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1 Introduction

The existence of Kihler—Einstein metrics on a compact Kéhler manifold
has been the subject of intensive study over the last few decades, following
Yau’s solution to the Calabi conjecture (see [Ya2,Au,Ti2,Ti3]). The Ricci
flow, introduced by Richard Hamilton in [Hal,Ha2], has become one of
the most powerful tools in geometric analysis. The Ricci flow preserves the
Kéhlerian property, so it provides a natural flow in Kéhler geometry, referred
to as the Kéhler—Ricci flow. Using the Kihler—Ricci flow, Cao [Ca] gave an
alternative proof of the existence of Kihler—Einstein metrics on a compact
Kihler manifold with trivial or negative first Chern class. In the early 90’s,
Hamilton and Chow also used the Ricci flow to give another proof of the
classical uniformization for Riemann surfaces (see [Ha2,Ch,ChLuTi]). Re-
cently Perelman [Pel] has made a major breakthrough in studying the Ricci
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flow. The convergence of the Kihler—Ricci flow on Kihler—Einstein Fano
manifolds was claimed by Perelman [Pe2] and a proof of this convergence
and its generalization to any Kihler manifolds admitting a K&hler—Ricci
soliton was given by the second named author and Zhu in [TiZhu]. Pre-
viously, in [ChTi], Chen and the second named author proved that the
Kihler—Ricci flow converges to a Kéhler—Einstein metric if the bisectional
curvature of the initial metric is non-negative and positive at least at one
point.

However, most algebraic manifolds do not have a definite or trivial first
Chern class. It is a natural question to ask if there exist any well-defined
canonical metrics on these manifolds or on varieties canonically associated
to them, i.e. their canonical models. Tsuji [Ts] used the Kidhler—Ricci flow
to prove the existence of a canonical singular Kihler—Einstein metric on
a minimal algebraic manifold of general type. In this paper, we propose
a program of finding canonical metrics on canonical models of algebraic
varieties of positive Kodaira dimension. We also carry out this program
for minimal Kéhler surfaces. To do it, we will study the Kéhler—Ricci flow
starting from any Kéhler metric and describe its limiting behavior as time
goes to infinity.

Let X be an n-dimensional compact Kéhler manifold. A Kdhler metric
can be given by its Kihler form w on X. In local coordinates zj, ..., z,, we
can write w as

w=+—1 Z gide,' N dZ./T,

ij=1

where {g;-} is a positive definite Hermitian matrix function. Consider the
Kihler—Ricci flow

Sw(t, ) = —Ric(o(t, ) — w(t, ),

(0. ) = o, (1.1)
where w(¢, -) is a family of Kéhler metrics on X and Ric(w(t, -)) denotes the
Ricci curvature of w(t, -) and wy is a given Kdhler metric. If the canonical
line bundle Kx of X is ample and w, represents [Kx], Cao proved in [Ca]
that (1.1) has a global solution w(z, -) for all # > 0 and w(¢, -) converges to
a Kihler-Einstein metric on X. If Ky is semi-positive, Tsuji proved in [Ts]
under the assumption [wy] > [Kx] that (1.1) has a global solution w(t, -).
This additional assumption was removed in [TiZha], moreover, if Ky is
also big, w(t, -) converges to a singular Kéhler—FEinstein metric with locally
bounded Kihler potential as ¢ tends to oo (see [TiZha]).

If X is a minimal Kihler surface of non-negative Kodaira dimension,
then Ky is numerically effective. The Kodaira dimension kod(X) of X is
equal to 0, 1, 2. If kod(X) = O, then a finite cover of X is either a K3
surface or a complex torus, and so after an appropriate scaling, w(t, -)
converges to the unique Ricci-flat metric in the Kéhler class [wy] (cf. [Ca]).
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If kod(X) = 2, i.e.,, X is of general type, then w(t, -) converges to the
unique Kéhler-Einstein orbifold metric on its canonical model as ¢ tends
to oo (see [TiZha]). If kod(X) = 1, then X is a minimal elliptic surface and
does not admit any Kéhler-Einstein current in —c(X), which has bounded
local potential and is smooth outside a subvariety. Hence, one does not
expect that w(t, -) converges to a smooth metric outside a subvariety of X.

In this paper, we study the limiting behavior of w(z, -) as ¢ tends to oo
in the case that X is a minimal elliptic surface. In its sequel, we will extend
our results here to higher dimensional manifolds, that is, we will study the
limiting behavior of (1.1) when X is an n-dimensional algebraic variety of
Kodaira dimension in (0, n) and with numerically positive K. Hence, our
first goal is to identify limiting candidates. If X is a minimal elliptic surface
of kod(X) = 1, there exist an algebraic curve ¥ and a holomorphic map
f: X — Xsuchthat Ky = f*L for some ample line bundle L over X. The
general fibre of the holomorphic fibration induced by f is a non-singular
elliptic curve. Let X,,, consist of all s € ¥ such that f~'(s) is a nonsingular
fibre and let X,,, = f*I(Z,eg). For any s € X, £~1(s) is an elliptic
curve, so the L>-metric on the moduli space of elliptic curves induces
a semi-positive (1, 1)-form wwp on Z,.,. A metric w is called a generalized
Kihler-Einstein metric if it is smooth on X,,,, and extends appropriately
to ¥ and satisfies

Ric(w) = —w + wwp, 0N Xj.

Such a metric exists and is unique in a suitable sense.! Here is our main
result of this paper.

Theorem 1.1 Let f : X — X be a minimal elliptic surface of kod(X) =1
with singular fibres X, = mF\, ..., X5, = m Fy of multiplicity m; € N,
i =1, ..., k. Then for any initial Kdhler metric, the Kdhler—Ricci flow (1.1)
has a global solution w(t, -) for all time t € [0, 00) satisfying the following.

1. w(t, ) convergesto f*we € —2mc(X) as currents for a positive current
Woo ON 2. _

2. Wy is sSmooth on %, and Ric(ws) = —/—1089 log wy is a well-defined
current on X satisfying

mi

—1
[si], (1.2)
my

k
Ric(ws) = —woo + wwp + 27 Z
i=1

where wwp is the induced Weil-Petersson metric and [s;] is the current of
integration associated to the divisor s; on X. w is called a generalized
Kdhler—Einstein metric on X.

! Such canonical metrics can be also defined for higher dimensional manifolds. We refer
the readers to Sect. 3 for more details.
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3. For any compact subset K C X, there is a constant C such that for
all t € [0, co0)

o, ) — ffoo()lle) + e sup ot N -1 llzecr-1¢) < Ck-
sef(K)
(1.3)

Moreover, the scalar curvature of w(t, -) is uniformly bounded on any
compact subset of X .

Remark 1.1 We conjecture that w(¢, -) converges to f*wy, in the Gromov—
Hausdorff topology and in the C*° topology outside singular fibres.

An elliptic surface f : X — X is an elliptic fibre bundle if it does not
admit any singular fibre. Such X is isotrivial as an etale cover of a product
of two curves.

Corollary 1.1 Let f : X — X be an elliptic fibre bundle over a curve X of
genus greater one. Then the Kdihler—Ricci flow (1.1) has a global solution
with any initial Kdhler metric. Furthermore, w(t, -) converges weakly as
currents to the pullback of the Kihler—Einstein metric on X with the scalar
curvature and || w(t, -)|| L= (x) being uniformly bounded.

Theorem 1.1 seems to be the first general convergence result on col-
lapsing of the Kéhler—Ricci flow. Combining the results in [Ca,Ts,TiZha],
we give a metric classification in Sect. 8.1 for Kéhler surfaces with a nef
canonical line bundle by the Kéhler—Ricci flow.

2 Preliminaries

Let X be an n-dimensional compact Kédhler manifold and

w=+—1 Z gifdzi /\de

ij=1
be a Kéhler form associated to the Kihler metric { 8ij} in local coordin-
ates zj, ..., Z,. The curvature tensor for g is locally given by

2

8ij . G 98ig agpj A
= — — Lk, I=1,2,.., n.
ijki aZkaZl‘ + ;] 8 aZk aZl‘ L] n

The Ricci curvature is given by

B 9 log det(gy)

R.-=
H 8z,~8zj
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So its Ricci curvature form is given by

Ric(w) = /=1 Rizdz; Adz; = —/—100 log det(g;y).

ij=1

2.1 Reduction of the Kdhler—Ricci flow In this section, we will reduce the
Kéhler—Ricci flow (1.1) to a parabolic equation for the Kéhler potential on
any compact Kihler manifold X with semi-ample canonical line bundle K.

Definition 2.1 Let L be a holomorphic line bundle L over a compact Kdhler
manifold X.

1. L is called nef, i.e. numerically effective, if for every curve C C X
L~C:/c1(L)20.
c

2. L is called semi-positive if there exists a smooth Hermitian metric h on L
such that Ric(h) > 0.

3. L is called semi-ample if a sufficiently large power of L is globally
generated.

It always holds that 3 = 2 = 1 and the abundance conjecture in
algebraic geometry predicts that 3 < 2 & 1 for Kx. If Kx is semi-
ample, it is a semi-positive line bundle so that ¢;(X) < 0. Also by the
semi-ampleness of Ky, there is a sufficiently large integer m such that
any basis of H°(X, K'}) gives rise to a holomorphic map f from X into
a projective space. Recall the Kodaira dimension kod(X) of X is defined to
be the dimension of the image by the holomorphic map f and it is in fact
a birational invariant of X.

Let Ka(X) denote the Kéhler cone of X, that is,

Ka(X) = {[w] € H"'(X,R) | [0] > 0}.

Suppose that w(t, -) is a solution of (1.1) on [0, T'). Then its induced
equation for the Kédhler class in Ka(X) is given by the following ordinary
differential equation

% —2mc1 (X) — [w], 2.1)
[w]]i=0 = [wo]. |

It follows that
[w(t, )] = —27c1(X) + ¢ " ([wp] + 27c1 (X)).

