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1 Introduction
Wall [1] studied Fibonacci sequences in groups first.
Wall showed that the Fibonacci sequence formed in
the cyclic group is periodic according to a prime num-
ber and gave the relationship between the period and
p. Wilcox [2] carried this problem to abelian groups.
Campell et al [3] introduced the Fibonacci length and
Fibonacci orbit concepts and moved this problem to
some finite simple groups. Özkan et al [11] reported
that 3-step Fibonacci sequences are periodic to an m
number and the relationship between the period and
m. Lu and Wang generalized similar work to k-step
Fibonacci sequences[4]. Some recent work in this di-
rection can be seen in[5, 6, 7].

Similar studies have been done on some fi-
nite groups, nilpotent groups, and binary polyhedral
groups [8, 9, 10, 12, 13, 14].

Gwang-Yeon Lee, et. al.[15] defined the k-
generalized Fibonacci matrix Qk and gave some of
its properties. Later, Gwang-Yeon Lee and Jin-Soo
Kim [16] defined the k-Fibonacci and the symmetric
k-Fibonacci matrix from the k-Fibonacci sequences
and discussed its algebra.

Let {fk,n}n≥0 denote the generalized Fibonacci
sequence of order k(≥ 2) ∈ N given by

fk,k+n = fk,k+n−1 + fk,k+n−2 + fk,k+n−3 +

...+ fk,n+1 + fk,n, n ≥ 0,

with fk,0 = fk,1 = ... = fk,k−2 = 0 and fk,k−1 = 1.
The generalized Fibonacci sequence {fk,n}n≥0 is also
known as the k-step Fibonacci sequence.

Let the matrix Qk of order k be given as

Qk = Q1
k =


1 1 1 ... 1 1
1 0 0 ... 0 0
0 1 0 ... 0 0
...

...
...

. . .
...

0 0 0 ... 1 0

 .

On the usual multiplication of Qk-matrix to n times,
we getQn

k , whereQ
n
k is the generalized Fibonaccima-

trix[17]. The generalized Fibonacci matrix Qn
k is de-

fined as
Qn

k =
fk,n+k−1 fk,n+k−2 + fk,n+k−3 + ...+ fk,n ... fk,n+k−2

fk,n+k−2 fk,n+k−3 + fk,n+k−4 + ...+ fk,n−1 ... fk,n+k−3

...
...

...
...

fk,n fk,n−1 + fk,n−2 + ...+ fk,−k+n+1 ... fk,n−1

 ,

where

Q0
k = Ik, (Q1

k)
n = Qn

k , Qm
k Qn

k = Qm+n
k and

det(Qn
k) = (−1)(k−1)n form,n ∈ Z. (1)

2 The k-Fibonacci Group
We will now show that the set of Qn

k , n ∈ Z forms a
commutative group according to the matrix product.
We will also show that this group is isomorphic to the
group of integers Z and hence is cyclic.

Theorem 2.1. The collection of all generalized Fi-
bonacci matrices forms a group with respect to matrix
multiplication.
That is, given the following set G,

G = {Qn
k : k(≥ 2) ∈ N, n ∈ Z}. (2)

Then G forms an abelian group with respect to the
matrix multiplication.

Proof. Forn = 0, since Ik ∈ G, so G is non-empty. It
can easily be seen that the setG satisfies the grouping
conditions, so we omit it.

We refer to the groupG defined in Theorem 2.1 as
the k-Fibonacci group.
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Example 1. The following is a 3-Fibonacci group
with entries from a combination of tribonacci num-
bers:

G =

Qn
3 =

f3,n+2 f3,n+1 + f3,n f3,n+1

f3,n+1 f3,n + f3,n−1 f3,n
f3,n f3,n−1 + f3,n−2 f3,n−1

 : n ∈ Z

 .

Clearly, G satisfies all the axioms of the multiplica-
tive abelian group.

Also, G is an infinite group.

Theorem 2.2. The k-Fibonacci group G is isomor-
phic to Z.

