in O(m2ω/(ω+1))
time where ω < 2.3729 [53]. This suggests the EO =
O(m1.4081). The overall running time of Algorithm 3 is
O
(

(n5m1.4081 + n6) log(n)
)

and the space usage O(n + m)
rather than O(n+ t).

Algorithm 3 triangle-densest subgraph(G) [Supermodular-

ity]

1: l← 0, u← (n−1)(n−2)
6

, S∗ ← V

2: while u ≥ l + 1
n(n−1)

do

3: α← l+u
2

4: (val, S)← Orlin-Supermodular-Opt(G,α)
5: if val < 0 then
6: u← α
7: else
8: l← α
9: S∗ ← S
10: end if
11: Return S∗

12: end while

4.2 A 1
3
-approximation algorithm

In this Section we provide an algorithm for the TDS-
Problem which provides a 1

3
-approximation. Our algorithm

follows the peeling paradigm, see [8, 18, 40, 36]. Specifically,
in each round it removes the vertex which participates in
the smallest number of triangles and returns the subgraph
that achieves the largest triangle density. The pseudocode
is shown in Algorithm 4.

Algorithm 4 Peel-Triangles(G)

1: Count the number of triangles tv for each vertex v ∈ V
2: Hn ← G
3: for i← n to 2 do
4: Let v be the vertex of Gi of minimum number of tri-

angles
5: Hi−1 ← Hi\v
6: end for
7: Return Hj that achieves maximum triangle density

among His, i = 1, . . . , n.

Theorem 4. Algorithm 4 is a 1
3
-approximation algorithm

for the TDS-Problem.



Proof. Let S∗ be an optimal set. Let v ∈ S∗, |S∗| = s∗

and tA(v) be the number of induced triangles by A that v
participates in. Then,

τ∗
G =

t(S∗)

s∗
≥ t(S∗\{v})

s∗ − 1
⇔ tS∗(v) ≥ τ∗

G,

since t(S∗\{v}) = t(S∗) − tS∗(v). Consider the iteration
before the algorithm removes the first vertex v that belongs
in S∗. Call the set of vertices W . Clearly, S∗ ⊆ W and for
each vertex u ∈W the following lower bound holds tW (u) ≥
tW (v) ≥ tS∗(v) ≥ τ∗

G due to the greediness of Algorithm 3.
This provides a lower bound on the total number of triangles
induced by W

t(W ) =
1

3

∑

u∈W

tW (u) ≥ 1

3
|W |τ∗

G ⇒
t(W )

|W | ≥
1

3
τ∗
G.

To complete the proof, notice that the algorithm returns
a subgraph S such that τ(S) ≥ τ(W ) ≥ 1

3
τ∗
G.

The key difference compared to the DS-Problem peel-
ing algorithm [18] is that when we remove a vertex, the
counts of its neighbors may decrease more than 1. There-
fore, when vertex v is removed, we update the counts of its

neighbors in O
(

(

deg(v)
2

)

)

time, by looking how many trian-

gles each of its neighbors has after v is removed. Notice that
O
(
∑

v

(

deg(v)
2

))

= O(mn).

4.3 MapReduce Implementation
The MapReduce framework [20] has become the de facto

standard for processing large-scale datasets. In the follow-
ing, we show how we can approximate efficiently the TDS-
Problem in MapReduce. Before we describe the algo-
rithm, we show that Algorithm 5 for any ǫ > 0 terminates
and provides a 1

3+3ǫ
-approximation. The idea behind this

algorithm is to peel vertices in batches [10, 29] rather than
one by one.

Algorithm 5 Peel-Triangles-in-Batches(G, ǫ > 0)

1: Sout, S ← V
2: while S 6= ∅ do
3: A(S)← {i ∈ S : tS(i) ≤ 3(1 + ǫ)τ(S)}
4: S ← S\A(S)
5: if τ(S) ≥ τ(Sout) then
6: Sout ← S
7: end if
8: end while
9: Return Sout.

Lemma 4. For any ǫ > 0, Algorithm 5 provides a 1
(3+3ǫ)

-

approximation to the TDS-Problem. Furthermore, it ter-
minates in O(log1+ǫ(n)) passes.

