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Abstract

The κ-calculus is a formalism for modelling molecular

biology where molecules are terms with internal state and

sites, bonds are represented by shared names labelling sites,

and reactions are represented by rewriting rules. Depend-

ing on the shape of the rewriting rules, a lattice of dialects of

κ can be obtained. We analyze the expressive power of some

of these dialects by focusing on the thin boundary between

decidability and undecidability for problems like reachabil-

ity and coverability. This analysis may be used, for instance,

for excluding the genesis of dangerous substances.

1 Introduction

In recent years we are witnesses of an increasing interest

in applications of specification languages used in concur-

rency as formal models of biological systems. Languages

like Petri nets, term rewriting, and process calculi are be-

coming common idioms for fostering the cooperation be-

tween researchers working in biology and computer science

[1, 5, 9, 12, 14, 17, 27, 18, 19, 28, 31] . Qualitative analy-

sis like reachability [12, 27] and symbolic model checking

[16], and static analysis like abstract interpretation [8] can

be used for validation and optimization (e.g. detection of

dead rules and dependencies) of models that are used by

biologists for experiments in silico (e.g. stochastic simula-

tions). However, general purpose decision procedures are

not always applicable to validate formal models of biolog-

ical systems. Indeed, the level of granularity used in mod-

elling biological mechanisms can dramatically influence the

expressive power of the resulting formal languages, as in the

case of the passage from basic chemistry (that may be mod-

elled by Petri nets) to bio-chemistry (that requires binding

sites, thus becoming Turing-complete) [36]. For this rea-

son, as in other applications of concurrency, an important

foundational issue is the study of dialects for which qual-

itative analysis is computable in an effective way and the

isolation of minimal fragments in which it is proved to be

impossible. In this paper, we investigate the boundary be-

tween decidability and undecidability of qualitative analysis

of biological systems. As a formal model for our analysis,

we consider the κ calculus [9]. κ is a formalism for mod-

elling molecular biology where molecules are terms with in-

ternal state and with sites, bonds are represented by names

that label sites, and reactions are represented by rewriting

rules. For example, EGFR[tk0](1z) represents a molecule

of species EGFR that is not phosphorilated – the internal

state tk is 0 – and that is bond to another molecule – its

site 1 is labelled with a name z. The reaction in Fig. 1 de-

fines the first step of the Receptor Tyrosine Kinase (RTK)

growth factor EGF (a dimeric form of EGF binds two re-

ceptors EGFR, thus phosphorylating the tyrosine kinase site

– tk switches from 0 to 1). This reaction is rendered by the

following κ rule:

EGF (1x + 2y),EGF (1x + 2z),EGFR(1y),

EGFR[tk0](1z)  EGF (1x + 2y),EGF (1x + 2z),

EGFR(1y),EGFR[tk1](1z)
(1)
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Figure 1. Representation of the κ-rule (1)

A recent contribution turns out to be rather close to the

present one [8]. Using abstract interpretation (abstracting

away from the multiplicity of molecules – always consid-

ered unbounded – and from the exact structure of molec-

ular complexes) authors design an efficient algorithm for

computing the set of reachable complexes in a fragment of

κ with a local rule set and over-approximating the set of

reachable complexes in the general case.

As a matter of fact, classical problems, such as reach-

ability and coverability, turn out to be undecidable in κ.



Therefore one is either compelled to design approximated

analyses or to study these properties in dialects of κ. We

choose the second direction, thus yielding a number of pre-

cise analyses that do not abstract away either from the mul-

tiplicity of molecules or from the exact structure of com-

plexes. To this aim, we consider a number of κ dialects that,

as we discuss in the following, take inspiration from biolog-

ical phenomena such as the molecular self-assembly [33] or

the DNA branch migration [26]. These dialects are ordered

into a lattice by the sublanguage relation – see Figure 2

disregarding the ovals. Let us unravel the lattice with the

restrictions imposed to κ to obtain the sublanguages κ−n,

κ−d, and κ−d −u . The calculus κ−n follows by removing

any form of destruction of molecules (the molecules never

decrease). This fragment naturally models those systems

where molecules always keep their “identity” even when

they are part of a complex because, for example, they can

subsequently dissociate from the complex. This is the case

of polymers, that is chemical structures obtained by joining

monomers that react on complementary surfaces. A sim-

ple polymerisation – the linear bidirectional one, where the

complementary surfaces of monomers are two (that we re-

spectively call l and r in the following) – is modelled by the

following κ−n rules:

A(r),A(l)  A(rx),A(lx) (2)

A(rx),A(lx)  A(r),A(l) (3)

The reaction (2) defines polymerization (the creation of a

bond between two monomers with free complementary sur-

faces); (3) defines depolymerization (the destruction of the

bond, but not of the monomers). The additional restriction

yielding κ−d is the one that disallows the removal of bonds

(depolymerizations are forbidden). This restriction is in-

spired by molecular self-assembly, which is a process where

molecules, initially unbound, adopt a defined arrangement.

The DNA-origami method is a popular example of self-

assembly that allows to create arbitrary two-dimensional

shapes, such as Borromean rings [22], using DNA. In κ−d

self-assembly is directly enforced because bonds cannot be

broken. The last dialect along this axis, called κ−d −u , is

obtained by considering molecules without internal states.

In several cases such states are not useful. An example is

the DNA self-assembly governed by the Watson-Crick com-

plementary base pairing [32]. We also consider two other

subcalculi that forbid destructions of molecules and bonds:

κ−d−i and κ−d−u−i. These dialects are obtained from κ−d

and κ−d −u , respectively, by restricting reductions to those

that never verify the connectedness of reactants. For exam-

ple, the polymerization (2) is a reaction of this type. It turns

out that the Watson-Crick complementary base pairing may

be defined in κ−d−u−i.