When the canonical bundle Ky is semi-ample, kod(X) > 0 and
c1(X) < 0. We can choose a smooth closed semi-positive (1, 1)-form
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X € —2mc1(X) and define the following reference Kéihler metric along the
Kéhler—Ricci flow

o =X +e (@) — X). 2.2)

In particular, w; > e 'wy is a Kihler form for all ¢ € [0, co) and the solution
of (1.1) can be written as

w = w, + /—190¢.

Let © be a smooth volume form on X such that Ric(Q2) = —+/—199 log €2
= — x. Then the evolution for the Kéhler potential ¢ is given by the following
initial value problem

a_(p . e(nfkod(X))t(wt_,’_\/_ilag‘p)n .
o 10g Q 4

’

(2.3)
¢li=0 = 0.

The following existence result for the Kdhler—Ricci flow (1.1) (or equiva-
lently (2.3)) was proved in [TiZha]. It was previously proved in [Ts] in
the special case when Ky is semi-positive with the initial class condition
that [wg] > —2mci(X). This was also studied in [Cal.a] under a stronger
technical assumption.

Theorem 2.1 Given any compact Kihler manifold X and any Kdhler metric
wy, the Kihler—Ricci flow (1.1) has a solution for time t € [0, T), where
T = sup{t > 0| [w,] is a Kéhler class}. In particular, (1.1) has a global
solution for all t € [0, 00) if Kx is nef. Moreover, in the case when x
is semi-positive, (2.3), and consequently (1.1), has a global solution for
all t € [0, 00).

By straightforward calculation (cf. [Hal,ChTi]), the evolution equation
for the scalar curvature R is given by

IR L
= = AR+ [RicP + R, (2.4)

where A is the Laplace operator associated to the Kéhler form w. Then
the following proposition is an immediate conclusion from the maximum
principle for the parabolic equation (2.4).

Proposition 2.1 The scalar curvature along the Kdhler—Ricci flow (1.1) is
uniformly bounded from below if K is nef.

Proof For any T > 0, suppose infjp r1xx R = R(f, zo) for some (%9, zo) €
[0, T]x X. Applying the maximum principle for the parabolic equation (2.4),
we have

|Ric|*(to, z0) + R(to, z0) < 0.
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It is easy to see by diagonalizing Ric(ty, zo) under the normal coordinates
with respect to w(t, -) at zq that there exists a uniform constant C > 0 inde-
pendent of T such that |Ric|?(t, zo) < C. Therefore R(ty, zo) is uniformly
bounded from below. This proves the proposition. O

2.2 Minimal surfaces with positive Kodaira dimension An elliptic fi-
bration of a surface X is a proper holomorphic map f : X — X from X
to a curve X such that the general fibre is a non-singular elliptic curve. An
elliptic surface is a surface admitting an elliptic fibration. Any surface X of
kod(X) = 1 must be an elliptic surface. Such an elliptic surface is some-
times called a properly elliptic surface. Since we assume that X is minimal,
all fibres are free of (—1)-curves. A very simple example is the product of
two curves, one elliptic and the other of genus greater than one.

Let f : X — X be an elliptic surface. The differential d f can be viewed
as an injection of sheaves f*(Kyg) — Qﬁ( Its cokernel Qx5 is called the
sheaf of relative differentials. In general, Qx5 is far from being locally
free. If some fibre has a multiple component, then d f vanishes along this
component and Qyx,x contains a torsion subsheaf with one-dimensional
support. Away from the singularities of f we have the following exact
sequence

0— f*(Kg) = Qy — Qx/z — 0

inducing an isomorphism between Qx5 and Kx ® f*(K %). We also call
the line bundle Qx5 the dualizing sheaf of f on X. The following Kodaira
canonical bundle formula is well-known (cf. [BaHuPeVa,Ko,Mi)).

Theorem 2.2 Let f : X — X be a minimal elliptic surface such that its
multiple fibres are X, = m Fy, ..., Xy, = mFy. Then

Kx = f*(Kz ® (f1O0x)") ® Ox()_(m; — DF), 2.5)
or
Ky = f*(L®0x() (m — DHF)),
where L is a line bundle of degree x(Ox) — 2x(Ox) on %.

Note that deg(f,1O0x)" = deg(f.2x/x) > 0 and the equality holds if
and only if f is locally trivial. The following invariant

u 1
8(f) = x0x) + (28D -2+ (1 - —
i=1 mi
determines the Kodaira dimension of X.

Proposition 2.2 (cf. [BaHuPeVa]) Let f : X — X be a minimal elliptic
surface. Then kod(X) = 1 if and only if 6(f) > O.
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Let 8;/I"; = C be the period domain, where §; = {z € C|Im z > 0} is
the upper half plane and I'y = SL(2, Z)/{Z%1} is the modular group acting

by z — ‘C’;Is The j-function gives an isomorphism 4, /"y — C with

l. j(=0 ifz= ¢35V~ modulo Ty,
2. jd =1 1ifz=+/—1modulo I'y.

Thus any elliptic surface f : X — X gives a period map p : X, — 4/T;.
Set J : X, > Cby J(s) = j(p(s)).

If we choose a semi-positive (1, 1)-form x € —2mc;(X) and apply the
Kéhler—Ricci flow (1.1) on a minimal elliptic surface X of kod(X) = 1.
Theorem 1.1 shows that the Kdhler—Ricci flow (1.1) provides a canonical
way of deforming any given Kéhler metric to a canonical metric. This
canonical metric on X satisfies the curvature equation

m,~—1

k
Ric(goo) = —8oo + gwp + 27 Z [s:].

m.
i=1 !

This can be regarded as the local version of Kodaira’s canonical bundle
formula (2.5), where the pullback of the Weil-Petersson metric gwp by the
period map p is the curvature of the dualizing sheaf f, 2y, s and the current

2 Zle m,";l [s;] corresponds to the residues from the multiple fibres.

i

3 Generalized Kihler-Einstein metrics and the Kihler—Ricci flow

3.1 Limiting metrics on canonical models and Weil-Petersson metrics
In this subsection, we introduce a class of canonical metrics which we call
generalized Kéhler—Einstein metrics.

Let X be an n-dimensional smooth algebraic manifold. Suppose that
K x is semi-ample so that K¢ is base point free for m sufficiently large and
kod(X) = x with 0 < k < n. Then the pluricanonical map

|K%|: X - X,, C CP""

is a holomorphic map. Fix a sufficiently large m, | K'Y | induces a holomorph-
ic fibration f : X — X, such that K5 = f*O (1), where X,, is the image
of the pluricanonical map and is called the canonical model of X. X, is
unique and isomorphic to X,, for m sufficiently large since Ky is semi-
ample and so the canonical ring of X is finitely generated. If Ky is nef and
big, « = n and Ky is semi-ample by Kawamata’s result (cf. [C1KoMo]).
Such X is called a minimal model of general type and the Kdhler—Ricci flow
deforms any Kéhler metric to a unique singular Kihler—FEinstein metric
on X (see [Ts,TiZha]). If 0 < x < n, for a general fibre X;, Ky, is
numerically trivial and X is a Calabi—Yau manifold. We can choose y to be
a multiple of the Fubini—Study metric of CP™" restricted on X, such that
f*x € —2mc(X). Notice that f*yx is a smooth semi-positive (1, 1)-form
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on X. For simplicity, we sometimes denote it by x. Denote by X¢, the set
of all smooth points s of X,, such that X; = f “I(s)isa nonsingular fibre.
Put X,pp = £ (XS0

can

Lemma 3.1 For any Kdhler class [w] on X, there is a smooth function

on X, such that wsg := w + «/—1851# is a closed semi-flat (1, 1)-form
in the following sense: the restriction of wsg to each smooth Xy C X, is
a Ricci flat Kihler metric.

Proof On each nonsingular fibre X, let w, be the restriction of w to X and

dy and 9y be the restriction of 8 and d to X;. Then by Hodge theory, there
is a unique function % on X defined by

{8‘/5‘/]13 = —8‘/5\/ 10g a);'_", (3 1)

Sy, €T = [y @7

By Yau’s solution to the Calabi conjecture, there is a unique y; solving the
following Monge—Ampere equation

o (3.2)

(ws+\/jl3V§VWs)n7K — ehs
sz xllsa)?_" =0.

Since f is holomorphic, ¥(z, s) = ¥,(z) is well-defined as a smooth func-
tion on X . O

By Hodge theory, there exists a volume form €2 on X such that
+/—100d1log 2 = x. Define

Q
Fe — (3.3)

n n—K
w A xk
</<> SF X

Lemma 3.2 F is the pullback of a function on X¢,,.