Proof. Let S∗ be an optimal solution to theTDS-Problem.
As we proved in Theorem 4, for any v ∈ S∗ it is true that
tS∗(v) ≥ τ∗

G. Furthermore, in each round at least one ver-
tex is removed. To see why, assume for the sake of con-
tradiction that A(S) = ∅ for some S during the execution
of the algorithm. Then, we obtain the contradiction that
3|S|τ(S) =

∑

v∈S tS(v) ≥ (3 + 3ǫ)|S|τ(S). Consider the

round where the algorithm for the first time removes a vertex
v ∈ S∗. Let W be the corresponding set of vertices. Since
v ∈ A(W ) is peeled off, we obtain an upper bound on its in-
duced degree, namely v ∈ A(W ) ⇒ tW (v) ≤ (3 + 3ǫ)τ(W ).
Since S∗ ⊆W , we obtain

(3 + 3ǫ)τ(W ) ≥ tW (v) ≥ tS∗(v) ≥ τ(S∗),

which proves that Algorithm 5 is a 1
(3+3ǫ)

-approximation to

the TDS-Problem. To see why the algorithm terminates
in logarithmic number of rounds, notice that

3t(S) >
∑

v∈S\A(S)

tS(v) ≥ (3 + 3ǫ)
(

|S| − |A(S)|
) t(S)

|S| ⇔

|A(S)| ≥ ǫ

1 + ǫ
|S| ⇔ |S\A(S)| ≤ 1

1 + ǫ
|S|.

Since S decreases by a factor of 1
1+ǫ

in each round, the algo-

rithm terminates in O(log1+ǫ(n)) = O
( log(n)

ǫ

)

rounds.

MapReduce Implementation: Now we are able to describe
our algorithm in MapReduce. It uses any of the efficient
algorithms of Suri and Vassilvitski [48] as a subroutine to
count triangles per vertex in each round. The removal of the
vertices which participate in less triangles than the thresh-
old, is done in two rounds, as in [10]. For completeness,
we describe the procedure here. The set of vertices S to be
peeled off in each round are marked by adding a key-value
pair 〈v; $〉 for each v ∈ S. Each edge (u, v) is mapped to
〈u; v〉. The reducer receives all endpoints of the edges inci-
dent with v and the symbol $ in case the vertex is marked for
deletion. In case the vertex is marked, then the reduce task
returns nothing, otherwise it copies its input. In the second
round, we perform the same procedure with the only differ-
ence being that we map each edge (u, v) to 〈v;u〉. Therefore,
the edges which remain have both endpoints unmarked. The
algorithm runs in O(log(n)/ǫ), as it takes O(log(n)/ǫ) peel-
ing off rounds, and in each peeling round, constant number
of rounds is needed to count triangles per vertex, mark ver-
tices for deletion and remove the corresponding vertex set.

4.4 k-clique Densest Subgraph
We outline that our proposed methods can be adapted

to the following generalization of the DS-Problem and the
TDS-Problem.

Definition 3 (k-clique-densest subgraph). Let G(V,E)
be an undirected graph. For any S ⊆ V we define its k-clique

density hk(S), k ≥ 2 as hk(S) = ck(S)
s

, where ck(S) is the
number of k-cliques induced by S and s = |S|.

Problem 2 (k-Clique-DS-Problem). Given G(V,E),
find a subset of vertices S∗ such that hk(S

∗) = h∗
k where

h∗
k = maxS⊆V hk(S).

As in the triangle densest subgraph problem, we create a
network H parameterized by the value α on which we per-
form our binary search. The procedure is described in Algo-
rithm 6. The set C(G) is the set of k-cliques in G. We then
invoke Algorithm 1, with the upper bound u set to nk. Fol-
lowing the analysis of Theorem 1, we see that the k-Clique-
DS-Problem is solvable in polynomial time. For instance,
using Gusfield’s algorithm [31] or [3] in each binary search



query we get an overall running time O
(

nk + (n|C(G)| +
n3) log(n)

)

= O(nk+1 log(n)). Using the improved result
due to Ahuja, Orlin, Stein and Tarjan for parametric max
flows in unbalanced bipartite graphs [3], we save the loga-
rithmic factor in the running time.

Algorithm 6 Construct-Network-k (G,α, C(G), k)

1: V (H)← {s} ∪ V (G) ∪ C(G) ∪ {t}.
2: For each vertex v ∈ V (G) add an arc of capacity 1 to

each k-clique ci it participates in.
3: For each k-clique (ui1 , . . . , uik ) ∈ C(G) add arcs to

ui1 , . . . , uik of capacity k − 1.
4: Add directed arc (s, v) ∈ A(H) of capacity cv for each

v ∈ V (G).
5: Add weighted directed arc (v, t) ∈ A(H) of capacity kα

for each v ∈ V (G).
6: Return network H(V (H), A(H), w), s, t ∈ V (H).

