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Abstract: - In this paper, we have introduced a new infinite cyclic group called the k-Fibonacci group and studied
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1 Introduction

Wall [[I]] studied Fibonacci sequences in groups first.
Wall showed that the Fibonacci sequence formed in
the cyclic group is periodic according to a prime num-
ber and gave the relationship between the period and
p. Wilcox [2] carried this problem to abelian groups.
Campell et al [3] introduced the Fibonacci length and
Fibonacci orbit concepts and moved this problem to
some finite simple groups. Ozkan et al [[I1]] reported
that 3-step Fibonacci sequences are periodic to an m
number and the relationship between the period and
m. Lu and Wang generalized similar work to k-step
Fibonacci sequences[4]]. Some recent work in this di-
rection can be seen in[3}, (6} [7]].

Similar studies have been done on some fi-
nite groups, nilpotent groups, and binary polyhedral
groups [18}, 9, [10} [12] [13] 14]).

Gwang-Yeon Lee, et. al.[I5] defined the k-
generalized Fibonacci matrix i and gave some of
its properties. Later, Gwang-Yeon Lee and Jin-Soo
Kim [[16] defined the k-Fibonacci and the symmetric
k-Fibonacci matrix from the k-Fibonacci sequences
and discussed its algebra.

Let {frn}n>0 denote the generalized Fibonacci
sequence of order k(> 2) € N given by

frktn = frktn—1 + fektn—2 + frhtn—3 +
o+ fons1 + fon, n =0,

with fxo0 = fr1 = ... = frr—2=0and fr 1 =1
The generalized Fibonacci sequence { fj; ,, } >0 is also
known as the k-step Fibonacci sequence.

Let the matrix (), of order k be given as

1 11 11
1 00 0 0
Qk:Qllg: 010 0 0
000 .. 10
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On the usual multiplication of (J;-matrix to n times,
we get QF, where Q) is the generalized Fibonacci ma-
trix[[17]. The generalized Fibonacci matrix ()7} is de-
fined as

fk:,nfl

n __
n=
feontr—1 fontk—2+ fontb—3+ .+ fin
fentb—2  fentk—3 + fonth—a + oo + fon—1
frn fon—1+ fen—2+ .+ fo,—ktn+1
where

Qh=1Ir, (Q"=0Q QrQi=Qy™™ and
det(Q) = (1) form,n € Z. (1)

2 The k-Fibonacci Group

We will now show that the set of ()7, n € Z forms a
commutative group according to the matrix product.
We will also show that this group is isomorphic to the
group of integers Z and hence is cyclic.

Theorem 2.1. The collection of all generalized Fi-

bonacci matrices forms a group with respect to matrix

multiplication.

That is, given the following set G,
G={Q} :k(>2)eN,neZ}. 2)

Then G forms an abelian group with respect to the

matrix multiplication.

Proof. Forn = 0, since I}, € G, so G is non-empty. It

can easily be seen that the set G satisfies the groupi%
conditions, so we omit it.

We refer to the group G defined in Theorem[2.1]as
the k-Fibonacci group.
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Example 1. The following is a 3-Fibonacci group
with entries from a combination of tribonacci num-

bers:
fan+2  fant1+ fan  fantr
G={Q3= fant1 fan + fa,n-1 fan NS/
fan fan—1+ fan—2  fan-1

Clearly, G satisfies all the axioms of the multiplica-
tive abelian group.

Also, G is an infinite group.

Theorem 2.2. The k-Fibonacci group G is isomor-
phic to 7.

Proof. Let us consider the set G = {Q} : k(> 2) €
N,n € Z}.

Define a mapping ¢ : Z — G such that ¢(n) =
clearly ¢ is well defined.

Let nq,ny € Z, then we have

p(nm) =¢g(n2) = Q' =Q = QP " = Q"

= n; —no =0.

n
k>

Thus the mapping ¢(n) is one-one.

Now, let Q7" € G, then there exists m € Z such that
¢(m) = Q}" implies ¢ is onto.

Since, for ny,ny € Z, we have

d(n1 4+ n2) = QP = QP * QF* = ¢(n1) * d(na)

=—> ¢ is homomorphism.

Thus ¢ is one-one, onto and homomorphism implies
G=Z. O

Hence, the following corollaries are consequences
of the above theorem.

Corollary 2.3. The k-Fibonacci group is an infinite
cyclic group and its generators are Q}, and Q;l.

Corollary 2.4. The center of the k-Fibonacci group
G is the group itselfi.e Z(G) = G.

