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Abstract. We review the status of the RBC-UKQCD collaborations’ computations of
the KL-KS mass difference. After a brief discussion of the theoretical framework which
had been developed previously by the collaboration, we describe our latest computation,
performed at physical quark masses, and present our preliminary result mKL − mKS =

(5.5 ± 1.70) × 10−12 MeV.

1 Introduction

The value of the KL-KS mass difference, ∆mK ≡ mKL − mKS = 3.483(6) × 10−12 MeV, is truly tiny on
the scale of ΛQCD. This flavour-changing neutral current (FCNC) process is therefore an excellent
one in which to search for the effects of new physics. For example if we imagine an effective new-
physics ∆S = 2 contribution of the form 1

Λ2 (s̄ · · · d)(s̄ · · · d), where the ellipses represent possible
Dirac matrices, and if we could reproduce the experimental ∆mK in the SM to 10% accuracy then we
would be sensitive to scales Λ ∼> (103 − 104) TeV. This illustrates the sensitivity of precision flavour
physics to scales which are unreachable directly at the Large Hadron Collider.

The mass difference ∆mK is obtained from second order weak perturbation theory, specifically:

∆mK ≡ mKL − mKS = 2P
∑
α

〈K̄0 |HW |α〉 〈α |HW |K0〉
mK − Eα

= 3.483(6) × 10−12 MeV , (1)

where the sum over the intermediate states |α〉 includes an integration over the relevant phase-space
and HW is the effective weak Hamiltonian density.

The calculation of ∆mK is one component of the RBC-UKQCD collaborations’ programme of
computations of long-distance contributions in kaon physics, requiring the evaluation of matrix ele-
ments of bilocal operators of the form

∫
d4x 〈 f | T [Q1(x) Q2(0)

] | i 〉 . (2)

Other applications being studied include the rare-kaon decays K → π�+�− [1, 2] and K+ → π+νν̄ [3, 4]
and the indirect CP-violation parameter εK [5]. Progress on all these topics is summarised by X. Feng
at this conference [6]. As well as computing the non-perturbative long-distance contributions from
scales of O(ΛQCD), we aim to avoid the necessity of performing perturbation theory at the scale of mc.
For ∆mK this has proved particularly slowly convergent [7].
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1.1 Status of earlier RBC-UKQCD calculations of ∆mK

Before presenting our new results we briefly summarise our previous work. In [8] we developed the
framework necessary for the calculation of ∆mK as well as performing an exploratory calculation
on a 163 × 32 lattice with unphysical masses (mπ = 421 MeV) and including only the connected
diagrams. However, the results were encouragingly, and perhaps surprisingly, reasonably close to the
experimental value. This was followed by a calculation of all the diagrams on a 243 × 64 lattice with
inverse lattice spacing a−1 = 1.729(28) GeV and with the unphysical masses mπ = 330 MeV, mK =

575 MeV, mMS
c (2 GeV) = 949 MeV [9]. For these parameters we found ∆mK = 3.19(41)(96) MeV.

In this talk we will present an update of the computations and preliminary results obtained at
physical masses.

2 The theoretical framework

K0 K̄0

ti t f

n

HW HW

tA tB

t1 t2

Figure 1. Representation of the four-point correlation function C4 from which ∆mK is determined.

In this section we briefly review the theoretical framework used in the computation of ∆mK [8, 9].
In fig.1 we sketch the four-point correlation function used to determine ∆mK . The K0 (K̄0) is created
(annihilated) at ti (t f ) and the two weak effective Hamiltonians are inserted at times t1,2 which are
integrated over the interval (tA, tB). With all the states at rest, the correlation function is given by

C4(tA, tB; ti, t f ) = |ZK |2e−mK (t f−ti)
∑

n

〈K̄0 |HW | n〉 〈n |HW |K0〉
(mK − En)2

{
e(mK−En)T − (mK − En)T − 1

}
, (3)

where T = tB − tA + 1, ZK = 〈K0 | φ†K(0) |0〉 and φ†K is the interpolating operator used to create the
kaon. From the coefficient of T in eq.(3) we obtain