Our analysis also takes into account a different axis.

In [7] a new reaction rule has been introduced, called ex-

change. According to this reaction, the interaction between

two molecules may flip a bond from one to the other. For

example, the reader may consider the case where a thief

molecule T may connect to a third site of the monomer A
and steals the polymer connected to the site l of A:

T (t + s),A(h)  T (tx + s),A(hx) (4)

T (tx + s),A(hx + ly)  T (tx + sy),A(hx + l) (5)

(reaction 5 is an example of bond flipping). Bond flipping

allows us to model other interesting DNA systems, such as

those based on branch migration used to create, for instance,

a nanoscale biped walking along a DNA strand [34]. The

calculi including bond flipping are made evident with the

superscript +bf . Finally, we consider also a more liberal

form of flipping, called free flipping (see Figure 3), in which

flipping can occur also between two unbound molecules.

With free flipping, the thief molecule T can steal the poly-

mer to a monomer without previously connecting to it:

T (s),A(ly)  T (sy),A(l) (6)

For all of the 14 dialects of κ we investigate three prob-

lems: the Reachability Problem (RP), the Simple Coverabil-

ity Problem (SCP) and the Coverability Problem (CP). The

RP is the decision problem associated to the existence of a

derivation (simulation) from an initial solution to a target.

As shown in [12, 16, 27], this problem is of high relevance

for validation of formal models of biological systems. The

SCP is the decision problem associated to the existence of

a derivation from an initial solution to a target with given

components, regardless of their multiplicity. SCP is a gen-

eralization of the decision problem associated to the static

analysis considered in [8]. Finally, CP is the decision prob-

lem associated to the existence of a derivation from an ini-

tial solution to a target that contains given components: CP

is a generalization of RP that can naturally be used to for-

mulate structural properties of biological networks without

need of specifying an entire target solution.

Our results about the (un)decidability of RP, SCP, and

CP in the κ lattice are illustrated in Figure 2. The unde-

cidability results are proved by modelling Turing complete

formalisms in the calculi, while the decidability results are

proved by reduction to decidable properties in finite state

systems or Petri-nets. As far as the undecidability results

are concerned, the most surprising one is the undecidability

of CP in κ−d −u . We prove that this very poor fragment of

κ – in which molecules have no state and bonds cannot be

neither destroyed nor flipped – is powerful enough to en-

code 2 Counter Machines [25], a Turing complete formal-

ism. It is also interesting to observe that this result about

κ−d −u relies on the possibility to test at least the presence

of bonds. In fact, κ−d−u−i is no longer Turing complete

because CP is decidable for this fragment (CP allows one
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Figure 2. The κ lattice and the (un)decidability

of RP, SCP, CP

to test whether a certain complex, for instance representing

the termination of a computation, can be produced). While

the dialects that include κ−d −u are Turing complete, many

of them retain decidable SCP and/or RP properties. These

facts, apparently contrasting with Turing universality of the

calculi, are consequences of the following monotonic prop-

erties: reactions cannot decrease either (i) the total number

of molecules in the solution or (ii) the size of the complexes

in the solution. In the calculi satisfying the form of mono-

tonicity (i) we show that it is possible to compute an upper-

bound to the number of molecules in the solutions of inter-

est for the analysis of RP. In this way, we reduce our analysis

to a finite state system. For the calculi satisfying the form of

monotonicity (ii) we show that it is possible to compute an

upper-bound to the size of the complexes in the solutions of

interest for the analysis of SCP. In this case, even if it is not

possible to reduce to a finite state system (because there is

no upper-bound to the number of instances of the complexes

in the solutions of interest), we can reduce to Petri-nets in

which reachability and coverability are decidable.

The paper is organised as follows: Section 2 recalls κ, its

fragments and the needed terminology. Section 3 discusses

the separation results between the fragments of κ. Section 4

discusses related contributions in literature. Section 5 con-

cludes with few final remarks.

2 Preliminaries

This section introduces κ and its dialects, together with

the terminology that is necessary in the sequel.

κ-calculi. Two countable sets of species A, B,C, . . ., and

of bonds x, y, z, . . . are assumed. Species are sorted accord-

ing to the number of sites a, b, c, . . . and fields h, i, j, . . .
they possess. Sites may be either bound to other sites or un-

bound, i.e. not connected to other sites. The configuration

of sites are defined by partial maps, called interfaces and

ranged over by σ, ρ, . . . . The interfaces associate to sites

either a bond or a special empty value ε, which models the

fact that the site is unbound. For instance, if A is a species

with three sites, (2 7→ x; 3 7→ ε) is one of its interfaces.

This map is written 2x +3 (the ε is always omitted). We no-

tice that this σ does not define the state of the site 1, which

may be bound or not. Such (proper) partial maps are used in

reaction rules in order to abstract from sites that do not play

any role in the reactions (similar for evaluations, see below).

In the following, when we write σ + σ′ we assume that the

domains of σ and σ′ are disjoint. The functions dom(·) and

ran(·) return the domain and the range of a function. Fields

represent the internal state of a species. The values of fields

are also defined by partial maps, called evaluations, ranged

over by u, v, . . . . For instance, if A is a species with three

fields, {1 7→ 5; 2 7→ 0; 3 7→ 4}, shortened into 15 +20 +34,

is a possible evaluation. We assume there are finitely many

internal states, that is every field is mapped into a finite set

of values. As for interfaces, u + v, we implicitly assume

that the domains of u and v are disjoint.