Theorem 2.5. For a positive integer k > 2, let G =
{QF:neZ}and H={(Q})™ : m,n € Z}. Then
H forms a subgroup of G. Moreover, only possible
subgroups of G are of the form < QZZ >,

Proof. Since (Q7)° = Iy € H, thus H is non-empty.
Let two elements of H are (Q}')™* and (Q};)"** where
my, my € Z, then from equation (IJ), we have

@D™U@m™] ! = (@)™ (@)™
=@ el
as my —mo € Z.

So, H is a subgroup of G .
Now, to prove other parts of the theorem, let ()} be
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the element of H such that n is the smallest positive
integer. Let Q7*,m € Z be any arbitrary element of
H then by division algorithm, we have m = nqg + r
where ¢, 7 € Zand 0 < r < n.

Since 1 = m —nq € Z, so Q) = Q™M eH
and m,n € Z implies Q}*, Q) € H hence Q.

m—nq _ QO -7
This implies » = 0, which gives

m = ngq
— QI'=Q"€Hqel

and Q}" is an arbitrary element. O
Corollary 2.6. All the subgroups of the k-Fibonacci
group are normal.

Proof. Since the k-Fibonacci group G is abelian it im-
plies that all the subgroups of GG are normal. O

3 Periods for the k-step Fibonacci

Sequence
Throughout, we use B Pery(G; xo, 21, ..., xj—1) and
Pery(G; zg, x1, ..., xj—1) notation to denote the basic
period and period of the k-step Fibonacci sequence
Fi k+n(G; 20, 21, ..., xj_1), respectively.
From [[18]], we note the following definition.

Definition 3.1. In a finite group, a k-nacci
sequence is a Sequence of group elements
{zo,Z1, oty T, Tpg1, - } where  initial  set
{zo,2z1,...,xj_1} is provided and
TOL1.. Lo, j<n<k
Ty =
Tp—kTp—ktle-Tp—l..., - N>k

Itis denoted by Fj,(G; xo, 21, ..., xj—1) where G is
a group generated by the initial set.

A sequence is simply periodic with period k if the
first k£ elements in the sequence form a repeating sub-
sequence. Let k(p) denote the fundamental period of
the sequence and call it the Wall number.

A sequence of group elements is said to be periodic
if, after a particular point, it contains only a fixed sub-
sequence repeatedly.

Definition 3.2. The action of automorphism group
AutG of G on X and on the k-nacci sequences
Fi(Gizo, 21, s 2j-1), (20,21, .25-1) € X,
AutG consists of all isomorphism 0 : G — G
and if 0 € AutG and (xo,x1,...,xj—1) € X then
(:1:09, 10, ...,St?jfle) € X.

Let A be a subset of G and # € Aut(F, then the
image of A is A = {af : a € A} under 6.
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Theorem 3.1. Let S3 = (z,y : 2% = y? = (vy)? =
e) be the presentation for the group Ss. Then in Ss,
the periods of the k-step Fibonacci sequences and the
basic periods of the basic k-step Fibonacci sequences
are given as.

(i) For k = 2,
BPery(Ss; z,y)=6.

(ii) For k > 3, Pery(Ss;x,y) = 2k + 2 and
BPery(Ss;z,y) = 2k + 2.

Proof. (i). For k = 2, we have the following se-
quence,

Pery(Ss;x,y)=6 and

2
T, Y, XY, T YTy, XY, Ty Y, .oy

which repeats after 6 terms hence its period is 6.
Since, we have z0 = =z, y0 = yx, zyf = y, for
the inner automorphism 6 induced by conjugation by
x, so the basic period is 6. O

(ii). For k > 3, the first k terms of sequence are
0 1 2

z, Y, T2 = ('ry)g , L3 = (wy)g y Lq = (xy)Q )
2k—3

oy Tp—1 = (zY)* .

So, from the above, the following sequence is ob-
tained:

xo=x,01 =y, r2 = xy and z; = efor3 < j < k—1.

Hence, we have

Tk—1 =€ T =€, Tk4+1 — xz,(]}kJrQ = yx,
Tk4+3 = XY, Tk4+4 = €, T+5 = €, ...

L2k+2 = Ly L2k+3 = Y, L2k+4 — TY, L2k+5 = €,
Tok+6 = €, ...