∆mFV
K ≡ 2

∑
n

〈K̄0 |HW | n〉 〈n |HW |K0〉
(mK − En)

, (4)

which should be compared to the infinite-volume expression in eq.(1). The superscript FV in ∆mFV
K

stands for Finite Volume. The finite-volume corrections necessary to relate ∆mFV
K in (4) to ∆mK in (1)

have been derived in [10].
The presence of terms in eq. (3) which grow exponentially with T when there are intermediate

states |n〉 with energies En which are smaller than mK is a generic feature of the calculation of matrix
elements of bilocal operators. The freedom to add terms of the form cS s̄d and cP s̄γ5d, where cS ,P

are constants, to HW without changing ∆mK allows us to remove two such contributions. We choose
cP such that 〈0 |HW + cP s̄ γ5d|K0〉 = 0. A natural choice for cS would be such as to remove the
single-pion intermediate state. However, although mη > mK , the contribution from the η is noisy and
we find it numerically advantageous to eliminate this contribution. We therefore chose cS such that
〈η |HW+cS s̄d|K0〉 = 0. This leaves us the single-pion and two-pion states to evaluate using three-point
functions and to remove the corresponding growing exponentials.
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Figure 2. The four types of diagram contributing to the K0 → K̄0 transition. The shaded circles represent the
insertion of the effective weak Hamiltonian.

2.1 Ultraviolet divergences in the calculation of ∆mK

The ∆S = 1 effective Weak Hamiltonian takes the form:

HW =
GF√

2

∑
q,q′=u,c

VqdV∗q′ s(C1Qqq′

1 +C2Qqq′

2 ) (5)

where the {Qqq′
i }i=1,2 are current-current operators, defined as:

Qqq′
1 = (s̄iγ

µ(1 − γ5)di) (q̄ jγ
µ(1 − γ5)q′j) and Qqq′

2 = (s̄iγ
µ(1 − γ5)d j) (q̄ jγ

µ(1 − γ5)q′i) . (6)

As the separation between the two HW operators decreases, we have the potential of new ultraviolet
divergences. The diagrams contributing to the K0-K̄0 transition correlation function are presented in
fig.2. Consider for example the Type1 diagram. Power counting suggests that the contribution from
the u-quark in the central loop would lead to a quadratic divergence. However, the V − A nature
of the currents together with the GIM mechanism leads to the elimination of both the quadratic and
logarithmic divergences. Thus once the local operators Q1,2 are renormalised, no new ultraviolet
divergences arise. This is not the case for εK or for K → πνν̄ rare kaons decays, where additional
divergences are present and need to be renormalised [3].

3 Details of the simulation

The calculation is being performed on a L3 × T × Ls = 643 × 128 × 12 lattice, using Möbius Domain
Wall Fermions and the Iwasaki gauge action; more details about the ensemble can be found in [11].
The inverse lattice spacing a−1=2.359(7) GeV and the light and strange quark masses correspond to
mπ = 135.9(3) MeV and mK = 496.9(7) MeV (very close to the physical masses of the neutral pion
mπ0 = 134.98 MeV and kaon mK0 = 497.6 MeV). In studies of charm physics on these configurations,
the bare mass of the charm quark was determined to lie in the range amc � 0.32 - 0.33. Our results
presented below were obtained using amc = 0.31, but we have also studied the dependence on mc

finding it to be mild when compared to the overall uncertainties (see tables 1 and 2 below).
The correlation functions which need to be evaluated are illustrated diagrammatically in fig.2.

The shaded circles represent the insertion of the effective weak Hamiltonian given in eq.(5) so that
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for each such diagram there are 4 contractions which need to evaluated, and we distinguish three
types of quark propagators used in their evaluation.

1. We use Coulomb-gauge wall-source propagators for the d and s quarks at the K0 source and K̄0

sink on each time slice. The d-quark propagators are obtained using standard low-mode deflation
techniques. The lowest 2000 eigenvalues and the corresponding eigenvectors are obtained using the
Lanczos algorithm. The full propagators are then obtained using the conjugate gradient algorithm,
with a sloppy stopping residual of 10−4 on all configurations and an exact one of 10−8 on a small
subset of configurations. These sloppy and exact propagators are used in the all mode averaging
(AMA) [12] procedure, as described below. For the s-quark propagator we simply use the conjugate
gradient algorithm.

