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1 Introduction

The existence of Kähler–Einstein metrics on a compact Kähler manifold
has been the subject of intensive study over the last few decades, following
Yau’s solution to the Calabi conjecture (see [Ya2,Au,Ti2,Ti3]). The Ricci
flow, introduced by Richard Hamilton in [Ha1,Ha2], has become one of
the most powerful tools in geometric analysis. The Ricci flow preserves the
Kählerian property, so it provides a natural flow in Kähler geometry, referred
to as the Kähler–Ricci flow. Using the Kähler–Ricci flow, Cao [Ca] gave an
alternative proof of the existence of Kähler–Einstein metrics on a compact
Kähler manifold with trivial or negative first Chern class. In the early 90’s,
Hamilton and Chow also used the Ricci flow to give another proof of the
classical uniformization for Riemann surfaces (see [Ha2,Ch,ChLuTi]). Re-
cently Perelman [Pe1] has made a major breakthrough in studying the Ricci
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flow. The convergence of the Kähler–Ricci flow on Kähler–Einstein Fano
manifolds was claimed by Perelman [Pe2] and a proof of this convergence
and its generalization to any Kähler manifolds admitting a Kähler–Ricci
soliton was given by the second named author and Zhu in [TiZhu]. Pre-
viously, in [ChTi], Chen and the second named author proved that the
Kähler–Ricci flow converges to a Kähler–Einstein metric if the bisectional
curvature of the initial metric is non-negative and positive at least at one
point.

However, most algebraic manifolds do not have a definite or trivial first
Chern class. It is a natural question to ask if there exist any well-defined
canonical metrics on these manifolds or on varieties canonically associated
to them, i.e. their canonical models. Tsuji [Ts] used the Kähler–Ricci flow
to prove the existence of a canonical singular Kähler–Einstein metric on
a minimal algebraic manifold of general type. In this paper, we propose
a program of finding canonical metrics on canonical models of algebraic
varieties of positive Kodaira dimension. We also carry out this program
for minimal Kähler surfaces. To do it, we will study the Kähler–Ricci flow
starting from any Kähler metric and describe its limiting behavior as time
goes to infinity.

Let X be an n-dimensional compact Kähler manifold. A Kähler metric
can be given by its Kähler form ω on X. In local coordinates z1, ..., zn , we
can write ω as

ω = √−1
n∑

i, j=1

gi j̄dzi ∧ dz j̄ ,

where {gi j̄ } is a positive definite Hermitian matrix function. Consider the
Kähler–Ricci flow

{
∂
∂t ω(t, ·) = −Ric(ω(t, ·)) − ω(t, ·),
ω(0, ·) = ω0,

(1.1)

where ω(t, ·) is a family of Kähler metrics on X and Ric(ω(t, ·)) denotes the
Ricci curvature of ω(t, ·) and ω0 is a given Kähler metric. If the canonical
line bundle KX of X is ample and ω0 represents [KX ], Cao proved in [Ca]
that (1.1) has a global solution ω(t, ·) for all t > 0 and ω(t, ·) converges to
a Kähler–Einstein metric on X. If KX is semi-positive, Tsuji proved in [Ts]
under the assumption [ω0] > [KX ] that (1.1) has a global solution ω(t, ·).
This additional assumption was removed in [TiZha], moreover, if KX is
also big, ω(t, ·) converges to a singular Kähler–Einstein metric with locally
bounded Kähler potential as t tends to ∞ (see [TiZha]).

If X is a minimal Kähler surface of non-negative Kodaira dimension,
then KX is numerically effective. The Kodaira dimension kod(X) of X is
equal to 0, 1, 2. If kod(X) = 0, then a finite cover of X is either a K3
surface or a complex torus, and so after an appropriate scaling, ω(t, ·)
converges to the unique Ricci-flat metric in the Kähler class [ω0] (cf. [Ca]).
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If kod(X) = 2, i.e., X is of general type, then ω(t, ·) converges to the
unique Kähler–Einstein orbifold metric on its canonical model as t tends
to ∞ (see [TiZha]). If kod(X) = 1, then X is a minimal elliptic surface and
does not admit any Kähler–Einstein current in −c1(X), which has bounded
local potential and is smooth outside a subvariety. Hence, one does not
expect that ω(t, ·) converges to a smooth metric outside a subvariety of X.

In this paper, we study the limiting behavior of ω(t, ·) as t tends to ∞
in the case that X is a minimal elliptic surface. In its sequel, we will extend
our results here to higher dimensional manifolds, that is, we will study the
limiting behavior of (1.1) when X is an n-dimensional algebraic variety of
Kodaira dimension in (0, n) and with numerically positive KX . Hence, our
first goal is to identify limiting candidates. If X is a minimal elliptic surface
of kod(X) = 1, there exist an algebraic curve Σ and a holomorphic map
f : X → Σ such that KX = f ∗L for some ample line bundle L over Σ. The
general fibre of the holomorphic fibration induced by f is a non-singular
elliptic curve. Let Σreg consist of all s ∈ Σ such that f −1(s) is a nonsingular
fibre and let Xreg = f −1(Σreg). For any s ∈ Σreg, f −1(s) is an elliptic
curve, so the L2-metric on the moduli space of elliptic curves induces
a semi-positive (1, 1)-form ωWP on Σreg. A metric ω is called a generalized
Kähler–Einstein metric if it is smooth on Σreg, and extends appropriately
to Σ and satisfies

Ric(ω) = −ω + ωWP, on Σreg.

Such a metric exists and is unique in a suitable sense.1 Here is our main
result of this paper.

Theorem 1.1 Let f : X → Σ be a minimal elliptic surface of kod(X) = 1
with singular fibres Xs1 = m1 F1, ..., Xsk = mk Fk of multiplicity mi ∈ N,
i = 1, ..., k. Then for any initial Kähler metric, the Kähler–Ricci flow (1.1)
has a global solution ω(t, ·) for all time t ∈ [0,∞) satisfying the following.

1. ω(t, ·) converges to f ∗ω∞ ∈ −2πc1(X) as currents for a positive current
ω∞ on Σ.

2. ω∞ is smooth on Σreg and Ric(ω∞) = −√−1∂∂ log ω∞ is a well-defined
current on Σ satisfying

Ric(ω∞) = −ω∞ + ωWP + 2π

k∑

i=1

mk − 1

mk
[si], (1.2)

where ωWP is the induced Weil–Petersson metric and [si ] is the current of
integration associated to the divisor si on Σ. ω∞ is called a generalized
Kähler–Einstein metric on Σ.

1 Such canonical metrics can be also defined for higher dimensional manifolds. We refer
the readers to Sect. 3 for more details.
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3. For any compact subset K ⊂ Xreg, there is a constant CK such that for
all t ∈ [0,∞)

‖ω(t, ·) − f ∗ω∞(·)‖L∞(K ) + et sup
s∈ f(K )

‖ω(t, ·)| f −1(s)‖L∞( f −1(s)) ≤ CK .

(1.3)

Moreover, the scalar curvature of ω(t, ·) is uniformly bounded on any
compact subset of Xreg.

Remark 1.1 We conjecture that ω(t, ·) converges to f ∗ω∞ in the Gromov–
Hausdorff topology and in the C∞ topology outside singular fibres.

An elliptic surface f : X → Σ is an elliptic fibre bundle if it does not
admit any singular fibre. Such X is isotrivial as an etale cover of a product
of two curves.

Corollary 1.1 Let f : X → Σ be an elliptic fibre bundle over a curve Σ of
genus greater one. Then the Kähler–Ricci flow (1.1) has a global solution
with any initial Kähler metric. Furthermore, ω(t, ·) converges weakly as
currents to the pullback of the Kähler–Einstein metric on Σ with the scalar
curvature and ‖ω(t, ·)‖L∞(X ) being uniformly bounded.

Theorem 1.1 seems to be the first general convergence result on col-
lapsing of the Kähler–Ricci flow. Combining the results in [Ca,Ts,TiZha],
we give a metric classification in Sect. 8.1 for Kähler surfaces with a nef
canonical line bundle by the Kähler–Ricci flow.

2 Preliminaries

Let X be an n-dimensional compact Kähler manifold and

ω = √−1
n∑

i, j=1

gi j̄ dzi ∧ dz j̄

be a Kähler form associated to the Kähler metric {gi j̄} in local coordin-
ates z1, ..., zn . The curvature tensor for g is locally given by

Ri j̄kl̄ = − ∂2gi j̄

∂zk∂zl̄

+
n∑

p,q=1

gpq̄ ∂giq̄

∂zk

∂gp j̄

∂zl̄

, i, j, k, l = 1, 2, ..., n.

The Ricci curvature is given by

Ri j̄ = −∂2 log det(gkl̄)

∂zi∂z j̄

, i, j = 1, 2, ..., n.
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So its Ricci curvature form is given by

Ric(ω) = √−1
n∑

i, j=1

Ri j̄ dzi ∧ dz j̄ = −√−1∂∂ log det(gkl̄).

2.1 Reduction of the Kähler–Ricci flow In this section, we will reduce the
Kähler–Ricci flow (1.1) to a parabolic equation for the Kähler potential on
any compact Kähler manifold X with semi-ample canonical line bundle KX .

Definition 2.1 Let L be a holomorphic line bundle L over a compact Kähler
manifold X.

1. L is called nef, i.e. numerically effective, if for every curve C ⊂ X

L · C =
∫

C
c1(L) ≥ 0.

2. L is called semi-positive if there exists a smooth Hermitian metric h on L
such that Ric(h) ≥ 0.

3. L is called semi-ample if a sufficiently large power of L is globally
generated.

It always holds that 3 ⇒ 2 ⇒ 1 and the abundance conjecture in
algebraic geometry predicts that 3 ⇔ 2 ⇔ 1 for KX . If KX is semi-
ample, it is a semi-positive line bundle so that c1(X) ≤ 0. Also by the
semi-ampleness of KX , there is a sufficiently large integer m such that
any basis of H0(X, Km

X ) gives rise to a holomorphic map f from X into
a projective space. Recall the Kodaira dimension kod(X) of X is defined to
be the dimension of the image by the holomorphic map f and it is in fact
a birational invariant of X.

Let Ka(X) denote the Kähler cone of X, that is,

Ka(X) = {[ω] ∈ H1,1(X, R) | [ω] > 0}.
Suppose that ω(t, ·) is a solution of (1.1) on [0, T ). Then its induced

equation for the Kähler class in Ka(X) is given by the following ordinary
differential equation

{
∂[ω]
∂t = −2πc1(X) − [ω],

[ω]|t=0 = [ω0].
(2.1)

It follows that

[ω(t, ·)] = −2πc1(X) + e−t([ω0] + 2πc1(X)).

When the canonical bundle KX is semi-ample, kod(X) ≥ 0 and
c1(X) ≤ 0. We can choose a smooth closed semi-positive (1, 1)-form
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χ ∈ −2πc1(X) and define the following reference Kähler metric along the
Kähler–Ricci flow

ωt = χ + e−t(ω0 − χ). (2.2)

In particular, ωt ≥ e−tω0 is a Kähler form for all t ∈ [0,∞) and the solution
of (1.1) can be written as

ω = ωt + √−1∂∂ϕ.