Definition 1. A molecule A[u](σ) is a term where u and

σ are a total evaluation and a total interface of A. So-

lutions, ranged over by S, T , . . . , are defined by: S ::=
A[u](σ) | S, S. Bonds in solutions occur at most twice; in

case bonds occur exactly twice the solution is proper. A

pre-solution is a sequence of terms A[u](σ) where u and

σ are partial functions and bonds occur at most twice. A

pre-solution is proper if (similarly as before) bonds occur

exactly twice. The set of bonds in S is denoted bonds(S).

In the rest of the paper the composition operator “,”

is assumed to be associative, so (S, S′), S′′ is equal to

S, (S′, S′′) (therefore parentheses will be always omitted).

Let σ ≤ σ′ if dom(σ) = dom(σ′) and, for every i, if

σ(i) 6= ε then σ(i) = σ′(i) (the two interfaces may differ

on sites mapped to the empty value ε by σ as σ′ may map

such sites to bonds).

Reactions have the shape L  R, where L and R are pre-

solutions called reactants and products, respectively. The

general shape of reactions is defined in the next defini-

tion. Following [7], we extend the definition of [9] with

exchange reactions, thus the calculus is an extension of the

κ-calculus.1

Definition 2. Reactions of the κ+ff calculus – the κ cal-

culus with free flipping rules – are either creations C, or

1Another difference with [9] is that we allow newly produced mole-

cules unbound from existing ones.
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destructions D, or exchanges E.

The format of creations is

A1[u1](σ1), . . . , An[un](σn)
 A1[u

′

1](σ
′

1), . . . , An[u′

n](σ′

n),
B1[v1](φ1), . . . , Bk[vk](φk)

where, for every i, dom(ui) = dom(u′

i), σi ≤ σ′

i, and vi

and φi are total. Reactants and products are proper.

The format of destructions is

A1[u1](σ1), . . . , An[un](σn)
 Ai1 [u

′

i1
](σ′

i1
), . . . , Aim

[u′

im
](σ′

im
)

where i1, . . . , im is an ordered sequence in [1 . . . n], for

every ij , dom(uij
) = dom(u′

ij
), σij

≥ σ′

ij
, and if ij /∈

{i1, . . . , im} then σij
is total. Reactants and products are

proper.

The format of exchanges is

A[u](ax +σ),B [v](b+ρ)  A[u′](a+σ),B [v′](bx +ρ)

where ran(σ) = ran(ρ).

Creations may change state, produce new bonds between

two unbound sites, or synthesise new molecules. Destruc-

tions behave the other way around. Exchanges are remi-

niscent of the π calculus because they define a migration

of a bond from one reactant to the other. We distinguish

two types of exchanges: the one occurring between con-

nected molecules, called (connected) bond flipping, and the

one occurring between disconnected molecules, called free

(bond) flipping. These are illustrated below:
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Figure 3. Bond flipping and free flipping

The operational semantics of κ+ff calculus uses the fol-

lowing two definitions:

• the structural equivalence between solutions, denoted

≡, is the least one satisfying (we remind that solutions

are already quotiented by associativity of “,”):

– S, T ≡ T, S;

– S ≡ T if there exists an injective renaming ı on

bonds such that S = ı(T ).

• A1[u1 + u′

1](σ1 ◦ ı + σ′

1), . . . , An[un + u′

n](σn ◦
ı + σ′

n) is an (ı, u′

1 · · ·u
′

n, σ′

1, · · · , σ′

n) instance of

A1[u1](σ1), . . . , An[un](σn) if ı is an injective renam-

ing on bonds and the maps uj + u′

j and σj ◦ ı + σ′

j are

total with respect to the species Aj .

Definition 3. The reduction relation of the κ+ff calculus,

written →, is the least one satisfying the rules:

• let L  R be a reaction of κ+ff , S be an (ı, ũ, σ̃)-

instance of L, and T be an (ı, ũ′, σ̃′)-instance of R.

Then S → T ;

• let S→T and (bonds(T )\bonds(S))∩bonds(R)
= ∅, then S, R → T, R;

• let S ≡ S′, S′ → T ′, and T ′ ≡ T , then S → T .

The κ+ff calculus groups several sub-calculi that have in

turn simpler formats of rules. We have already depicted in

Figure 2 the fragments we study. We move from κ+ff along

two different axes:

1. we restrict reactions by letting im = n in destruc-

tions (forbidding cancellations of molecules), the su-

perscript −n; removing destructions, the superscript

−d; removing destructions and considering species

with emptyset of sites (removing fields), the super-

script −d − u; removing destructions, fields, and such

that no bond occurs in the left-hand side of creations

and exchanges, except the flipping one, the superscript

−d − u − i;

2. we restrict exchanges by allowing bond-flipping only,

the superscript +bf , and by removing exchanges, no

superscript +bf or +ff .

Some of the combinations are empty. For example, a calcu-

lus without checks of bonds and with cancellation of bonds

is meaningless as, in order to remove one bond, it is neces-

sary to test its presence first. The reader may refer to the in-

troduction for formalisations of relevant biological systems

written in these calculi.

Decision problems for qualitative analysis. A first basic

qualitative property is whether a solution eventually pro-

duces “something relevant” or not. Clearly this “something

relevant” can be defined in a variety of ways. In this paper

we consider its formalisation in terms of reachability and

coverability, two standard properties which have been ex-

tensively investigated in many concurrent formalisms. Few

preliminary notions are required.

Definition 4 (Complex). Given a proper solution, a com-

plex is a sub-solution that is connected (there is a path

of bonds connecting every pair of molecules therein) and

proper. Two complexes in a solution are equal if they are

structurally equivalent.
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Let S(S) be the set of different complexes in S; let also

→∗ be the transitive and reflexive closure of →.