2. For the connected diagrams, i.e.those of type 1 and 2, on each time slice we generate point-source
propagators at a single spacial point which corresponds to the position of one of the weak operators
in fig.2. The spacial position of the source is varied from time-slice to time-slice; specifically for
time slice 0 < t < 127, the source is placed at the point (4t(modulo L), 4t(modulo L), 4t(modulo L)).
These propagators connect to the position of the second insertion of the weak Hamiltonian, which is
summed over all space so that momentum is conserved.

The point-source propagators for the u quark are also determined using low-mode deflation as
described above. However, as explained below, they are only used in measurements of type 1 and 2
diagrams with exact propagators and so are only computed for a small subset of configurations. The
point-source c-quark propagators are determined using the conjugate-gradient algorithm.

3. For the u-quark self-loops in the diagrams of type 3 and 4 we use the 2000 low-mode eigenvectors
and eigenvalues mentioned above and complete the construction of the all-to-all propagators stochas-
tically using 60 random space-time volume sources for each configuration. For the c-quark in these
loops, the propagators are obtained stochastically with the same random sources as for the u quarks.

The preliminary results presented below were obtained on a subset of 59 configurations for the
noisier type-3 and type-4 diagrams, using AMA with sloppy propagators corrected by including mea-
surements with exact propagators on a subset of 7 configurations. The less noisy type-1 and type-2
diagrams were calculated on 11 configurations with exact stopping conditions for the propagators. An
indication of the computational cost is about 5 hours on a 8K BG/Q machine for each sloppy measure-
ment and 15 hours for an exact one. The contributions from the different diagrams are combined and
the uncertainties are determined using the superjacknife procedure [13]. In addition, for the discon-
nected type 4 diagrams, which are the most noisy, the left and right-hand sides, see Fig.2, are stored
separately for the K0 source and K̄0 sink in order to enable us to vary the source-sink separation. For
the diagrams of type 1, 2 and 3 the positions of the K0 source and K̄0 sink are varied over all values
of ti and t f but their separation t f − ti is fixed to be 48.

4 Preliminary Results

In the left-hand plot of fig.3 we show the integrated correlation functions as a function of T for each
pair of operators (Qi,Qj) (i, j = 1, 2). The mass difference ∆mK is obtained from the slope of the
correlation function with T and in the figure we obtain the slopes by fitting the correlation function in
the range 10 ≤ T ≤ 20. From the slopes we obtain ∆mFV

K = (5.8 ± 1.7) 10−12 MeV. We now make a
number of comments about this result.
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Figure 3. Left-hand plot: the correlation functions for pairs of operators (Qi,Qj) with all diagrams included.
Right-hand plot: the same but neglecting type 3 and type 4 diagrams. The lines represented uncorrelated fits in
the range 10 ≤ T ≤ 20.

1. As the superscript in ∆mFV
K indicates, finite-volume corrections still need to be applied. A

preliminary study of these, presented in section 4.3 below, suggests that they are small on the
scale of our uncertainties but further work is needed to confirm this.

2. We find that at this stage we do not have sufficient statistics to obtain a reliable covariance matrix
and hence to perform correlated fits. Recall that for the type 1 and 2 diagrams we currently have
measurements on 11 configurations.

3. In the right-hand plots of figure 3 we present the contributions to the correlation functions from
the type 1 and 2 diagrams; these give the larger contribution. Had we estimated ∆mFV

K using
only these diagrams we would have found ∆mFV 1&2

K = (7.0±1.3) 10−12 MeV (the corresponding
contribution from the type 3 and 4 diagrams is ∆mFV 3&4

K = −(1.1 ± 1.2) 10−12 MeV).

In the remainder of this section we expand on three aspects of the calculation, the dependence of
the results on the charm-quark mass, the renormalisation of Q1,2 and the finite-volume corrections.

