
Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 371-382
www.stacs-conf.org

THE k-IN-A-PATH PROBLEM FOR CLAW-FREE GRAPHS

JIŘÍ FIALA 1 AND MARCIN KAMIŃSKI 2 AND BERNARD LIDICKÝ 1 AND DANIËL PAULUSMA 3

1 Charles University, Faculty of Mathematics and Physics,
DIMATIA and Institute for Theoretical Computer Science (ITI)
Malostranské nám. 2/25, 118 00, Prague, Czech Republic
E-mail address: fiala@kam.mff.cuni.cz

E-mail address: bernard@kam.mff.cuni.cz

2 Computer Science Department, Université Libre de Bruxelles,
Boulevard du Triomphe CP212, B-1050 Brussels, Belgium
E-mail address: marcin.kaminski@ulb.ac.be

3 Department of Computer Science, University of Durham,
Science Laboratories, South Road,
Durham DH1 3LE, England
E-mail address: daniel.paulusma@durham.ac.uk

Abstract. Testing whether there is an induced path in a graph spanning k given vertices
is already NP-complete in general graphs when k = 3. We show how to solve this problem
in polynomial time on claw-free graphs, when k is not part of the input but an arbitrarily
fixed integer.

1. Introduction

Many interesting graph classes are closed under vertex deletion. Every such class can
be characterized by a set of forbidden induced subgraphs. One of the best-known examples
is the class of perfect graphs. A little over 40 years after Berge’s conjecture, Chudnovsky et
al. [18] proved that a graph is perfect if and only if it contains neither an odd hole (induced
cycle of odd length) nor an odd antihole (complement of an odd hole). This motivates the
research of detecting induced subgraphs such as paths and cycles, which is the topic of this
paper. To be more precise, we specify some vertices of a graph called the terminals and
study the computational complexity of deciding if a graph has an induced subgraph of a
certain type containing all the terminals. In particular, we focus on the following problem.

1998 ACM Subject Classification: G.2.2 Graph algorithms, F.2.2 Computations on discrete structures.
Key words and phrases: induced path, claw-free graph, polynomial-time algorithm.
Research supported by the Ministry of Education of the Czech Republic as projects 1M0021620808

and GACR 201/09/0197, by the Royal Society Joint Project Grant JP090172 and by EPSRC as
EP/D053633/1.

c© J. Fiala, M. Kamiński, B. Lidický, and D. Paulusma
CC© Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2469

372 J. FIALA, M. KAMIŃSKI, B. LIDICKÝ, AND D. PAULUSMA

k-in-a-Path

Instance: a graph G with k terminals.
Question: does there exist an induced path of G containing the k terminals?

Note that in the problem above, k is a fixed integer. Clearly, the problem is polynomially
solvable for k = 2. Haas and Hoffmann [11] consider the case k = 3. After pointing out
that this case is NP-complete as a consequence of a result by Fellows [9], they prove W[1]-
completeness (where they take as parameter the length of an induced path that is a solution
for 3-in-a-Path). Derhy and Picouleau [6] proved that the case k = 3 is NP-complete even
for graphs with maximum degree at most three.

A natural question is what will happen if we relax the condition of “being contained
in an induced path” to “being contained in an induced tree”. This leads to the following
problem.

k-in-a-Tree

Instance: a graph G with k terminals.
Question: does there exist an induced tree of G containing the k terminals?

As we will see, also this problem has received a lot of attention in the last two years. It
is NP-complete if k is part of the input [6]. However, Chudnovsky and Seymour [4] have
recently given a deep and complicated polynomial-time algorithm for the case k = 3.

Theorem 1.1 ([4]). The 3-in-a-Tree problem is solvable in polynomial time.

The computational complexity of k-in-a-Tree for k = 4 is still open. So far, only
partial results are known, such as a polynomial-time algorithm for k = 4 when the input
is triangle-free by Derhy, Picouleau and Trotignon [7]. This result and Theorem 1.1 were
extended by Trotignon and Wei [20] who showed that k-in-a-Tree is polynomially solvable
for graphs of girth at least k. The authors of [7] also show that it is NP-complete to decide
if a graph G contains an induced tree T covering four specified vertices such that T has at
most one vertex of degree at least three.

In general, k-in-a-Path and k-in-a-Tree are only equivalent for k ≤ 2. However, in
this paper, we study claw-free graphs (graphs with no induced 4-vertex star). Claw-free
graphs are a rich and well-studied class containing, e.g., the class of (quasi)-line graphs
and the class of complements of triangle-free graphs; see [8] for a survey. Notice that any
induced tree in a claw-free graph is in fact an induced path.
Observation 1.2. The k-in-a-Path and k-in-a-Tree problem are equivalent for the class
of claw-free graphs.

Motivation. The polynomial-time algorithm for 3-in-a-Tree [4] has already proven to be
a powerful tool for several problems. For instance, it is used as a subroutine in polynomial
time algorithms for detecting induced thetas and pyramids [4] and several other induced
subgraphs [16]. The authors of [12] use it to solve the Parity Path problem in polynomial
time for claw-free graphs. (This problem is to test if a graph contains both an odd and even
length induced paths between two specified vertices. It is NP-complete in general as shown
by Bienstock [1].)