Definition 5. RP: the reachability problem of T from a

proper solution S checks the existence of R such that

S →∗ R and R ≡ T ;

SCP: the simple coverability problem of T from a proper

solution S checks the existence of R such that S →∗ R
and S(R) = S(T ) and R ≡ T, T ′, for some T ′;

CP: the coverability problem of T from a proper solution

S checks the existence of R such that S →∗ R and

R ≡ T, T ′, for some T ′.

3 (Un)Decidability Results for κ dialects

In this section we study the (un)decidability of RP, SCP,

and CP in the κ lattice of Figure 2. The overall results rep-

resented in that figure are the consequences of theorems that

we detail in the remainder of this section. For each decid-

ability region – one for RP, one for SCP, and one for CP

– we prove that the corresponding property is decidable in

the top language of the region and undecidable in the bot-

tom language(s) among those not included in the region.

We separate the presentation of our results in two sub-

sections, the first one is devoted to decidability, the latter to

undecidability.

3.1 Decidability results

The proofs of decidability follow by reduction to de-

cidable problems in either finite state systems or Pla-

ce/Transition Petri nets (P/T nets). These nets are an inter-

esting infinite state model for the representation and analy-

sis of parallel processes because they retain several decid-

ability problems, such as reachability or coverability [15].

We recall here the basic notation, for a full description of

this computational model see [29].

Definition 6. A P/T net is a tuple N = (S, T, F, m0), where

S and T are finite sets, called places and transitions, respec-

tively, such that S ∩ T = ∅. A finite multiset over the set S
of places is called a marking, and m0 is the initial marking.

F is the transition function associating to each transition t
two markings called the pre-set and the post-set of t.

The marking m of a P/T net can be modified by means of

transitions firing: a transition with pre-set m′ and post-set

m′′ can fire if m′ ⊆ m; upon transition firing the new mark-

ing of the net becomes (m\m′)∪m′′ where \ and ∪ are the

difference and union operators for multisets, respectively.

Our first positive result is for the κ+ff −n fragment.

Theorem 7. RP is decidable in κ+ff −n .

Proof. We reduce RP to the reachability problem in a finite

state system. Let R be a set of κ+ff −n reactions and let S
and T be two proper solutions. We notice that, in order for

S →∗ T , all intermediary solutions traversed by the com-

putation must have a number of molecules which is less or

equal to the number nT of molecules in T . This is because

in κ+ff −n it is not possible to delete molecules.

Let A be the set of species occurring either in S or in

a rule of R. Let also setT (A) be the set of (proper) solu-

tions with a number of molecules less than nT . This set is

finite up-to structural equivalence because the number of

sites and fields of species is finite, the values of fields is

finite, and the possible combinations of bonds is finite, as

well. By mapping every solution R to its canonical repre-

sentative in the structural equivalence class, called [R], we

can build a finite state system FSST such that, by Defini-

tion 3, given two solutions in setT (A), R → R′ if and only

if [R] → [R′]. We conclude the proof by observing that

S →∗ T if and only if [S] →∗ [T ], and this latter property

is decidable in FSST .

The next result is about the decidability of SCP in

κ+bf −d . This follows from the property that, in κ+bf −d ,

the connectedness of two molecules can never be broken.

Lemma 8. Let S and T be two proper solutions of the

κ+bf −d calculus such that S → T . If there exists a path

of bonds connecting two molecules in S – i.e. the two

molecules are connected – then the two molecules are still

connected in T (possibly with a different path).

Proof. Bonds can only be created and flipped in κ+bf −d .

In particular, in this last case, a flip occurs if the affected

molecules – not only the reactants – are already connected

(see the top picture of Figure 3). This entails the property

of the lemma.

Theorem 9. SCP is decidable for κ+bf −d .

Proof. We reduce to the target marking reachability prob-

lem for P/T nets, which is decidable [4]. This problem

amounts to checking, given a P/T net P and a target mark-

ing mt, whether a marking m is reachable in P such that

m(p) = 0 for every place p such that mt(p) = 0, and

m(p′) ≥ mt(p
′) for every other place p′.

Let R be a set of κ+bf −d reactions and S, T and R be

proper solutions such that S(T ) = S(R) and R ≡ T, R′,

for some solution R′. Let nT be the maximum number of

molecules of a complex in T .

As a consequence of Lemma 8, if S →∗ R, then the

complexes occurring in every intermediary solution tra-

versed by the computation have a number of molecules

smaller or equal to nT .

Let A be the set of species occurring either in S or in a

rule of R, and let SETT (A) be the set of complexes com-

posed of at most nT molecules belonging to the species in

5



A. As in the proof of Theorem 7, this set SETT
≡

(A) is finite

if taken up-to structural equivalence.

We define the following P/T net. The places are the ele-

ments of SETT
≡

(A). We build the transitions in two steps.

Given a rule ρ : L  R, we first define REDρ as the least set

containing all reductions S1, · · · , Sn → S′

1, · · · , S′

m such

that:

i) Si and S′

j ∈ SETT
≡

(A) for every i and j;

ii) the reduction is obtained by applying Definition 3 that

instantiates ρ with a proof-tree PT,

iii) for every i, Si is directly involved in the reduction (i.e.

at least one molecule of its is an instance of a term in

L in the unique leaf of PT).

Condition (iii) ensures that set REDρ is finite up to struc-

tural equivalence. Indeed, we have that n is less or equal

than the number of terms in L, m is less or equal than the

number of terms in R, and SETT
≡

(A) is finite. For each

rule ρ and each reduction S1, · · · , Sn → S′

1, · · · , S′

m in

REDρ we build a P/T transition with pre-set [S1], . . . , [Sn]
and post-set [S′

1], . . . , [S
′

m]. Let mS and mT be the initial

and final markings corresponding to S and T , respectively.

