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Abstract. Software architectures have recently emerged as a level of design concerned with 
specifying the overall structure of a system. Traditionally, software architectures only provide 
static descriptions of the participants and interaction structures in a system. Dynamic software 
architectures, however, can be reconfigured at runtime and therefore provide support for building 
dynamically adaptable applications. Software architectures can be specified using architectural 
reflection. In this paper we introduce an architecture meta-model that realises a dynamic software 
architecture. The architecture meta-model reifies the configuration graph of the architecture and is 
automatically generated from our component definitions and implementation language source-
code. We show how graph transformations that re-write the architecture’s configuration graph can 
be implemented as reflective programs, called adaptation contracts. Adaptation contracts are 
written in a separate programming language, thus cleanly separating the adaptation code from the 
computational code. Adaptation contracts can even be replaced at run-time. They are deployed in a 
run-time meta-level architecture that addresses issues of system safety, integrity and overhead 
during graph transformation. The paper also describes a prototype implementation of our model 
called K-Components.  
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1 Introduction 

Architectural structures have always been present in object-oriented software, but their importance has 
increased with the advent of complex, distributed object systems. Modelling complex systems can be 
done informally with system diagrams or more formally using an Architecture Description Language 
(ADL) [SG96]. Traditionally ADLs were developed for representing and reasoning about the static 
structures and interactions in a software architecture [AdlSei]. However, since there are many classes 
of systems that are dynamic, including evolving systems that require on-line software upgrades, 
adaptive systems whose provided behaviour adapts to resource availability in their current operating 
environment, and learning or knowledge-based systems, there has recently emerged a field of study 
concerned with dynamic software architectures.  

Dynamic software architectures can be used to build dynamic systems by supporting the self-
management and reconfiguration of the dynamic system’s architecture at run-time [Allen98]. Current 
approaches to specifying dynamic software architectures use ADLs with Architecture Modification 
Languages [Darwin95, OGT99, Rapide95, Werm00] or Co-ordination Languages [Cuesta01].  Another 
approach to specifying dynamic software architectures is to use architectural reflection [Caz00]. A 
system that supports architectural reflection reifies its architectural features as an architecture meta-
model [Blair01] that can be inspected and modified at run-time. Modifications of the architecture meta-
model result in modifications of the software architecture itself, and the architecture is therefore 
reflective. The architecture meta-model is not only concerned with the architectural features it reifies 
but also with an associated set of architectural constraints [Blair01], describing how and when to 
safely reconfigure the software architecture.  

The architecture meta-model introduced in this paper realises a dynamic software architecture. Our 
architecture meta-model reifies the software architecture as a typed, directed configuration graph, 
where interfaces are the vertices, components the type labels and connectors are directed edges. We 
present a novel approach to generating the architecture meta-model. Rather than force programmers to 
explicitly specify the software architecture’s configuration graph with an ADL, we automatically 
generate the meta-level configuration graph by building a dependency graph from both the component 
definitions, in Interface Definition Language-3 (IDL-3) [CCM99], and the connections between them, 
defined in the system implementation language.  



The architectural constraints over the architecture meta-model enforce the dynamic properties of or 
assertions about the software architecture and are encapsulated in reflective programs called adaptation 
contracts. We use the more general term adaptation code to mean the architectural constraints of a 
system. To obtain a clean separation of concerns between the adaptation code and computational code 
at design time, we provide a separate adaptation contract description language for specifying the 
adaptation code as adaptation contracts.  

Adaptation contracts can reason about the system’s architecture, state and external dependencies 
using adaptation events and reconfigure the system’s architecture and external dependencies using 
reconfiguration operations. Since adaptation contracts invoke reconfiguration operations on the 
architecture meta-model that result in modifications of the software architecture itself, adaptation 
contracts are reflective programs. Adaptation contracts are separate meta-level objects and they can be 
loaded and unloaded at run-time. A container, called a configuration manager, provides a deployment 
and execution environment for the adaptation contracts and also allows for the injection of new 
adaptation contracts at runtime. 