Let Ω be a smooth volume form on X such that Ric(Ω) = −√−1∂∂ log Ω
= −χ. Then the evolution for the Kähler potential ϕ is given by the following
initial value problem

{
∂ϕ

∂t = log e(n−kod(X ))t(ωt+
√−1∂∂ϕ)n

Ω
− ϕ,

ϕ|t=0 = 0.
(2.3)

The following existence result for the Kähler–Ricci flow (1.1) (or equiva-
lently (2.3)) was proved in [TiZha]. It was previously proved in [Ts] in
the special case when KX is semi-positive with the initial class condition
that [ω0] > −2πc1(X). This was also studied in [CaLa] under a stronger
technical assumption.

Theorem 2.1 Given any compact Kähler manifold X and any Kähler metric
ω0, the Kähler–Ricci flow (1.1) has a solution for time t ∈ [0, T ), where
T = sup{t ≥ 0 | [ωt] is a Kähler class}. In particular, (1.1) has a global
solution for all t ∈ [0,∞) if KX is nef. Moreover, in the case when χ
is semi-positive, (2.3), and consequently (1.1), has a global solution for
all t ∈ [0,∞).

By straightforward calculation (cf. [Ha1,ChTi]), the evolution equation
for the scalar curvature R is given by

∂R

∂t
= ∆R + |Ric|2 + R, (2.4)

where ∆ is the Laplace operator associated to the Kähler form ω. Then
the following proposition is an immediate conclusion from the maximum
principle for the parabolic equation (2.4).

Proposition 2.1 The scalar curvature along the Kähler–Ricci flow (1.1) is
uniformly bounded from below if KX is nef.

Proof For any T > 0, suppose inf[0,T ]×X R = R(t0, z0) for some (t0, z0) ∈
[0, T ]×X. Applying the maximum principle for the parabolic equation (2.4),
we have

|Ric|2(t0, z0) + R(t0, z0) ≤ 0.
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It is easy to see by diagonalizing Ric(t0, z0) under the normal coordinates
with respect to ω(t, ·) at z0 that there exists a uniform constant C > 0 inde-
pendent of T such that |Ric|2(t0, z0) ≤ C. Therefore R(t0, z0) is uniformly
bounded from below. This proves the proposition. 
�

2.2 Minimal surfaces with positive Kodaira dimension An elliptic fi-
bration of a surface X is a proper holomorphic map f : X → Σ from X
to a curve Σ such that the general fibre is a non-singular elliptic curve. An
elliptic surface is a surface admitting an elliptic fibration. Any surface X of
kod(X) = 1 must be an elliptic surface. Such an elliptic surface is some-
times called a properly elliptic surface. Since we assume that X is minimal,
all fibres are free of (−1)-curves. A very simple example is the product of
two curves, one elliptic and the other of genus greater than one.

Let f : X → Σ be an elliptic surface. The differential d f can be viewed
as an injection of sheaves f ∗(KΣ) → Ω1

X . Its cokernel ΩX/Σ is called the
sheaf of relative differentials. In general, ΩX/Σ is far from being locally
free. If some fibre has a multiple component, then d f vanishes along this
component and ΩX/Σ contains a torsion subsheaf with one-dimensional
support. Away from the singularities of f we have the following exact
sequence

0 → f ∗(KΣ) → Ω1
X → ΩX/Σ → 0

inducing an isomorphism between ΩX/Σ and KX ⊗ f ∗(K∨
Σ). We also call

the line bundle ΩX/Σ the dualizing sheaf of f on X. The following Kodaira
canonical bundle formula is well-known (cf. [BaHuPeVa,Ko,Mi]).

Theorem 2.2 Let f : X → Σ be a minimal elliptic surface such that its
multiple fibres are Xs1 = m1 F1, . . . , Xsk = mk Fk. Then

KX = f ∗(KΣ ⊗ ( f∗1OX )∨) ⊗ OX
(∑

(mi − 1)Fi
)
, (2.5)

or

KX = f ∗(L ⊗ OX
( ∑

(mi − 1)Fi
))

,

where L is a line bundle of degree χ(OX ) − 2χ(OΣ) on Σ.

Note that deg( f∗1OX )∨ = deg( f∗ΩX/Σ) ≥ 0 and the equality holds if
and only if f is locally trivial. The following invariant

δ( f ) = χ(OX ) +
(

2g(Σ) − 2 +
k∑

i=1

(
1 − 1

mi

))

determines the Kodaira dimension of X.

Proposition 2.2 (cf. [BaHuPeVa]) Let f : X → Σ be a minimal elliptic
surface. Then kod(X) = 1 if and only if δ( f ) > 0.
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Let S1/Γ1
∼= C be the period domain, where S1 = {z ∈ C | Im z > 0} is

the upper half plane and Γ1 = SL(2, Z)/{±1} is the modular group acting
by z → az+b

cz+d . The j-function gives an isomorphism S1/Γ1 → C with

1. j(z) = 0 if z = e
π
3

√−1 modulo Γ1,
2. j(z) = 1 if z = √−1 modulo Γ1.

Thus any elliptic surface f : X → Σ gives a period map p : Σreg → S1/Γ1.
Set J : Σreg �→ C by J(s) = j(p(s)).

If we choose a semi-positive (1, 1)-form χ ∈ −2πc1(X) and apply the
Kähler–Ricci flow (1.1) on a minimal elliptic surface X of kod(X) = 1.
Theorem 1.1 shows that the Kähler–Ricci flow (1.1) provides a canonical
way of deforming any given Kähler metric to a canonical metric. This
canonical metric on Σ satisfies the curvature equation

Ric(g∞) = −g∞ + gWP + 2π

k∑

i=1

mi − 1

mi
[si].

This can be regarded as the local version of Kodaira’s canonical bundle
formula (2.5), where the pullback of the Weil–Petersson metric gWP by the
period map p is the curvature of the dualizing sheaf f∗ΩX/Σ and the current
2π

∑k
i=1

mi−1
mi

[si] corresponds to the residues from the multiple fibres.

3 Generalized Kähler–Einstein metrics and the Kähler–Ricci flow

3.1 Limiting metrics on canonical models and Weil–Petersson metrics
In this subsection, we introduce a class of canonical metrics which we call
generalized Kähler–Einstein metrics.

Let X be an n-dimensional smooth algebraic manifold. Suppose that
KX is semi-ample so that Km

X is base point free for m sufficiently large and
kod(X) = κ with 0 ≤ κ ≤ n. Then the pluricanonical map

∣∣Km
X

∣∣ : X → Xm ⊂ CPNm

is a holomorphic map. Fix a sufficiently large m, |Km
X | induces a holomorph-

ic fibration f : X → Xcan such that Km
X = f ∗O(1), where Xcan is the image

of the pluricanonical map and is called the canonical model of X. Xcan is
unique and isomorphic to Xm for m sufficiently large since KX is semi-
ample and so the canonical ring of X is finitely generated. If KX is nef and
big, κ = n and KX is semi-ample by Kawamata’s result (cf. [ClKoMo]).
Such X is called a minimal model of general type and the Kähler–Ricci flow
deforms any Kähler metric to a unique singular Kähler–Einstein metric
on X (see [Ts,TiZha]). If 0 < κ < n, for a general fibre Xs, KXs is
numerically trivial and Xs is a Calabi–Yau manifold. We can choose χ to be
a multiple of the Fubini–Study metric of CPNm restricted on Xcan such that
f ∗χ ∈ −2πc1(X). Notice that f ∗χ is a smooth semi-positive (1, 1)-form
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on X. For simplicity, we sometimes denote it by χ. Denote by X◦
can the set

of all smooth points s of Xcan such that Xs = f −1(s) is a nonsingular fibre.
Put Xreg = f −1(X◦

can).

Lemma 3.1 For any Kähler class [ω] on X, there is a smooth function ψ

on Xreg such that ωSF := ω + √−1∂∂̄ψ is a closed semi-flat (1, 1)-form
in the following sense: the restriction of ωSF to each smooth Xs ⊂ Xreg is
a Ricci flat Kähler metric.

Proof On each nonsingular fibre Xs, let ωs be the restriction of ω to Xs and
∂V and ∂V be the restriction of ∂ and ∂ to Xs. Then by Hodge theory, there
is a unique function hs on Xs defined by

{
∂V∂V hs = −∂V∂V log ωn−κ

s ,
∫

Xs
ehsωn−κ

s = ∫
Xs

ωn−κ
s .

(3.1)

By Yau’s solution to the Calabi conjecture, there is a unique ψs solving the
following Monge–Ampère equation

{
(ωs+

√−1∂V ∂V ψs)
n−κ

ωn−κ
s

= ehs

∫
Xs

ψsω
n−κ
s = 0.

(3.2)

Since f is holomorphic, ψ(z, s) = ψs(z) is well-defined as a smooth func-
tion on Xreg. 
�

By Hodge theory, there exists a volume form Ω on X such that√−1∂∂ log Ω = χ. Define

F = Ω
(n

κ

)
ωn−κ

SF ∧ χκ

. (3.3)

Lemma 3.2 F is the pullback of a function on X◦
can.

Proof Since χ is the pullback from Xcan, we have

√−1∂V∂V log Ω = √−1∂V∂V log ωn−κ
SF ∧ χκ = 0

on each nonsingular fibre Xs. Thus F is constant along each nonsingular
fibre Xs and so it is the pullback of a function from X◦

can. 
�
There is a canonical Hermitian metric on the dualizing sheaf f∗(Ωn−κ

X/Xcan
)

= ( f∗1OX )∨ over X◦
can.
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Definition 3.1 Let X be an n-dimensional algebraic manifold. Suppose that
its canonical line bundle KX is semi-positive and 0 < κ = kod(X) < n. Let
Xcan be the canonical model of X. We define a canonical Hermitian metric
hcan on f∗(Ωn−κ

X/Xcan
) in the way that for any smooth (n − κ, 0)-form η on

a nonsingular fibre Xs,

|η|2hcan
= η ∧ η̄ ∧ χκ

ωn−κ
SF ∧ χκ

. (3.4)

Now let us recall some facts on the Weil–Petersson metric on the
moduli space M of polarized Calabi–Yau manifolds of dimension n − κ
(cf. [FaLu]). Let X → M be a universal family of Calabi–Yau manifolds.
Let (U; t1, ..., tκ) be a local holomorphic coordinate chart of M, where
κ = dim M. Then each ∂

∂ti
corresponds to an element ι( ∂

∂ti
) ∈ H1(Xt, TXt )

through the Kodaira–Spencer map ι. The Weil–Petersson metric is de-
fined by the L2-inner product of harmonic forms representing classes
in H1(Xt, TXt ). In the case of Calabi–Yau manifolds, it was shown in [Ti1]
that the metric can be expressed as follows: Let Ψ be a nonzero holomorphic
(n − κ, 0)-form on the fibre Xt and Ψ�ι( ∂

∂ti
) be the contraction of Ψ and ∂

∂ti
,

then the Weil–Petersson metric is given by

(
∂

∂ti
,

∂

∂ t̄ j

)

ωWP

=
∫
Xt

Ψ�ι
(

∂
∂ti

) ∧ Ψ�ι
(

∂
∂ti

)
∫
Xt

Ψ ∧ Ψ
. (3.5)

One can also represent ωWP as the curvature form of the first Hodge bun-
dle f∗Ωn−κ

X/M. Let Ψ be a nonzero local holomorphic section of f∗Ωn−κ
X/M and

one can define the Hermitian metric hWP on f∗Ωn−κ
X/M by

|Ψt |2h WP
=

∫

Xt

Ψt ∧ Ψt. (3.6)

Then the Weil–Petersson metric is given by

ωWP = Ric(hWP). (3.7)

Lemma 3.3

Ric(hcan) = ωWP. (3.8)

Proof Let u = Ψ∧Ψ

ωn−κ
SF

. Notice that Ψ restricted on each fibre Xt is a holo-

morphic (n−κ, 0)-form and Ψ∧Ψ is a Calabi–Yau volume form, therefore u
is constant along each fibre and can be considered as the pullback of a func-
tion on M. Then by definition

ωWP = −√−1∂∂ log
∫

Xt

uωn−κ
SF = −√−1∂∂ log u,
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where the last equality makes use of the fact that
∫
Xt

ωn−κ
SF = constant. At

the same time

Ric(hcan) = −√−1∂∂ log
Ψ ∧ Ψ ∧ χκ

ωn−κ
SF ∧ χκ

= −√−1∂∂ log u.