Proof. Let us consider the set G = {Qn
k : k(≥ 2) ∈

N, n ∈ Z}.
Define a mapping φ : Z → G such that φ(n) = Qn

k ,
clearly φ is well defined.
Let n1, n2 ∈ Z, then we have

φ(n1) = φ(n2) =⇒ Qn1

k = Qn2

k =⇒ Qn1−n2

k = Q0
k

=⇒ n1 − n2 = 0.

Thus the mapping φ(n) is one-one.
Now, let Qm

k ∈ G, then there exists m ∈ Z such that
φ(m) = Qm

k implies φ is onto.
Since, for n1, n2 ∈ Z, we have

φ(n1 + n2) = Qn1+n2

k = Qn1

k ∗Qn2

k = φ(n1) ∗ φ(n2)

=⇒ φ is homomorphism.

Thus φ is one-one, onto and homomorphism implies
G ∼= Z.

Hence, the following corollaries are consequences
of the above theorem.

Corollary 2.3. The k-Fibonacci group is an infinite
cyclic group and its generators are Q1

k and Q
−1
k .

Corollary 2.4. The center of the k-Fibonacci group
G is the group itself i.e Z(G) = G.

Theorem 2.5. For a positive integer k ≥ 2, let G =
{Qn

k : n ∈ Z} and H = {(Qn
k)

m : m,n ∈ Z}. Then
H forms a subgroup of G. Moreover, only possible
subgroups of G are of the form < QnZ

k >.

Proof. Since (Qn
k)

0 = Ik ∈ H , thusH is non-empty.
Let two elements ofH are (Qn

k)
m1 and (Qn

k)
m2 where

m1,m2 ∈ Z, then from equation (1), we have

(Qn
k)

m1 [(Qn
k)

m2 ]−1 = (Qn
k)

m1(Qn
k)

−m2

= (Qn
k)

m1−m2 ∈ H

as m1 −m2 ∈ Z.

So, H is a subgroup of G .
Now, to prove other parts of the theorem, let Qn

k be

the element of H such that n is the smallest positive
integer. Let Qm

k ,m ∈ Z be any arbitrary element of
H then by division algorithm, we have m = nq + r
where q, r ∈ Z and 0 ≤ r < n.
Since r = m − nq ∈ Z, so Qn

k = Qm−nq
k ∈ H

and m,n ∈ Z implies Qm
k , Qn

k ∈ H hence Qr
k =

Qm−nq
k = Q0

k = I .
This implies r = 0, which gives

m = nq

=⇒ Qm
k = Qnq

k ∈ H, q ∈ Z

and Qm
k is an arbitrary element.

Corollary 2.6. All the subgroups of the k-Fibonacci
group are normal.

Proof. Since the k-Fibonacci groupG is abelian it im-
plies that all the subgroups of G are normal.

3 Periods for the k-step Fibonacci

Sequence
Throughout, we use BPerk(G;x0, x1, ..., xj−1) and
Perk(G;x0, x1, ..., xj−1) notation to denote the basic
period and period of the k-step Fibonacci sequence
Fk,k+n(G;x0, x1, ..., xj−1), respectively.

From [18], we note the following definition.

Definition 3.1. In a finite group, a k-nacci
sequence is a sequence of group elements
{x0, x1, ..., xn, xn+1, ...} where initial set
{x0, x1, ..., xj−1} is provided and

xn =

{
x0x1...xn..., : j ≤ n < k

xn−kxn−k+1...xn−1..., : n ≥ k.

It is denoted by Fk(G;x0, x1, ..., xj−1)whereG is
a group generated by the initial set.

A sequence is simply periodic with period k if the
first k elements in the sequence form a repeating sub-
sequence. Let k(p) denote the fundamental period of
the sequence and call it the Wall number.

Asequence of group elements is said to be periodic
if, after a particular point, it contains only a fixed sub-
sequence repeatedly.