Furthermore, Algorithm 4 can also be modified, by removing
in each round the vertex with the smallest number of k-
cliques, to obtain Corollary 2. As the analogy of Theorem 4.

Corollary 1. The algorithm which peels off in each round
the vertex with the minimum number of k-cliques and returns
the subgraph that achieves the largest k-clique density, is a
1
k
-approximation algorithm for the k-Clique-DS-Problem.

Similarly, Algorithm 5 and the MapReduce implementa-
tion can be modified to solve the k-Clique-DS-Problem.
We omit the details.

Corollary 2. The algorithm which peels off in each round
the set of vertices with less than k(1+ ǫ)h(S), where h(S) is
the k-clique density in that round, terminates in O(log1+ǫ(n))

rounds and provides a 1
k(1+ǫ)

-approximation guarantee for

the k-Clique-DS-Problem. Furthermore, using [23], we
obtain an efficient MapReduce implementation.

We illustrate an example where choosing a larger k value
yields benefits. Let G ∼ G(n, p) be an Erdös-Rényi graph,
where p = p(n). Assume that we plant a clique K of size
nγ for some constant γ > 0. We wish to show a non-trivial
range of p = p(n) values such that the following conditions

hold: h2(C) = |E(K)|
|K|

=
(n

γ

2 )
nγ <

p(n2)
n

= E [h2(V )], and for

k ≥ 3 hk(C) =
(n

γ

k )
nγ >

p(
k
2)(nk)
n

= E [hk(V )].
By simple algebraic manipulation we see that p satisfies both

conditions if O
(

n−(1−γ)
)

< p < O
(

n−
2
k
(1−γ)

)

3. Clearly, for
larger k values, we allow ourselves a larger range of p values
for which we can find the hidden clique in expectation.
Our preliminary experimental results for k = 4 indicate

that the 4-clique-densest subgraph gets closer to a large near-
clique compared to the triangle densest subgraph. However,
the gain of moving from the densest subgraph to the triangle

densest subgraphwith respect to extracting large near-cliques
is larger than the gain of moving from the triangle densest

subgraph to the 4-clique-densest subgraph.

3 Notice that for this range of p, the graph is connected and
the clique number is constant with high probability [15]

5. EXPERIMENTAL EVALUATION
Before we present our findings in detail, we summarize

them: (i) the TDS-Problem and the proposed algorithms
constitute new valuable graph mining primitives for finding
large near-cliques, (ii) the 1

3
-approximation algorithm (Al-

gorithm 4) achieves significantly better approximations than
the pessimistic 1

3
guarantee. Also it is significantly faster.

(iii) Trying a small range of ǫ values for Algorithm 5 is in
general a safer strategy compared to running experiments
with fixed choice.

5.1 Experimental Setup
The datasets we use are shown in Table 1. All graphs

were made simple and undirected by ignoring the edge di-
rection, when the graph is directed, and removing self-loops
and multiple edges, if any. The experiments were performed
on a single machine, with Intel(R) Core(TM) i5 CPU at
2.40 GHz, with 3.86GB of main memory. We have imple-
mented Algorithm 1 in Matlab R2011a using a maximum
flow implementation due to Kolmogorov and Boykov [16] as
our subroutine which runs in time O(t(n+ t)3). This imple-
mentation is prohibitively expensive even for small graphs
which have a large number of triangles. We have coded
the peeling algorithm in C++ using priority queues. As
our triangle listing algorithm, we use the simple node iter-
ator algorithm which checks for each vertex the number of
edges among its neighbors. The code is publicly available at
http://people.seas.harvard.edu/~babis/code.html. We
measure the quality of each extracted subgraph by two mea-
sures: the edge density of the extracted subgraph fe =
e(S)/

(

|S|
2

)

and the output size |S|. Notice that when fe is
close to 1, the extracted subgraph is close to being a clique.

5.2 Main Findings
Table 2 shows the results obtained on several popular

small- and medium-sized graphs. Each column corresponds
to a dataset. The rows correspond to measurements for
each method we use to extract a subgraph. Specifically,
the first (DS), second ( 1

2
-DS), third (TDS) and fourth ( 1

3
-

TDS) rows correspond to the subgraph extracted by Gold-
berg’s exact algorithm [28] for the DS-Problem, Charikar’s
1
2
-approximation algorithm [18] for the DS-Problem, Al-

gorithm 1 and Algorithm 4 for the TDS-Problem respec-
tively. For each optimal extracted subgraph S, we show its
size as a fraction of the total number of vertices, the edge
density fe(S), the average degree 2δ(S) = 2e(S)/|S| and the
average number of triangles per vertex 3τ(S) = 3t(S)/|S|.