2
T3k4+3 = T, T3k+4 = YT, T3k+5 = LY, L3k+6 = €,

L3k+T7 = €y vy Thk+d = Ty oovy

and whenever nk + (n+3) < j < (n+ 1)k +n,
n=1,23,..thenz; =e.
Also, the following hold:

2k+1 2k+2
Tok+2 = T = H Tj, T2k+3 =Y = H Lj,
j::k%f2 j::k‘F3
2k+3
Tok4+4 = TY = H Lj.
j=k+4

Observe that the values of consecutive terms w2,
ZTok+3, and zog 4 rely on z,y and the cycle starts
again with the (2k + 2)"" term, which is, 29 =
T2k+2; L1 = L2k+3, L2 = L2k+45 +---
Therefore, Pery(Ss; z,y) = 2k + 2.

From the above sequence, we can see that
BPery(Ss;x,y) = 2k + 2, since 26 = x, y = 22y,
xyf = y, where 6 is an outer automorphism. O
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Also, this theorem is valid in the group Ds.

Theorem 3.2. Let Az = (x,y : 2° = y* = (zy)? =
e) be the presentation for the group As. Then the
periods and the basic periods of the basic k-step Fi-
bonacci sequences are given as:

(i) For k = 2, Peryo(As;z,y) = 16 and
BPery(As; x,y) = 16.
(ii) For k = 3, Pers(As;x,y) = 13 and

BPers(As;x,y) = 13.
Proof. (i). For k = 2, we have the sequence,
x,y, vy, yay, v°, vyx’, xyz, 2%, 2y, y, v, yz, wye,
xyx 7:1: y’ ym ?'1:7 y7 R

which repeats after 16 terms therefore the period is
16. Similarly, for the basic sequence,

x,xy, 2%y, B7yr, ya?, vy, T, vy, ..,
the basic period is 16, since 26 = z, yf = xyz?,
where 6 is the inner automorphism induced by con-
jugation by x. So, Pery(As;z,y) = 16 and
BPery(Asz;x,y) = 16. O

(ii). For k = 3, the first few terms of the sequence
are

z,y, 2y, (vy)%, v, y, yo?, yo?, 2?ya?, 2%y, 2, vyz,
€, YT, Y, YTY, TYT, Y, Y, TYT, TYT, €, r°y>,
67 ny:C27 xyw7 67 67 wyl.? :L.yx7 ywy7 yw2y7 wyl.’ wyl.’

e’ yxy’ 67 y‘/L‘y7 :I/‘ya:7 e’ 67 ‘/'Uy‘,'r7 ‘/'L‘y‘,'l;‘? y$y7 ceee

Here,

T26 = €,X27 = €,X28 = TYTL,T29 = Yxy, ...,
T39 = €,T40 = €,T41 = TYT,T42 = Yy, ...,
T52 = €,T53 = €,T54 = YT, T55 = YIY, ....

Also, for k = 3,

Luhi(3)—(k—4) = € Tuhy(3)—(k—3) = &
Tuhy(3)—(k—2) = TYL, Typ, (3)—(k—1) = TYT,
Tuhy(3)—k = YTY,

where u € ZT and hy(3) refer to the Wall number for
the k-step Fibonacci sequence modulo 3.

So that, Perg(As; z,y) = 13.

Similarly, BPery(As;x,y) = 13 because z6 = «z,
Yl = zyz?. O

Also, this theorem is valid for (2, 3, 3) polyhedral
group.
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Theorem 3.3. Let Qs = (z,y : o* = e, 2% = 32,
y~lzy = x71) be the presentation for the group Qs.
Then the periods and the basic periods of the basic

k-step Fibonacci sequences are given as:

(i) For k 2, Pery(Qs;z,y)
BPery(Qs; x,y) = 3.

(ii) For k > 3, Pery(Qs;x,y) = 2k + 2 and
BPeri(Qs;z,y) = 2k + 2.

3 and

Proof. (i). For k = 2, the sequence is as follows:

x? y? wy? x? y7 ajy’ A

and it has period Pers(Qs; x,y) = 3.
For the basic period, the sequence is

3 .3 3 .3
Yy, Y, T, Y T Y,

which has the period BPery(Qs;z,y) = 3 since
z0 = x,yf = y> where 6 is an inner automorphism
induced by conjugation by =x.

(ii). Ifk > 3;

For k£ = 3, the sequence is

2 .3 2 .3
x7y7$ya$ 7'1: 7y7'1:y? e’ $7y7xy?x 711 AR
For k = 5, the sequence is
2 3.2 2
x7y7xy7x 76767‘/1: 7y ’xy76776’67x7y’$y’$ AR

Here, it is seen that the period for each k& > 3 is 2k+2.
And similarly, BPery(Qs; z,y) = 2k + 2. O

Theorem 3.4. Let Qg X Zoy = (2,y,2 :
67‘7;2 = y2,y_1{ll‘y$ =6 M =e= [.’E,Z] = [y7 Z]
be the presentation for the group Qg X Zoy,. Then the
periods are given as:

(i) For k = 2, Pery(Qg X Zom;,y,2)=
lem(h2(2m), 3).
(i) For k = 3, Per3(Qs X Zom;v,y,2) =

2lem(2m, 2k + 2).