The above P/T net faithfully reproduces the possible com-

putations of S that traverse solutions retaining complexes

composed of at most nT molecules. This allows us to re-

duce SCP of S to the target marking reachability of mT in

the above P/T net, which is decidable.

Our last decidability result regards κ−d−i.

Theorem 10. CP is decidable in κ−d−i.

Proof. We reduce to the coverability problem in P/T net.

Let R be a set of κ−d−i reactions and S, T and R be proper

solutions such that R ≡ T, R′ for some solution R′. Let nT

be the maximum number of molecules of a complex in T .

As in the proof of Theorem 9, let A be the set of species

occurring either in S or in a rule of R, and let SETT (A)
be the set of complexes composed of at most nT molecules

belonging to the species in A. The set SETT
≡

(A) is finite.

We define the following P/T net. Places are elements

of SETT,+
≡

(A) that extends SETT
≡

(A) with the places

Â[u](σ), for every species A ∈ A, every evaluation u, and

with partial functions σ mapping every site to ε (properly

speaking, Â is not a molecule because σ cannot be partial).

Note that the number of places is finite because the addi-

tional places Â[u](σ), with respect to the P/T net already

discussed in Theorem 9, is finite (A is taken from the finite

set A, the possible evaluations u are finite and similarly for

σ).

Transitions are defined in two steps. Given a rule ρ :
L  R, we first define RED+

ρ as the least set containing all

reductions S1, · · · , Sn → S′

1, · · · , S′

m such that:

i) Si and S′

j are complexes composed only of molecules

belonging to species in A (possibly with size greater

than nT );

ii) the reduction is obtained by applying Definition 3 that

instantiates ρ with a proof-tree PT,

iii) for every i, Si is directly involved in the reduction (i.e.

at least one molecule of its is an instance of a term in

L in the unique leaf of PT).

Note that, unlike the proof of Theorem 9, RED+

ρ can be

infinite as we do not impose any restriction to the sizes

of Si. Nevertheless, it is possible to group transitions

in RED+

ρ into finitely many different groups. For every

S1, · · · , Sn → S′

1, · · · , S′

m in RED+

ρ , we let a transition

with pre-set given by the following places

• [Si] if Si has no more than nT molecules;

• Â1 [u1](σ1), · · · , Âm′ [um′ ](σm′) if Si has more than

nT molecules and the molecules of Si that participate

to the reduction (the ones that instantiate the terms in

L in the unique leaf of PT) are

A1 [u1](σ1 + ρ1), · · · ,Am′ [um′ ](σm′ + ρm)

with ε 6∈ ran(ρi) and {ε} = ran(σi)

and post-set given by the following places

• [S′

j ] if S′

j has no more than nT molecules;

• Â1 [u1](σ1), · · · , Âm′ [um′ ](σm′) if S′

j has more than

nT molecules and the molecules of S′

j that participate

to the reduction (the ones that instantiate the terms in

R in the unique leaf of PT) are

A1 [u1](σ1 + ρ1), · · · ,Am′ [um′ ](σm′ + ρm)

with ε 6∈ ran(ρi) and {ε} = ran(σi).

The set of transitions is finite because both the pre-sets and

the post-sets use places in SETT,+
≡

(A) and their cardinality

is less or equal to the number of terms in L and R, respec-

tively.

Let mS and mT be the initial and final markings cor-

responding to S and T , respectively. This P/T net does

not faithfully represent all the complexes that can be pro-

duced by computations starting from S. In fact, while every

complex with cardinality less than nT is represented by a

place, this is not the case for complexes bigger than nT .

When such a complex is created, the net removes the struc-

ture of bonds, and considers only the states and the free

sites of its molecules. However, this information is suffi-

cient for the coverability analysis in the κ−d−i-calculus be-

cause, by Lemma 8, the size of a complex cannot decrease,
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thus complexes larger than nT cannot directly produce the

complexes of interest for the analysis but can only trigger

reactions necessary in order to reach such complexes. As in

the κ−d−i-calculus the bond names cannot be tested in the

reactants of a reaction, the loss of this information for large

structures is not problematic.

This construction allows us to reduce the coverability

problem for κ−d−i to the coverability of the marking mT

in P/T net, which is decidable.

3.2 Undecidability results

Our undecidability results follow by reducing to unde-

cidable problems such as the halting problem for 2 Counter

Machines (2CMs), which is a Turing equivalent formalism.

A 2CM [25] is a machine with two registers R1 and R2

holding arbitrary large natural numbers and a program P
consisting of a finite sequence of numbered instructions of

the following type:

• j : Succ(Ri): increments Ri and goes to the instruc-

tion j + 1;

• j : DecJump(Ri, l): if the content of Ri is not zero,

then decreases it by 1 and goes to the instruction j +1,

otherwise jumps to the instruction l;

• j : Halt: stops the computation and returns the value

in the register R1.

A state of the machine is given by a tuple (j, v1, v2) where

i indicates the next instruction to execute (the program

counter) and v1 and v2 are the contents of the two registers.

The user has to provide the initial state of the machine. In

the rest of the paper, we consider 2CMs in which registers

are initially set to zero and where the instruction 0 is Halt.

Our first negative result is for reachability of a solution in

κ.

Theorem 11. RP is undecidable in κ.

Proof. We reduce the termination problem for 2CMs to RP.

Let M be a 2CM with n instructions. To encode it in κ we

use five species:

1. P is the program counter; it retains one field with val-

ues in [0, . . . , n] and no site;

2. Z1 and Z2, both with one site, represent the value 0;

3. R1 and R2, both with two sites, represent the unity to

be added to or removed from registries.