Proof Since x is the pullback from X,,, we have

V—1dydy log @ = v/—13ydy log wer* A x* =0

on each nonsingular fibre X;. Thus F is constant along each nonsingular
fibre X, and so it is the pullback of a function from X O

can*

There is a canonical Hermitian metric on the dualizing sheaf f..(Q y_ )
= (f+10x)" over X°

can’
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Definition 3.1 Let X be an n-dimensional algebraic manifold. Suppose that
its canonical line bundle Ky is semi-positive and 0 < k = kod(X) < n. Let
X can be the canonical model of X. We define a canonical Hermitian metric
hean 01 f (Qg‘&')‘(can) in the way that for any smooth (n — k,0)-form n on
a nonsingular fibre X,

by K
nf, = X (3.4)
Wsg N X

Now let us recall some facts on the Weil-Petersson metric on the
moduli space M of polarized Calabi—Yau manifolds of dimension n — «
(cf. [FaLu]). Let X — M be a universal family of Calabi—Yau manifolds.
Let (U; 1, ...,t.) be a local holomorphic coordinate chart of M, where
x = dim M. Then each a% corresponds to an element t(a%) € HY(X,, Tx,)
through the Kodaira—Spencer map t. The Weil-Petersson metric is de-
fined by the L’-inner product of harmonic forms representing classes
in H'(X,, Tx,). In the case of Calabi—Yau manifolds, it was shown in [Til]
that the metric can be expressed as follows: Let W be a nonzero holomorphic
(n — k, 0)-form on the fibre X;,; and \Il_u(a%) be the contraction of W and 8%,
then the Weil-Petersson metric is given by

<a 5 ) S, V() A Wa(y)

S L 3.5
0 917 ) e [, WA )

One can also represent wwp as the curvature form of the first Hodge bun-
dle f*Q’;{/’j% Let W be a nonzero local holomorphic section of f*Q'D'C_/’jw and

one can define the Hermitian metric s wp on f*Q’D’{/’fM by

Wil = f U, AW, (3.6)
X
Then the Weil-Petersson metric is given by
wwp = Ric(hwp). (3.7)
Lemma 3.3
Ric(hean) = wwp. (3.8)

Proof Letu = z,ﬁ? Notice that W restricted on each fibre X, is a holo-
SF

morphic (n —k, 0)-form and W AW is a Calabi—Yau volume form, therefore u
is constant along each fibre and can be considered as the pullback of a func-
tion on M. Then by definition

wwp = —\/—laglog/ uwis® = —/—199logu,

Xt
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where the last equality makes use of the fact that |. X wgE" = constant. At
the same time

WA A
Ric(hea) = —~/—1 8810g7/\x——«/ 199 log u.
x“

Wgp

This proves the lemma. O

A singular Kihler metric on an algebraic variety X is a closed positive
(1, 1)-current smooth outside a subvariety of X.

Definition 3.2 Let w be a possibly singular Kdhler metric on X .., such that
[fo € —2mc|(X). Then w is called a generalized Kihler—Einstein metric
if on Xcan

Ric(w) = —w + wwp. 3.9

In general, let f : X — X be a holomorphic Calabi—Yau fibration over an
algebraic variety X. If X is nonsingular and X° is the set of all nonsingular
points s of ¥ with f~'(s) being nonsingular. Then a possibly singular
Kdhler metric w on ¥ is called a generalized Kdhler—Einstein metric if
on ¥°

Ric(w) = Aw + wwp, (3.10)
where A = —1, 0, 1.

The following theorem is the main result of this section and its proof is
based on the work of Kolodziej [Kol1,Kol2].

Theorem 3.1 Suppose that X ., is smooth (or has orbifold singularities)
and F € L't (Xcan) for some € > 0, then there is a unique solution
¥oo € PSH(x) N C%(Xcan) solving the following equation on X

(X +V/—100¢)" = Fe*x~ (3.11)

Furthermore, = x + /—100¢s is a closed positive current on X can. If @

is smooth on X2, , then the Ricci curvature of w on X¢,, is given by

Ric(w) = —w + wwp. (3.12)

In fact, the assumption F € L' (Xan) for some € > 0 is always
satisfied (cf. [SoTi]). In Sect. 3.3, we will show that F € L'7¢(X.,,) when X
is a minimal elliptic surface.

Such canonical metrics also belong to a class of Kéhler metrics which
generalize Calabi’s extremal metrics. Let ¥ be an n-dimensional compact
Kéhler manifold together with a fixed closed (1,1)-form 6. Fix a Kéhler
class [w], denote by K, the space of Kihler metrics within the same

Kihler class, that is, all Kihler metrics of the form w, = @ + / —186_)(p.
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One may consider the following equation
v, =0, (3.13)
where V,, is defined by
wy(Vy, ) = 3(S(w,) — try, (0)). (3.14)

Clearly, when 6 = 0, (3.13) is exactly the equation for Calabi’s extremal
metrics. For this reason, we call a solution of (3.13) a generalized extremal
metric. If ¥ does not admit any nontrivial holomorphic vector fields, then
any generalized extremal metric w,, satisfies

S(wtp) - trw¢ 0) = u,

where u is the constant given by

_ nQ2uey(Y) = [0)) - [w]"!
n = .
[w]"

Moreover, if 2¢1(Y) — [6] = Alw], then such a metric satisfies
Ric(w,) = Aw, + 0,

that is, w,, is a generalized Kéhler—Einstein metric. More interestingly, if we
take 6 to be the pull-back of wwp by f : XZ,, = M from the moduli space
of polarized Calabi—Yau manifolds, we return to those generalized Kihler—
Einstein metrics on the canonical models of algebraic manifolds with semi-
ample canonical bundle. Such generalized Kéhler—Einstein metrics arise
naturally from the collapsing limits of the Kdhler—Ricci flow.

3.2 Minimal surfaces of general type Let X.,, be the canonical model of
a minimal surface of general type from the contraction map f : X — Xca-
Xcan has possibly rational singularities of A-D-E-type by contracting the
(—2)-curves on X. Since K.,, is ample and f*K.,, = Kx, we can assume
the smoothclosed (1, 1)-form x = f*x € —2mc;(X) and x is a Kihler from
on Xcap. It is shown in [TiZha] that the Kdhler—Ricci flow (1.1) converges
to the canonical metric ggg on X, which is the pullback of the smooth
orbifold Kdhler-Einstein metric on the canonical model X,,, although gz
is degenerate along those (—2)-curves.

3.3 Minimal elliptic surfaces of Kodaira dimension one Now consider
minimal elliptic surfaces. From Lemma 3.1, we know that there exists
a closed semi-flat (1, 1)-form wsf in [wq].

Lemma 3.4 Let F be the function on X defined by F = =—~— as (3.3).

2a)SFAX

Let B C X be a small disk with center O such that all fibres X, s # 0, are
nonsingular. Then there exists a constant C > 0 such that
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1. if Xo is of type ml, then

2(m—1) 2<m D

E|s|7 m < Flg <Cls|™ (3.15)
2. if Xo is of type m1, or I}, b > 0, then
_Els < F|p< C|s| log|s| (3.16)
3. if Xy is of any other singular fibre type, then
1
— <F|g=<C. 3.17
c = lp < (3.17)

Proof Let Y be the fibration of f over B.

1. If X, is of type m Iy, we start with a fibration ¥ = C x B/L, where L =
Z-+7.-z(w) isaholomorphic family of lattices with z being a holomorphic
function on B satisfying: z(w) = z(0) 4 const - w™", w is the coordinate
on B, h € N. The automorphism of C x B given by (c, w) — (¢ + %,

2

e# w) descends to Y and generates a group action without fixed
points. We can assume that Y is the quotient of ¥ by the group ac-
tion. Therefore wsg is a smooth family of Ricci-flat metrics over B.
Choose a local coordinate s on B centered around O, and a cover-
ing {U,} of a neighborhood U of X, in X by small polydiscs. Since
the function f*s vanishes to order m along X,, we can in each U,
choose a holomorphic function w, on U, as the mth root of f*s,
with

wy = f*s
and on U, N Uy
Zn\/—_lkaﬁ
Wy =€ m wg
for kyp e {0 1,...,m—1}.0Oneach U,,dsAds = m AdWg.
Then |s| Y Fis smooth and bounded away from zero on Y. Thus (3.15)
is proved

. If X is of type I, b > 0, we can assume ¥ = C x B/L, where

b
L=7+7Z———logs.
2m+/—1 &
Let yy be an arc passing through O in B and y be an arc on X transverse
to Xy with f oy = 3. We also assume that y does not pass through
any double point of X¢y. 2 = 2Fwsg A x is smooth and non-degenerate
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and so is x along y. Since F = 1 ( &2 ) (M), it suffices to estimate

2 \ woAx WSFAX
the function w‘“—s"F| ¥ restricted to y near X,. Let wc be the standard flat
metric on C. Along y, wylx, is uniformly equivalent to wc, so it suffices

to estimate — |, . But
wsF | X

fxs wc —blog|s|

- fxs WSF C2n fxs WSF

wc

WSF | x

and Vol(X,) = f X, @SF is a constant independent of s. Therefore there
exists a constant C > 0 such that

_l 2 _ 2
Cloglsl < F < —Clog]|s|.

If X, is of type ml,, b > 0, we start with a fibration f : Y - B,

where Y = C x B/Land L = Z + Z; ’:‘bﬁlogw and w is the coor-

dinate function of B. So Yy = C; + Cr+ ...+ Cpyp is of type L.
The automorphism (¢, w) — (c, e ri_w) of C x B induces a fibre-
preserving automorphism of order m on Y. Such an automorphism gen-
erates a group action on ¥ without fixed pomts and the quotient of ¥
has a singular fibre of type mI,. Then by using the same arguments for
singular fibres of type ml,, we can prove (3.16). A fibration of type
Iy (b > 0) is obtained by taking a quotient of a fibration of type I,
after resolving the A] -singularities. The lattices can be locally written as

L=s:Z+1Zs: 2 f log s. Then the above argument gives the required

estimate for F.

3. If X is not of type mI,, b > 0 or I, b > 0, it must be of type Ij, 11,
111, IV, IV* III* or II*. Such a singular fibre is not a stable fibre. By
the table of Kodaira (cf. [Ko]), the functional invariant J(s) is bounded
near 0 and J(0) = 0 or 1. One can write down the table of local lat-
tices of periods and the periods are bounded near the singular fibre. For
example, if X is of type /1, then X is a cuspidal rational curve with
J(s) = s+ m € N U {0} in the local normal representation. On each
fibre X the above fixed flat metric wc on X has uniformly bounded area,
therefore

1 wc fxT wc
0<—<2X| -2
C ™ wskly, fxs WSF

<C.

The estimate is then proved by the same argument as that in the previous
case. O

Immediately we have the following corollary.