In summary, we model dynamic reconfiguration as the transformation of a system’s architecture 
meta-model and use adaptation contracts to separate adaptation code from computational code. 

2 Background and Related Work 

Dynamic systems are systems that can adapt their behaviour while executing, relative to some context 
information.  Dynamic systems come in two flavours: closed dynamic systems and open dynamic 
systems [OGT99]. For closed dynamic systems both the complete system behaviour and the behaviour 
that describes adaptations are specified at build time. Open dynamic systems, on the other hand, allow 
system behaviour to evolve after build time and are necessary if unanticipated adaptations are to be 
performed at run-time. Techniques for implementing open dynamic systems include dynamic linking 
mechanisms, dynamic object technology (including class loaders) and dynamic programming 
languages [OGT99]. 

It is also important to make the distinction between adaptable and self-adaptive systems. Adaptable 
systems can be adapted to a particular deployment environment [Czarn00], whereas self-adaptive 
systems adapt themselves to their operating environment [OGT99]. Adaptable systems support their 
explicit adaptation by an external actor [Werm00] using either a procedural or declarative interface 
[Blair01]. Adaptable systems with procedural interfaces are open dynamic systems and can support 
arbitrary or evolutionary adaptations [MG99].  

Self-adaptive systems, however, are subject to implicit adaptation, triggered by changes in either 
their internal state or their environment. Self-adaptive systems possess adaptation logic. Adaptation 
logic is the code that monitors a representation of the system’s internal state and environment and then 
adapts that representation resulting in a reconfiguration of the actual system. Adaptation logic is by 
nature reflective. Self-adaptive systems are normally closed dynamic systems. A closed self-adaptive 
system is said to support programmed adaptation [MG99]. If a self-adaptive system is to be open 
dynamic, it has to support the dynamic loading of adaptation logic. Self-adaptive systems require no 
support from external actors, and so can be adapted transparently to users of the system. Implicit 
adaptation is required to achieve adaptation transparency. Application-transparent adaptation is 
desirable when the conditions for adaptation can be known a-priori. Fig.1 shows an architecture that 
supports both its explicit and implicit adaptation.  
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Fig. 1. Explicit and Implicit Adaptation with an Adaptation Manager 



2.1 Adaptation Logic 

Adaptation logic for a system is usually made up of two main parts – monitoring and reconfiguration 
code, as can be seen in [Silva00, QuO00]. Monitoring code is responsible for identifying operating 
region-transitions [QuO00] in a system. Operating regions define the different operating modes of a 
system and each one generally requires a different configuration of the system. Operating region 
transitions can be triggered either by some internal state change in the system or by a change in a 
system that it is dependent on [Kon01]. Operating region transitions identify adaptation events, events 
that signal the need for a reconfiguration of the system. For example, when resource managers can no 
longer provide their managed resource to clients at some quality of service level they will generate 
adaptation events that are both handled internally and sent to resource-aware client systems. Systems 
can generate and receive adaptation events, handle them internally and forward them to interested 
clients. 

While adaptable systems possess only monitoring code and an interface for invoking reconfiguration 
commands, self-adaptive systems contain both monitoring and reconfiguration code. Thus, the 
intelligence for when and how to reconfigure the system is either supplied externally by a user and is, 
therefore, modifiable at run-time (i.e. adaptable systems), or else it is supplied internally and known at 
design time (i.e. self-adaptive systems). Systems can be both adaptable and self-adaptive. 
The run-time infrastructure that manages the monitoring and reconfiguration aspects of the system can 
be either centralised (as in an adaptation manager, see Fig.1) or distributed (as in self-organising 
architectures) [MG99]. Variations of the adaptation manager for self-adaptive systems can be found in 
the configuration manager [KM98, Werm00] and in the configurer [Allen98, Kon01]. 