Lévêque et al. [16] use the algorithm of [4] to solve the 2-Induced Cycle problem
in polynomial time for graphs not containing an induced path or subdivided claw on some
fixed number of vertices. The k-Induced Cycle problem is to test if a graph contains an
induced cycle spanning k terminals. In general it is NP-complete already for k = 2 [1]. For
fixed k, an instance of this problem can be reduced to a polynomial number of instances

THE k-IN-A-PATH PROBLEM FOR CLAW-FREE GRAPHS 373

of the k-Induced Disjoint Paths problem, which we define below. Paths P1, . . . , Pk in
a graph G are said to be mutually induced if for any 1 ≤ i < j ≤ k, Pi and Pj have
neither common vertices (i.e. V (Pi)∩V (Pj) = ∅) nor adjacent vertices (i.e. uv /∈ E for any
u ∈ V (Pi), v ∈ V (Pj)).

k-Induced Disjoint Paths

Instance: a graph G with k pairs of terminals (si, ti) for i = 1, . . . , k.
Question: does G contain k mutually induced paths Pi such that Pi connects si and ti for
i = 1, . . . , k?

This problem is NP-complete for k = 2 [1]. Kawarabayashi and Kobayashi [14] showed
that, for any fixed k, the k-Induced Disjoint Paths problem is solvable in linear time on
planar graphs and that consequently k-Induced Disjoint Cycle is solvable in polynomial
time on this graph class for any fixed k. In [15], Kawarabayashi and Kobayashi improve the
latter result by presenting a linear time algorithm for this problem, and even extend the
results for both these problems to graphs of bounded genus. As we shall see, we can also
solve k-Induced Disjoint Paths and k-Induced Cycle in polynomial time in claw-free
graphs. The version of the problem in which any two paths are vertex-disjoint but may have
adjacent vertices is called the k-Disjoint Paths problem. For this problem Robertson and
Seymour [17] proved the following result.

Theorem 1.3 ([17]). For fixed k, the k-Disjoint Paths problem is solvable in polynomial

time.

Our Results and Paper Organization. In Section 2 we define some basic terminology.
Section 3 contains our main result: k-in-a-Path is solvable in polynomial time in claw-free
graphs for any fixed integer k. This, in fact, follows from a stronger theorem proved in
Section 4; the problem is solvable in polynomial time even if the terminals are to appear
on the path in a fixed order. A consequence of our result is that the k-Induced Disjoint

Paths and k-Induced Cycle problems are polynomially solvable in claw-free graphs for
any fixed integer k. In Section 4 we present our polynomial-time algorithm that solves
the ordered version of k-in-a-Path. The algorithm first performs “cleaning of the graph”.
This is an operation introduced in [12]. After cleaning the graph is free of odd antiholes
of length at least seven. Next we treat odd holes of length five that are contained in the
neighborhood of a vertex. The resulting graph is quasi-line. Finally, we solve the problem
using a recent characterization of quasi-line graphs by Chudnovsky and Seymour [3] and
related algorithmic results of King and Reed [13]. In Section 5 we mention relevant open
problems.

2. Preliminaries

All graphs in this paper are undirected, finite, and neither have loops nor multiple edges.
Let G be a graph. We refer to the vertex set and edge set of G by V = V (G) and E = E(G),
respectively. The neighborhood of a vertex u in G is denoted by NG(u) = {v ∈ V | uv ∈ E}.
The subgraph of G induced by U ⊆ V is denoted G[U]. Analogously, the neighborhood of
a set U ⊆ V is N(U) :=

⋃
u∈U N(u) \ U . We say that two vertex-disjoint subsets of V are

adjacent if some of their vertices are adjacent. The distance d(u, v) between two vertices u
and v in G is the number of edges on a shortest path between them. The edge contraction

374 J. FIALA, M. KAMIŃSKI, B. LIDICKÝ, AND D. PAULUSMA

of an edge e = uv removes its two end vertices u, v and replaces it by a new vertex adjacent
to all vertices in N(u) ∪N(v) (without introducing loops or multiple edges).

We denote the path and cycle on n vertices by Pn and Cn, respectively. Let P =
v1v2 . . . vp be a path with a fixed orientation. The successor vi+1 of vi is denoted by v+

i and

its predecessor vi−1 by v−i . The segment vivi+1 . . . vj is denoted by vi

−→
P vj. The converse

segment vjvj−1 . . . vi is denoted by vj

←−
P vi.

A hole is an induced cycle of length at least 4 and an antihole is the complement of a
hole. We say that a hole is odd if it has an odd number of edges. An antihole is called odd
if it is the complement is an odd hole.

A claw is the graph ({x, a, b, c}, {xa, xb, xc}), where vertex x is called the center of the
claw. A graph is claw-free if it does not contain a claw as an induced subgraph. A clique is
a subgraph isomorphic to a complete graph. A diamond is a graph obtain from a clique on
four vertices after removing one edge. A vertex u in a graph G is simplicial if G[N(u)] is a
clique.