Corollary 3.1 There exists € > 0 such that F € L'T¢(X).
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Proof Calculate

1
/F1+EXK — n—;(/ </ F1+5wrszpk) XK
z fxs Wsg Jx s

1
_ 1+€ K n—K
- f n—Kk F X /\a)SF
x, ¥sr Jx

1
:—/ Fa<c.
n e
<K>fxstFK X

The last inequality holds for sufficiently small € > 0 because F has at worst
pole singularities by Lemma 3.4 . O

Proposition 3.1 There is a unique solution ¢, € C°(X)NC*® (Xreg) s0lving
the following equation on X

X+ —100¢ = Fe'y. (3.18)

Proof This is a corollary of Theorem 3.1, but still we give an elementary
proof for the sake of completeness. Rewrite (3.18) as

Ap = Fe¥ — 1, (3.19)

where A is the Laplacian operator associated to y. Notice that F is strictly
positive on X and uniformly bounded away from 0. Also by Lemma 3.4,
F € LP(X) for some p > 1. Therefore we can choose a family of functions
{F;} for t € (0, 1] such that F;, > 0 is uniformly bounded below away
from 0, F; € C*(%) and lim,_¢ ||[F; — FlLrxy = 0. Let Fy = F. We
will apply the method of continuity to find the solutions of the following
equation parameterized by ¢ € [0, 1]

Ap, = Fie” — 1. (3.20)

Obviously (3.20) is solvable for all r € (0, 1]. To solve for r = 0 we need
to derive the uniform C?-estimate for ¢,. By the maximum principle, there
exists a constant C; > 0 such that for all € (0, 1]

1
sup ¥ < —— < (.
£x(0,1] infy 0,17 F;
The standard L” estimate gives
ey < Coll Fillr + 1) < Cs.

The Sobolev embedding theorem implies

loillLe < Ca
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for t € (0, 1]. With the C° estimate, we can derive the uniform C*-estimate
for ¢, by the local estimates of the standard theory of linear elliptic PDE
due to the fact that A has uniformly bounded coefficients. Therefore there
exists poo € CO(Z) N C™ (X, satisfying (3.18).

Now we prove the uniqueness. Suppose that there is another solu-
tion ¢’ € C%(Z) N C*®(X,e) solving (3.11). Let v = ¢" — ¢. Then by
the comparison principle for plurisubharmonic functions (cf. [Koll]), we
have

f Fe’y = f (X + V/—100¢) < f (X + V—100¢ + vV/—100v)
¥=0 ¥=<0 ¥<0

= / Fe’ x.
¥=<0

/ (1 —e")Fe*x < 0.
¥=<0

This gives

Therefore ¢ > 0 on ¥ and by the same argument we can show ¥ < 0
so that v = 0 everywhere on X. This completes the proof of the prop-
osition. O

Corollary 3.2 Let f : X — X be a minimal elliptic surface of kod(X) =1
with singular fibres X, = m Fy, ..., X5, = miFy of multiplicity m; € N,
i =1, ...,k If s is the solution in Proposition 3.1, weo = X +~/—100¢x is
a closed positive (1, 1)-form on X and smooth on X,,. The Ricci curvature
Ric(wss) = —+/—100 log ws is a well-defined closed (1, 1)-current on X
and smooth on X,.,. It also satisfies the following generalized Kdiihler—
Einstein equation as currents

mk—l

k
Ric(eg) = —weo + wwp + 27 Z [s:], (3.21)
i=1

my

where wwp is the induced Weil-Petersson metric and [s;] is the current of
integration associated to the divisor s; on X. In particular, if f : X — X2
has only singular fibres of type mly, ws is a hyperbolic cone metric on X,
given by

Ric(ws) = —Weo. (3.22)

Corollary 3.2 shows that w, satisifies a generalized hyperbolic metric equa-
tion with a correction term wwp + 27 Zle m}jl ;1 [s;] inherited from the el-
liptic fibration structure of X. Also we notice that the residues only come

from multiple fibres.
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4 A parabolic Schwarz lemma

In this section we will establish a parabolic Schwarz lemma for compact
Kihler manifolds. It is a parabolic analog of the classical Schwarz lemma
in [Yal] and will lead us to identify and estimate the collapsing on the
vertical direction for properly minimal elliptic surfaces and in general certain
fibre spaces. It also plays a key role in estimating the scalar curvature along
the Kihler—Ricci flow.

Let f : X — Y be a non-constant holomorphic mapping between two
compact Kihler manifolds. Suppose that dim X = n and the K&hler metric
w(t, -) on X is deformed by the Kéhler—Ricci flow (1.1). Then we have the
following parabolic Schwarz lemma.

Theorem 4.1 If the holomorphic bisectional curvature of Y with respect to
a fixed Kdhler metric h 5 is bounded from above by a negative constant —K
and the Kihler—Ricci flow (1.1) exists for all t € [0, T), then

Ck (l)

f*h = w(t, ), 4.1

where Ck(t) is a bounded positive function in t dependent on the initial
metric wy and lim,_, o, Cx(t) = 1 if T = oc.

Proof Choose normal coordinate systems for ¢ = w(z,-) on X and 2 on Y
respectively. Let u = trg(h) = g f* fjéhag and we will calculate the
evolution of u. Standard calculation (cf. [Lu,Yal]) shows that

Au = g" 03 (8" 17 f )
= gilgkj Rkl_fiaf?haﬁ + glj klf kfﬂl otﬂ gll “ SaﬂySf fﬂfk fl )

where S,3,5 is the curvature tensor of /1,5 and the Laplacian A acts on
functions ¢ by

Ap = 78,059,
By the definition of u we have
Au > gi[gk’TRkiﬁ“fjghaﬁ + Ku®.
Now

3_”_ gl gk 8k1

ot fafﬂ Mo
=g'gh (ka + &) 17 g

= ¢" 8 R S [Phag + u,
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therefore

a
(— — A>u <u— Ku®. (4.2)
ot

Let um. () = maxy u(t,-) = u(t, z;) for some z; € X. By the maximum
principle, Au(t, z;) < 0 so that we have

d

2
Eumax < Umax — Kug,,.

Thus e (f) < & if tmax (0) < % and

max(f) € ———
tmax) = e

for some C < K if up,, (0) > % This proves the theorem. O

By a similar argument as in the proof of Theorem 4.1 one can also derive
the following Schwarz lemma for volume forms with weaker curvature
bounds on the target manifold.

Theorem 4.2 Suppose that dim X = n > dimY = «. Let x be the Kdihler
Jorm on 'Y with respect to the Kéhler metric h,g. If Ric(h) < —Kh for some
K > 0 and the Kdhler—Ricci flow (1.1) exists for all t € [0, T), then there
exists a constant C > 0 dependent on the initial metric wy such that

n*K/\ * ., K
SENH 4.3)
wl’l
Suppose 2mci(X) = —[f*x] for a Kédhler form xy on Y, i.e. Ky is

a semi-positive line bundle pulled back from an ample line bundle from Y.
From now on, we will write f*x as x for convenience. Since c¢;(X) < 0,
by Theorem 2.1, the Kéhler—Ricci flow has long time existence.

Theorem 4.3 Suppose that dimX = n > dimY =k and f : X - Y
is a holomorphic fibration such that 2rci(X) = —[ f* x] for some Kdhler
form x on Y. Then the Kihler—Ricci flow (1.1) exists for all t € [0, 00) and
there exist constants A, C > 0 such that for all (t, z),

Q
* —Ap(s,w)
7)) <C max 2log ———————¢~ %7
Fa@ = (s,w)e[O,t]XX{ g eM=Ks (s, w)"

43M%WWJFMW%QQ,@@

where 2 is a smooth volume form on X such that Ric(Q2) = — f*

X-
Proof Letu = gif bis fjgxag and choose normal coordinates for g and .

u 2
We will calculate the evolution for log u. Note that Alogu = % — Wuzlg
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and
Au=g" ¢ R £ fxap+ 878 Fif? xap — 87 8 Supa SIS
4.5
Applying the Cauchy—Schwarz inequality, we have
Vuly = D fOFUSRST

i,j.ko.pB

> (1) (SIAF)

i,j.o,B

(ZIﬁ“I(ZIﬁ?‘klz)f)
< (Z|ff’ (X 1saF).

ik,o

I/\

There exists C; > 0 such that |, ﬁyaV“VﬂWVW‘W < C1|V| |W|2 Then
we have

9 A)lo
- — u
ot g

1 kl zj if kl a B Vu|2
=\~ f Xap 878 ﬁyafffkfl » +1

S l] kl Saﬁy(Sfafﬂfk f] +1
< C2M + 1.
On the other hand,
d - d
(5 — A)(p = —tr,(v/—1030¢) + _(p
aw
= —t » —_
(@ — w) + o
dp

= tr,(w,;) + i n.

Combining the above estimates we have

d
(E — A) (logu — 2A¢)

(n—K)t , \n

e
< Cot = 24w, (o) — 2Alog ——— + 249 +2nA + |

Q
< Au+2A10g(—+2Ago—|—3nA
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for some constant A" > 0 if we choose A sufficiently large. The last in-
equality holds because w, > C3x for some constant C3 > 0.

Suppose on each time interval [0, 7], the maximum of logu — 2A¢ is
achieved at (7, zo), by the maximum principle we have

A Q
u(to, 20) = =5 (210g S ({0 20) + 2010, 20) + 3n>
and

M(t, Z)872A(p(t,z)

< u(ty, zp)e 49100
< i 2 IOg Q (lo ZO) e—ZA(p(tquO) + 2§0([0 Zo)e—ZAtp(t(),Z())
— A (M=K gyt ’ ’

+ 3,,1621‘\(#(10,10))

2A

Q 3nA
—2Ag¢(t0,z0) —2Ag(to,z0)

<< — - _
A (log e(n—=1togyn (to, ZO))e +Cat A’ ¢ '

This completes the proof. O

5 Estimates

In this section, we prove the uniform zeroth order and second order estimate
of the Kédhler potential ¢ along the Kéhler—Ricci flow. A gradient estimate
is also derived and it gives a uniform bound of the scalar curvature. We
assume that f : X — ¥ is a minimal elliptic surface of kod(X) = 1 over
acurve X with singular fibres over A = {sy, ..., s¢} C Z. Let X, = 1)
be the corresponding singular fibres for i = 1, ..., k and S be the defining
section of the divisor

50,1 f*(i[si])
i=1 i=1

vanishing exactly on all the singular fibres. We can always find a Hermitian

metric 4 on the line bundle induced by the divisor Zle[Xsi] such that
Ric(h) is a multiple of x and

ISy < 1.