We observe that the triangle-densest subgraph is closer to
being a near-clique compared to the densest subgraph. A
pronounced example is the Football network where the opti-
mal densest subgraph is the whole network with fe = 0.0094,
whereas the optimal triangle-densest subgraph is a set of 18
vertices with edge density 0.48. Finally, we observe that the
quality of Algorithm’s 4 output is very close to the optimal
solution and sometimes even better. The same observation
holds for the case of Charikar’s 1

2
-approximation algorithm

[18].
We use the C++ implementation of Algorithm 4 and a

C++ implementation of Charikar’s 1
2
-approximation algo-

rithm on the rest of the datasets of Table 1. The results are
shown in Table 3, up to two decimal digits of accuracy. The
ca-HepTh dataset is an exception, as the optimal solutions
coincide. We also notice that the run times appear the same

http://people.seas.harvard.edu/~babis/code.html


Name Nodes Edges Description
Adjnoun 112 425 Generated by processing text data
AS-735 6 475 12 572 Autonomous Systems
AS-caida 26 475 53 381 Autonomous Systems
ca-Astro 17 903 196 972 Co-authorship
ca-GrQC 4 158 13 422 Co-authorship
ca-HepTh 11 204 117 619 Co-authorship
Celegans 297 4 296 Neural network of C. Elegans
DBLP 53 442 255 936 Co-authorship
Epinions 75 877 405 739 Social network
Enron 33 696 180 811 Email
EuAll 224 832 339 925 Email
Football 115 613 NCAA football game network
Karate 34 78 Social network
Lesmis 77 254 Generated by processing text data
Political blogs 1 490 16 715 Generated by processing sales data
Political books 105 441 Blog network
soc-Slashdot0811 77 360 469 180 Person to Person
soc-Slashdot0902 82 168 504 230 Person to Person
wb-cs-Stanford 8 929 26 320 Web Graph
web-Google 855 802 4 291 352 Web Graph
web-NotreDame 325 729 1 090 108 Web Graph
Wiki-vote 7 066 100 736 Wikipedia “who-votes-whom”

Table 1: Datasets used in our experiments.

Method Measure Adjnoun Celegans Football Karate Lesmis Polblogs Polbooks

DS
|S|
|V |

(%) 42.86 45.8 100 47.1 29.9 19.1 51.4

2δ 9.58 17.16 10.66 5.25 10.78 55.82 9.40
fe 0.20 0.13 0.094 0.35 0.49 0.196 0.18
3τ 14 45.93 21.12 5.64 41.61 768.87 22.68

1
2
-DS

|S|
|V |

(%) 41.1 42.4 100 52.9 29.9 18.7 57.1

2δ 9.57 17.1 10.66 5.2 10.78 55.8 9.3
fe 0.21 0.14 0.094 0.31 0.49 0.20 0.16
3τ 14.16 46.5 21.12 5.16 41.61 774.6 22.68

TDS
|S|
|V |

(%) 36.6 10.4 15.7 17.7 16.9 8.1 19.1

2δ 9.37 13.81 8.22 4.67 10.62 55.72 9.34
fe 0.23 0.46 0.48 0.93 0.89 0.46 0.50
3τ 15 56.82 28 8.01 47.31 972.36 25.95

1
3
-TDS

|S|
|V |

(%) 36.6 9.1 15.7 17.7 16.9 8.1 15.2

2δ 9.37 13.56 8.22 4.67 10.62 55.72 9.13
fe 0.23 0.52 0.48 0.93 0.89 0.46 0.61
3τ 15 56.55 28 8.01 47.31 972.36 25.5

Table 2: Comparison of the extracted subgraphs by the Goldberg’s exact algorithm for the DS-Problem (DS),
Charikar’s 1

2
-approximation algorithm ( 1

2
-DS), our exact algorithm for the TDS-Problem (TDS) and our 1

3
-

approximation algorithm ( 1
2
-TDS). Here, fe(S) = e(S)/

(

|S|
2

)

is the edge density of the extracted subgraph,
2δ(S) = 2e(S)/|S| is the average degree and 3τ(S) = 3t(S)/|S| is the average number of triangles.

for ca-HepTh due to using two decimal digits of accuracy. On
other datasets, we observe differences between the two solu-
tions. For instance, for the collaboration network ca-Astro

the densest subgraph is a subgraph with 1 184 vertices and
fe = 0.05. The triangle-densest subgraph is a clique with 57
vertices. Overall, we verify the fact that the triangle-densest

subgraph is closer to being a near-clique. Finally, the run
times are shown. Notice that the run times reported for
for Algorithm 4 include both the triangle counting and the
peeling phase.