Let s and t be two specified vertices in a graph G = (V,E). A vertex v ∈ V is called
irrelevant for vertices s and t if v does not lie on any induced path from s to t. A graph G
is clean if none of its vertices is irrelevant. We say that we clean G for s and t by repeatedly
deleting irrelevant vertices for s and t as long as possible. In general, determining if a vertex
is irrelevant is NP-complete [1]. However, for claw-free graphs, the authors of [12] could
show the following (where they used Observation 1.2 and Theorem 2.7 for obtaining the
polynomial time bound).

Lemma 2.1 ([12]). Let s, t be two vertices of a claw-free graph G. Then G can be cleaned

for s and t in polynomial time. Moreover, the resulting graph does not contain an odd

antihole of length at least seven.

The line graph of a graph G with edges e1, . . . , ep is the graph L = L(G) with vertices
u1, . . . , up such that there is an edge between any two vertices ui and uj if and only if ei and
ej share an end vertex in H. We note that mutually induced paths in a line graph L(G) are
in one-to-one correspondence with vertex-disjoint paths in G. Combining this observation
with Theorem 1.3 leads to the following result.

Corollary 2.2. For fixed k, the k-Induced Disjoint Paths problem can be solved in

polynomial time in line graphs.

A graph G = (V,E) is called a quasi-line graph if for every vertex u ∈ V there exist
two vertex-disjoint cliques A and B in G such that N(u) = V (A) ∪ V (B) (where V (A)
and V (B) might be adjacent). Clearly, every line graph is quasi-line and every quasi-line
graph is claw-free. The following observation is useful and easy to see by looking at the
complements of neighborhood in a graph.

Observation 2.3. A claw-free graph G is a quasi-line graph if and only if G does not
contain a vertex with an odd antihole in its neighborhood.

A clique in a graph G is called nontrivial if it contains at least two vertices. A nontrivial
clique A is called homogeneous if every vertex in V (G)\V (A) is either adjacent to all vertices
of A or to none of them. Notice that it is possible to check in polynomial time if an edge of
the graph is a homogeneous clique. This justifies the following observation.

Observation 2.4. The problem of detecting a homogeneous clique in a graph is solvable
in polynomial time.

THE k-IN-A-PATH PROBLEM FOR CLAW-FREE GRAPHS 375

b3 b2

a1

a3 S0

b
′

3 b
′

2

a
′

1

a
′

3

S
′

3

S
′

1

S
′

2S
′

3

S3

S1

S2S3

Figure 1: Composition of three linear interval strips (only part of the graph is displayed).

Two disjoint cliques A and B form a homogeneous pair in G if the following two
conditions hold. First, at least one of A,B contains more than one vertex. Second, every
vertex v ∈ V (G) \ (V (A)∪ V (B)) is either adjacent to all vertices of A or to none vertex of
A as well as either adjacent to all of B or to none of B. The following result by King and
Reed [13, Section 3] will be useful.

Lemma 2.5 ([13]). The problem of detecting a homogeneous pair of cliques in a graph is

solvable in polynomial time.

Let V be a finite set of points of a real line, and I be a collection of intervals. Two
points are adjacent if and only if they belong to a common interval I ∈ I. The resulting
graph is a linear interval graph. Analogously, if we consider a set of points of a circle and
set of intervals (angles) on the circle we get a circular interval graph. Graphs in both classes
are claw-free, in fact linear interval graphs coincide with proper interval graphs (intersection
graph of a set of intervals on a line, where no interval contains another from the set) and
circular interval graphs coincide with proper circular arc graphs (defined analogously). We
need the following result of Deng, Hell, and Huang [5].

Theorem 2.6 ([5]). Circular interval graphs and linear interval graphs can be recognized in

linear time. Furthermore, a corresponding representation of such graphs can be constructed

in linear time as well.

A linear interval strip (S, a, b) is a linear interval graph S where a and b are the leftmost
and the rightmost points (vertices) of its representation. Observe that in such a graph the
vertices a and b are simplicial. Let S0 be a graph with vertices a1, b1, . . . , an, bn that is
isomorphic to an arbitrary disjoint union of complete graphs. Let (S′

1, a
′

1, b
′

1), . . . , (S
′

n, a′n, b′n)
be a collection of linear interval strips. The composition Sn is defined inductively where Si

is formed from the disjoint union of Si−1 and S′

i, where:

• all neighbors of ai are connected to all neighbors of a′i;
• all neighbors of bi are connected to all neighbors of b′i;
• vertices ai, a

′

i, bi, b
′

i are removed.

See Figure 1 for an example. We are now ready to state the structure of quasi-line graphs
as characterized by Chudnovsky and Seymour [3].

Theorem 2.7 ([3]). A quasi-line graph G with no homogeneous pair of cliques is either a

circular interval graph or a composition of linear interval strips.