We also write |S|?* for (|S|)* for simplicity.

5.1 Zeroth order and volume estimates We will first derive the zeroth
order estimates for ¢ and ‘;—‘f.
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Lemma 5.1 Let ¢ be a solution of the Kdhler—Ricci flow (2.3). There exists
a constant C > 0 such that ¢ < C.

Proof This is a straightforward application of the maximum principle. Let
@max () = maxy ¢(t, -). Applying the maximum principle, we have

0¢¥max "w?

o =< 10g L — @Pmax
< log XN (@0 =00 +e (w0 — x)°
= 1og O — @max
=< Cl — ®max-

By solving the above ordinary differential inequality, there is a constant C,
such that ¢, < C; and this gives a uniform upper bound for ¢. O

Lemma 5.2 There exists a constant C > 0 such that

¢
— <C. 5.1
o ~ 1)

Proof Differentiating on both sides of (2.3) we obtain

d (g @ _ o
Z) = AZ 41— ety (wo— ) — 2, 5.2
m(a;) o 1T e Mel@o—0 =5 (>-2)

where A is the Laplacian operator of the metric g. It can be rewritten as

0 d 0
E(eta—(f) = A<e’8—f) + e —tr,(wo — X,

and
a0 (o o
—_ = =A== tr,(x) — 1. .
8t<3t+(p) <3t+<p)+r(x) (5.3)
So
d( 09 dp . Op Oy ‘
or (e o 7€ “o " ¥ Lo (@)

Applying the maximum principle, we have

dp Oy
r-r ot t < C
“o " fTeTi=M

for some uniform constant C; only depending on the initial data. By the

long time existence of the Kéhler—Ricci flow, we can always assume ¢ > 1.
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Hence
0 -t Ce 't +te '+ 1
dp < e o+ e +te + <0
ot 1—e! 1] —e!
for some uniform constant Cs. O

Lemma 5.3 There exists a constant C > 0 such that

lpl < C. (5.4)

Proof 1t suffices to derive the lower bound for ¢. Consider v(t,z) =

maxy ¢(t, -) — ¢(t,z) > 0. Fix § > 0. For any p > 1, since both ¢ and a—‘f

are bounded from above, using (2.3), we have

/ el (a)2 — a)tz) < / PV’ < Cle_[/ M Wl (5.5)
X X X

f e”‘gv(a)2 — a)tz)

X

= -1 / P99 (=) A (0 + ;)
X

4y

pé X
4 —1

pé Jx
. Cov/—1 -

pé X

Combining (5.5) and (5.6) we obtain

/|V628”|2a) <C3p8/ ps”w%.

The Sobolev inequality || f ||2 L < Call £ +n implies that for all p > 1

=5

Calculate

P 4
9e2% A 9% A (0 + w;)
p = P
9e2% A 9eT% A w,

3e2% A 3e A wy. (5.6)

)
"Iy

)
lle < Cs8plie™|I7,-

L2p —
Now we can apply Moser’s iteration by successively replacing p by 2 and
letting k — o0. Then the standard argument shows that

5 B
eIl < Colle™ L1

Then we only need to bound the quantity ||e®”||,1. Note that Awg — V—199v
> x 4+ e (wy — x) + ~/—189¢ > 0 if we choose A > 0 sufficiently large.
The lemma is proved if we apply the following proposition. It is proved by
the second named author in [Ti2] based on a result in [H3].
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Proposition 5.1 There exist constants 8, C > 0 depending only on (X, wg)
such that

/ eVl <C, (5.7)
X

for all € C*(X) satisfying wy + «/—1851[/ > 0 and supy ¢ = 0.
This completes the proof. O

Since ¢’ w? = e dt 7+ and ll¢|l co is uniformly bounded, from the uniform
upper bound for % = we conclude that the normalized volume form ¢ o’ is
uniformly bounded above and a lower bound for it will also give a lower

bound for %—‘f.

Lemma 5.4 There exist constants A, C > 0 such that

1 o o’
=8I = =C
Q
Proof 1t suffices to prove the lower bound of the volume form e'w?. No-
tice that log etg = % + ¢ and hence the evolutions for log and(p are
prescribed by
<3 - A) log ot _ tr,(x) — 1 and (5.8)
ot Q
(3 _ A>¢ = tr,(w,) + log dor 0—2. (5.9)
ot Q

Combining the above equations, at any point (¢, z) € [0, 00) x X, there
exists A > 0 such that

9 A1 do” + 249 — Ay log|S|?
- — 0 — A lo
o g o @ 110g |91y

— 2Atr, (@) + tr(x) — Aitry(Ric(h)) + 2Alog &

tw2

t, 2

—2Ap — (4A + 1)

> Atr,(w,) + 2A log + tr,(Aw; — ARic(h)) — Ci(A + 1)

t 2

> Atr,(;) +2Alog 2 — Cl(A+ 1)

if we choose A sufﬁciently large. Suppose on each time interval [0, T,

the minimum of log <5~ + 2A¢ — A;log |S|h is achieved at (#y, z9) €
[0, T] X X, then by the maximum principle at (¢y, zg) we have

Q
tre, () (to, 20) < 2log @(lo, 20) + Cs. (5.10)
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But for some A > 0 we have at (fy, zo)

sz 2\ 2
Co+2l0g 5 = tr, (@) = 2(“’2>
w

1 1 1
QN2 xAwy\? 2 2 )2
> Z(Btw2> ( o ) > C3<|S|h el

where the second inequality follows from the elementary inequality a + b>
> 2ab by diagonalizing both w, and w at (¢, z¢). For each § > 0, we have
the following elementary inequality

logx < x4+ C5 forall x > 0.

It follows that at (¢, zg), we have for some small § < %

1 B
|S|2* 2\ C 2 +1
h elw? = 4 elw?

and by multiplying |S IZMI,

1
Q\? Q
(s ) = a5 +1):
ew ew

We have 21 + 4801 = 2A; if A; is chosen by A; =
117 22 (19, 20) < Cs and

00

A
55 Therefore

t, .2 10 .2

e’(t, z7) >

e (ty, 20).

R Rt

Both ¢ and s ‘211 (to, zo) are uniformly bounded from below, hence the
h
lemma is proved. m|

This also shows that there is a uniform lower bound for %—‘f with at worst
log poles near the singular fibres.

Lemma 5.5 There exists a constant C > 0 such that

3
a_(f > i log |82 — C. (5.11)

Proof By Lemma 5.4, we have

‘2
a Q

Then the lemma is proved by the fact that ¢ is uniformly bounded. O

—¢=>log|S|7" —¢—C.
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5.2 Partial second order estimates In this section, we slightly modify the
proof of the parabolic Schwarz lemma to derive a partial second order esti-
mate. This will imply that along the K&dhler—Ricci flow (1.1) the metric col-
lapses along the fibre direction exponentially fast outside the singular fibres.

Lemma 5.6 (The partial second order estimate) For any § > O there exists
a constant C > 0 depending on § such that

C
tr, () =< Kk (5.12)

Proof By Lemma 5.5, for any § > 0 there exists a constant C; > 0 such
that

259"

N —C.

Letu = g’j X;7- Following the similar calculation in Sect. 4, we have

(% - A)(log |S[;2u — 3Ap)

3
AU — 3A8—‘f + tr, (Ric(h)) + Co A

IA

5
< —Au-— 3A8—‘f +CA

for A sufﬁciently large. On each time interval [0, 7'], the maximum of
log |S|h u— A(p must be achieved at some point (7, z9) € [0, T'] X X ., be-
cause log | S|2°u — Ag tends to —oo near the singular fibres. By the maximum
principle we have

(IS17°u) (t, z0) < 3(|S|28 (p)(lo,zo) +C3 < Cy

and for any (7, z) € [0, T] X X,
(|S|ﬁ5u)(t, 7) < (ISI%‘SM) (to, Zo)e3A(W(I’Z)_w([°’ZO)) < C4e3A(tﬂ(t,Z)—<ﬂ(to,Zo)).

Since |g| is uniformly bounded, we can conclude that |S|?u is uniformly
bounded and the theorem is proved. O

Corollary 5.1 Let X be a non-singular fibre for any s € X,.,. Then along
the Kdihler—Ricci flow (1.1), w decays exponentially fast on X,. Further-
more if A is the Laplacian on X, with respect to wyl|x,, then there exist
constants hy, C > 0 such that

Ce™!

—t
—e ' < Ajp < |S|2)‘2

(5.13)
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Proof Applying the partial second order estimate, we have

) w A
0O<e '+ Asp= X _ X
wolx, w0 A X
wA X w? 1 w? Ce™’
= ( > )( ) =< —trw(x)( <=
w wy A X 2 wo N\ X IS,
for some uniform constants C, A, > 0. This proves the corollary. O

The partial second-order estimate enables us to derive the following
strong partial C%-estimate.

Corollary 5.2 There exist constants X3, C > 0 such that for all s € Xy,

Ce™!