Definition 3.2. The action of automorphism group
AutG of G on X and on the k-nacci sequences
Fk(G;x0, x1, ..., xj−1), (x0, x1, ..., xj−1) ∈ X ,
AutG consists of all isomorphism θ : G → G
and if θ ∈ AutG and (x0, x1, ..., xj−1) ∈ X then
(x0θ, x1θ, ..., xj−1θ) ∈ X .

Let A be a subset of G and θ ∈ AutG, then the
image of A is Aθ = {aθ : a ∈ A} under θ.
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Theorem 3.1. Let S3 = 〈x, y : x3 = y2 = (xy)2 =
e〉 be the presentation for the group S3. Then in S3,
the periods of the k-step Fibonacci sequences and the
basic periods of the basic k-step Fibonacci sequences
are given as:

(i) For k = 2, Per2(S3;x, y)=6 and
BPer2(S3;x, y)=6.

(ii) For k ≥ 3, Perk(S3;x, y) = 2k + 2 and
BPerk(S3;x, y) = 2k + 2.

Proof. (i). For k = 2, we have the following se-
quence,

x, y, xy, x2, yx, xy, x, y, ...,

which repeats after 6 terms hence its period is 6.
Since, we have xθ = x, yθ = yx, xyθ = y, for
the inner automorphism θ induced by conjugation by
x, so the basic period is 6.

(ii). For k ≥ 3, the first k terms of sequence are

x, y, x2 = (xy)2
0

, x3 = (xy)2
1

, x4 = (xy)2
2

,

..., xk−1 = (xy)2
k−3

.

So, from the above, the following sequence is ob-
tained:

x0 = x, x1 = y, x2 = xy and xj = e for 3 ≤ j ≤ k−1.

Hence, we have

xk−1 = e, xk = e, xk+1 = x2, xk+2 = yx,

xk+3 = xy, xk+4 = e, xk+5 = e, ...

x2k+2 = x, x2k+3 = y, x2k+4 = xy, x2k+5 = e,

x2k+6 = e, ...

x3k+3 = x2, x3k+4 = yx, x3k+5 = xy, x3k+6 = e,

x3k+7 = e, ..., x4k+4 = x, ...,

and whenever nk + (n + 3) ≤ j ≤ (n + 1)k + n,
n = 1, 2, 3, ... then xj = e.
Also, the following hold:

x2k+2 = x =

2k+1∏
j=k+2

xj , x2k+3 = y =

2k+2∏
j=k+3

xj ,

x2k+4 = xy =

2k+3∏
j=k+4

xj .

Observe that the values of consecutive terms x2k+2,
x2k+3, and x2k+4 rely on x, y and the cycle starts

again with the (2k + 2)th term, which is, x0 =
x2k+2, x1 = x2k+3, x2 = x2k+4, ....
Therefore, Perk(S3;x, y) = 2k + 2.

From the above sequence, we can see that
BPerk(S3;x, y) = 2k + 2, since xθ = x, yθ = x2y,
xyθ = y, where θ is an outer automorphism.

Also, this theorem is valid in the group D3.

Theorem 3.2. Let A3 = 〈x, y : x3 = y2 = (xy)3 =
e〉 be the presentation for the group A3. Then the
periods and the basic periods of the basic k-step Fi-
bonacci sequences are given as:

(i) For k = 2, Per2(A3;x, y) = 16 and
BPer2(A3;x, y) = 16.

(ii) For k = 3, Per3(A3;x, y) = 13 and
BPer3(A3;x, y) = 13.

Proof. (i). For k = 2, we have the sequence,

x, y, xy, yxy, x2, xyx2, xyx, x2, xy, y, x, yx, xyx,
xyx2, x2y, yx2, x, y, ...,

which repeats after 16 terms therefore the period is
16. Similarly, for the basic sequence,

x, xyx2, x2yx2, yx, yx2, x2yx, x2y, x2, x2yx2, xyx2,
x, xy, x2y, x2yx, yx2, xyx, x, xyx2, ...,

the basic period is 16, since xθ = x, yθ = xyx2,
where θ is the inner automorphism induced by con-
jugation by x. So, Per2(A3;x, y) = 16 and
BPer2(A3;x, y) = 16.