Finally, we need another algorithmic result of King and Reed [13]. They observe that
the composition of the final strip in a composition of linear interval graphs is a so-called

376 J. FIALA, M. KAMIŃSKI, B. LIDICKÝ, AND D. PAULUSMA

nontrivial interval 2-join and that every nontrivial interval 2-join contains a so-called canon-
ical interval 2-join. In Lemma 13 of this paper they show how to find in polynomial time a
canonical interval 2-join in a quasi-line graph with no homogeneous pair of cliques and no
simplicial vertex or else to conclude that none exists. Recursively applying this result leads
to the following lemma.

Lemma 2.8 ([13]). Let G be a quasi-line graph with no homogeneous pairs of cliques and

no simplicial vertex that is a composition of linear interval strips. Then the collection of

linear interval strips that define G can be found in polynomial time.

3. Our Main Result

Here is our main result.

Theorem 3.1. For any fixed k, the k-in-a-Path problem is solvable in polynomial time in

claw-free graphs.

In order to prove Theorem 3.1 we define the following problem.

Ordered-k-in-a-Path

Instance: a graph G with k terminals ordered as t1, . . . , tk.
Question: does there exist an induced path of G starting in t1 then passing through
t2, . . . , tk−1 and ending in tk?

We can resolve the original k-in-a-Path problem by k! rounds of the more specific version
defined above, where in each round we order the terminals by a different permutation.
Hence, since we assume that k is fixed, it suffices to prove Theorem 3.2 in order to obtain
Theorem 3.1.

Theorem 3.2. For any fixed k, the Ordered-k-in-a-Paths problem is solvable in poly-

nomial time in claw-free graphs.

We prove Theorem 3.2 in Section 4 and finish this section with the following consequence
of it.

Corollary 3.3. For any fixed k, the k-Disjoint Induced Paths and k-Induced Cycle

problem are solvable in polynomial time in claw-free graphs.

Proof. Let G be a claw-free graph that together with terminals t1, . . . , tk is an instance of
k-Induced Cycle. We fix an order of the terminals, say, the order is t1, . . . , tk. We fix
neighbors ai and bi−1 of each terminal ti. This way we obtain an instance of k-Induced

Disjoint Paths with pairs of terminals (ai, bi) where b0 = bk. Clearly, the total number
of instances we have created is polynomial. Hence, we can solve k-Induced Cycle in
polynomial time if we can solve k-Induced Disjoint Paths in polynomial time.

Let G be a claw-free graph that together with k pairs of terminals (ai, bi) for i =
1, . . . , k is an instance of the k-Induced Disjoint Paths problem. First we add an edge
between each pair of non-adjacent neighbors of every terminal in T = {a1, . . . , ak, b1, . . . , bk}.
We denote the resulting graphs obtained after performing this operation on a terminal by
G1, . . . , G2k, and define G0 := G. We claim that G′ = G2k is claw-free and prove this by
induction.

The claim is true for G0. Suppose the claim is true for Gj for some 0 ≤ j ≤ 2k − 1.
Consider Gj+1 and suppose, for contradiction, that Gj+1 contains an induced subgraph

THE k-IN-A-PATH PROBLEM FOR CLAW-FREE GRAPHS 377

isomorphic to a claw. Let K := {x, a, b, c} be a set of vertices of Gj+1 inducing a claw with
center x. Let s ∈ T be the vertex of Gj that becomes simplicial in Gj+1. Then x 6= s. Since
Gj is claw-free, we may without loss of generality assume that at least two vertices of K must
be in NGj+1

(s)∪{s}. Since NGj+1
(s)∪{s} is a clique of Gj+1 and {a, b, c} is an independent

set of Gj+1, we may without loss of generality assume that K ∩ (NGj+1
(s) ∪ {s}) = {x, a}

and {b, c} ⊆ V (Gj+1) \ (NGj+1
(s) ∪ {s}). Then {x, b, c, s} induces a claw in Gj with center

x, a contradiction. Hence, G′ is indeed claw-free.
We note that G with terminals (a1, b1), . . . , (ak, bk) forms a Yes-instance of k-Induced

Disjoint Paths if and only if G′ with the same terminal pairs is a Yes-instance of this
problem. In the next step we identify terminal bi with ai+1, i.e., for i = 1, . . . , k − 1 we
remove bi, ai+1 and replace them by a new vertex ti+1 adjacent to all neighbors of ai+1 and
to all neighbors of bi. We call the resulting graph G′′ and observe that G is claw-free. We
define t1 := a1 and tk+1 := bk and claim that G′ with terminal pairs (a1, b1), . . . , (ak, bk)
forms a Yes-instance of the k-Induced Paths problem if and only if G′′ with terminals
t1, . . . , tk+1 forms a Yes-instance of the Ordered-(k + 1)-in-a-Path problem.

In order to see this, suppose G′ contains k mutually induced paths Pi such that Pi

connects ai to bi for 1 ≤ i ≤ k. Then

P = t1
−→
P1b

−

1 t2a
+
2

−→
P2b

−

2 . . . tka
+
k

−→
Pktk

is an induced path passing through the terminals ti in prescribed order. Now suppose
G′′ contains an induced path P passing through terminals in order t1, . . . , tk+1. For i =

1, . . . , k + 1 we define paths Pi = ait
+
i

−→
P t−i+1bi, which are mutually induced. We now apply

Theorem 3.2. This completes the proof.