2.2 Separating Adaptation Code from Computational Code 

To obtain a clean separation of concerns between the adaptation code and the computational code at 
design time, a separate language can be used to specify the adaptation logic. Examples of this include 
the configuration programming philosophy [KM98] that advocates using two languages for 
configuration programming: a configuration language for the structural description and change logic 
and a separate programming language for basic component programming. Similarly, BBN’s Quality 
Objects uses separate Quality Description Aspect Languages [QuO99] to write a distributed object’s 
quality of service contracts. Techniques such as aspect-oriented programming [Czarn00] and reflection 
can enable the use of separate languages to represent separate concerns in a program.  

2.3 Dynamic Software Architectures 

Dynamic software architectures represent a principled method for the construction of adaptable and 
self-adaptive systems.  Software architectures represent static metadata about the components, the 
connectors and the architectural configuration of a system and they are often specified explicitly using 
an Architecture Definition Language (ADL) [SG96]. To support dynamic software architectures, there 
is a need to support adaptation logic and provide mechanisms for managing the system’s integrity and 
dependencies during reconfiguration.  There is, however, little consensus in the research community on 
what architectural features a dynamic software architecture should contain. Different approaches to the 
specification and construction of dynamic software architectures include Event Systems [Rapide95, 
OGT99], process algebras in Wright [Allen98], graph grammars [LeMet98], rewriting logic [Werm00] 
and architecture meta-models [Caz00, Blair01, Cuesta01].   

Adaptation logic in software architectures is captured in both architectural constraints and 
reconfiguration operations. Architectural constraints are properties of or assertions about 
configurations, component or connectors, the violation of which will render the software architecture 
unacceptable (or less desirable) to one or more stakeholders [MT00].  Examples of reconfiguration 
operations include the addition and removal of components and their linking and unlinking via 
connectors [Werm00]. 

In the case of mobile systems, a good deal of the adaptation logic is known in advance, indicating 
that they would benefit from application-transparent adaptation. But in order to adapt to unforeseen and 
exceptional system states, there is also a requirement for dynamic updating of their adaptation logic. 
Currently no dynamic software architecture provides support for the dynamic loading and unloading of 
programs with adaptation logic (i.e. as architectural constraints) and we propose the use of adaptation 
contracts for this purpose. 



2.4 Architectural Reflection 

We define architectural reflection as being concerned with the observation and manipulation of the 
configuration graph of a software architecture and its constituent vertices and edges. Just as there is no 
consensus on what architectural features should be in an ADL, there is no consensus on what 
constitutes the vertices and edges in a software architecture’s configuration graph. For example, the 
configuration graph’s vertices and edges are components and connectors in [MOT00], interfaces and 
connectors in [Rapide95] and interfaces (labelled with an implementation comp onent) and connectors 
in [Werm00], representing a typed configuration graph. Behavioural reflection is concerned with the 
reification of a system’s computation. In software architectures, each configuration graph represents a 
particular computational instance of the system. We define behavioural reflection for software 
architectures as the ability to rewrite the system’s configuration graph of components and connectors at 
runtime. Structural reflection for software architectures is concerned with introspecting the 
architecture’s configuration graph and constituent components, connectors and interfaces.    

3 Architecture Meta-Model 

An architecture meta-model reifies the architectural features of a system. The main issues in designing 
an architecture meta-model for a dynamic software architecture include what architectural features to 
represent in the meta-level (e.g. the architecture’s configuration graph, components and connectors), 
how to represent the adaptation code, what mechanisms to provide for integrating the adaptation code 
into the system, and how to manage system integrity and consistency during dynamic reconfiguration. 
The following sections introduce the features in our architecture meta-model. 