(ii). For k = 3, the first few terms of the sequence
are

x, y, xy, (xy)2, y, y, yx2, yx2, x2yx2, x2y, x2, xyx,

e, yx, y, yxy, xyx, y, y, xyx, xyx, e, x2yx2,

e, x2yx2, xyx, e, e, xyx, xyx, yxy, yx2y, xyx, xyx,

e, yxy, e, yxy, xyx, e, e, xyx, xyx, yxy, ....

Here,

x26 = e, x27 = e, x28 = xyx, x29 = yxy, ...,

x39 = e, x40 = e, x41 = xyx, x42 = yxy, ...,

x52 = e, x53 = e, x54 = xyx, x55 = yxy, ....

Also, for k = 3,

xuhk(3)−(k−4) = e, xuhk(3)−(k−3) = e,

xuhk(3)−(k−2) = xyx, xuhk(3)−(k−1) = xyx,

xuhk(3)−k = yxy,

where u ∈ Z+ and hk(3) refer to theWall number for
the k-step Fibonacci sequence modulo 3.
So that, Per2(A3;x, y) = 13.
Similarly, BPer2(A3;x, y) = 13 because xθ = x,
yθ = xyx2.

Also, this theorem is valid for 〈2, 3, 3〉 polyhedral
group.

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.95 Munesh Kumari, Kalika Prasad, Bahar Kuloğlu, Engin Özkan

E-ISSN: 2224-2880 840 Volume 21, 2022



Theorem 3.3. Let Q8 = 〈x, y : x4 = e, x2 = y2,
y−1xy = x−1〉 be the presentation for the group Q8.
Then the periods and the basic periods of the basic
k-step Fibonacci sequences are given as:

(i) For k = 2, Per2(Q8;x, y) = 3 and
BPer2(Q8;x, y) = 3.

(ii) For k ≥ 3, Perk(Q8;x, y) = 2k + 2 and
BPerk(Q8;x, y) = 2k + 2.

Proof. (i). For k = 2, the sequence is as follows:

x, y, xy, x, y, xy, ...

and it has period Per2(Q8;x, y) = 3.
For the basic period, the sequence is

x, y3, x3y, x, y3, x3y, ...,

which has the period BPer2(Q8;x, y) = 3 since
xθ = x, yθ = y3 where θ is an inner automorphism
induced by conjugation by x.
(ii). If k ≥ 3;
For k = 3, the sequence is

x, y, xy, x2, x3, y, xy, e, x, y, xy, x2, x3, ....

For k = 5, the sequence is

x, y, xy, x2, e, e, x3, y2, xy, e, , e, e, x, y, xy, x2, ....

Here, it is seen that the period for each k ≥ 3 is 2k+2.
And similarly, BPerk(Q8;x, y) = 2k + 2.

Theorem 3.4. Let Q8 × Z2m = 〈x, y, z : x4 =
e, x2 = y2, y−1xyx = e, z2m = e = [x, z] = [y, z]〉
be the presentation for the groupQ8×Z2m. Then the
periods are given as:

(i) For k = 2, Per2(Q8 × Z2m;x, y, z)=
lcm(h2(2m), 3).

(ii) For k = 3, Per3(Q8 × Z2m;x, y, z) =
2lcm(2m, 2k + 2).

(iii) For k ≥ 4, Perk(Q8 × Z2m;x, y, z) =
lcm(2m,2k+2)(k+1)

2 .

Proof. (i). For k = 2, the sequence is as follows,

x, y, z, yz, z2y, z3y2, z5y3, z8y5, z13y8, z21y13,
z34y21, ....

From this sequence, we obtain a sub-sequence as fol-
lows:

y, z, yz, z2y, z3y2, z5y3, ....

For k = 2, the sequence conforms to the following
pattern,

xt+1 = zf2,t+1yf2,t , xt+2 = zf2,t+2yf2,t+1 .