4. The Proof of Theorem 3.2

We present a polynomial-time algorithm that solves the Ordered-k-in-a-Path prob-
lem on a claw-free graph G with terminals in order t1, . . . , tk for any fixed integer k. We
call an induced path P from t1 to tk that contains the other terminals in order t2, . . . , tk−1

a solution of this problem. Furthermore, an operation in this algorithm on input graph G
with terminals t1, . . . , tk preserves the solution if the following holds: the resulting graph G′

with resulting terminals t′1, . . . , t
′

k′ for some k′ ≤ k is a Yes-instance of the Ordered-k′-in-

a-Path problem if and only if G is a Yes-instance of the Ordered-k-in-a-Path problem.
We call G simple if the following three conditions hold:

(i) t1, tk are of degree one in G and all other terminals ti (1 < i < k) are of degree two
in G, and the two neighbors of such ti are not adjacent;

(ii) the distance between any pair ti, tj is at least four;
(iii) G is connected.

The Algorithm and Proof of Theorem 3.2

Let G be an input graph with terminals t1, . . . , tk.

If k = 2, we compute a shortest path from t1 to t2. If k = 3, we use Theorem 1.1 together
with Observation 1.2. Suppose k ≥ 4.

Step 1. Reduce to a set of simple graphs.

We apply Lemma 4.1 and obtain in polynomial time a set G that consists of a polynomial

378 J. FIALA, M. KAMIŃSKI, B. LIDICKÝ, AND D. PAULUSMA

number of simple graphs of size at most |V (G)| such that there is a solution for G if and
only if there is a solution for one of the graphs in G. We consider each graph in G. For
convenience we denote such a graph by G as well.

Step 2. Reduce to a quasi-line graph.

We first clean G for t1 and tk. If during cleaning we remove a terminal, then we output No.
Otherwise, clearly, we preserve the solution. By Lemma 2.1, this can be done in polynomial
time and ensures that there are no odd antiholes of length at least seven left. Also, G stays
simple. Then we apply Lemma 4.2, which removes vertices v whose neighborhood contain
an odd hole of length five, as long as we can. Clearly, we can do this in polynomial time.
Note that G stays connected since we do not remove cut-vertices due to the claw-freeness.
By condition (i), we do not remove a terminal either. Afterwards, we clean G again for t1
and tk. If we remove a terminal, we output No. Otherwise, as a result of our operations,
G becomes a simple quasi-line graph due to Observation 2.3.

Step 3. Reduce to a simple quasi-line graph with no homogeneous clique

We first exhaustively search for homogeneous cliques by running the polynomial algorithm
mentioned in Observation 2.4 and apply Lemma 4.3 each time we find such a clique. Clearly,
we can perform the latter in polynomial time as well. After every reduction of such a clique
to a single vertex, G stays simple and quasi-line, and at some moment does not contain any
homogeneous clique anymore, while we preserve the solution.

Step 4. Reduce to a circular interval graph or to a composition of interval

strips.

Let t′1, t
′

k be the (unique) neighbor of t1 and t′k, respectively. As long as G contains homo-
geneous pairs of cliques (A,B) so that A neither B is equal to {t1, t

′

1} or {tk, t
′

k}, we do as
follows. We first detect such a pair in polynomial time using Lemma 2.5 and reduce them
to a pair of single vertices by applying Lemma 4.4. Also performing Lemma 4.4 clearly
takes only polynomial time. After every reduction, G stays simple and quasi-line, and we
preserve the solution. At some moment, the only homogeneous pairs of cliques that are
possibly left in G are of the form ({t1, t

′

1}, B) and ({tk, t′k}, B). As G does not contain a
homogeneous clique (see Step 3), the cliques in such pairs must have adjacent vertex sets.
Hence, there can be at most two of such pairs. We perform Lemma 4.4 and afterwards
make the graph simple again. Although this might result in a number of new instances,
their total number is still polynomial because we perform this operation at most twice.
Hence, we may without loss of generality assume that G stays simple. By Theorem 2.7, G
is either a circular interval graph or a composition of linear interval strips; we deal with
theses two cases separately after recognizing in polynomial time in which case we are by
using Theorem 2.6.

Step 5a. Solve the problem for a circular interval graph.

Let G be a circular interval graph. Observe that the order of vertices in an induced path
must respect the natural order of points on a circle. Hence, deleting all points that lie on
the circle between tk and t1 preserves the solution. So, we may even assume that G is a
linear interval graph. We solve the problem in these graphs in Theorem 4.5.

Step 5b. Solve the problem for a composition of linear interval strips.