23"
|81,

|supg —inf ¢| <
X5 Xs

Proof Let 6(s) be the smooth family of standard flat metrics on the ellip-
tic fibres over %, such that | x, 00) = / x, @o for all s € X,,. There-

fore 0(s) = wsk|x,. Let Ay, be the Laplacian of 6(s) on each nonsingular
fibre X;. By Green’s formula, we have

1
_——_ 9 = A K GS P} + As 0 ’
@ fxs ) fX Sso (s) fX S 0PV (Gy(x, y) )0(s)

where Gi(-,-) is Green’s function with respect to 6(s) and A, =
infx, «x, Gs(-, -). Since (Xj, 6(s)) is a flat torus, one can easily show that
Green’s function G(-, -) is uniformly bounded below by a multiple of
Diam? (X, 6(s)) (cf. [Si], p. 137). However the diameter diam (X, 6(s))
might blow up near the singular fibres and actually there exist constants
A > 0 and C; such that

Cy

diam(X,, 0(s)) < -
ST

Therefore A; > —lscﬁ for some constant C, > 0 and we have on each

nonsingular fibre X,

|sup @ — inf @| < C3sup |Ago||S|, >
X, X X,

But for some n > 0, C4 and C5 > 0 we have

wolx,
Ag@| = | Ay :
[Agsy@l = | Aol 0(s)
wo A X Cse™!
= |Asp| < G4l Asp| =< ,
0(s) A x X, 0(s) A x X, |S|h
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where the last inequality follows from Corollary 5.1 and Lemma 3.4. This
completes the proof of the corollary. O

5.3 Gradient estimates In this section we will adapt the gradient estimate
in [ChYa] and the argument in [Pe2,SeTi] to obtain a umformbound for

|V |¢and the scalar curvature R. Let u = %—‘f 4+ = log . The evolution
equatlon for u is given by

ou
P Au +tr,(x) — 1. (5.14)

We will obtain a gradient estimate for u, which will help us bound the scalar
curvature from below. Note that u is uniformly bounded from above, so we
can find a constant A > O suchthat A — u > 1.

Theorem 5.1 There exist constants Ly, A5, C > 0 such that

LIS IVul? < C(A — ),
2. —|SI7Au < C(A —u),

where V is the gradient operator with respect to the metric gand | -| = |-|,.

Proof Standard computation gives the following evolution equations for
|Vu|? and Au.

<% - A)|V”|2 = [Vul? + (Vtr,(x) - Vi + Vir,(x) - Vu) - (5.15)

—|VVul> = |VVul?,

0
(E - A) Au = Au + g”gk/ Riju;z + Atry,(X), (5.16)

where V- W = (V, W), for V, X € TX.
On the other hand, V,V;u = —Rif — Xij» SO

0
(5 — A) Au = Au — |VVul? g’lgkj XiTuii + Atrg, ().

We shall now prove the first inequality. Let
\V/ 2
mmGii+%u0=m+m,
A—u

where H, = |S]2(X4L) and H, = |S]2%tr,, ().
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Calculate

0
i A |H;
IS|2M(|VMI2 |VVul> = |VVul> + (Vir, (x) - Vu + Vir,(x) - Vu))
h
A—u

Vul* Vul?
2|S|2“ [Vul _(a |S|2M)| |M

(A=uy A=

o \V4 2 o \V/ 2
—(VISI?“-V(L ! )+V|S|ﬁ“-v(L f'u))

P V|Vul?- VM+V|VM|2.W ISP G — 1) |Vul|?
T Do
(A—u)? (A—u)? B Ve
Rewrite
visze . 7 V) 2 gpspn . v (L
" A—u |S|2A4
and

VIVaP Vi _ VIVuP-Vu - (C((A-0H) o
= € -vVu
(A —u)? (A —u)? (A —u)? |S|2)‘4

for small € > 0. Then the evolution equation for H; is given by

(-2)
— —A|H;
ot

|S|2A4<|VM|2 [VVul> = [VVul* 4+ (Vir(x) - Vi + Vi, () - Vu))

A—u

ot (BT ) st
(:‘ m—_— (VH, - Vu + VH, -Vu)
sistom st on vt 2 SREL) (24
+(1 — e)(V|S|i“ Vu 4 VIS w)%

2%4 |VM|2 2h4 A% |2
—(AlSI, )A_u+|5|h (tw(X)_l)W-
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Also

0 0
<— — A) |S|2“(5 —~ A)trwoo (AISI7)tr,(x)

— (VIS - Vir, () + VIS - Vi, (x)).

Therefore the evolution equation for H is given by

(=)

_ s |Vul|? — [VVul> — |VVul> + (Vtry(x) - Vu + Vir,(x) - Vu)
h A—u
_eSP V|IVul?> - Vu  V|Vul*- Vu |S|2“ [Vul*
" (A—uw)? (A —u)? (A —u)
2(1 — _ 2
2O RV H - V) — —-Re(VH - V|S[?)
A—u |S|h
— o | Vul?

+2(1 — E)

(V V(|S|2Mtr“’(X))) + S 7 |V|S|2k4| tr,(x)
|Vul*

(A|S|2“)w (AIS[ ), (0 + 1S () — 1)
~ w X h w X (A— M)2

[Vu/?
+2| VIS e + IS} ——A tr,(X)-
|SI34(A — )

For the last term, by the calculation in the proof of Theorem 4.3, there exists
a constant C; > 0 such that

2
|S|2“<3 - A)trwoo < ISy (trwoo + O, — Ok )
ot tr,(x)

Also for any € > 0 there exists a constant C; > 0 independent of € such
that

VIVul> - Vu  V|Vul*>-Vu
_ |S|2A.4
(A —u)? (A —u)?

[VulP(IVVu + [VVu?)

< eC, |S|2A4 (A —uy

[Vul* 22, |V VUl + [VVuf?

2A4
SIS T s + S
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Since |S |ﬁ can be considered as functions pulled back from the base,
there exist constants Cz, C4 > 0 such that

VIS * < G812, (x)
and
|AISIZ| < Cal S, ().

Also note that |S|2°tr,,(x) and|S|?°u are uniformly bounded on X for any
6> 0.

Applying the Cauchy-Schwarz inequality repeatedly and choosing €
sufficiently small, there exists a constant Cs > 0 such that

(a )
——A|H
ot
204 |V”|4 2(1 -9

< —€lS];, A ) iy Re(VH -Vu)

2 ~ 21
— |S|2A4Re(VH - VIS[;™) + Cs.
h

Suppose that H achieves its maximum at t (Zo, zo) on [0, T] x X,.,. By
the maximum principle,

VH(ty, z0) =0
and
|Vul*
SPPHM——— (4, , <C
ST, (A—u)3(0 20) = Cy

for some uniform constant C4 > 0.
Since H, is uniformly bounded, there exists a constant C¢ > 0 such that

H(t, z0) < Cs

so that H is uniformly bounded on [0, c0) x X.
This completes the proof of (1).

Now we can prove the second inequality by making use of the first one.
Let As > 2X,4 be sufficiently large and

Au [Vu|?
K = —|S|;2,A5(m> +4|S|iks(m = K| +4K>,

where K| = —[ S| (24) and K, = 4|S|25 (L),

K is uniformly bounded from below since K; is uniformly bounded
from the previous gradient estimate, the Ricci curvature Ric(w) is uniformly
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bounded from below and
—v/—100u = Ric(w) + x, —Au=R+tr,(x) > R.

The evolution equation for K| = —|S |2k5 (

9 A

ot

2is —Au + |VVu|* + g\ gklxifuki — Atr,(x) s Au
= A AR A=

) is given by

—u

2
—Re(VKy - V|S[;")
Iy’

Au

— IS5 (tro () — D5

IS a0 = D s

Au 2Au
S| - Vu - V|S|75).
~2AVIsiF IS5 A —u)  (A—w)? Re(Vu - VISI;")

2
Re(VK, -u) —
—u

The evolution equation for K3 is given in the earlier calculation.
Then the evolution of K is given by

o)

|S|2A5 (4|w|2—Au—4|vw|2—3|vw|2+gU gk X,.juk,—Atrw(x)+8Re(Vtrw(X).W))

A—u

Au |VM|
A S2A5 —4(A SZ)‘S L
+ | | <A _u) ( | |h )A _
iS00 - D2 pevkm)
¢ (A—u)? A—u
2 2 2 Au
— ——Re(VK - VIS|,*) — IS[,* (tro(x) — ) ——
s I (A=
A 2A
VIS — s Re(Vu - VIS

ISP(A —u) (A —u)?

2?»4 2 2

|S|ZA4 A—u A —ur

By the calculation in the proof of Theorem 4.3 we have

—At,(0) = — 8" Ry — 878 8" x5 pxui 7

U leaﬂySf fﬂfk f]
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— il kf(u ) X — il okj oPay — 5
g8 8 kI T XeD)Xi7 — 8 878 " Xij,pXklg
4+ gijgkl Saﬁygf}afléfkyf;s
|Vir, (O

<€|VVul* + Cc(tr,(x))* — ~

for some sufficiently small € > 0 and a constant C, > 0 depending on €.
Also there exists a constant C; > 0 such that

|Aul> < C7|VVul>.

We can assume that |S|25|Vu|2 is uniformly bounded if we choose
As > 2)4 sufficiently large.

By applying the Cauchy—Schwarz inequality repeatedly, there exists
a constant Cg > 0 such that

(7-2)
—— A K
ot
.12
5—|S|,?5|VV”| B 2
A—u A—u

Re(VK - i)

2 _
—Re(VK - VIS[}"?) + Cs.
NS
Suppose that H achieves its maximum at (Zo, zo) on [0, T'] X X, by

the maximum principle,

VK(ty,z20) =0
and so
|VVul|?
S|P to, 20) < Cs.
IS1, - (to, z0) < Cg

Since K is uniformly bounded, there exists a constant Co such that on
[0, 0] x X

K(to, z0) < Co.
This completes the proof of (2). m|

By the volume estimate we have the following immediate corollary.

Corollary 5.3 For any § > 0, there exists Cs > 0 such that

LIS Vul? < G,
2. —IS|75 " Au < Gy
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Now we are in the position to prove a uniform bound for the scalar
curvature. The following corollary tells that the Kéhler—Ricci flow will
collapse with bounded scalar curvature away from the singular fibres.

Corollary 5.4 Along the Kdher-Ricci flow (1.1) the scalar curvature R is
uniformly bounded on any compact subset of X,.,. More precisely, there
exist constants Ag, C > 0 such that

C

206"
ST,

—C<R<

(5.17)

Proof 1t suffices to give an upper bound for R by Proposition 2.1. Notice
that R;; = —u;; — x;7 and then

R = —Au —tr,(x).