3.1 Architecture Meta-Model’s Configuration Graph  

We reify a software architecture configuration as a typed, connected graph, where the vertices are 
interfaces, labelled with component instances, and the edges are connectors, labelled with connector 
properties. A vertex is modelled as an interface and implementation (component) pair, (i,c).  An edge is 
modelled as a triple i ->l j, which contains the source and target vertices ids i and j, and the edge label 
l. The edge label represents reconfigurable properties of the connector such as the ability to change its 
communication protocol or set of installed interceptors.  The root vertex of a configuration graph is a 
special type of vertex, the entry point in the program. It is normally the main() of a C++/Java 
implementation. Cycles are allowed in the graph and are modelled with cyclic connectors.  A meta-
level component, called the configuration manager, is responsible for the storage and management of 
the software architecture’s configuration graph. 

3.2 Dynamic Reconfiguration as Configuration Graph Transformation 

We represent dynamic reconfiguration as conditional graph transformations, specified in reflective 
programs called adaptation contracts. A graph transformation is a rule-based manipulation of the 
configuration graph [Werm00]. The interfaces and connectors that represent the vertices and edges in 
our graph describe the static structural part of the system that is preserved during a graph 
transformation. The component instances and connector properties that represent the labels of the 
vertices and edges in our graph respectively describe the dynamic structural part of the graph that is 
rewritten during a graph transformation. 

Since graph transformations ensure that the result of a rule is again a graph, we can guarantee the 
integrity and consistency of the system if the graph rules are transactional operations over the graph. 
In practice, however, graph transformations may affect only part of the configuration graph and a 
reconfiguration protocol [KM98] can be used to ensure that only those vertices that are affected by the 
transformation must be in a safe state [Werm00]. We follow this approach and use a reconfiguration 
protocol as it helps reduce the length of the reconfiguration phase and allows concurrent client 
invocation during the reconfiguration phase on components that are not “frozen”.  Computation and 
adaptation code are related through the reconfiguration protocol as it freezes computation in 
components involved in a reconfiguration. Component state can only be changed by computation, not 
by reconfiguration operations. One of the other advantages of our reconfiguration protocol is the 
maintenance of system state integrity by transferring component state from the old component to the 



new one. The successful transfer of component state requires that component developers implement a 
copy constructor interface for their component. The meta-level configuration manager is responsible 
for implementation of the reconfiguration operations and the correct operation of the reconfiguration 
protocol.  

3.3 Managing Dynamic Reconfiguration 

The configuration manager [KM98, Werm00] is a meta-level adaptation manager that stores the reified 
configuration graph and implements the reconfiguration (graph rewrite) operations and reconfiguration 
protocol. The configuration manager is a run-time container for the deployment, scheduling and 
execution of adaptation contracts, see Fig. 2.  The configuration manager provides a procedural 
interface for the loading/unloading of adaptation contracts at runtime. In order to guarantee the safety 
of the code being introduced into the system, the new adaptation contracts must be developed and 
tested in the original, trusted development environment. The procedural interface verifies that the new 
adaptation contract is trusted from its XML descriptor.  
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Fig. 2. Configuration Manager as a Meta-Level Adaptation Manager 

4 Adaptation Contracts  

Adaptation contracts are used to specify meaningful transformations of an architecture meta-model’s 
configuration graph. They can be used to provide the adaptation logic for self-adaptive systems. 
Adaptation contracts are reflective as they invoke reconfiguration operations on the architecture meta-
model that results in modifications of the software architecture itself. They are represented at runtime 
by meta-level objects and are deployed in and managed by a configuration manager, see Fig. 2.  

An adaptation contract contains a series of conditional rules for the transformation of the meta-level 
configuration graph. Adaptation contracts are used to specify a system’s architectural constraints. Since 
architectural constraints represent properties of or assertions about configurations, components or 
connectors, our adaptation contracts require a mechanism for accessing these properties and assertions.  
We provide adaptation events as a mechanism for allowing contracts to poll architectural constraint 
information from meta-level configurations and base-level components and connectors. Architectural 
constraints can be specified using adaptation events with conditional statements.  