Let j, l ∈ [0..n] and let i ∈ {1, 2}. The encoding [[·]]κ is

defined in Figure 4.

It turns out that the 2CM halts if and only if the solu-

tion P [10], Z1(1), Z2(1) is reachable from the initial state.

Therefore we conclude that RP is undecidable in κ.

[[j : Succ(Ri)]]κ =

{
P [1j ], Zi(1)  P [1j+1], Zi(1

x), Ri(1
x + 2)

P [1j ], Ri(2)  P [1j+1], Ri(2
x), Ri(1

x + 2)

[[j : DecJump(Ri, l)]]κ =





P [1j ], Zi(1)  P [1l], Zi(1)
P [1j ], Zi(1

x), Ri(1
x + 2)  P [1j+1], Zi(1)

P [1j ], Ri(2
x), Ri(1

x + 2)  P [1j+1], Ri(2)

[[j : Halt]]κ =





P [1j ], Z1(1), Z2(1)  P [10], Z1(1), Z2(1)
P [1j ], Zi(1

x), Ri(1
x + 2)  P [1j ], Zi(1)

P [1j ], Ri(2
x), Ri(1

x + 2)  P [1j ], Ri(2)

Figure 4. Enconding 2CMs in κ.

Theorem 12. SCP is undecidable in κ−n.

Proof. We reduce the termination problem for 2CMs to

SCP in κ−n. For this, we modify the encoding of 2CMs

used for κ in the previous theorem as follows:

• a binary field to the species R1 and R2 is added. When

this field is zero, the molecule is considered garbage,

otherwise it is a valid one.

Without loss of generality, we assume that the two registers

are incremented at least once.

The encoding [[·]]κ−n is defined in Figure 5.

Namely, the increment refines the previous encoding by

setting to 1 the field of the new R; the decrement, rather than

removing one molecule at the end of the register, which is

not allowed in κ−n, removes the bond and resets the field to

zero; the halt operation turns every molecule R to garbage.

We now observe that any solution that contains the com-

plexes in the target solution

T = P [10], Z1(1), Z2(1), R1[1
0](1 + 2), R2[1

0](1 + 2)

encodes a halting configuration. Thus, termination of a

2CM can be reduced to SCP for the corresponding κ−n en-

coding and for the target solution T .

We observe that, without using fields and destructions, as

in κ−d −u , it is not possible to reuse the encoding scheme

of Theorems 11 and 12. In the following theorem we prove

that the use of creations in molecules without fields is suffi-

cient to make the CP problem undecidable.

Theorem 13. CP is undecidable in κ−d −u .
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[[j : Succ(Ri)]]κ−n =

{
P [1j ], Zi(1)  P [1j+1], Zi(1

x), Ri[1
1](1x + 2)

P [1j ], Ri(2)  P [1j+1], Ri(2
x), Ri[1

1](1x + 2)

[[j : DecJump(Ri, l)]]κ−n =





P [1j ], Zi(1)  P [1l], Zi(1)
P [1j ], Zi(1

x), Ri[1
1](1x + 2) 

P [1j+1], Zi(1), Ri[1
0](1 + 2)

P [1j ], Ri(2
x), Ri[1

1](1x + 2) 

P [1j+1], Ri(2), Ri[1
0](1 + 2)

[[j : Halt]]κ−n =





P [1j ], Z1(1), Z2(1)  P [10], Z1(1), Z2(1)
P [1j ], Zi(1

x), Ri[1
1](1x + 2) 

P [1j ], Zi(1), Ri[1
0](1 + 2)

P [1j ], Ri(2
x), Ri[1

1](1x + 2) 

P [1j ], Ri(2), Ri[1
0](1 + 2)

Figure 5. Encoding 2CMs in κ−n.

Proof. We define an encoding of 2CMs by using construc-

tions on species with emptysets of fields. Instructions are

implemented by species Pj with a site 1 that may be bound

to a molecule of species D. When this happens, the instruc-

tion is disabled. A further species Halt with no sites will

represent a terminating state. Registers are implemented by

grids of increasing height (see Figure 6). The first column
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Figure 6. Grid representing the register R1.

consists of Zi molecules with three sites; the other nodes of

the grid, called register molecules, are either Ri,j molecules

or NVi,j or NV ′

i,j molecules, i ∈ {1, 2} and j ranging over

instruction numbers, all retaining 4 sites. The meaningful

part of the grid is the topmost row: the number of molecules

Ri,j therein represents the value of the corresponding regis-

ter while the other rows represent previous values (we add

a new row when performing a decrement). For instance,

the register in Figure 6 contains the value 1 obtained after

two increments –performed by the instruction with index

3–, two decrements –performed by the instruction with in-

dex 4–, and a subsequent increment –performed by the in-

struction with index 3. The full definition of the rules for

incrementing and decrementing the registers can be found

in Appendix A, here we describe their overall behaviour.

The encoding of [[j : Inc(Ri,j)]]κ−d−u increases the top-

most row of the grid with a molecule Ri,j . The encoding

of [[j : DecJump(Ri, l)]]κ−d−u is more complex. The key

idea is to copy the topmost row of the grid (from left to

right according to the graphical representation of the grid

in Figure 6) reducing, if possible, the number of molecules

Ri,j′ . This is obtained replacing the first encountered Ri,j′

molecule with the molecule NV ′

i,j . If there is no such

molecule available, all molecules in the new topmost row

will be of species NVi,j (i.e. the kind of molecule used

to copy molecules of species NVi,j′ or NV ′

i,j′ ). The copy

records j in the second index of the register molecules: in

this way, when the copy is finished (i.e. the new instance

of Zi is produced) it is possible to release the molecule

representing the next instruction, that is Pj+1 in case the

decrement succeeded, Ps otherwise. The encoding [[j :
Halt]]κ−d−u simply produces the Halt molecule.