4.1 Dependence on the mass of the charm quark

In order to profit from the GIM cancellation of the additional ultraviolet divergences when the two
operators in the diagrams of fig.2 approach each other we work in the four-flavour theory with a
charm quark as indicated in the figure. From the collaborations’ exploratory studies of charm-quark
physics we anticipate that the physical bare charm quark mass for this ensemble is amc � 0.32−0.331.
The main results presented here have been obtained with amc = 0.31, but we have also studied the
dependence of the result on mc on 56 configurations and the results are presented in table 1. Given
the relatively large uncertainties in the results, in order to study whether the mc dependence is sig-
nificant we present in table 2 the jackknife differences ∆mK(mc) − ∆mK(0.25). We conclude that the
dependence of ∆mK on the mass of the charm-quark appears to be mild on the scale of our current
uncertainties. We also do not observe any sudden behaviour of the results with mc up to amc = 0.34
which would have signalled a breakdown due to large lattice artefacts.

1T.Tsang, private communication.
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Table 1. The dependence of ∆mK on the mass of the charm quark.

amc 0.25 0.28 0.31 0.34
∆MK 4.7(19) 5.1(18) 5.5(20) 5.9(21)

Table 2. The jackknife differences ∆mK(mc) − ∆mK(0.25).

amc 0.28 0.31 0.34
∆MK 0.38(66) 0.78(65) 1.23(80)

4.2 Renormalisation of the effective weak Hamiltonian

Since there are no new ultraviolet divergences arising from the region of integration/summation where
the separation of the two effective weak Hamiltonians approaches 0, the necessary renormalizsation
is that of the two operators Q1,2. Since Q1 ± Q2 belong to different representations of SU(4) (20 and
84) they renormalize multiplicatively and we need to determine the corresponding two multiplicative
renormalisation constants. In the Q1,2 basis this results in a renormalisation matrix with Z11 = Z22
and Z12 = Z21 (see eq. (7) below). We proceed as is standard by first renormalising the two operators
in a RI-SMOM scheme [14] and then matching this perturbatively to the MS scheme (see sec.III of
ref.[8] for the description of the procedure as applied to ∆mK , noting however that in the present
study we use the (γµ, γµ) as the intermediate RI-SMOM scheme and not (γµ, /q) as used in [8]).

1. The non-perturbative renormalisation is performed on an ensemble [15] with smaller 323×64 lattice
volume generated with the same bare coupling but with a heavier than physical light quark mass and
with the Shamir rather than the Mobius DWF action. The difference in the light quark masses should
lead to a negligible error associated with our substitution of this 323 × 64 ensemble because the NPR
calculation is performed at large momenta. However, the difference between the Shamir and Mobius
actions may lead to as much as 1% difference between the renormalisation factors computed on the
323×64 ensemble and those appropriate for the 643×128 ensemble being used to compute ∆MK . (Here
1% was the difference in lattice spacings found between these two, nearly identical ensembles [11].)

The non-exceptional kinematics defining the (γµ, γµ) RI-SMOM scheme used here is defined by
d(p1)s̄(−p2) → s(p2) d̄(−p1) [16] with p1 = (4, 4, 0, 0) and p2 = (0, 4, 4, 0) in lattice units so that
p2

1 = p2
2 � 7 GeV2. The corresponding renormalisation matrix Zlat→RI-SMOM is found to be

(
QRI-SMOM

1

QRI-SMOM
2

)
= Zlat→RI-SMOM

(
Qlatt

1

Qlatt
2

)
=

(
0.6266 −0.0437
−0.0437 0.6266

) (
Qlatt

1

Qlatt
2

)
. (7)

The errors on the entries in Zlat→RI-SMOM are negligible (typically 1 on the final figure) and the results
were obtained from 3 configurations.

2. Writing the matching matrix from the RI-SMOM scheme to MS in the form

QMS
i = (I + ∆r)i j QRI-SMOM

j (8)

an extension of [17] gives2

∆r =
(
−2.2817 · 10−3 6.8452 · 10−3

6.8452 · 10−3 −2.2817 · 10−3

)
. (9)

2C.Lehner, private communication.
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)
. (7)

The errors on the entries in Zlat→RI-SMOM are negligible (typically 1 on the final figure) and the results
were obtained from 3 configurations.