(iii) For k > 4, Perp(Qs X Zom;x,y,z)
lem(2m,2k+2)(k+1)
5 .

Proof. (i). For k = 2, the sequence is as follows,

13,8 ,21,13

2 3,2 ,5,3 .8,5
xayazvyzazyazy‘sz%wa?Z Yy,z2y,

2342
From this sequence, we obtain a sub-sequence as fol-
lows:
Y 2,92, 27y, 297, 2y
For k£ = 2, the sequence conforms to the following
pattern,

f21t+1yf2‘t f2,t+2yf2,t+1'

Ti41 = 2 y T42 = 2
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We need the smallest ¢, satisfying ;11 = y, 410 = 2
Letting lem(ha(2m), 3) A, then we have
2m| fa,i4+1, 3|f2,0+1 and hence fox = 1 (mod 2m)
and fo» =1 (mod 3). Also, fa xy2 = 1 (mod 2m)
and fy y12 =1 (mod 3).

If we choose t = )\, then we obtain z); = y and
Tr42 = <.

So we get Pera(Qs X Zom; x,y, z)=lem(ha(2m), 3).
(ii). For k = 3, the first few terms of the sequence
are:

1

2. A4, 7,2 13 .3 24  _44
T, Y, 2, TYz, 2, 2y, 2yt 2y, 2, 2y,

12

xz,

Here,
24 44 81,4
T8 =2 Xy, L9 =2 Y, T10 =R Y 4.0y
3136 5768 10609, 8
T16 = = T, T17 = Z Y, r18 = = g woey
410744 755476 1389537
T4 = 2 T, T25 =2 Y, Tog = 2 Yy
Using the above, we have
B4u B4
Tgg = zi "X, Tgg41 = 24 Y,
_ dugiatl 44
Lgp+2 = 27 Yy,
where jisoddand 8 € N, 8 = 275 and ug, ug1,
ugt2 € N, also ged(ug, ugi1,ug+2) = 1.
We need the smallest 3, satisfying xg3 = , x33+1 =
y and xggo = 2.
2m,2k+2 )

If we choose 3 = M, then we obtain
Lolem(2m,2k+2) = L5 L2lem(2m,2k+2)+1 = Y,
Lolem(2m,2k+2)4+2 — %

Thus, we get,
Pers(Qs X Zom; x,y, z) = 2lem(2m, 2k + 2).
(iii). For k > 4, the sequence is as follows,
2y, 7, 2yz, 2202, 23, 2By, 2152, 2Py, 258, ;108
208y A0 773, 14902 28723 5536,
L106715,2 /20569, ;. 39648

Using the above k-step Fibonacci sequence, we have

_ 2461 3 _ P45
LB(2k42)—k—1 = =7 T Tpek+2)—k — <7 Y,
Tg(2ky2) kil = 27 T,

B4855404+1
Tg(okt2)—kt2 =27 YT

546,
TH(2k42) ki3 = 27,
_ 246444
LB(2k+2)—k+4 — Z7 L,
846,
TH(2k42)—kts = 27 Y,

B
TB(2k+2)—k+6 = 27 orotly2

ceey
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where j is a positive odd integer and [ is a pos-
itive integer, 0g—1,08,0841,..,0844 € N and

9cd(08-1,08,0841, ..., 08+4) = 1.
Here, we need the smallest [ satisfying

LB(2k+2) = L) LB(2k+2)+1 = Y, LB(2k+2)+2 = #-

lem(2m, 2k + 2)
4

Now, if we choose 8 = , then we

get
T iem(2m,2k+2) (k+1) — T, 1‘1cm(2m,2k+2)(k+1)+1 =1,
4 4
L lem(2m,2k+2) (k+1) = Z.
f-ﬁﬂ

Thus, we obtain

Pery(QgxZom; x,y, 2) 5

0

4 Conclusion

In this study, the k-Fibonacci group was defined and
its algebraic properties were examined. A Fibonacci
sequence was created in groups, with some having
two generators and others having three generators.
They have been shown to be periodic, and their fun-
damental periods have been determined. This work
can be applied to many different groups as well as to
other sequences such as the Lucas and Pell sequences.
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