The encoding satisfies the following property: the 2CM

halts if and only the solution P1(1), Z1(1 + 2 + 3), Z2(1 +
2 + 3) in the corresponding κ−d −u encoding can produce

molecule Halt . Thus, termination of 2CMs is reduced to CP

with target solution T = Halt . Therefore the undecidability

of CP in κ−d −u .

Our last negative result is for the fragment κ+ff −d −u .

Theorem 14. SCP is undecidable in κ+ff −d −u .

Proof. (Sketch) We proceed as described in Theorem 13 as-

suming, without loss of generality as in Theorem 12, that

the two registers are incremented at least once. The new

construction adds rules that come into play in case the Halt
molecule is produced. In fact, the molecule Halt triggers

the “destruction” of the grids representing the registers: one

molecule is produced for each end of each bond, and the

bond is passed to such new molecule. Following this ap-

proach we know a priori the exact structure of the structures

that will be available at the end of the computation in case

of 2CM termination.

4 Related work

In this section we discuss some related works by first fo-

cusing on formal models specifically proposed for describ-

ing biological systems and then considering more generally

the fields of term/graph rewriting and process calculi.

As we said in the Introduction, the closest work to this

contribution is [8] where a syntactic restriction entailing a

form of SCP is proposed. This restriction – κ with local

8



rule sets – is orthogonal to the ones proposed in this paper.

It does not cover the reachability analysis of finite struc-

tures with recurrent patterns, such as finite polymers. In

these cases, the analysis in [8] yields an over-approximation

of the reachable complexes. How much reasonable is this

over-approximation is not clear.

Apart from κ, the literature reports several proposals for

describing (and reasoning on) biological systems, which

use a variety of formal tools, including process calculi,

term/graph rewriting, (temporal) logic, and rule based lan-

guages. However, the expressive power of most of these for-

malisms is the one of Petri nets. Therefore, the decidability

of reachability and coverability problems is an immediate

consequence of the corresponding results on Petri nets.

Formalisms whose expressive power is similar to κ,

miss results analogous to those contained in this paper.

For example, the biochemical abstract machine Biocham

[17, 18] is a rule-based model similar to κ. However reac-

tions are constrained to specify completely the reagent solu-

tion, unlike κ where reactions partially specify reactants and

products. It is worth noticing that the Biocham constraint

do not allow finite descriptions of rules creating polymers

of arbitrary length. As a consequence, when considering

purely qualitative aspects, i.e. removing kinetic quantities,

the Biocham can be reduced to a classical Petri net [17].

Another rule-based model for describing and analysing bio-

logical processes is Pathway Logic [14, 31]. This model

is based on rewrite logic, which allows to describe bio-

logical entities and their relations at different levels of ab-

stractions and granularity by using elements of an algebraic

data type (to describe states) and rewrite rules (to describe

transitions between states and therefore behaviours). Even

though Pathway Logic models of biological processes are

developed in Maude system, which is Turing complete, yet

the analysis of biological systems uses the, so called, Path-

way Logic Assistant for representing models in terms of

Petri Nets [31]. Therefore, also in this case, the relevant de-

cidability results derive from the analogous results on Petri

nets. This is the case also for the model used in [19].

A different model, based on graph transformation has

been proposed by Blinov et al. [1]. However, in this case,

the relevant properties (e.g. membership of a given species

in a reaction network) are semi-decidable and we are not

aware of suitable restrictions on the general model that en-

sure decidability for some of them.

As regards the fields of term/graph rewriting and proc-

ess calculi, we have not find results from which we can

derive immediately those we have obtained for κ. In par-

ticular, for term rewriting systems, the reductions to Petri

net reachability can be applied to decide reachability for

associative-commutative ground term rewriting (AC) [24]

and for Process Rewrite Systems (PRS) [23]. However, AC

and PRS are more expressive than Petri nets, but strictly

less expressive than Turing machines [23]. On the other

hand our positive results are given for fragments of κ that

are Turing-complete. As such, the set of derivatives of a

κ solution may not be a regular set of terms. Thus, deci-

sion procedures based on tree automata like those proposed

in fragments of non-ground term rewriting [6, 10, 20, 30]

cannot be applied to the κ-lattice.

Decidability results for reachability in process calculi

like Mobile Ambients, Boxed Ambients, and Bio-ambients

are given in [2, 3, 4, 11, 35]. These results are obtained for

fragments (or for weak semantics) that ensure the mono-

tonicity of the generated ambient structures. In addition

they consider process calculi (Mobile/Boxed/Bio Ambi-

ents) which operate on tree-like structures and without fresh

name generation. This contrasts with the dialect of κ of Fig-

ure 2, that operate on (possibly cyclic) graph-structures and

admit dynamic creation of new names (bonds).

Concerning Graph Rewriting Systems (GRS) there ex-

ist folk theorems about reachability that state its undecid-

ability in full-fledged GRS and its decidability for GRS in

which rules do not add new nodes. We are not aware of

(un)decidability results for decision problems like reacha-

bility and coverability in graph rewriting systems with fea-

tures similar to those considered in our κ-lattice. The only

specific results we are aware of are those given for reach-

ability in context-free graph grammars [13] and for cover-

ability in GRS that are well-structured with respect to the

graph minor relation [21]. However, we consider here more

general rules than those of context-free graph grammars.

Furthermore, we do not see how to apply the decision pro-

cedure proposed in [21] to languages in the κ-lattice that, in

general, do not enjoy strict compatibility with respect to the

graph minor ordering.