This proves the lemma. 
�
A singular Kähler metric on an algebraic variety X is a closed positive

(1, 1)-current smooth outside a subvariety of X.

Definition 3.2 Let ω be a possibly singular Kähler metric on Xcan such that
f ∗ω ∈ −2πc1(X). Then ω is called a generalized Kähler–Einstein metric
if on X◦

can

Ric(ω) = −ω + ωWP. (3.9)

In general, let f : X → Σ be a holomorphic Calabi–Yau fibration over an
algebraic variety Σ. If X is nonsingular and Σ◦ is the set of all nonsingular
points s of Σ with f −1(s) being nonsingular. Then a possibly singular
Kähler metric ω on Σ is called a generalized Kähler–Einstein metric if
on Σ◦

Ric(ω) = λω + ωWP, (3.10)

where λ = −1, 0, 1.

The following theorem is the main result of this section and its proof is
based on the work of Kolodziej [Kol1,Kol2].

Theorem 3.1 Suppose that Xcan is smooth (or has orbifold singularities)
and F ∈ L1+ε(Xcan) for some ε > 0, then there is a unique solution
ϕ∞ ∈ PSH(χ) ∩ C0(Xcan) solving the following equation on Xcan

(χ + √−1∂∂ϕ)κ = F eϕχκ. (3.11)

Furthermore, ω = χ +√−1∂∂ϕ∞ is a closed positive current on Xcan. If ω
is smooth on X◦

can, then the Ricci curvature of ω on X◦
can is given by

Ric(ω) = −ω + ωWP. (3.12)

In fact, the assumption F ∈ L1+ε(Xcan) for some ε > 0 is always
satisfied (cf. [SoTi]). In Sect. 3.3, we will show that F ∈ L1+ε(Xcan) when X
is a minimal elliptic surface.

Such canonical metrics also belong to a class of Kähler metrics which
generalize Calabi’s extremal metrics. Let Y be an n-dimensional compact
Kähler manifold together with a fixed closed (1,1)-form θ. Fix a Kähler
class [ω], denote by K [ω] the space of Kähler metrics within the same
Kähler class, that is, all Kähler metrics of the form ωϕ = ω + √−1∂∂̄ϕ.
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One may consider the following equation

∂̄Vϕ = 0, (3.13)

where Vϕ is defined by

ωϕ(Vϕ, ·) = ∂̄(S(ωϕ) − trωϕ
(θ)). (3.14)

Clearly, when θ = 0, (3.13) is exactly the equation for Calabi’s extremal
metrics. For this reason, we call a solution of (3.13) a generalized extremal
metric. If Y does not admit any nontrivial holomorphic vector fields, then
any generalized extremal metric ωϕ satisfies

S(ωϕ) − trωϕ
(θ) = µ,

where µ is the constant given by

µ = n(2πc1(Y ) − [θ]) · [ω]n−1

[ω]n
.

Moreover, if 2πc1(Y ) − [θ] = λ[ω], then such a metric satisfies

Ric(ωϕ) = λωϕ + θ,

that is, ωϕ is a generalized Kähler–Einstein metric. More interestingly, if we
take θ to be the pull-back of ωWP by f : X◦

can → M from the moduli space
of polarized Calabi–Yau manifolds, we return to those generalized Kähler–
Einstein metrics on the canonical models of algebraic manifolds with semi-
ample canonical bundle. Such generalized Kähler–Einstein metrics arise
naturally from the collapsing limits of the Kähler–Ricci flow.

3.2 Minimal surfaces of general type Let Xcan be the canonical model of
a minimal surface of general type from the contraction map f : X → Xcan.
Xcan has possibly rational singularities of A-D-E-type by contracting the
(−2)-curves on X. Since Kcan is ample and f ∗Kcan = KX , we can assume
the smooth closed (1, 1)-form χ = f ∗χ ∈ −2πc1(X) and χ is a Kähler from
on Xcan. It is shown in [TiZha] that the Kähler–Ricci flow (1.1) converges
to the canonical metric gKE on X, which is the pullback of the smooth
orbifold Kähler–Einstein metric on the canonical model Xcan, although gKE
is degenerate along those (−2)-curves.

3.3 Minimal elliptic surfaces of Kodaira dimension one Now consider
minimal elliptic surfaces. From Lemma 3.1, we know that there exists
a closed semi-flat (1, 1)-form ωSF in [ω0].
Lemma 3.4 Let F be the function on Σ defined by F = Ω

2ωSF∧χ
as (3.3).

Let B ⊂ Σ be a small disk with center 0 such that all fibres Xs, s �= 0, are
nonsingular. Then there exists a constant C > 0 such that
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1. if X0 is of type mI0, then

1

C
|s|− 2(m−1)

m < F|B ≤ C|s|− 2(m−1)
m ; (3.15)

2. if X0 is of type mIb or I∗
b , b > 0, then

− 1

C
|s|− 2(m−1)

m log |s|2 ≤ F|B ≤ −C|s|− 2(m−1)
m log |s|2; (3.16)

3. if X0 is of any other singular fibre type, then

1

C
≤ F|B ≤ C. (3.17)

Proof Let Y be the fibration of f over B.

1. If X0 is of type mI0, we start with a fibration Ỹ = C × B̃/L , where L =
Z+Z·z(w) is a holomorphic family of lattices with z being a holomorphic
function on B̃ satisfying: z(w) = z(0)+ const ·wmh , w is the coordinate
on B̃, h ∈ N. The automorphism of C × B given by (c, w) → (c + 1

m ,

e
2π

√−1
m w) descends to Ỹ and generates a group action without fixed

points. We can assume that Y is the quotient of Ỹ by the group ac-
tion. Therefore ωSF is a smooth family of Ricci-flat metrics over B.
Choose a local coordinate s on B centered around 0, and a cover-
ing {Uα} of a neighborhood U of X0 in X by small polydiscs. Since
the function f ∗s vanishes to order m along X0, we can in each Uα

choose a holomorphic function wα on Uα as the mth root of f ∗s,
with

wm
α = f ∗s

and on Uα ∩ Uβ

wα = e
2π

√−1kαβ
m wβ

for kαβ ∈ {0, 1, ..., m−1}. On each Uα, ds∧ds = m2|s| 2(m−1)
m dwα∧dwα.

Then |s| 2(m−1)
m F is smooth and bounded away from zero on Y . Thus (3.15)

is proved.
2. If X0 is of type Ib, b > 0, we can assume Y = C × B/L , where

L = Z + Z
b

2π
√−1

log s.

Let γ0 be an arc passing through 0 in B and γ be an arc on X transverse
to X0 with f ◦ γ = γ0. We also assume that γ does not pass through
any double point of X0. Ω = 2FωSF ∧ χ is smooth and non-degenerate
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and so is χ along γ . Since F = 1
2

(
Ω

ω0∧χ

) (
ω0∧χ

ωSF∧χ

)
, it suffices to estimate

the function ω0
ωSF

∣∣
Xs

restricted to γ near X0. Let ωC be the standard flat
metric on C. Along γ , ω0|Xs is uniformly equivalent to ωC, so it suffices
to estimate ωC

ωSF

∣∣
Xs

. But

ωC

ωSF

∣∣∣∣
Xs

=
∫

Xs
ωC∫

Xs
ωSF

= −b log |s|
2π

∫
Xs

ωSF

and Vol(Xs) = ∫
Xs

ωSF is a constant independent of s. Therefore there
exists a constant C > 0 such that

− 1

C
log |s|2 ≤ F ≤ −C log |s|2.

If X0 is of type mIb, b > 0, we start with a fibration f : Ỹ → B̃,
where Ỹ = C × B̃/L and L = Z + Z mb

2π
√−1

log w and w is the coor-

dinate function of B. So Ỹ0 = C1 + C2 + . . . + Cmb is of type Imb.
The automorphism (c, w) → (c, e

2π
√−1
m w) of C × B̃ induces a fibre-

preserving automorphism of order m on Ỹ . Such an automorphism gen-
erates a group action on Ỹ without fixed points and the quotient of Ỹ
has a singular fibre of type mIb. Then by using the same arguments for
singular fibres of type mI0, we can prove (3.16). A fibration of type
I∗

b (b > 0) is obtained by taking a quotient of a fibration of type I2b
after resolving the A1-singularities. The lattices can be locally written as
L = s

1
2 Z+Zs

1
2 b

2π
√−1

log s. Then the above argument gives the required
estimate for F.

3. If X0 is not of type mIb, b ≥ 0 or I∗
b , b > 0, it must be of type I∗

0 , II ,
III , IV , IV ∗, III∗ or II∗. Such a singular fibre is not a stable fibre. By
the table of Kodaira (cf. [Ko]), the functional invariant J(s) is bounded
near 0 and J(0) = 0 or 1. One can write down the table of local lat-
tices of periods and the periods are bounded near the singular fibre. For
example, if X0 is of type II , then X0 is a cuspidal rational curve with
J(s) = s3m+1, m ∈ N ∪ {0} in the local normal representation. On each
fibre Xs the above fixed flat metric ωC on Xs has uniformly bounded area,
therefore

0 <
1

C
≤ ωC

ωSF

∣∣∣∣
Xs

=
∫

Xs
ωC∫

Xs
ωSF

≤ C.

The estimate is then proved by the same argument as that in the previous
case. 
�
Immediately we have the following corollary.

Corollary 3.1 There exists ε > 0 such that F ∈ L1+ε(Σ).
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Proof Calculate
∫

Σ

F1+εχκ = 1∫
Xs

ωn−κ
SF

∫

Σ

(∫

Xs

F1+εωn−κ
SF

)
χκ

= 1∫
Xs

ωn−κ
SF

∫

X
F1+εχκ ∧ ωn−κ

SF

= 1
(n

κ

) ∫
Xs

ωn−κ
SF

∫

X
FεΩ ≤ C.