Adaptation events also have the advantage of decoupling the meta-level adaptation contract from the 
base-level components and connectors, see Fig. 2. In effect, they provide a run-time separation of 
concerns between the adaptation code and the computation code. This allows adaptation contracts to be 
dynamically loaded and unloaded, since they have no clients directly dependent on them. 

During the reconfiguration of a software architecture, the management of the incoming and outgoing 
dependencies of a system (the systems/users that depend on it and the systems that it depends on, 
respectively) is crucial to the safety and integrity of both the system and its dependent systems [Kon01, 
Dow00]. Because of the two different types of dependencies, adaptation contracts come in two forms: 
configuration contracts that manage internal resources and incoming dependencies from clients, and 
connection contracts that manage outgoing dependencies to components the system is dependent on. 



/* Automatically generated from XML configuration descriptor */ 
configuration  configuration*  ::= configuration -descriptor.xml  
interface interface*  ::= component-descriptor.xml 
 
/* Automatically generated from component XML descriptors */ 
component  component-name*  ::= component-descriptor.xml 
consumes user_defined_handler* ::= component-descriptor.xml  
emits  adaptation_event* ::= component-descriptor.xml 
handler  handler*  ::= reconfiguration_op | user_defined_handler 
reconfiguration_op   ::= change_component | change_configuration |  

     install_interceptor | remove_interceptor | rollback |  
     callback_client  

/* User-defined below here*/ 
contract configuration configuration  
{ 
 /* Conditional statements and reconfiguration operations */ 
} 
 
contract connection connection-contract* ::=  

 [component client_name] [interface port_name] [component provider_name]  
{ 
 /* Conditional statements and reconfiguration operations */  
} 

Table 1. Adaptation Contract Description Language Syntax 

Configuration contracts are specified in the Adaptation Contract Description Language, see Table 1. 
They consist of a series of conditional statements, testing for the occurrence of adaptation events, and 
associated reconfiguration operations. There is support for managing incoming dependencies in the 
form of a contract renegotiation. A contract renegotiation informs dependent clients of a 
reconfiguration in the system. In our model, configuration contracts can only be defined for a single-
address space. Connection contracts represent architectural constraints for individual connections 
between the system and components it is dependent on (potentially outside the address space of the 
system). Similar to configuration contracts, they consist of a series of conditional statements and 
reconfiguration operations. A configuration tool takes adaptation contracts, the components and 
connectors in the software architecture and produces an implementation in a concrete language, i.e. in 
our prototype C++. It performs refinement transformations by allowing the specialisation and 
concretisation of the abstract meta-level components in the K-Component framework.  

5 The K-Component Framework 

K-Components are components with an architecture meta-model and adaptation contracts to support 
their dynamic reconfiguration. Our prototype implementation is in C++. The following section 
describes the component and connector models, how the software architecture is automatically 
generated from the implementation programming language and how to attach the adaptation contracts 
to architectures.  

5.1 The Component Model 

We leverage existing component syntax to define components. IDL-3 [CCM99] is used to define 
components with explicit dependency management, through provides and uses interfaces. IDL-3 
emits and consumes events [CCM99] are used to specify base-level adaptation events. Component 
skeletons are generated by the IDL-3 compiler by specialising and templating abstract components in 
the K-Component framework. Components can be either primitive or composite components 
[Darwin95]. Only composite K-Components have their own architecture meta-model, configuration 
contract and configuration manager. 

Our C++ framework supports the dynamic evolution [MT00] of components using component 
subtyping, factory objects [COM+99] and dynamic linked libraries (DLLs). Components also have 



interfaces that are used by the reconfiguration protocol: a traversal interface for traversing the 
configuration graph and a copy constructor for migrating connectors and state during component 
replacement. Reference counting is used to guarantee a safe-state during the reconfiguration phase and 
for the safe removal of components. To overcome the cyclic reference counting problem [COM+99], 
programmers explicitly specify connectors as being either normal or cyclic connectors.  