We need the smallest t, satisfying xt+1 = y, xt+2 = z
Letting lcm(h2(2m), 3) = λ, then we have
2m|f2,t+1, 3|f2,t+1 and hence f2,λ ≡ 1 (mod 2m)
and f2,λ ≡ 1 (mod 3). Also, f2,λ+2 ≡ 1 (mod 2m)
and f2,λ+2 ≡ 1 (mod 3).
If we choose t = λ, then we obtain xλ+1 = y and
xλ+2 = z.
So we get Per2(Q8×Z2m;x, y, z)=lcm(h2(2m), 3).
(ii). For k = 3, the first few terms of the sequence
are:

x, y, z, xyz, z2x, z4y, z7y2, z13xy3, z24x, z44y, ....

Here,

x8 = z24x, x9 = z44y, x10 = z81y4, ...,

x16 = z3136x, x17 = z5768y, x18 = z10609y8, ...,

x24 = z410744x, x25 = z755476y, x26 = z1389537y12, ....

Using the above, we have

x8β = z
β

j
4uβx, x8β+1 = z

β

j
4uβ+1y,

x8β+2 = z
β

j
4uβ+2+1y4β, ...,

where j is odd and β ∈ N, β = 2σj and uβ, uβ+1,
uβ+2 ∈ N, also gcd(uβ, uβ+1, uβ+2) = 1.
We need the smallest β, satisfying x8β = x, x8β+1 =
y and x8β+2 = z.

If we choose β = lcm(2m,2k+2)
4 , then we obtain

x2lcm(2m,2k+2) = x, x2lcm(2m,2k+2)+1 = y,

x2lcm(2m,2k+2)+2 = z.

Thus, we get,

Per3(Q8 × Z2m;x, y, z) = 2lcm(2m, 2k + 2).

(iii). For k ≥ 4, the sequence is as follows,

x, y, z, xyz, z2x2, z4x3, z8y, z15x2, z29yx, z56, z108x,

z208y, z401, z773xy, z1490x2, z2872x3, z5536y,

z10671x2, z20569yx, z39648, ....

Using the above k-step Fibonacci sequence, we have

xβ(2k+2)−k−1 = z
β

j
4δβ−1x3, xβ(2k+2)−k = z

β

j
4δβy,

xβ(2k+2)−k+1 = z
β

j
4δβ+1+3x2,

xβ(2k+2)−k+2 = z
β

j
4δβ+2+1yx,

xβ(2k+2)−k+3 = z
β

j
4δβ+3 ,

xβ(2k+2)−k+4 = z
β

j
4δβ+4x,

xβ(2k+2)−k+5 = z
β

j
4δβ+5y,

xβ(2k+2)−k+6 = z
β

j
4δβ+6+1x2, ...,

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2022.21.95 Munesh Kumari, Kalika Prasad, Bahar Kuloğlu, Engin Özkan

E-ISSN: 2224-2880 841 Volume 21, 2022



where j is a positive odd integer and β is a pos-
itive integer, δβ−1, δβ, δβ+1, ..., δβ+4 ∈ N and
gcd(δβ−1, δβ, δβ+1, ..., δβ+4) = 1.

Here, we need the smallest β satisfying

xβ(2k+2) = x, xβ(2k+2)+1 = y, xβ(2k+2)+2 = z.

Now, if we choose β =
lcm(2m, 2k + 2)

4
, then we

get

x lcm(2m,2k+2)(k+1)

4

= x, x lcm(2m,2k+2)(k+1)

4
+1 = y,

x lcm(2m,2k+2)(k+1)

4
+2 = z.

Thus, we obtain

Perk(Q8×Z2m;x, y, z) =
lcm(2m, 2k + 2)(k + 1)

2
.

4 Conclusion
In this study, the k-Fibonacci group was defined and
its algebraic properties were examined. A Fibonacci
sequence was created in groups, with some having
two generators and others having three generators.
They have been shown to be periodic, and their fun-
damental periods have been determined. This work
can be applied to many different groups as well as to
other sequences such as the Lucas and Pell sequences.
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