The last inequality holds for sufficiently small ε > 0 because F has at worst
pole singularities by Lemma 3.4 . 
�
Proposition 3.1 There is a unique solutionϕ∞ ∈ C0(Σ)∩C∞(Σreg) solving
the following equation on Σ

χ + √−1∂∂ϕ = Feϕχ. (3.18)

Proof This is a corollary of Theorem 3.1, but still we give an elementary
proof for the sake of completeness. Rewrite (3.18) as

∆ϕ = Feϕ − 1, (3.19)

where ∆ is the Laplacian operator associated to χ. Notice that F is strictly
positive on Σ and uniformly bounded away from 0. Also by Lemma 3.4,
F ∈ L p(Σ) for some p > 1. Therefore we can choose a family of functions
{Ft} for t ∈ (0, 1] such that Ft > 0 is uniformly bounded below away
from 0, Ft ∈ C∞(Σ) and limt→0 ‖Ft − F‖L p(X ) = 0. Let F0 = F. We
will apply the method of continuity to find the solutions of the following
equation parameterized by t ∈ [0, 1]

∆ϕt = Fte
ϕt − 1. (3.20)

Obviously (3.20) is solvable for all t ∈ (0, 1]. To solve for t = 0 we need
to derive the uniform C0-estimate for ϕt . By the maximum principle, there
exists a constant C1 > 0 such that for all t ∈ (0, 1]

sup
Σ×(0,1]

eϕt ≤ 1

infΣ×(0,1] Ft
≤ C1.

The standard L p estimate gives

‖ϕt‖L p
2

≤ C2(‖Ft‖L p + 1) ≤ C3.

The Sobolev embedding theorem implies

‖ϕt‖L∞ ≤ C4
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for t ∈ (0, 1]. With the C0 estimate, we can derive the uniform Ck-estimate
for ϕt by the local estimates of the standard theory of linear elliptic PDE
due to the fact that ∆ has uniformly bounded coefficients. Therefore there
exists ϕ∞ ∈ C0(Σ) ∩ C∞(Σreg) satisfying (3.18).

Now we prove the uniqueness. Suppose that there is another solu-
tion ϕ′ ∈ C0(Σ) ∩ C∞(Σreg) solving (3.11). Let ψ = ϕ′ − ϕ. Then by
the comparison principle for plurisubharmonic functions (cf. [Kol1]), we
have
∫

ψ≤0
Feϕχ =

∫

ψ≤0
(χ + √−1∂∂ϕ) ≤

∫

ψ≤0
(χ + √−1∂∂ϕ + √−1∂∂ψ)

=
∫

ψ≤0
Feϕ′

χ.

This gives
∫

ψ≤0
(1 − eψ)Feϕχ ≤ 0.

Therefore ψ ≥ 0 on Σ and by the same argument we can show ψ ≤ 0
so that ψ = 0 everywhere on Σ. This completes the proof of the prop-
osition. 
�
Corollary 3.2 Let f : X → Σ be a minimal elliptic surface of kod(X) = 1
with singular fibres Xs1 = m1 F1, . . . , Xsk = mk Fk of multiplicity mi ∈ N,
i = 1, ..., k. If ϕ∞ is the solution in Proposition 3.1, ω∞ = χ+√−1∂∂ϕ∞ is
a closed positive (1, 1)-form on Σ and smooth on Σreg. The Ricci curvature
Ric(ω∞) = −√−1∂∂ log ω∞ is a well-defined closed (1, 1)-current on Σ
and smooth on Σreg. It also satisfies the following generalized Kähler–
Einstein equation as currents

Ric(ω∞) = −ω∞ + ωWP + 2π

k∑

i=1

mk − 1

mk
[si], (3.21)

where ωWP is the induced Weil–Petersson metric and [si] is the current of
integration associated to the divisor si on Σ. In particular, if f : X → Σ
has only singular fibres of type mI0, ω∞ is a hyperbolic cone metric on Σreg
given by

Ric(ω∞) = −ω∞. (3.22)

Corollary 3.2 shows that ω∞ satisifies a generalized hyperbolic metric equa-
tion with a correction term ωWP + 2π

∑k
i=1

mk−1
mk

[si] inherited from the el-
liptic fibration structure of X. Also we notice that the residues only come
from multiple fibres.
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4 A parabolic Schwarz lemma

In this section we will establish a parabolic Schwarz lemma for compact
Kähler manifolds. It is a parabolic analog of the classical Schwarz lemma
in [Ya1] and will lead us to identify and estimate the collapsing on the
vertical direction for properly minimal elliptic surfaces and in general certain
fibre spaces. It also plays a key role in estimating the scalar curvature along
the Kähler–Ricci flow.

Let f : X → Y be a non-constant holomorphic mapping between two
compact Kähler manifolds. Suppose that dim X = n and the Kähler metric
ω(t, ·) on X is deformed by the Kähler–Ricci flow (1.1). Then we have the
following parabolic Schwarz lemma.

Theorem 4.1 If the holomorphic bisectional curvature of Y with respect to
a fixed Kähler metric hαβ is bounded from above by a negative constant −K
and the Kähler–Ricci flow (1.1) exists for all t ∈ [0, T ), then

f ∗h ≤ CK(t)

K
ω(t, ·), (4.1)

where CK (t) is a bounded positive function in t dependent on the initial
metric ω0 and limt→∞ CK(t) = 1 if T = ∞.

Proof Choose normal coordinate systems for g = ω(t, ·) on X and h on Y

respectively. Let u = trg(h) = gi j f α
i f β

j
hαβ and we will calculate the

evolution of u. Standard calculation (cf. [Lu,Ya1]) shows that

∆u = gkl ∂k∂l

(
gi j f α

i f β

j
hαβ

)

= gil gk j Rkl f α
i f β

j
hαβ + gi j gkl f α

i,k f β

j ,l
hαβ − gi j gkl Sαβγδ f α

i f β

j
f γ

k f δ

l
,

where Sαβγδ is the curvature tensor of hαβ̄ and the Laplacian ∆ acts on
functions φ by

∆φ = gi j̄∂i∂ j̄φ.

By the definition of u we have

∆u ≥ gil gk j Rkl f α
i f β

j
hαβ + Ku2.

Now

∂u

∂t
= −gil gk j ∂gkl

∂t
f α
i f β

j
hαβ

= gil gk j (Rkl + gkl ) f α
i f β

j
hαβ

= gil gk j Rkl f α
i f β

j
hαβ + u,
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therefore
(

∂

∂t
− ∆

)
u ≤ u − Ku2. (4.2)

Let umax(t) = maxX u(t, ·) = u(t, zt) for some zt ∈ X. By the maximum
principle, ∆u(t, zt) ≤ 0 so that we have

d

dt
umax ≤ umax − Ku2

max.

Thus umax(t) ≤ 1
K if umax(0) ≤ 1

K and

umax(t) ≤ 1

K − Ce−t

for some C < K if umax(0) > 1
K . This proves the theorem. 
�

By a similar argument as in the proof of Theorem 4.1 one can also derive
the following Schwarz lemma for volume forms with weaker curvature
bounds on the target manifold.

Theorem 4.2 Suppose that dim X = n ≥ dim Y = κ. Let χ be the Kähler
form on Y with respect to the Kähler metric hαβ. If Ric(h) ≤ −Kh for some
K > 0 and the Kähler–Ricci flow (1.1) exists for all t ∈ [0, T ), then there
exists a constant C > 0 dependent on the initial metric ω0 such that

ωn−κ ∧ f ∗χκ

ωn
≤ C. (4.3)

Suppose 2πc1(X) = −[ f ∗χ] for a Kähler form χ on Y , i.e. KX is
a semi-positive line bundle pulled back from an ample line bundle from Y .
From now on, we will write f ∗χ as χ for convenience. Since c1(X) ≤ 0,
by Theorem 2.1, the Kähler–Ricci flow has long time existence.

Theorem 4.3 Suppose that dim X = n ≥ dim Y = κ and f : X → Y
is a holomorphic fibration such that 2πc1(X) = −[ f ∗χ] for some Kähler
form χ on Y. Then the Kähler–Ricci flow (1.1) exists for all t ∈ [0,∞) and
there exist constants A, C > 0 such that for all (t, z),

f ∗χ(z) ≤ C max
(s,w)∈[0,t]×X

{
2 log

Ω

e(n−κ)sω(s, w)n
e−Aϕ(s,w)

+ 3ne−Aϕ(s,w), 1
}

eAϕ(t,z)ω(t, z), (4.4)

where Ω is a smooth volume form on X such that Ric(Ω) = − f ∗χ.

Proof Let u = gi j f α
i f β

j
χαβ and choose normal coordinates for g and χ.

We will calculate the evolution for log u. Note that ∆ log u = ∆u
u − |∇u|2g

u2
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and

∆u = gil gk j Rkl f α
i f β

j
χαβ + gi j gkl f α

i,k f β

j ,l
χαβ − gi j gkl Sαβγδ f α

i f β

j
f γ

k f δ

l
.

(4.5)

Applying the Cauchy–Schwarz inequality, we have

|∇u|2g =
∑

i, j,k,α,β

f α
i f β

j
f α
i,k f β

j ,k

≤
∑

i, j,α,β

∣∣ f α
i f β

j

∣∣
( ∑

k

∣∣ f α
i,k

∣∣2
) 1

2
( ∑

l

∣∣ f β

j ,l

∣∣2
) 1

2

=
( ∑

i,α

∣∣ f α
i

∣∣
( ∑

k

∣∣ f α
i,k

∣∣2
) 1

2
)2

≤
( ∑

j,β

∣∣ f β

j

∣∣2)(∑

i,k,α

∣∣ f α
i,k

∣∣2
)
.

There exists C1 > 0 such that |SαβγδV αV βWγ W δ| ≤ C1|V |2χ|W |2χ . Then
we have(

∂

∂t
− ∆

)
log u

= 1

u

(
− gkl gi j f α

i,k f β

j ,l
χαβ + gi j gkl Sαβγδ f α

i f β

j
f γ

k f δ

l
+ |∇u|2g

u

)
+ 1

≤ 1

u
gi j gkl Sαβγδ f α

i f β

j
f γ

k f δ

l
+ 1

≤ C2u + 1.

On the other hand,
(

∂

∂t
− ∆

)
ϕ = −trω(

√−1∂∂ϕ) + ∂ϕ

∂t

= −trω(ω − ωt) + ∂ϕ

∂t

= trω(ωt) + ∂ϕ

∂t
− n.

Combining the above estimates we have
(

∂

∂t
− ∆

)
(log u − 2Aϕ)

≤ C2u − 2Atrω(ωt) − 2A log
e(n−κ)tωn

Ω
+ 2Aϕ + 2n A + 1

≤ −A′u + 2A log
Ω

e(n−κ)tωn
+ 2Aϕ + 3n A
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for some constant A′ > 0 if we choose A sufficiently large. The last in-
equality holds because ωt ≥ C3χ for some constant C3 > 0.

Suppose on each time interval [0, t], the maximum of log u − 2Aϕ is
achieved at (t0, z0), by the maximum principle we have

u(t0, z0) ≤ A

A′

(
2 log

Ω

e(n−κ)t0ωn
(t0, z0) + 2ϕ(t0, z0) + 3n

)

and

u(t, z)e−2Aϕ(t,z)

≤ u(t0, z0)e
−2Aϕ(t0,z0)

≤ A

A′

(
2
(

log
Ω

e(n−κ)t0ωn
(t0, z0)

)
e−2Aϕ(t0,z0) + 2ϕ(t0, z0)e

−2Aϕ(t0,z0)

+ 3ne−2Aϕ(t0,z0)

)

≤2A

A′

(
log

Ω

e(n−κ)t0ωn
(t0, z0)

)
e−2Aϕ(t0,z0) + C4 + 3n A

A′ e−2Aϕ(t0,z0).