Let G be a composition of linear interval strips. Because G is assumed to be clean for
t1, . . . , tk, G contains no simplicial vertex. Then we can find these strips in polynomial
time using Lemma 2.8 and use this information in Lemma 4.6. There we create a line

THE k-IN-A-PATH PROBLEM FOR CLAW-FREE GRAPHS 379

graph G′ with |V (G′)| ≤ |V (G)|, while preserving the solution. Moreover, this can be done
in polynomial time by the same theorem. Then we use Corollary 2.2 to prove that the
problem is polynomially solvable in line graphs in Theorem 4.7.

Now it remains to state and prove Lemmas 4.1–4.6 and Theorems 4.5– 4.7.

Lemma 4.1. Let G be a graph with terminals ordered t1, . . . , tk. Then there exists a set G
of nO(k) simple graphs, each of size at most |V (G)|, such that G has a solution if and only if

there exists a graph in G that has a solution. Moreover, G can be constructed in polynomial

time.

Proof. We branch as follows. First we guess the first six vertices after t1 in a possible
solution. Then we guess the last six vertices before tn. Finally, for 2 ≤ i ≤ n − 1, we
guess the last six vertices preceding ti and the first six vertices following ti. We check if
the subgraph induced by the terminals and all guessed vertices has maximum degree 2. If
not we discard this guess. Otherwise, for every terminal and for every guessed vertex that
is not an end vertex of a guessed subpath, we remove all its neighbors that are not guessed
vertices. This way we obtain a number of graphs which we further process one by one.

Let G′ be such a created subgraph. If G′ does not contain all terminals, we discard G′.
If G′ is disconnected then we discard G′ if two terminals are in different components, or else
we continue with the component of G′ that contains all the terminals. Suppose there is a
guessed subpath in G′ containing more than one terminal. If the order is not ti, ti+1, . . . , tj
for some i < j, we discard G′. Otherwise, if necessary, we place ti and tj on this subpath
such that they are at distance at least four of each other and also are of distance at least
four of each end vertex of the subpath. Because the guessed subpaths are sufficiently long,
such a placement is possible. We then remove ti+1, . . . , tj−1 from the list of terminals. After
processing all created graphs as above, we obtain the desired set G. Since k is fixed, G can
be constructed in polynomial time.

Lemma 4.2. Let G be a simple claw-free graph. Removing a vertex u ∈ V (G), the neigh-

borhood of which contains an induced odd hole of length five, preserves the solution.

Proof. Because G is simple, u is not a terminal. We first show the following claim.

Claim 1. Let G[{v,w, x, y}] be a diamond in which vw is a non-edge. If there is a solution
P that contains v, x,w, then there is another solution that contains v, y, w (and that does
not contain x).

In order to see this take the original solution P and notice that by claw-freeness any neighbor
of y on P must be in the (closed) neighborhood of v or w. This way the solution can be
rerouted via y, without using x. This proves Claim 1.

Now suppose that u is a vertex which has an odd hole C of length five in its neighborhood.
Obviously, G is a Yes-instance if G−u is a Yes-instance. To prove the reverse implication,
suppose G is a Yes-instance. Let P be a solution. If u does not belong to P then we
are done. Hence, we suppose that u belongs to P and consider three cases depending on
|V (C) ∩ V (P)|.
Case 1. |V (C)∩V (P)| ≥ 2. Then |V (C)∩V (P)| = 2, as any vertex on P will have at most
two neighbors. We are done by Claim 1.

380 J. FIALA, M. KAMIŃSKI, B. LIDICKÝ, AND D. PAULUSMA

Case 2. |V (C) ∩ V (P)| = 1. Let w ∈ V (C) belong to P and let the other neighbor of u
that belongs to P be x. We note that x must be adjacent to at least one of the neighbors
of w in C. Then we can apply Claim 1 again.
Case 3. |V (C) ∩ V (P)| = 0. Let the two neighbors of u on P be x and y. To avoid a claw
at u, every vertex of C must be adjacent to x or y. If there is a vertex in C adjacent to
both, we apply Claim 1. Suppose there is no such vertex and that the vertices of the C
are partitioned in two sets X (vertices of C only adjacent to x) and Y (vertices of C only
adjacent to y). We assume without loss of generality that |X| = 3, and hence contains a pair
of independent vertices which together with u and y form a claw. This is a contradiction.

Lemma 4.3. Let G be a simple quasi-line graph with a homogeneous clique A. Then

contracting A to a single vertex preserves the solution and the resulting graph is a simple

quasi-line graph containing the same terminals as G.

Proof. Each vertex in A lies on a triangle, unless G is isomorphic to P2, which is not possible.
Hence, by condition (i), A does not contain a terminal. We remove all vertices of A except
one. The resulting graph will be a simple quasi-line graph containing the same terminals,
and we will preserve the solution.

Lemma 4.4. Let G be a simple quasi-line graph with terminals ordered t1, . . . , tk that has

no homogeneous clique. Contracting the cliques A and B in a homogeneous pair to single

vertices preserves the solution. The resulting graph is quasi-line; it is simple unless A or B
consists of two vertices u, u′ with u ∈ {t1, tk} and d(u′, ti) ≤ 3 for some ti 6= u.