5 Conclusions

We have investigated three decidability problems for

several κ dialects. These problems allow one to check

whether, starting from a given initial solution, a sequence

of reactions described in the κ formalism produces a solu-

tion having some specific features. Hence our results, sum-

marized in Figure 2, can be seen as a first step in the direc-

tion of qualitative analysis of κ calculus. Besides presenting

techniques for qualitative analysis, we also characterise the

computational power of κ-like biologically inspired models.

In this respect, the main result is that we can remove bond

and molecule destruction and the internal state of molecules

from κ without losing Turing completeness (see the mod-

elling of 2 Counter Machines presented in “ the proof of

Theorem 13). On the contrary, if we remove the possibility

to test the presence of one bond in a reaction, the calculus

is no longer Turing universal (see Theorem 10).

Our work can be extended along at least two lines. First,
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several other fragments of κ can be considered for a simi-

lar investigation. Notably nanoκ that admits at most two

reactants. In particular, our encoding of a 2CM into κ−d−i

uses ternary (at the left hand side) rules and we conjecture

that a 2CM cannot be encoded faithfully into κ−d−i with bi-

nary rules only. Second, there are several other interesting

properties to investigate, for example a form of coverability

where one admits complexes strictly larger than the original

ones. In this perspective, we plan to exploit the theory of

well structured transition systems as done in [21] to prove

decidability of coverability w.r.t. the graph minor relation in

classes of graph rewriting systems.
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A Details of the proof of Theorem 13.

In this appendix we formally define the encoding of

2CMs in κ−d −u informally discussed in the proof of The-

orem 13.

The encoding of an increment [[j : Succ(Ri)]]κ−d−u is

defined by the three rules

Pj(1), Zi(1)  Pj(1
x), D(1x), Zi(1

y),
Ri,j(1

y+ 2 + 3 + 4), Pj+1(1)
Pj(1), Ri,j′(2 + 3)  Pj(1

x), D(1x), Ri,j′(2y + 3),
Ri,j′(1y+ 2 + 3 + 4), Pj+1(1)

Pj(1), NVi,j′(2 + 3)  Pj(1
x), D(1x), NVi,j′(2y+ 3),

Ri,j′(1y+ 2 + 3 + 4), Pj+1(1)

The encoding of a decrement

[[j : DecJump(Ri, l)]]κ−d−u

is reported in Figure 7.

The encoding of an halt instruction [[j : Halt]]κ−d−u is

defined by the rule

Pj(1)  Pj(1
x), D(1x), Halt

11



Pj(1), Zi(1)  Pj(1
x), D(1x), Zi(1

y), Pl(1)

Pj(1), Ri,j′(2 + 3)  Pj(1
x), D(1x), Ri,j′(2 + 3y),

NV ′

i,j(1 + 2 + 3 + 4y)

Pj(1), Xi,j′(2 + 3)  Pj(1
x), D(1x), Xi,j′(2 + 3y),

NVi,j(1 + 2 + 3 + 4y) (X ∈ {NV,NV ′})

Xi,j(1 + 4x), Yi,j′(1y + 3x), Wi,j′(2 + 4y)  Xi,j(1
z + 4x), Yi,j′(1y + 3x), Wi,j′(2u + 4y),

Xi,j(1 + 2z + 3 + 4u) (X, W ∈ {NV,NV ′}, Y ∈ {NV,NV ′})

NVi,j(1 + 4x), Yi,j′(1y + 3x), Ri,j′(2 + 4y)  NVi,j(1
z + 4x), Yi,j′(1y + 3x), Ri,j′(2u + 4y),

NV ′

i,j(1 + 2z + 3 + 4u) (Y ∈ {NV,NV ′})

NV ′

i,j(1 + 4x), Yi,j′(1y + 3x), Ri,j′(2 + 4y)  NV ′

i,j(1
z + 4x), Yi,j′(1y + 3x), Ri,j′(2u + 4y),

Ri,j(1 + 2z + 3 + 4u) (Y ∈ {NV,NV ′})

Ri,j(1 + 4x), Yi,j′(1y + 3x), Ri,j′(2 + 4y)  Ri,j(1
z + 4x), Yi,j′(1y + 3x), Ri,j′(2u + 4y),

Ri,j(1 + 2z + 3 + 4u) (Y ∈ {R,NV, NV ′})

Ri,j(1 + 4x), Yi,j′(1y + 3x), Xi,j′(2 + 4y)  Ri,j(1
z + 4x), Yi,j′(1y + 3x), Xi,j′(2u + 4y),

NV ′

i,j(1 + 2z + 3 + 4u) (X ∈ {NV,NV ′}, Y ∈ {R,NV, NV ′})

Ri,j(1 + 4x), Yi,j′(1y + 3x), Zi,j′(2y + 3)  Ri,j(1
z + 4x), Yi,j′(1y + 3x), Zi,j′(2y + 3u),

Zi,j(1
u + 2z + 3), Pj+1(1) (Y ∈ {R,NV, NV ′})

NV ′

i,j(1 + 4x), Yi,j′(1y + 3x), Zi,j′(2y + 3)  NV ′

i,j(1
z + 4x), Yi,j′(1y + 3x), Zi,j′(2y + 3u),

Zi,j(1
u + 2z + 3), Pj+1(1) (Y ∈ {R,NV, NV ′})

NVi,j(1 + 4x), Yi,j′(1y + 3x), Zi,j′(2y + 3)  NVi,j(1
z + 4x), Yi,j′(1y + 3x), Zi,j′(2y + 3u),

Zi,j(1
u + 2z + 3), Pl(1) (Y ∈ {R,NV, NV ′})

Figure 7. Encoding of decrement instructions [[j : DecJump(Ri, l)]]κ−d−u in κ−d −u .
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