This completes the proof. 
�

5 Estimates

In this section, we prove the uniform zeroth order and second order estimate
of the Kähler potential ϕ along the Kähler–Ricci flow. A gradient estimate
is also derived and it gives a uniform bound of the scalar curvature. We
assume that f : X → Σ is a minimal elliptic surface of kod(X) = 1 over
a curve Σ with singular fibres over ∆ = {s1, ..., sk} ⊂ Σ. Let Xsi = f −1(si)
be the corresponding singular fibres for i = 1, ..., k and S be the defining
section of the divisor

k∑

i=1

[Xsi ] = f ∗
( k∑

i=1

[si]
)

vanishing exactly on all the singular fibres. We can always find a Hermitian
metric h on the line bundle induced by the divisor

∑k
i=1[Xsi ] such that

Ric(h) is a multiple of χ and

|S|2h ≤ 1.

We also write |S|2λ
h for (|S|2h)λ for simplicity.

5.1 Zeroth order and volume estimates We will first derive the zeroth
order estimates for ϕ and dϕ

dt .
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Lemma 5.1 Let ϕ be a solution of the Kähler–Ricci flow (2.3). There exists
a constant C > 0 such that ϕ ≤ C.

Proof This is a straightforward application of the maximum principle. Let
ϕmax(t) = maxX ϕ(t, ·). Applying the maximum principle, we have

∂ϕmax

∂t
≤ log

etω2
t

Ω
− ϕmax

≤ log
2χ ∧ (ω0 − χ) + e−t(ω0 − χ)2

Ω
− ϕmax

≤ C1 − ϕmax.

By solving the above ordinary differential inequality, there is a constant C2
such that ϕmax ≤ C2 and this gives a uniform upper bound for ϕ. 
�
Lemma 5.2 There exists a constant C > 0 such that

∂ϕ

∂t
≤ C. (5.1)

Proof Differentiating on both sides of (2.3) we obtain

∂

∂t

(
∂ϕ

∂t

)
= ∆

∂ϕ

∂t
+ 1 − e−t trω(ω0 − χ) − ∂ϕ

∂t
, (5.2)

where ∆ is the Laplacian operator of the metric g. It can be rewritten as

∂

∂t

(
et ∂ϕ

∂t

)
= ∆

(
et ∂ϕ

∂t

)
+ et − trω(ω0 − χ),

and

∂

∂t

(
∂ϕ

∂t
+ ϕ

)
= ∆

(
∂ϕ

∂t
+ ϕ

)
+ trω(χ) − 1. (5.3)

So

∂

∂t

(
et ∂ϕ

∂t
− ∂ϕ

∂t
− ϕ − et − t

)
= ∆

(
et ∂ϕ

∂t
− ∂ϕ

∂t
− ϕ − et − t

)
− trω(ω0).

Applying the maximum principle, we have

et ∂ϕ

∂t
− ∂ϕ

∂t
− ϕ − et − t ≤ C1

for some uniform constant C1 only depending on the initial data. By the
long time existence of the Kähler–Ricci flow, we can always assume t ≥ 1.
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Hence

∂ϕ

∂t
≤ e−t

1 − e−t
ϕ + C ′e−t + te−t + 1

1 − e−t
≤ C2

for some uniform constant C2. 
�
Lemma 5.3 There exists a constant C > 0 such that

|ϕ| ≤ C. (5.4)

Proof It suffices to derive the lower bound for ϕ. Consider v(t, z) =
maxX ϕ(t, ·) − ϕ(t, z) ≥ 0. Fix δ > 0. For any p ≥ 1, since both ϕ and ∂ϕ

∂t
are bounded from above, using (2.3), we have

∫

X
epδv

(
ω2 − ω2

t

) ≤
∫

X
epδvω2 ≤ C1e−t

∫

X
epδvω2

0. (5.5)

Calculate
∫

X
epδv

(
ω2 − ω2

t

)

= √−1
∫

X
epδv∂∂(−v) ∧ (ω + ωt)

= 4
√−1

pδ

∫

X
∂e

p
2 δv ∧ ∂e

p
2 δv ∧ (ω + ωt)

≥ 4
√−1

pδ

∫

X
∂e

p
2 δv ∧ ∂e

p
2 δv ∧ ωt

≥ C2
√−1

pδ
e−t

∫

X
∂e

p
2 δv ∧ ∂e

p
2 δv ∧ ω0. (5.6)

Combining (5.5) and (5.6) we obtain
∫

X
|∇e

p
2 δv|2ω2

0 ≤ C3 pδ

∫

X
epδvω2

0.

The Sobolev inequality ‖ f ‖2
L4 ≤ C4‖ f ‖2

H1 implies that for all p ≥ 1

‖eδv‖p
L2p ≤ C5δp‖eδv‖p

L p .

Now we can apply Moser’s iteration by successively replacing p by 2k and
letting k → ∞. Then the standard argument shows that

‖eδv‖L∞ ≤ C6‖eδv‖L1 .

Then we only need to bound the quantity ‖eδv‖L1 . Note that Aω0 −√−1∂∂v

≥ χ + e−t(ω0 − χ) + √−1∂∂ϕ > 0 if we choose A > 0 sufficiently large.
The lemma is proved if we apply the following proposition. It is proved by
the second named author in [Ti2] based on a result in [Hö].
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Proposition 5.1 There exist constants δ, C > 0 depending only on (X, ω0)
such that

∫

X
e−δψωn

0 ≤ C, (5.7)

for all ψ ∈ C2(X) satisfying ω0 + √−1∂∂ψ > 0 and supX ψ = 0.

This completes the proof. 
�
Since etω2 = e

∂ϕ

∂t +ϕΩ and ‖ϕ‖C0 is uniformly bounded, from the uniform
upper bound for ∂ϕ

∂t we conclude that the normalized volume form etω2 is
uniformly bounded above and a lower bound for it will also give a lower
bound for ∂ϕ

∂t .

Lemma 5.4 There exist constants λ1, C > 0 such that

1

C
|S|2λ1

h ≤ etω
2

Ω
≤ C.

Proof It suffices to prove the lower bound of the volume form etω2. No-
tice that log etω2

Ω
= ∂ϕ

∂t + ϕ and hence the evolutions for log etω2

Ω
andϕ are

prescribed by
(

∂

∂t
− ∆

)
log

etω2

Ω
= trω(χ) − 1 and (5.8)

(
∂

∂t
− ∆

)
ϕ = trω(ωt) + log

etω2

Ω
− ϕ − 2. (5.9)

Combining the above equations, at any point (t, z) ∈ [0,∞) × Xreg there
exists λ > 0 such that

(
∂

∂t
− ∆

)(
log

etω2

Ω
+ 2Aϕ − λ1 log |S|2h

)

= 2Atrω(ωt) + trω(χ) − λ1trω(Ric(h)) + 2A log
etω2

Ω
− 2Aϕ − (4A + 1)

≥ Atrω(ωt) + 2A log
etω2

Ω
+ trω(Aωt − λ1Ric(h)) − C1(A + 1)

≥ Atrω(ωt) + 2A log
etω2

Ω
− C1(A + 1)

if we choose A sufficiently large. Suppose on each time interval [0, T ],
the minimum of log etω2

Ω
+ 2Aϕ − λ1 log |S|2h is achieved at (t0, z0) ∈

[0, T ] × Xreg, then by the maximum principle at (t0, z0) we have

trω(ωt)(t0, z0) ≤ 2 log
Ω

etω2
(t0, z0) + C2. (5.10)
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But for some λ > 0 we have at (t0, z0)

C2 + 2 log
Ω

etω2
≥ trω(ωt) ≥ 2

(
ω2

t

ω2

) 1
2

≥ 2
(

Ω

etω2

) 1
2
(

χ ∧ ω0

Ω

) 1
2

≥ C3

(
|S|2λ

h

Ω

etω2

) 1
2

,

where the second inequality follows from the elementary inequality a2 + b2

≥ 2ab by diagonalizing both ωt and ω at (t0, z0). For each δ > 0, we have
the following elementary inequality

log x ≤ xδ + Cδ for all x > 0.

It follows that at (t0, z0), we have for some small δ < 1
2

(
|S|2λ

h

Ω

etω2

) 1
2

≤ C4

((
Ω

etω2

)δ

+ 1
)

and by multiplying |S|2δλ1
h ,

(
|S|2λ+4δλ1

h

Ω

etω2

) 1
2

≤ C4

((
|S|2λ1

h

Ω

etω2

)δ

+ 1
)

.

We have 2λ + 4δλ1 = 2λ1 if λ1 is chosen by λ1 = λ
1−2δ

. Therefore

|S|2λ1
h

Ω

et0ω2 (t0, z0) ≤ C5 and

etω2

|S|2λ1
h Ω

eϕ(t, z) ≥ et0ω2

|S|2λ1
h Ω

eϕ(t0, z0).

Both ϕ and et0ω2

|S|2λ1
h Ω

(t0, z0) are uniformly bounded from below, hence the

lemma is proved. 
�
This also shows that there is a uniform lower bound for ∂ϕ

∂t with at worst
log poles near the singular fibres.

Lemma 5.5 There exists a constant C > 0 such that

∂ϕ

∂t
≥ λ1 log |S|2h − C. (5.11)

Proof By Lemma 5.4, we have

∂ϕ

∂t
= log

etω2

Ω
− ϕ ≥ log |S|2λ1

h − ϕ − C.

Then the lemma is proved by the fact that ϕ is uniformly bounded. 
�
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5.2 Partial second order estimates In this section, we slightly modify the
proof of the parabolic Schwarz lemma to derive a partial second order esti-
mate. This will imply that along the Kähler–Ricci flow (1.1) the metric col-
lapses along the fibre direction exponentially fast outside the singular fibres.

Lemma 5.6 (The partial second order estimate) For any δ > 0 there exists
a constant C > 0 depending on δ such that

trω(χ) ≤ C

|S|2δ
h

. (5.12)

Proof By Lemma 5.5, for any δ > 0 there exists a constant C1 > 0 such
that

|S|2δ
h

∂ϕ

∂t
≥ −C1.

Let u = gi j χi j . Following the similar calculation in Sect. 4, we have
(

∂

∂t
− ∆

)(
log |S|2δ

h u − 3Aϕ
)

≤ −2Au − 3A
∂ϕ

∂t
+ δtrω(Ric(h)) + C2 A

≤ −Au − 3A
∂ϕ

∂t
+ C2 A

for A sufficiently large. On each time interval [0, T ], the maximum of
log |S|2δ

h u − Aϕ must be achieved at some point (t0, z0) ∈ [0, T ] × Xreg be-
cause log |S|2δ

h u−Aϕ tends to −∞ near the singular fibres. By the maximum
principle we have

(|S|2δ
h u

)
(t0, z0) ≤ −3

(
|S|2δ

h

∂ϕ

∂t

)
(t0, z0) + C3 ≤ C4

and for any (t, z) ∈ [0, T ] × Xreg

(|S|2δ
h u

)
(t, z) ≤ (|S|2δ

h u
)
(t0, z0)e

3A(ϕ(t,z)−ϕ(t0,z0)) ≤ C4e3A(ϕ(t,z)−ϕ(t0,z0)).