Proof. Because G does not contain a homogeneous clique, V (A) and V (B) must be adjacent.
Then, due to condition (ii), there can be at most one terminal in V (A) ∪ V (B). In all the
cases discussed below we will actually not contract edges but only remove vertices from A
and B. Hence, the resulting graph will always be a quasi-line graph.

Suppose A contains t1 or tk, say t1. Suppose |V (A)| = 1, so A only contains t1. Then
the neighbor of t1 is in B and |V (B)| ≥ 2. We delete all vertices from B except this neighbor,
because they will not be used in any solution. Clearly, the resulting graph is simple and
the solution is preserved. Suppose |V (A)| ≥ 2. Because t1 is of degree one, A consists of
two vertices, namely t1 and its neighbor t′1. Note that t′1 does not have a neighbor outside
A and B, as t1 is of degree one. As V (A) and V (B) are adjacent, t′1 has a neighbor u in
B. We delete t1 and replace it by t′1 in the set of terminals. We delete all vertices of B
except u, because of the following reasons. If these vertices are not adjacent to t′1, they will
never appear in any solution. If they are adjacent to t′1, they will not appear in any solution
together with u, and as such they can be replaced by u. Note that t′1 has degree one in the
new graph and that this graph is only simple if d(t′1, tj) ≥ 4 for all 2 ≤ j ≤ k. Clearly, the
solution is preserved.

Suppose A contains a terminal ti for some 2 ≤ i ≤ k − 1. Suppose A only contains ti.
Because V (A) and V (B) are adjacent, ti is adjacent to a vertex u in B. By condition (i),
u is the only vertex in B adjacent to ti. We delete all vertices of B except u. Clearly, the
resulting graph is simple and the solution is preserved. Suppose |V (A)| ≥ 2. By condition
(ii), A contains only one other vertex t′i and ti, t

′

i do not have a common neighbor. Then
A must be separated of the rest of the graph by B. Furthermore, the other neighbor of ti
must be in B. We delete t′i and all vertices of B except the neighbor of ti. Clearly, the
resulting graph is simple and the solution is preserved.

Suppose A does not contain a terminal. By symmetry, we may assume that B does not
contain a terminal either. Let a′b′ ∈ E(G) with a′ ∈ V (A) and b′ ∈ V (B). Let G′ be the

THE k-IN-A-PATH PROBLEM FOR CLAW-FREE GRAPHS 381

graph obtained from G by removing all vertices of A except a′ and B except a′, b′. Note
that we have kept all terminals and that the resulting graph is simple. Any solution P ′ for
G′ is a solution for G.

Now assume we have a solution P for G. We claim that |P ∩ A| ≤ 1 and |P ∩B| ≤ 1.
Suppose otherwise, say |P ∩A| ≥ 2. Then |P ∩A| = 2, as P is a path. Since t1 and tk are
not in A, we find that P contains a subpath xuvy with u, v ∈ A. Since x is adjacent to
u ∈ A, but also non-adjacent to v ∈ A, we find that x ∈ B. Analogously we get that y ∈ B.
However, then xy ∈ E(G). This is a contradiction.

Suppose |P ∩ A| = 0 and |P ∩ B| = 0. Then P is a solution for G′ as well. Suppose
|P ∩A| = 0 and |P ∩B| = 1. Then we may without loss of generality assume that b′ ∈ V (P)
and find that P is a solution for G′ as well. The case |P ∩A| = 1 and |P ∩B| = 0 follows by
symmetry. Suppose |P ∩A| = |P ∩B| = 1, say P intersects A in a and B in b. If ab ∈ E(G)
then we replace ab by a′b′ and obtain a solution for G′. Suppose ab /∈ E(G). Because a
is not a terminal, a has neighbors x and y on P . If x, y /∈ N(b) then {a′, x, y, b′} induces
a claw in G with center a′. This is not possible. Hence, we may assume without loss of
generality that y is adjacent to b. Since A or B contains at least two vertices, y has degree
at least three. Then y is not a terminal. Thus we can skip y and exchange ayb in P with
a′b′ to get the desired induced path P ′.

Theorem 4.5. The Ordered-k-in-a-Path problem can be solved in polynomial time in

linear interval graphs.

Proof. Let G be a linear interval graph. We may assume without loss of generality that
the terminals form an independent set. We use its linear representation that we obtain
in polynomial time by Lemma 2.8. In what follows the notions of predecessors (left) and
successors (right) are considered for the linear ordering of the points on the line. Without
loss of generality we may assume that t1 is the first point and that tk is the last and that no
two points coincide. By our assumption, ti and ti+1 are nonadjacent. From the set of points
belonging to the closed interval [ti, ti+1] we remove all neighbors of ti except the rightmost
one and all neighbors of ti+1 except the leftmost. Then the shortest path between ti and
ti+1 is induced. In addition, these partial paths combined together provide a solution unless
for some terminal ti its leftmost predecessor is adjacent to its rightmost successor. Hence,
no induced path may have ti among its inner vertices.

Lemma 4.6 (proof postponed to journal version). Let G be a composition of linear interval

strips. It is possible to create in polynomial time a line graph G′ with |V (G′)| ≤ |V (G)|,
while preserving the solution.