By Corollary 5.3 and the partial second order estimate, there exist con-
stants Ag, C > 0 such that

C

R < .
NS

O

It will be interesting to know if the Ricci curvature is uniformly bounded
on any compact subset of X, Itis not expected to be true for the bisectional
curvature. For example, we can choose X = X x X, where X is a Calabi—
Yau manifold and X, is a compact Kdhler manifold of c¢;(X;) < 0. We
can also choose the initial metric wy(xy, x2) = w;(x1) + wy(x2) where
Ric(w;) = 0 and Ric(w,) = —w,. Then along the Kédhler—Ricci flow (1.1),
the solution w(¢, -) is given by

o(t, X1, x2) = e 'wi(x1) + wr(x2).

The bisectional curvature of w, will blow up along time if the bisectional
curvature of w; on X; does not vanish.

5.4 Second order estimates In this section, we prove a second order es-
timate for the potential ¢ along the Kihler—Ricci flow. First we will prove
a formula which allows us to commute the 39 operator and the push-forward
operator for smooth functions on X. Integrating along each fibre with respect
to the initial metric w,, we get a function on X

B 1
Y= Vol(x,) /X peo-

This can be considered as a push-forward of ¢.
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Lemma 5.7 Let ¢ be a smooth function defined on X, then we have

35(/ (pa)o) :/ 309 A wy. (5.18)

Proof 1t suffices to prove that the push forward and 00 commute. Let
m : M — B be an analytic deformation of a complex manifold M, =
7~1(0) and let M, = 7~ '(r). Choose a sufficiently small neighborhood
A C B such that My, = 77 '(A) = U(A x U;) with local coordin-
ates (zil, e zj;, 1), where 7' is the coordinate on U; and ¢ on A. Now choose
any test function ¢ on B with supp ¢ C A and a partition of unity p; with
supp p; C A x U;. Let ¢; = p;p. We calculate

f ;88<p/\a)—Z/A . 85f*§/\<piw=/A85§(Z/U.<p,~w)

= ([ o)=Ll ], )

On the other hand, we have

| rasene= | g i n0) =5 [, rréiene

/(Z/aawmw)z ( 83(pAa)).
fo e o)

for any test function f and hence

85(/ (pw) =/ 3¢ A w.
M, M,

Lemma 5.8 There exists a constant C > 0 such that

Therefore

0
(5 — A) log tr,,, (@) < C(tr,(wp) + 1). (5.19)
Proof Choose a normal coordinate system for g such that g is diagonalized.
By straightforward calculation we have

ad
(5 - A) trwo (a)) =< _trwo (CL)) Z g”g” kkg” kg/l k + Ctra}o (a))trw(a)O)

i,j.k

(5.20)
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It can also be shown that

2 kk
[ Vtry, (@)] =§ 8 8ii k8jj.k
i,j.k

<Y (ng’ng;,klz)z<Zg"k|gj7,k|2)2
i,j k k
_ 5\ 2
= (Z(ngk|gu,k|2> )
i k
N2
(Z(g,, (Zg” ""Ig,,kl) )

< trw() (Cl)) Zg” kklgkz z

< try () Zg“g"kg,k 8T (5.21)
ijk

Combined with the above inequalities, the lemma follows by calculating
— A)log tr,, (w). m|

Lemma 5.9

1

Ae' (9 —9) < —tr,, tr,, o) +2¢. 5.22
(e(p—9) = r(w0)+Vol(Xs)r (/Xswo>+ e (5.22)

Proof Applying (5.18), we have

1 _
Alp — @) = try(w — w,) — trw(Vol(Xs) 20 A wo)

1 :
=2 —try(w;) — Vol(XS)trw</Xsw/\w0 — /XS w; /\a)0>

<2 —e "tr,(wy) + VOT(XS)trw< fX s wé) — (1 — e Htry,(x0)

fxs wo

Vol(X)

et
<2—e¢tr, tr,, 2.
<2 ey + st (fxwo)

Theorem 5.2 (Second order estimates) There exist constants A7, A, C > 0
such that

+(1—e™) try,(x)

AC (=00~ infory 1 (18177 0-9)
tre, (@) (1, 2) < Ce S D +C. (5.23)
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Proof Put H = |S|;" (log tr,, () — Ae' (¢ — ). We will apply the max-
imum principle on the evolution of H. There exists a constant C; > 0 such
that

(5-2)
— — A |H
ot
ad
|S|2A7(5 - A)(log trwo(a)) - Aet((p - a))

VIS o, VISK”
—(VH |S|2k7 +VH - |S|2M>

itz -7
+—2M(log tro, (@) — Ae' (9 — ©))

—(A181;77) (Tog tra, (@) — Ae' (9 — D))

” ” VIS | oy VISE
< C1|S];"try(wo) — AlS], 7trw(wo)—<VH- ISP + VH - |S|2*7)

_ e — ) 1 /

217 t ! 2
—A —p)—A o

+1S1; < OO AT T i) < -

VIS |”7|

+Cé + (log tre, (@) — Ae' (9 — 9))

R
—(AIS;7) (Tog tra, (@) — Ae' (¢ — ).

Notice that there exist constants C, > 0 and C3 such that

tr,, wy | < tr,, Q
Vol(X,) X, Vol(X;) X,

C, Q /
= tr,, X N\ WsF
Vol(Xy) x N wsg Xy

Q
=< C3 tra)(X)-
Wsr N\ X

Then ¢|S/27(¢ — @), |S2722 and |51z, ( Jy. wé) are uniformly

ot
bounded if A7 is chosen to be sufficiently large. Also we have

AIS[YT < Cyl S, ()
and
VIS’

S < Cl STty (%)
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for a uniform constant C4 > 0. Therefore we have

d
(——A)HSQWWMNM—AWW%AM)

ot
VIS — VIS .
— VH—2M+VH 207 +C5€
Np NR

for some uniform constant Cs. Choose A sufficiently large and assume H
achieves its maximum at (¢, zo) on [0, T'] x X,,,. Applying the maximum
principle, we have V H(t,, zo) = 0 and then

(IS1,7tr,(@0)) (fo, z0) < Cee®.

This implies

(IS1 7ty (@) (20, 20) < Co.

The theorem is then proved by comparing H at any point (z, z) € [0, T] X
Xreg and (19, zo). o

Corollary 5.5 Let A be the Laplace operator associated to wy. Then there
exist constants Ag, C > 0 such that

_C
—C < Agp < Ce™i* 4+ C. (5.24)

Proof Notice that Agp = tr,,w — try, (wy) = tr, o — 2 and the corollary is
an immediate consequence of Theorem 5.2. O

6 Uniform convergence

In this section we will prove a uniform convergence of the Kihler—Ricci
flow. Let ¢ be the solution in Proposition 3.1 and xoo = x + +/—190¢sc.
We also identify f*@o, and f* oo With ¢ and xo, for simplicity.

For each s; € A and the corresponding singular fibre X, = f (i), we
let

B, (s;) = {s € X | dist, (s, s;) <r}

be the geodesic ball in ¥ centered at s; for r > 0 with respect to the
fixed Kiahler metric x. We also let B,.(X,,) = f ~1(B,(s;)) be a tubular
neighborhood of the singular fibre Xj;,.

Since ¢ and ¢, are both uniformly bounded on X. Therefore for any
€ > 0, there exists r. > 0 with lim._or. = 0, such that for any z €

U;‘Zl B, (X,,) and t > 0 we have

(¢ — @oo +€log [S]7) (1, 2) < —1
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and

(¢ — oo —€log |SI7) (2, 2) > 1.

Let 5. be a cut off function on X,, suchthatn, = 1 onXca, \ Uffzo B, (Xy)
and n. = 0 on Uf‘:oB%e(XSi).

Suppose that the semi-flat closed form is given by wsp = wy++/—109 sk
and psg blows up near the singular fibres. We let p. be an approximation
for psg given by

pe = (f*ne) psk.

We also define wsp. = wo + +/ —185/)6. Now we define the twisted differ-
ence of ¢ and ¢, by

V. = ¢ — @ — € 'pc +€log S|y
and
U =9 — ¢ — €' pe — €log|S;.

Proposition 6.1 LetA = sup, ()&—”ﬁ;) = supy_ (F~'e™) < oc. Then

there exists €y > 0 such that for any 0 < € < €, there exists T, > 0 such
that for any z € X and t > T, we have

Y. (t,z) < (A +3)e (6.1)
and
Uit z) = —(A+3)e. (6.2)
Proof The evolution equation for v/_ is given by

_ =, _\2
31//; — log et(Xoo +ex+e ta)SF,e + v _1881[/5 )

— ¥~ +elog|S)3.
ot 2)(00/\605;: we + gl |h

(6.3)

Since p. is bounded on X, we can always choose 77 > O sufficiently large
such that for t > T}

Ly (t,2) <=1 onU B, (X,),
2
2. ¢! ZX:SAFwSF <e¢ onX)\ Uf.‘le,s (X,)-

We will discuss in two cases for r > Tj.

Lo If Y o () = maxx ¥ (¢, 1) = ¥ (4, Zmax,) > O for all 7 > Ty. Then
Zmax,t € X\Ui‘;lBrE (Xs,-) for allr > T and so a)SF,e(Zmax,t) = wSF(Zmax,t)-
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Applying the maximum principle at z.x ;, we have

A
ot
_ 2
(1o ¢ (Xoo + €x + €' wsp )
g 2 X0 N WSF

(, Zmax,t)

- l/C +€ 10g |S|i> (t, Zmax,t)

( 2(Xoo + EX) N wsFe + eftwéqu
= | log

— 1 S 2 t, .
2 XYoo N WSF we +elog| |h)( Zma ,t)

) A —t, 2
— (10g (Xoo +€X) AN wsp + e o5 Vo + €elog S|} ) (t, Zmax.)
2Xoo N WSF ’

< =Y. (t, Zmax,)) +1og(l + (A + De) + €.
Applying the maximum principle again, we have
Yo < (A+2)e+ 0(e™) < (A+ e, (6.4)

if we choose € sufficiently small in the beginning and then ¢ sufficiently
large.