Since |ϕ| is uniformly bounded, we can conclude that |S|2δ
h u is uniformly

bounded and the theorem is proved. 
�
Corollary 5.1 Let Xs be a non-singular fibre for any s ∈ Σreg. Then along
the Kähler–Ricci flow (1.1), ω decays exponentially fast on Xs. Further-
more if ∆s is the Laplacian on Xs with respect to ω0|Xs , then there exist
constants λ2, C > 0 such that

−e−t ≤ ∆sϕ ≤ Ce−t

|S|2λ2
h

. (5.13)
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Proof Applying the partial second order estimate, we have

0 < e−t + ∆sϕ = ω|Xs

ω0|Xs

= ω ∧ χ

ω0 ∧ χ

=
(

ω ∧ χ

ω2

)(
ω2

ω0 ∧ χ

)
≤ 1

2
trω(χ)

(
ω2

ω0 ∧ χ

)
≤ Ce−t

|S|2λ2
h

for some uniform constants C, λ2 > 0. This proves the corollary. 
�
The partial second-order estimate enables us to derive the following

strong partial C0-estimate.

Corollary 5.2 There exist constants λ3, C > 0 such that for all s ∈ Σreg

| sup
Xs

ϕ − inf
Xs

ϕ| ≤ Ce−t

|S|2λ3
h

.

Proof Let θ(s) be the smooth family of standard flat metrics on the ellip-
tic fibres over Σreg such that

∫
Xs

θ(s) = ∫
Xs

ω0 for all s ∈ Σreg. There-
fore θ(s) = ωSF|Xs . Let ∆θ(s) be the Laplacian of θ(s) on each nonsingular
fibre Xs. By Green’s formula, we have

ϕ − 1∫
Xs

θ(s)

∫

Xs

ϕθ(s) =
∫

Xs

∆θ(s)ϕ(y)(Gs(x, y) + As)θ(s),

where Gs(·, ·) is Green’s function with respect to θ(s) and As =
infXs×Xs Gs(·, ·). Since (Xs, θ(s)) is a flat torus, one can easily show that
Green’s function Gs(·, ·) is uniformly bounded below by a multiple of
Diam2(Xs, θ(s)) (cf. [Si], p. 137). However the diameter diam(Xs, θ(s))
might blow up near the singular fibres and actually there exist constants
λ > 0 and C1 such that

diam(Xs, θ(s)) ≤ C1

|S|λh
.

Therefore As ≥ − C2
|S|2λ

h
for some constant C2 > 0 and we have on each

nonsingular fibre Xs,

| sup
Xs

ϕ − inf
Xs

ϕ| ≤ C3 sup
Xs

|∆θ(s)ϕ||S|−2λ
h .

But for some µ > 0, C4 and C5 > 0 we have

|∆θ(s)ϕ| = |∆sϕ|
∣∣∣∣
ω0|Xs

θ(s)

∣∣∣∣

= |∆sϕ| ω0 ∧ χ

θ(s) ∧ χ

∣∣∣∣
Xs

≤ C4|∆sϕ| Ω

θ(s) ∧ χ

∣∣∣∣
Xs

≤ C5e−t

|S|µh
,
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where the last inequality follows from Corollary 5.1 and Lemma 3.4. This
completes the proof of the corollary. 
�

5.3 Gradient estimates In this section we will adapt the gradient estimate
in [ChYa] and the argument in [Pe2,SeTi] to obtain a uniformbound for
|∇ ∂ϕ

∂t |gand the scalar curvature R. Let u = ∂ϕ

∂t + ϕ = log etω2

Ω
. The evolution

equation for u is given by

∂u

∂t
= ∆u + trω(χ) − 1. (5.14)

We will obtain a gradient estimate for u, which will help us bound the scalar
curvature from below. Note that u is uniformly bounded from above, so we
can find a constant A > 0 such that A − u ≥ 1.

Theorem 5.1 There exist constants λ4, λ5, C > 0 such that

1. |S|2λ4
h |∇u|2 ≤ C(A − u),

2. −|S|2λ5
h ∆u ≤ C(A − u),

where ∇ is the gradient operator with respect to the metric g and | · | = | · |g.

Proof Standard computation gives the following evolution equations for
|∇u|2 and ∆u.

(
∂

∂t
− ∆

)
|∇u|2 = |∇u|2 + (∇trω(χ) · ∇u + ∇trω(χ) · ∇u) (5.15)

−|∇∇u|2 − |∇∇u|2,
(

∂

∂t
− ∆

)
∆u = ∆u + gil gk j Rkl ui j + ∆trω(χ), (5.16)

where V · W = 〈V, W〉g for V, X ∈ TX.
On the other hand, ∇i∇ j u = −Ri j − χi j , so

(
∂

∂t
− ∆

)
∆u = ∆u − |∇∇u|2 − gil gk j χi j ukl + ∆trω(χ).

We shall now prove the first inequality. Let

H = |S|2λ4
h

( |∇u|2
A − u

+ trω(χ)

)
= H1 + H2,

where H1 = |S|2λ4
h

( |∇u|2
A−u

)
and H2 = |S|2λ4

h trω(χ).



636 J. Song, G. Tian

Calculate
(

∂

∂t
− ∆

)
H1

= |S|2λ4
h

( |∇u|2 − |∇∇u|2 − |∇∇u|2 + (∇trω(χ) · ∇u + ∇trω(χ) · ∇u)

A − u

)

−2|S|2λ4
h

|∇u|4
(A − u)3

− (
∆|S|2λ4

h

) |∇u|2
A − u

−
(

∇|S|2λ4
h · ∇

( |∇u|2
A − u

)
+ ∇|S|2λ4

h · ∇
( |∇u|2

A − u

))

−|S|2λ4
h

(∇|∇u|2 · ∇u

(A − u)2
+ ∇|∇u|2 · ∇u

(A − u)2

)
+|S|2λ4

h (trω(χ) − 1)
|∇u|2

(A − u)2
.

Rewrite

∇|S|2λ4
h · ∇

( |∇u|2
A − u

)
= ∇|S|2λ4

h · ∇
(

H1

|S|2λ4
h

)

and

∇|∇u|2 · ∇u

(A − u)2
= ε

∇|∇u|2 · ∇u

(A − u)2
+ 1 − ε

(A − u)2

(
∇

(
(A − u)H1

|S|2λ4
h

)
· ∇u

)

for small ε > 0. Then the evolution equation for H1 is given by

(
∂

∂t
− ∆

)
H1

= |S|2λ4
h

( |∇u|2 − |∇∇u|2 − |∇∇u|2 + (∇trω(χ) · ∇u + ∇trω(χ) · ∇u)

A − u

)

−ε|S|2λ4
h

(∇|∇u|2 · ∇u

(A − u)2
+ ∇|∇u|2 · ∇u

(A − u)2

)
− 2ε|S|2λ4

h

|∇u|4
(A − u)3

− 1 − ε

(A − u)
(∇H1 · ∇u + ∇H1 · ∇u)

− 1

|S|2λ4
h

(∇H1 · ∇|S|2λ4
h + ∇H1 · ∇|S|2λ4

h

) + 2

(∣∣∇|S|2λ4
h

∣∣2

|S|2λ4
h

)( |∇u|2
A − u

)

+(1 − ε)
(∇|S|2λ4

h · ∇u + ∇|S|2λ4
h · ∇u

) |∇u|2
(A − u)2

−(
∆|S|2λ4

h

) |∇u|2
A − u

+ |S|2λ4
h (trω(χ) − 1)

|∇u|2
(A − u)2

.
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Also
(

∂

∂t
− ∆

)
H2 = |S|2λ4

h

(
∂

∂t
− ∆

)
trω(χ) − (

∆|S|2λ4
h

)
trω(χ)

−(∇|S|2λ4
h · ∇trω(χ) + ∇|S|2λ4

h · ∇trω(χ)
)
.

Therefore the evolution equation for H is given by
(

∂

∂t
− ∆

)
H

= |S|2λ4
h

( |∇u|2 − |∇∇u|2 − |∇∇u|2 + (∇trω(χ) · ∇u + ∇trω(χ) · ∇u)

A − u

)

−ε|S|2λ4
h

(∇|∇u|2 · ∇u

(A − u)2
+ ∇|∇u|2 · ∇u

(A − u)2

)
− 2ε|S|2λ4

h

|∇u|4
(A − u)3

−2(1 − ε)

A − u
Re(∇H · ∇u) − 2

|S|2λ4
h

Re
(∇H · ∇|S|2λ4

h

)

+2(1 − ε)Re
(∇u · ∇|S|2λ

h

) |∇u|2
(A − u)2

+2(1 − ε)

A − u
Re

(∇u · ∇(|S|2λ4
h trω(χ)

)) + 2

|S|2λ4
h

∣∣∇|S|2λ4
h

∣∣2
trω(χ)

−(
∆|S|2λ4

h

) |∇u|2
A − u

− (
∆|S|2λ4

h

)
trω(χ) + |S|2λ4

h (trω(χ) − 1)
|∇u|2

(A − u)2

+2
∣∣∇|S|2λ4

h

∣∣2 |∇u|2
|S|2λ4

h (A − u)
+ |S|2λ4

h

(
∂

∂t
− ∆

)
trω(χ).

For the last term, by the calculation in the proof of Theorem 4.3, there exists
a constant C1 > 0 such that

|S|2λ4
h

(
∂

∂t
− ∆

)
trω(χ) ≤ |S|2λ4

h

(
trω(χ) + C1(trω(χ))2 − |∇trω(χ)|2

trω(χ)

)
.

Also for any ε > 0 there exists a constant C2 > 0 independent of ε such
that

−ε|S|2λ4
h

(∇|∇u|2 · ∇u

(A − u)2
+ ∇|∇u|2 · ∇u

(A − u)2

)

≤ εC2|S|2λ4
h

|∇u|2(|∇∇u|2 + |∇∇u|2) 1
2

(A − u)2

≤ ε

2
|S|2λ4

h

|∇u|4
(A − u)2

+ ε

2
(C2)

2|S|2λ4
h

|∇∇u|2 + |∇∇u|2
(A − u)2

.
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Since |S|2h can be considered as functions pulled back from the base,
there exist constants C3, C4 > 0 such that

∣∣∇|S|2λ4
h

∣∣2 ≤ C3|S|4λ4−2
h trω(χ)

and
∣∣∆|S|2λ4

h

∣∣ ≤ C4|S|2λ4−2
h trω(χ).

Also note that |S|2δ
h trω(χ) and|S|2δ

h u are uniformly bounded on X for any
δ > 0.

Applying the Cauchy–Schwarz inequality repeatedly and choosing ε
sufficiently small, there exists a constant C5 > 0 such that

(
∂

∂t
− ∆

)
H

≤ −ε|S|2λ4
h

|∇u|4
2(A − u)3

− 2(1 − ε)

A − u
Re(∇H · ∇u)

− 2

|S|2λ4
h

Re
(∇H · ∇|S|2λ4

h

) + C5.