5.3 Exploring parameter ǫ in Algorithm 5
In this Section we present the results of Algorithm 5 on

the DBLP graph. This is particularly interesting instance
as it indicates that instead of trying to select a good ǫ value,
it is worth trying out at least few values, assuming compu-
tational resources are available. We range ǫ from 0.1 to 1.8
with a step of 0.1. Figure 1(a) plots the number of rounds
Algorithm 5 takes to terminate as a function of ǫ. We ob-
serve that even for small ǫ values the number of rounds is
6. The reader should compare this to the upper bound pre-
dicted by Lemma 4 which exceeds 100. Figure 1(b) plots the
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Figure 1: Exploring the trade-off between the number of rounds and accuracy as a function of the parameter
ǫ for Algorithm 5. Let S, S∗ be the extracted subgraphs by Algorithms 5 and 1 respectively. (a) Number of

rounds, (b) relative average triangle density ratio τ(S)
τ∗ (blue ∗) and the approximation guarantee 1/(3 + 3ǫ)

(red ⋄), and (c) relative ratios fe(S)
fe(S∗)

, ft(S)
ft(S∗)

as functions of ǫ.

1
2
-DS 1

3
-TDS

|S| fe T |S| fe T
AS-735 59 0.28 0.00 13 0.8 0.07

AS-caida 143 0.14 0.02 27 0.52 0.63
ca-Astro 1 184 0.05 0.06 57 1 1.42
ca-GrQC 42 0.79 0.00 14 0.89 0.02

ca-HepTh 32 1 0.02 32 1 0.02
Epinions 999 0.121 0.08 431 0.256 8.75

Enron 555 0.14 0.02 390 0.19 2.01
EuAll 507 0.13 0.08 200 0.29 9.52

soc-Slashdot0811 207 0.41 0.13 253 0.49 6.85
soc-Slashdot0902 219 0.40 0.16 173 0.50 7.72

wb-cs-Stanford 84 0.64 0.48 26 0.80 0.67
web-Google 240 0.23 2.54 120 0.44 79.5

web-NotreDame 1 367 0.115 0.50 457 0.345 16.3
Wiki-vote 846 0.11 0.00 464 0.80 0.19

Table 3: Comparison of the extracted subgraphs by
the 1

2
-approximation algorithm of Charikar and the

1
3
-approximation algorithm, Algorithm 4. The re-

spective run times are shown in seconds.

relative ratio Rel. τ = τ(S)
τ∗ where S is the output of Algo-

rithm 5. For convenience, the lower bound 1
3+3ǫ

is plotted
with red color.
Besides the ratio fe(S)

fe(S∗)
, figure 1(c) plots also the relative

ratio ft(S)
ft(S∗)

as a function of ǫ. Here ft(S) = t(S)

(|S|
3 )

. As we

observe, the quality of Algorithm 5 is close to the optimal
solution except for ǫ = 0.7 and ǫ = 0.8. By inspecting why
this happens we observe that the optimal triangle-densest

subgraph is a clique of 44 vertices. It turns out that for
ǫ = 0.7, 0.8 the optimal subgraph which is found in the last
round of the execution of the algorithm (the latter happens
for all ǫ values) consists of 98 and 74 vertices which contain
as a subgraph the optimal K44. For other values of ǫ, the
subgraph in the last round is either the optimal K44 or close
to it, with few more extra vertices. This example shows the
potential danger of using a single value for ǫ, suggesting that
trying out a small number of ǫ values can be significantly
beneficial in terms of the approximation quality.

6. APPLICATION: ORGANIZING COCKTAIL

PARTIES
A graph mining problem that comes up in various appli-

cations is the following: given a set of vertices Q ⊆ V , find
a dense subgraph containing Q. We refer to this type of
graph mining problems as cocktail problems, due to the fol-
lowing motivation, c.f. [47]. Suppose that a set of people Q
wants to organize a cocktail party. How do they invite other
people to the party so that the set of all the participants,
including Q, are as similar as possible? A variation of the
TDS-Problem which addresses this graph mining problem
follows.