2. Writing the matching matrix from the RI-SMOM scheme to MS in the form

QMS
i = (I + ∆r)i j QRI-SMOM

j (8)

an extension of [17] gives2

∆r =
(
−2.2817 · 10−3 6.8452 · 10−3

6.8452 · 10−3 −2.2817 · 10−3

)
. (9)

2C.Lehner, private communication.

3. Finally we use the perturbatively calculated Wilson coefficients in the MS scheme from [18],
CMS

1 (7.0 GeV2) = −0.2600 and CMS
2 (7.0 GeV2) = 1.1179.

4.3 Finite-volume corrections

The non-exponential finite-volume effects come from the contribution of the two-pion states to the
correlation function and are given by [10]

∆mFV
K = 2P

∫
dE ρV (E)

f (E)
mK − E

− 2
∑

n

f (En)
mK − En

= −2
(

f (mK) cot(h)
dh
dE

)

E=mK

, (10)

where ρV (E) is the (infinite-volume) density of states with an energy E; i.e. it is the factor relating
f (E) which is defined in the finite volume to the corresponding infinite-volume integrand. On the
right-hand side of eq.(10)

f (mK) = V〈K̄0|HW |(ππ)E=mK 〉V V〈(ππ)E=mK |HW |K0〉V and h(k) = δ(k) + φ(k) . (11)

In eq. (11) δ is the s-wave two-pion phase-shift (the I = 0 channel is the dominant one) and φ is the
kinematic function defined by Lüscher [19] (the quantisation condition for two-pions in the s-wave
and a particular isospin state is tan(φ + δ) = 0). See ref. [10] for further details.

The phase-shift δ(kmK ) and its derivative are unknown from this calculation and so we can only
estimate the finite-volume correction. Provisionally, we do this very approximately by determining the
ππ scattering length aππ and using the linear approximation δ(kmK ) = kmK aππ . With this approximation
the finite-volume correction is found to be much smaller than the total statistical uncertainty, ∆mFV

K =

−0.27(18) × 10−12 MeV. Further studies, using other theoretical or model estimates of δ(kmK ) and its
derivative are needed to improve this estimate and to reduce its uncertainty. However, given the small
contribution of the two-pion states to ∆mK we anticipate that the correction will remain small. We
find that the contribution of the I = 0 two-pion state to ∆mK is (−0.027 ± 0.015) × 10−12 MeV.

5 Summary and Conclusions

We have performed the first non-perturbative calculations of ∆mK ≡ mKL − mKS , now with physical
quark masses. In this talk have presented our preliminary result:

∆mK = (5.5 ± 1.7) × 10−12 MeV . (12)

(The physical value is (∆mK) phys = 3.483(6)×10−12 MeV .) The result in eq. (12) includes the estimate
of the finite-volume corrections discussed above and the quoted error is statistical only.

Our immediate plan is to complete the current calculation by performing measurements on 160
configurations with the aim of reducing the statistical uncertainty to about 1.0 × 10−12 MeV. The sys-
tematic uncertainties need to be studied further; these include assigning an error due to the uncertainty
in mc and the corresponding discretisation effects, as well as a more detailed study of the finite-volume
corrections. In addition, the result in (12) does not include any uncertainty in the Wilson coefficient
functions, both in the original calculations in the MS scheme and in the matching between the non-
perturbative RI-SMOM scheme to MS. While these are obtained in perturbation theory, so that higher
order calculations will reduce any uncertainty, lattice calculations can also help by using step-scaling
to increase the energy scale at which the matching is performed. Ultimately one might hope that
lattice computations can be used to determine the Wilson coefficient functions without the need for
perturbative calculations (see e.g. [20] presented at this conference).
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In the longer term and on the next generation of machines we will develop a strategy to include
an improved determination of ∆mK together with other elements of the RBC-UKQCD kaon physics
programme (see e.g. X.Feng’s talk at this conference[6]). The precise determination of ∆mK in
the standard model and the comparison to the physical value (∆mK) phys = 3.483(6) × 10−12 MeV is
an important example of the use of the use of flavour physics to search for inconsistencies and to
constrain models of new physics.
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