Suppose that H achieves its maximum at t (t0, z0) on [0, T ] × Xreg. By
the maximum principle,

∇H(t0, z0) = 0

and

|S|2λ4
h

|∇u|4
(A − u)3

(t0, z0) ≤ C4

for some uniform constant C4 > 0.
Since H2 is uniformly bounded, there exists a constant C6 > 0 such that

H(t0, z0) ≤ C6

so that H is uniformly bounded on [0,∞) × X.
This completes the proof of (1).

Now we can prove the second inequality by making use of the first one.
Let λ5 ≥ 2λ4 be sufficiently large and

K = −|S|2λ5
h

(
∆u

A − u

)
+ 4|S|2λ5

h

( |∇u|2
A − u

)
= K1 + 4K2,

where K1 = −|S|2λ5
h

(
∆u

A−u

)
and K2 = 4|S|2λ5

h

( |∇u|2
A−u

)
.

K is uniformly bounded from below since K2 is uniformly bounded
from the previous gradient estimate, the Ricci curvature Ric(ω) is uniformly
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bounded from below and

−√−1∂∂u = Ric(ω) + χ, −∆u = R + trω(χ) ≥ R.

The evolution equation for K1 = −|S|2λ5
h

(
∆u

A−u

)
is given by

(
∂

∂t
− ∆

)
K1

= |S|2λ5
h

(−∆u + |∇∇u|2 + gi j gk l χi j ukl − ∆trω(χ)

A − u

)
+∆|S|2λ5

h

(
∆u

A − u

)

− 2

A − u
Re(∇K1 · u) − 2

|S|λ5
h

Re
(∇K1 · ∇|S|2λ5

h

)

−|S|2λ5
h (trω(χ) − 1)

∆u

(A − u)2

−2
∣∣∇|S|2λ5

h

∣∣2 ∆u

|S|2λ5
h (A − u)

− 2∆u

(A − u)2
Re

(∇u · ∇|S|2λ5
h

)
.

The evolution equation for K2 is given in the earlier calculation.
Then the evolution of K is given by

(
∂

∂t
− ∆

)
K

= |S|2λ5
h

(
4|∇u|2−∆u−4|∇∇u|2−3|∇∇u|2+gi j gk l χi j ukl−∆trω(χ)+8Re(∇trω(χ)·∇u)

A−u

)

+ ∆|S|2λ5
h

(
∆u

A − u

)
− 4

(
∆|S|2λ5

h

) |∇u|2
A − u

+ 4|S|2λ4
h (trω(χ) − 1)

|∇u|2
(A − u)2

− 2

A − u
Re(∇K · u)

− 2

|S|λ5
h

Re
(∇K · ∇|S|2λ5

h

) − |S|2λ5
h (trω(χ) − 1)

∆u

(A − u)2

− 2
∣∣∇|S|2λ5

h

∣∣2 ∆u

|S|2λ5
h (A − u)

− 2∆u

(A − u)2
Re

(∇u · ∇|S|2λ5
h

)

+ 8
(∣∣∇|S|2λ4

h

∣∣2

|S|2λ4
h

)( |∇u|2
A − u

)
+ 8Re

(∇|S|2λ4
h · ∇u

) |∇u|2
(A − u)2

.

By the calculation in the proof of Theorem 4.3 we have

−∆trω(χ) = − gil gk j Rkl χi j − gil gk j gpqχi j ,pχkl ,q

+ gi j gkl Sαβγδ f α
i f β

j
f γ

k f δ

l
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= gil gk j (uk l + χk l )χi j − gil gk j gpqχi j ,pχk l ,q

+ gi j gkl Sαβγδ f α
i f β

j
f γ

k f δ

l

≤ ε|∇∇u|2 + Cε(trω(χ))2 − |∇trω(χ)|2
trω(χ)

for some sufficiently small ε > 0 and a constant Cε > 0 depending on ε.
Also there exists a constant C7 > 0 such that

|∆u|2 ≤ C7|∇∇u|2.
We can assume that |S|λ5

h |∇u|2 is uniformly bounded if we choose
λ5 ≥ 2λ4 sufficiently large.

By applying the Cauchy–Schwarz inequality repeatedly, there exists
a constant C8 > 0 such that

(
∂

∂t
− ∆

)
K

≤ −|S|2λ5
h

|∇∇u|2
A − u

− 2

A − u
Re(∇K · u)

− 2

|S|λ5
h

Re
(∇K · ∇|S|2λ5

h

) + C8.

Suppose that H achieves its maximum at (t0, z0) on [0, T ] × Xreg, by
the maximum principle,

∇K(t0, z0) = 0

and so

|S|2λ5
h

|∇∇u|2
A − u

(t0, z0) ≤ C8.

Since K2 is uniformly bounded, there exists a constant C9 such that on
[0,∞] × X

K(t0, z0) ≤ C9.

This completes the proof of (2). 
�
By the volume estimate we have the following immediate corollary.

Corollary 5.3 For any δ > 0, there exists Cδ > 0 such that

1. |S|2λ4+δ
h |∇u|2 ≤ Cδ,

2. −|S|2λ5+δ

h ∆u ≤ Cδ.
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Now we are in the position to prove a uniform bound for the scalar
curvature. The following corollary tells that the Kähler–Ricci flow will
collapse with bounded scalar curvature away from the singular fibres.

Corollary 5.4 Along the Käher-Ricci flow (1.1) the scalar curvature R is
uniformly bounded on any compact subset of Xreg. More precisely, there
exist constants λ6, C > 0 such that

−C ≤ R ≤ C

|S|2λ6
h

. (5.17)

Proof It suffices to give an upper bound for R by Proposition 2.1. Notice
that Ri j = −ui j − χi j and then

R = −∆u − trω(χ).

By Corollary 5.3 and the partial second order estimate, there exist con-
stants λ6, C > 0 such that

R ≤ C

|S|2λ6
h

.


�
It will be interesting to know if the Ricci curvature is uniformly bounded

on any compact subset of Xreg. It is not expected to be true for the bisectional
curvature. For example, we can choose X = X1 × X2 where X1 is a Calabi–
Yau manifold and X2 is a compact Kähler manifold of c1(X2) < 0. We
can also choose the initial metric ω0(x1, x2) = ω1(x1) + ω2(x2) where
Ric(ω1) = 0 and Ric(ω2) = −ω2. Then along the Kähler–Ricci flow (1.1),
the solution ω(t, ·) is given by

ω(t, x1, x2) = e−tω1(x1) + ω2(x2).

The bisectional curvature of ωt will blow up along time if the bisectional
curvature of ω1 on X1 does not vanish.

5.4 Second order estimates In this section, we prove a second order es-
timate for the potential ϕ along the Kähler–Ricci flow. First we will prove
a formula which allows us to commute the ∂∂ operator and the push-forward
operator for smooth functions on X. Integrating along each fibre with respect
to the initial metric ω0, we get a function on Σ

ϕ = 1

Vol(Xs)

∫

Xs

ϕω0.

This can be considered as a push-forward of ϕ.
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Lemma 5.7 Let ϕ be a smooth function defined on X, then we have

∂∂

(∫

Xs

ϕω0

)
=

∫

Xs

∂∂ϕ ∧ ω0. (5.18)

Proof It suffices to prove that the push forward and ∂∂ commute. Let
π : M → B be an analytic deformation of a complex manifold M0 =
π−1(0) and let Mt = π−1(t). Choose a sufficiently small neighborhood
∆ ⊂ B such that M∆ = π−1(∆) = ∪ (∆ × Ui) with local coordin-
ates (zi

1, ..., zi
n, t), where zi is the coordinate on Ui and t on ∆. Now choose

any test function ζ on B with supp ζ ⊂ ∆ and a partition of unity ρi with
supp ρi ⊂ ∆ × Ui . Let ϕi = ρiϕ. We calculate

∫

M∆

f ∗ζ∂∂ϕ ∧ ω =
∑

i

∫

∆×Ui

∂∂ f ∗ζ ∧ ϕiω =
∫

∆

∂∂ζ

(∑

i

∫

Ui

ϕiω

)

=
∫

∆

∂∂ζ

( ∫

Mt

ϕω

)
=

∫

∆

ζ∂∂

(∫

Mt

ϕω

)
.

On the other hand, we have
∫

M∆

f ∗ζ∂∂ϕ ∧ ω =
∫

M∆

f ∗ζ
∑

i

(∂∂ϕi ∧ ω) =
∑

i

∫

∆×Ui

f ∗ζ∂∂ϕi ∧ ω

=
∫

∆

ζ

( ∑

i

∫

Ui

∂∂ϕi ∧ ω

)
=

∫

∆

ζ

( ∫

Mt

∂∂ϕ ∧ ω

)
.

Therefore
∫

∆

ζ∂∂

∫

Mt

ϕω =
∫

∆

ζ

( ∫

Mt

∂∂ϕ ∧ ω

)

for any test function f and hence

∂∂

( ∫

Mt

ϕω

)
=

∫

Mt

∂∂ϕ ∧ ω.


�
Lemma 5.8 There exists a constant C > 0 such that

(
∂

∂t
− ∆

)
log trω0(ω) ≤ C(trω(ω0) + 1). (5.19)

Proof Choose a normal coordinate system for g0 such that g is diagonalized.
By straightforward calculation we have
(

∂

∂t
−∆

)
trω0(ω) ≤ −trω0(ω) −

∑

i, j,k

gii g j j gkk
0 gi j ,kg ji,k + Ctrω0(ω)trω(ω0).

(5.20)
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It can also be shown that

|�trω0(ω)|2 =
∑

i, j,k

gkkgii,kg j j ,k

≤
∑

i, j

(∑

k

gkk|gii,k|2
) 1

2
(∑

k

gkk|gj j ,k|2
) 1

2

≤
(∑

i

( ∑

k

gkk |gii,k|2
) 1

2
)2

=
(∑

i

(gii)
1
2

(∑

k

gii gkk|gii,k|2
) 1

2
)2

≤ trω0(ω)
∑

k,i

gii gkk|gki,i|2

≤ trω0(ω)
∑

i, j,k

gii gkkgik, j gki, j . (5.21)

Combined with the above inequalities, the lemma follows by calculating
( ∂

∂t − ∆) log trω0(ω). 
�
Lemma 5.9

∆(et(ϕ − ϕ)) ≤ −trω(ω0) + 1

Vol(Xs)
trω

( ∫

Xs

ω2
0

)
+ 2et . (5.22)

Proof Applying (5.18), we have

∆(ϕ − ϕ) = trω(ω − ωt) − trω

(
1

Vol(Xs)

∫

Xs

∂∂ϕ ∧ ω0

)

= 2 − trω(ωt) − 1

Vol(Xs)
trω

( ∫

Xs

ω ∧ ω0 −
∫

Xs

ωt ∧ ω0

)

≤ 2 − e−t trω(ω0) + e−t

Vol(Xs)
trω

(∫

Xs

ω2
0

)
− (1 − e−t)trω(χ)

+(1 − e−t)

∫
Xs

ω0

Vol(Xs)
trω(χ)

≤ 2 − e−t trω(ω0) + e−t

Vol(Xs)
trω

(∫

Xs

ω2
0

)
.