Problem 3 (Constrained-TDS-Problem). Given a
graph G(V,E) and Q ⊆ V , find the subset of vertices S∗ that
maximizes the triangle density such that Q ⊆ S∗ ,

S∗ = arg max
Q⊆S⊆V

τ(S).

The Constrained-TDS-Problem can be solved by mod-
ifying our proposed algorithms accordingly. A useful corol-
lary follows.

Corollary 3. The Constrained-TDS-Problem is solv-
able in polynomial time by adding arcs from s to v ∈ A of
large enough capacities, e.g., capacities equal to n3 + 1 are
sufficiently large. Furthermore, the peeling algorithm which
avoids removing vertices from Q is a 1

3
-approximation algo-

rithm for the Constrained-TDS-Problem.

In the following we evaluate the 1
3
-approximation algo-

rithm on two datasets. The two experiments indicate two
different types of performances that should be expected in
real-world applications. The first is a positive whereas the
second is negative case. Both experiments here serve as san-
ity checks4

Political vote data. We obtain Senate data for the first
session (2006) of the 109th congress which spanned the pe-
riod from January 3, 2005 to January 3, 2007, during the
4 For instance, by preprocessing the political vote data from
a matrix form to a graph using a threshold for edge addi-
tions, results in information loss.



fifth and sixth years of George W. Bush’s presidency [1]. In
this Congress, there were 55, 45 and 1 Republican, Demo-
cratic and independent senators respectively. The dataset
can be downloaded from the US Senate web page
http://www.senate.gov. We preprocess the dataset in the
following way: we add an edge between two senators if
among the bills for which they both casted a vote, they
voted at least 80% of the times in the same way. The re-
sulting graph has 100 vertices and 2034 edges. We run the
1
3
-approximation algorithm on this graph using as our set

Q the first three republicans according to lexicographic or-
der: Alexander (R-TN), Allard (R-CO) and Allen (R-VA).
We obtain at our output a subgraph consisting of 47 ver-
tices. By inspecting their party, we find that 100% of them
are Republicans. This shows that our algorithm in this case
succeeds in finding the large majority of the cluster of repub-
licans. It is interesting that the 8 remaining Republicans do
not enter the triangle-densest subgraph. A careful inspection
of the data, c.f. [2], indicates that 6 republicans agree with
the party vote on at most 79% of the bills, and 8 of them
on at most 85% of the bills.

DBLP graph. We input as a query set Q a set of scientists
who have established themselves in theory and algorithm de-
sign: Richard Karp, Christos Papadimitriou, Mihalis Yan-
nakakis and Santosh Vempala. The algorithm returns at its
output the query set and a set S of 44 vertices corresponding
to a clique of (mostly) Italian computer scientists. We list
a subset of the 44 vertices here: M. Bencivenni, M. Cana-
paro, F. Capannini, L. Carota, M. Carpene, R. Veraldi, P.
Veronesi, M. Vistoli, R. Zappi. The output graph induced
by S ∪ Q is disconnected. Therefore, this can be easily ex-
plained because of the following (folklore) inequality, given
that |Q| < |S| in our example.

Claim 1. Let a, b, c, d be non-negative. Then,

max
(a

c
,
b

d

)

≥ a+ b

c+ d
≥ min

(a

c
,
b

d

)

(3)

In our example, we get a = t(S), c = |S|, b = t(Q), d = |Q|.
In such a scenario, where the output consists of the union of
a dense subgraph and the query set Q, an algorithm which
builds itself up from Q -assuming Q is not an independent
set- to V by adding vertices which create as many triangles
as possible and returning the maximum density subgraph,
rather than peeling vertices from V down to Q should be
preferred in practice, see also [49].

7. CONCLUSION
In this work we introduce the average triangle density as

a novel objective for attacking the important problem of
finding near-cliques. We propose exact and approximation
algorithms. Furthermore, our techniques can solve the more
general problem of maximizing the k-clique density. Exper-
imentally we verify the value of the TDS-Problem as a
novel addition to the graph mining toolbox.
Our work leaves numerous problems open, including the

following: (a) Can we obtain a faster exact algorithm by
improving the space usage of the network construction? (b)
Can we use sparsification to obtain faster approximate solu-
tions [44]?
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