We do not need full introspective meta-level information about components at runtime in order to 
rewrite the configuration graph, therefore we do not represent components as full meta-level objects. 
They are represented in the meta-level by a typed reference in the configuration manager, used for 
reconfiguration operations and adaptation event processing. Component meta-information, for use in 
the adaptation contract description language, is stored in an XML component descriptor [CCM99] that 
is generated from the component’s IDL-3 definition. The programmer fills in additional details such as 
component packaging and deployment information. 

5.2 Connectors as First-Class Entities 

In K-Components, connectors are implemented as typed objects relating provides and uses 
interfaces on components.  Connectors are generated from IDL-3 component definitions by specialising 
and templating abstract connectors in the K-Component framework. There are two types of connectors: 
client-side and provider-side connectors. Client-side connectors can connect directly to a component, 
unless it is external to the system in which case it connects to a provider-side connector on the target 
component. For correct functioning of the reconfiguration operations, programmers have to ensure that 
they explicitly represent cycles in their configuration graphs as cyclic connectors. Connectors provide a 
reconfiguration interface, with operations such as link_component and unlink_component, 
and the configuration manager uses this interface to implement its graph rewrite operations. 

5.3 Writing and Configuring K-Components 

C++ is used instead of an ADL to specify the software architecture. Several abstractions and 
programming idioms are used in our C++ prototype implementation for representing concepts 
commonly found in an ADL, such as interfaces, connectors and binding operations. In addition to this 
programming guidelines are specified, e.g. for services offered by an interface can only be accessed via 
connectors.  

Rather than force programmers to explicitly specify the software architecture’s configuration graph 
with an ADL, we automatically generate the static part of the meta-level configuration graph by 
building a dependency graph from the C++ source-code. Similar to how a C++ compiler generates a 
dependency graph from C++ header files, the configuration tool parses the C++ source code from its 
entry point for connectors (edges) and their target interfaces (vertices). Each interface’s header file is 
then parsed in turn for more connectors and interfaces until leaf interfaces are reached and a full parse-
tree of the system is built. The configuration tool then produces a typed, directed configuration graph 
of the system with interfaces as vertices and connectors as edges as an XML configuration descriptor.  

The programmer can bind the interfaces to actual components by editing the interface labels in the 
configuration descriptor. Once component implementations have been specified for all the interfaces in 
the configuration graph and adaptation contracts have been attached, the software architecture can be 
instantiated by the configuration tool. 

6 Conclusions 

Without a mechanism for achieving a separation of concerns, dynamic systems’ adaptation-specific 
code becomes tangled with its functional code. We provide an adaptation contract description language 
that separates the adaptive behaviour of systems from their functional behaviour. We are able to 
provide a separate language for the adaptation code since dynamic reconfiguration is implemented 
using reflective programs called adaptation contracts. Architectural reflection enables this separation of 
concerns. 

Our architecture meta-model reifies the software architecture of a system as a typed, directed 
configuration graph with interfaces as vertices, labelled with component instances, and edges as 
connectors. We model dynamic reconfiguration as a transformation of a system’s configuration graph, 
and use a reconfiguration protocol to guarantee the consistency and integrity of both the 



reconfiguration operation and the system. Meta-level graph rewriting programs, called adaptation 
contracts, perform conditional graph transformations. Adaptation contracts allow programmers to write 
adaptation transparent applications.  

Our model of dynamic reconfiguration is constrained to replacing the components in a system’s 
configuration graph. The alternative of allowing new services to be introduced to a system at runtime 
leaves open the problem of how existing components in the system and existing clients of the system 
become aware of and access these new service interfaces at runtime. For self-adaptive software, we do 
not see our model of dynamic reconfiguration as being overly restrictive. In fact, it can help 
programmers by constraining the system’s possible dynamic reconfigurations to meaningful ones.  
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