Theorem 4.7. For fixed k, Ordered-k-in-a-Path is polynomially solvable in line graphs.

Proof. A version of Ordered-k-in-a-Path in which the path is not necessarily induced
can be easily translated into an instance of the k-Disjoint Paths problem and solved in
polynomial time due to Theorem 1.3. Noting that mutually induced paths in a line graph
L(G) are in one-to-one correspondence with vertex-disjoint paths in G enables us to solve
the Ordered-k-in-a-Path problem in polynomial time for line graphs.

5. Conclusions and Further Research

We showed that, for any fixed k, the problems k-in-a-Path, k-Disjoint Induced

Paths and k-Induced Cycle are polynomially solvable on claw-free graphs. If k is part of

382 J. FIALA, M. KAMIŃSKI, B. LIDICKÝ, AND D. PAULUSMA

the input these problems are known to be NP-complete. In the journal version we show this
is true, even when the input is restricted to be claw-free. Perhaps the two most fascinating
related open problems are to determine the complexity of deciding if a graph contains an
odd hole (whereas the problem of finding an even hole is polynomially solvable [2]) and
to determine the computational complexity of deciding if a graph contains two mutually
induced holes (whereas it is known that the case of two mutually induced odd holes is
NP-complete [10]). For claw-free graphs these two problems are solved. Shrem et al. [19]
even obtained a polynomial-time algorithm for detecting a shortest odd hole in a claw-free
graph. In the journal version we will address the second problem for claw-free graphs.

References

[1] D. Bienstock. On the complexity of testing for odd holes and induced odd paths. Discrete Mathematics

90 (1991) 85–92, See also Corrigendum, Discrete Mathematics 102 (1992) 109.
[2] M. Chudnovsky, K. Kawarabayashi and P.D. Seymour. Detecting even holes. Journal of Graph Theory

48 (2005) 85–111.
[3] M. Chudnovsky and P.D. Seymour. The structure of claw-free graphs. In Surveys in combinatorics 2005,

Cambridge (2005) 153–171.
[4] M. Chudnovsky and P.D. Seymour. The three-in-a-tree problem. Combinatorica, to appear.
[5] X. Deng, P. Hell, and J. Huang. Linear time representation algorithm for proper circular-arc graphs

and proper interval graphs. SIAM Journal on Computing 25 (1996) 390–403.
[6] N. Derhy and C. Picouleau. Finding induced trees. Discrete Applied Mathematics 157 (2009) 3552–3557.
[7] N. Dehry, C. Picouleau, and N. Trotignon. The four-in-a-tree problem in triangle-free graphs. Graphs

and Combinatorics 25 (2009) 489–502.
[8] R. Faudree, E. Flandrin, and Z. Ryjáček. Claw-free graphs—a survey. Discrete Mathematics 164 (1997)

87–147.
[9] M.R. Fellows. The RobertsonSeymour theorems: A survey of applications. In: Proceedings of AMS-

IMS-SIAM Joint Summer Research Conf. Contemporary Mathematics, Providence, RI (1989) 1-18.
[10] P. Golovach, M. Kamiński, D. Paulusma, and D. M. Thilikos. Induced packing of odd cycles in a planar

graph. In: Proceedings of ISAAC 2009, LNCS 5878 (2009) 514–523.
[11] R. Haas and M. Hoffmann. Chordless paths through three vertices. Theoretical Computer Science 351

(2006) 360–371.
[12] P. van ’t Hof, M. Kamiński and D. Paulusma. Finding induced paths of given parity in claw-free graphs.

In: Proceedings of WG 2009, LNCS, to appear.
[13] A. King and B. Reed. Bounding χ in terms of ω and δ for quasi-line graphs. Journal of Graph Theory

59 (2008) 215-228.
[14] Y. Kobayashi and K. Kawarabayashi. The induced disjoint paths problem. In: Proceedings of IPCO

2008, LNCS 5035 (2008) 47–61.
[15] Y. Kobayashi and K. Kawarabayashi. Algorithms for finding an induced cycle in planar graphs and

bounded genus graphs. In: Proceedings of SODA 2009 (2009) 1146–1155.
[16] B. Lévêque, D.Y. Lin, F. Maffray, and N. Trotignon. Detecting induced subgraphs. Discrete Applied

Mathematics 157 (2009) 3540–3551.
[17] N. Robertson and P.D. Seymour. Graph minors. XIII. The disjoint paths problem. Journal of Combi-

natorial Theory, Series B 63 (1995) 65–110.
[18] M. Chudnovsky, N. Robertson, P.D. Seymour, and R. Thomas. The strong perfect graph theorem.

Annals of Mathematics 164 (2006) 51–229.
[19] S. Shrem, M. Stern and M.C. Golumbic. Smallest odd holes in claw-free graphs. In Proceedings of WG

2009, LNCS 5911 (2009) 329–340.
[20] N. Trotignon and L. Wei. The k-in-a-tree problem for graphs of girth at least k, manuscript.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