2. If there exists #y > T such that max cx ¥ (t, 2) = ¥_ (to, 20) < O for
some zog € X. Assume #; is the first time when max,cx <, V. (¢, 2) =
W (t1,21) > (A + 3)e. Then z; € X \ U*_, B, (X,,) and applying the
maximum principle we have

2(Xoo T €X) A WsFe + e " w%F,e
2Xo0 N WSF

Yo (t,z21) < <10g +610g|5|i)(11, 21)

<log(l + (A + De) + € < (A + 2,

which contradicts the assumption that ¥_ (¢;, z1) > (4 + 3)e. Hence we
have

Y. < (A+3)e.
By the same argument we have
Y > —(A 4+ 3)e.
This completes the proof. O

Proposition 6.2 We have the point-wise convergence of ¢ on X,,. That is,
forany z € X,,, we have

lim ¢(t.2) = 9w (2). (6.5)
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Proof By Proposition 6.1, we have for t > T,

Poo(t, 2) + €log |S[;(t, 2) — (A + 3)e
< o(t,2) < goo(t, 2) — €log|SI5(t, 2) + (A + 3)e.

Then the proposition is proved by letting € — 0. O

Since we have the uniform zeroth and second order estimates for ¢ away
from the singular fibres, we derive our main theorem.

Theorem 6.1 Along the Kdhler—Ricci flow (1.1), ¢ converges to the pull-
back of the unique solution ¢, solving equation (3.11) on X uniformly on
any compact subset of X . in the C L1 topology.

7 An alternative deformation and large complex structure limit points

Mirror symmetry and the SYZ conjecture make predictions for Calabi—Yau
manifolds with “large complex structure limit point” (cf. [StYaZa]). It is
believed that in the large complex structure limit, the Ricci-flat metrics
should converge in the Gromov—Hausdorff topology to a half-dimensional
sphere by collapsing a special Lagrangian torus fibration over this sphere.
This holds trivially for elliptic curves and is proved by Gross and Wilson
(cf. [GrWi]) in the case of K3 surfaces. The method of the proof is to
find a good approximation for the Ricci-flat metrics near the large complex
structure limit. The approximation metric is obtained by gluing together the
Ooguri—Vafa metrics near the singular fibres and a semi-flat metric on the
regular part of the fibration. Such a limit metric of K3 surfaces is McLean’s
metric.

In this section, we will apply a deformation for a family of Calabi—
Yau metrics and derive Mclean’s metric [Mc] without writing down an
accurate approximation metric. Such a deformation can be also done in
higher dimensions. It will be interesting to have a flow which achieves this
limit. The large complex structure limit of a K3 surface X can be identified
as the mirror to the large Kihler limit of X as shown in [GrWi], so we
can fix the complex structure on X and deform the Kihler class to infinity.
Let f : X — CP' be an elliptic K3 surface. Let x > 0 be the pullback
of a Kihler form on CP' and wo be a Kihler form on X. We construct
a reference Kihler metric w; = x 4+ fw; and [w;] tends to [x] as t — 0. We
can always scale w; so that the volume of each fibre of f with respect to w;,
is t. Suppose that 2 is a Ricci-flat volume form on X with ddlog Q2 = 0.
Then Yau’s proof [Ya2] of the Calabi conjecture yields a unique solution ¢,
to the following Monge—Ampere equation for ¢ € (0, 1]

“T990,)2
ot Tie)” _ c,

7.1
fx‘th:O’ 7D
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where C; = [w;]>. Therefore we obtain a family of Ricci-flat metrics

w(t,) = w, + \/—18&0,. The following theorem is the main result of
this section.

Theorem 7.1 Let f : X — CP! be an elliptically fibred K3 surface with
24 singular fibres of type I,. Then the Ricci-flat metrics w(t, -) converges
to the pullback of a Kéhler metric & on CP' in any compact subset of X reg

in the C"' topology as t — 0. The Kiihler metric & on CP' satisfies the
equation

Ric(®) = wwp. (7.2)

Proof All the estimates can be obtained by the same argument in Sect. 5
with little modification. It is relatively easy compared to the Kéhler—Ricci

flow because there is no %—‘f term. Let CPLg be the set of all points s € CP"

with f~!(s) being a nonsingular fibre. We apply the similar argument in
Sect. 6 to prove the uniform convergence of (7.1) away from the singular
fibres to the solution ¢y € co(CcPH N CW(CPleg) solving the following
equation

X++/—100g) @
X 2X A wsp

Therefore w, converges to & = x ++/—199¢, and & satisfies (7.2). This
completes the proof of the theorem. m|

This limit metric @ coincides with McLean’s metric as obtained by
Gross and Wilson [GrWi]. Their construction is certainly more delicate and
gives an accurate approximation near the singular fibres by the Ooguri—Vafa
metrics. Also McLean’s metric is an example of the generalized Kéhler—
Einstein metric defined in Definition 3.2 satisfying

Ric(w) = Aw + wwp

when A = 0.

8 Generalizations and problems

8.1 A metric classification for surfaces of non-negative Kodaira dimen-
sion In this section we will give a metric classification for surfaces of
non-negative Kodaira dimension. Any surface X with nef canonical line
bundle Ky must be a minimal surface and kod(X) > 0.

Now we assume that X is a minimal surface of non-negative Kodaira
dimension.

1. When kod(X) = 2, X is a minimal surface of general type and we have
the following theorem.
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Theorem 8.1 [TiZha] If X is a minimal complex surface of general type,
then the global solution of the Kdhler—Ricci flow converges to a positive
current ws, which descends to the Kdihler—Einstein orbifold metric on its
canonical model. In particular, w., is smooth outside finitely many rational
curves and has local continuous potential.

2. When kod(X) = 1, X is a minimal elliptic surface. By Theorem 1.1, the
Kihler—Ricci flow deforms any Kéhler metric to the unique generalized
Kéhler—Einstein metric w4, on its canonical model X ,,.

3. When kod(X) = 0, X is a Calabi—Yau surface. The normalized Kéhler—
Ricci flow defined in [Ca] deforms any Kédhler metric to the unique
Ricci-flat Kéhler metric in the same Kihler class.

When X is not minimal, the Kidhler—Ricci flow (1.1) must develop sin-
gularities in finite time. Let wq be the initial Kidhler metric and T be the first
time when e "[wo] — (1 —e™")2mc (X) fails to be a Kéhler class. The Kihler—
Ricci flow has a smooth solution w(t, -) on [0, T') (Theorem 2.1) converging
to a degenerate metric as ¢ tends to T (cf. [TiZha]). This degenerate met-
ric is actually smooth outsidea subvariety C. Such a C is characterized by
the condition that e~ 7 [wy] — (1 — e~ T)2mc;(X) vanishes along C. This
implies that C is a disjoint union of finitely many rational curves with
self-intersection —1. Then we can blow down these (—1)-curves and ob-
tain a complex surface X'. Also e~ ! [wy] — (1 — e~ 7)2mc;(X) descends to
a Kihler class on X" and w(7, -) descends to a singular Kéhler metric wy
on X’ with a bounded continuous local potential and a bounded volume form
(cf. [TiZha]). We can consider the Kéhler—Ricci flow (1.1) on X’ with w( as
the initial data. We expect that (1.1) has a unique and smooth solution &'(z, -)
on X’ x (0, T"), where T" is either oo or the first time when [/ (z, -)] fails to
be a Kihler class on X'. If 7" < oo, we can repeat the previous procedure
and continue the flow (1.1), and we will obtain a minimal complex surface
in finite time. Then the flow has a global solution which falls into one of the
cases described above. The problem of contracting exceptional divisors by
the Kihler—Ricci flow is also addressed in [CalLa].

8.2 Higher dimensions In this section, we discuss possible generalizations
of Theorem 1.1 in higher dimensions. First, as we assumed in Sect. 3, let
X be an n-dimensional non-singular algebraic variety such that K is base
point free for m sufficiently large. Then the pluricanonical map defines
a holomorphic fibration f : X — X, by the linear system | K% |, where
Xan 18 the canonical model of X.

1. If kod(X) = n, Kx is big and nef. Hence X is a minimal model of
general type. The Kéhler—Ricci flow will deform any Kéhler metric to
a singular canonical K#hler—Einstein metric on X (cf. [Ts, TiZha]).

2. If kod(X) = 1, X, is a curve. With little modification of the proof,
Theorem 1.1 can be generalized and the Kidhler—Ricci flow will converge.
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3. If 1 < kod(X) < n, the fibration structure of f can be very complicated.
A large number of the calculations can be carried out as in this paper
and we expect the Kidhler—Ricci flow will converge appropriately to the
pullback of a canonical metric ws, on the X.,, such that Ric(we) =

—Wo + wwp on X2, .

In general, when K is nef (not necessarily semi-ample), the Kihler—Ricci
flow has long time existence. Yet it does not necessarily converge, although
the abundance conjecture predicts that Ky is globally generated for m
sufficiently large. Hence, the problem of convergence of the Kéhler—Ricci
flow for nef Ky can be considered as the analytic version of the abundance
conjecture. If Ky is not nef, the flow will develop finite time singularities.
Let wg be the initial Kihler metric and T the first time such that e ' [wg] —
(1 —e™")2mc; (X) fails to be a Kéhler class. The potential ¢(T, -) is bounded
and smooth outside an analytic set of X(cf. [TiZha]). Let X be the metric
completion of w(7, -). We conjecture that X is an analytic variety, possibly
obtained by certain standard algebraic procedures such as a flip. In general,
X, might have singularities and it is not clear at all how to develop the
notion of a weak Ricci flow on a singular variety. Suppose such a procedure
can be achieved and the Kihler—Ricci flow can continue on X, then after
applying the above procedure finitely many times on X, X», ..., Xy, Kx,
will be nef and we obtain the minimal model of X. Then the Kéhler—Ricci
flow has a global solution. We expect that this global solution converges to
a generalized Kdhler—Einstein metric on the canonical model in a suitable
sense.
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