�
Theorem 5.2 (Second order estimates) There exist constants λ7, A, C > 0
such that

trω0(ω)(t, z) ≤ Ce
Aet (ϕ−ϕ)(t,z)− A

|S|2λ7
h (t,z)

infX×[0,T ]
(
|S|2λ7

h es(ϕ−ϕ)

)

+ C. (5.23)
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Proof Put H = |S|2λ7
h (log trω0(ω) − Aet(ϕ − ϕ)). We will apply the max-

imum principle on the evolution of H . There exists a constant C1 > 0 such
that

(
∂

∂t
− ∆

)
H

= |S|2λ7
h

(
∂

∂t
− ∆

)(
log trω0(ω) − Aet(ϕ − ϕ)

)

−
(

∇H · ∇|S|2λ7
h

|S|2λ7
h

+ ∇H · ∇|S|2λ7
h

|S|2λ7
h

)

+
∣∣∇|S|2λ7

h

∣∣2

|S|2λ7
h

(
log trω0(ω) − Aet(ϕ − ϕ)

)

−(
∆|S|2λ7

h

)(
log trω0(ω) − Aet(ϕ − ϕ)

)

≤ C1|S|2λ7
h trω(ω0) − A|S|2λ7

h trω(ω0) −
(

∇H · ∇|S|2λ7
h

|S|2λ7
h

+ ∇H · ∇|S|2λ7
h

|S|2λ7
h

)

+|S|2λ7
h

(
− Aet(ϕ − ϕ) − Aet ∂(ϕ − ϕ)

∂t
+ 1

Vol(Xs)
trω

(∫

Xs

ω2
0

))

+C1et +
∣∣∇|S|2λ7

h

∣∣2

|S|2λ7
h

(
log trω0(ω) − Aet(ϕ − ϕ)

)

−(
∆|S|2λ7

h

)(
log trω0(ω) − Aet(ϕ − ϕ)

)
.

Notice that there exist constants C2 > 0 and C3 such that

1

Vol(Xs)
trω

( ∫

Xs

ω2
0

)
≤ C2

Vol(Xs)
trω

(∫

Xs

Ω

)

= C2

Vol(Xs)

Ω

χ ∧ ωSF
trω

( ∫

Xs

χ ∧ ωSF

)

≤ C3

(
Ω

ωSF ∧ χ

)
trω(χ).

Then et |S|2λ7
h (ϕ − ϕ), |S|2λ7

h
∂(ϕ−ϕ)

∂t and |S|2λ7
h trω

(∫
Xs

ω2
0

)
are uniformly

bounded if λ7 is chosen to be sufficiently large. Also we have

∆|S|2λ7
h ≤ C4|S|2λ7−2

h trω(χ)

and
∣∣∇|S|2λ7

h

∣∣2

|S|2λ7
h

≤ C4|S|2λ7−2
h trω(χ)



The Kähler–Ricci flow on surfaces of positive Kodaira dimension 645

for a uniform constant C4 > 0. Therefore we have
(

∂

∂t
− ∆

)
H ≤ C5|S|2λ7

h trω(ω0) − A|S|2λ7
h trω(ω0)

−
(

∇H · ∇|S|2λ7
h

|S|2λ7
h

+ ∇ H · ∇|S|2λ7
h

|S|2λ7
h

)
+ C5et

for some uniform constant C5. Choose A sufficiently large and assume H
achieves its maximum at (t0, z0) on [0, T ] × Xreg. Applying the maximum
principle, we have ∇H(t0, z0) = 0 and then

(|S|2λ7
h trω(ω0)

)
(t0, z0) ≤ C6et0 .

This implies
(|S|2λ7

h trω0(ω)
)
(t0, z0) ≤ C7.

The theorem is then proved by comparing H at any point (t, z) ∈ [0, T ] ×
Xreg and (t0, z0). 
�
Corollary 5.5 Let ∆0 be the Laplace operator associated to ω0. Then there
exist constants λ8, C > 0 such that

−C ≤ ∆0ϕ ≤ Ce
C

|S|2λ8
h + C. (5.24)

Proof Notice that ∆0ϕ = trω0ω − trω0(ω0) = trω0ω − 2 and the corollary is
an immediate consequence of Theorem 5.2. 
�

6 Uniform convergence

In this section we will prove a uniform convergence of the Kähler–Ricci
flow. Let ϕ∞ be the solution in Proposition 3.1 and χ∞ = χ + √−1∂∂ϕ∞.
We also identify f ∗ϕ∞ and f ∗χ∞ with ϕ∞ and χ∞ for simplicity.

For each si ∈ ∆ and the corresponding singular fibre Xsi = f −1(si), we
let

Br(si) = {s ∈ Σ | distχ(s, si) ≤ r}
be the geodesic ball in Σ centered at si for r > 0 with respect to the
fixed Kähler metric χ. We also let Br(Xsi) = f −1 (Br(si)) be a tubular
neighborhood of the singular fibre Xsi .

Since ϕ and ϕ∞ are both uniformly bounded on X. Therefore for any
ε > 0, there exists rε > 0 with limε→0 rε = 0, such that for any z ∈⋃k

i=1 Brε
(Xsi ) and t > 0 we have

(
ϕ − ϕ∞ + ε log |S|2h

)
(t, z) < −1
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and
(
ϕ − ϕ∞ − ε log |S|2h

)
(t, z) > 1.

Let ηε be a cut off function on Xcan such that ηε = 1 onXcan \∪k
i=0 Brε

(Xsi )

and ηε = 0 on ∪k
i=0 B rε

2
(Xsi ).

Suppose that the semi-flat closed form is given byωSF = ω0+
√−1∂∂ρSF

and ρSF blows up near the singular fibres. We let ρε be an approximation
for ρSF given by

ρε = ( f ∗ηε)ρSF.

We also define ωSF,ε = ω0 + √−1∂∂ρε. Now we define the twisted differ-
ence of ϕ and ϕ∞ by

ψ−
ε = ϕ − ϕ∞ − e−tρε + ε log |S|2h

and

ψ+
ε = ϕ − ϕ∞ − e−tρε − ε log |S|2h.

Proposition 6.1 LetA = supX

(
χ∧ωSF

χ∞∧ωSF

) = supXcan
(F−1e−ϕ∞) < ∞. Then

there exists ε0 > 0 such that for any 0 < ε < ε0, there exists Tε > 0 such
that for any z ∈ X and t > Tε we have

ψ−
ε (t, z) ≤ (A + 3)ε (6.1)

and

ψ+
ε (t, z) ≥ −(A + 3)ε. (6.2)

Proof The evolution equation for ψ−
ε is given by

∂ψ−
ε

∂t
= log

et
(
χ∞ + εχ + e−tωSF,ε + √−1∂∂ψ−

ε

)2

2χ∞ ∧ ωSF
− ψ−

ε + ε log |S|2h.
(6.3)

Since ρε is bounded on X, we can always choose T1 > 0 sufficiently large
such that for t > T1

1. ψ−
ε (t, z) < − 1

2 on ∪k
i=1 Brε

(Xsi),

2. e−t ω2
SF

2χ∞∧ωSF
≤ ε on X \ ∪k

i=1 Brε
(Xsi ).

We will discuss in two cases for t > T1.

1. If ψ−
ε,max(t) = maxX ψ−

ε (t, ·) = ψ−
ε (t, zmax,t) > 0 for all t > T1. Then

zmax,t ∈ X\∪k
i=1 Brε

(Xsi) for allt > T1 and so ωSF,ε(zmax,t) = ωSF(zmax,t).
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Applying the maximum principle at zmax,t , we have

∂ψ−
ε

∂t
(t, zmax,t)

≤
(

log
et

(
χ∞ + εχ + e−tωSF,ε

)2

2χ∞ ∧ ωSF
− ψ−

ε + ε log |S|2h
)

(t, zmax,t)

=
(

log
2(χ∞ + εχ) ∧ ωSF,ε + e−tω2

SF,ε

2χ∞ ∧ ωSF
− ψ−

ε + ε log |S|2h
)

(t, zmax,t)

=
(

log
2(χ∞ + εχ) ∧ ωSF + e−tω2

SF

2χ∞ ∧ ωSF
− ψ−

ε + ε log |S|2h
)

(t, zmax,t)

≤ −ψ−
ε (t, zmax,t) + log(1 + (A + 1)ε) + ε.

Applying the maximum principle again, we have

ψ−
ε ≤ (A + 2)ε + O(e−t) ≤ (A + 3)ε, (6.4)

if we choose ε sufficiently small in the beginning and then t sufficiently
large.

2. If there exists t0 ≥ T1 such that maxz∈X ψ−
ε (t0, z) = ψ−

ε (t0, z0) < 0 for
some z0 ∈ X. Assume t1 is the first time when maxz∈X,t≤t1 ψ−

ε (t, z) =
ψ−

ε (t1, z1) ≥ (A + 3)ε. Then z1 ∈ X \ ∪k
i=1 Brε

(Xsi ) and applying the
maximum principle we have

ψ−
ε (t1, z1) ≤

(
log

2(χ∞ + εχ) ∧ ωSF,ε + e−t1ω2
SF,ε

2χ∞ ∧ ωSF
+ ε log |S|2h

)
(t1, z1)

≤ log(1 + (A + 1)ε) + ε < (A + 2)ε,

which contradicts the assumption that ψ−
ε (t1, z1) ≥ (A+3)ε. Hence we

have

ψ−
ε ≤ (A + 3)ε.

By the same argument we have

ψ+
ε ≥ −(A + 3)ε.

This completes the proof. 
�
Proposition 6.2 We have the point-wise convergence of ϕ on Xreg. That is,
for any z ∈ Xreg we have

lim
t→∞ ϕ(t, z) = ϕ∞(z). (6.5)
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Proof By Proposition 6.1, we have for t > Tε

ϕ∞(t, z) + ε log |S|2h(t, z) − (A + 3)ε

≤ ϕ(t, z) ≤ ϕ∞(t, z) − ε log |S|2h(t, z) + (A + 3)ε.

Then the proposition is proved by letting ε → 0. 
�
Since we have the uniform zeroth and second order estimates for ϕ away

from the singular fibres, we derive our main theorem.

Theorem 6.1 Along the Kähler–Ricci flow (1.1), ϕ converges to the pull-
back of the unique solution ϕ∞ solving equation (3.11) on Σ uniformly on
any compact subset of Xreg in the C1,1 topology.

7 An alternative deformation and large complex structure limit points

Mirror symmetry and the SYZ conjecture make predictions for Calabi–Yau
manifolds with “large complex structure limit point” (cf. [StYaZa]). It is
believed that in the large complex structure limit, the Ricci-flat metrics
should converge in the Gromov–Hausdorff topology to a half-dimensional
sphere by collapsing a special Lagrangian torus fibration over this sphere.
This holds trivially for elliptic curves and is proved by Gross and Wilson
(cf. [GrWi]) in the case of K3 surfaces. The method of the proof is to
find a good approximation for the Ricci-flat metrics near the large complex
structure limit. The approximation metric is obtained by gluing together the
Ooguri–Vafa metrics near the singular fibres and a semi-flat metric on the
regular part of the fibration. Such a limit metric of K3 surfaces is McLean’s
metric.

In this section, we will apply a deformation for a family of Calabi–
Yau metrics and derive Mclean’s metric [Mc] without writing down an
accurate approximation metric. Such a deformation can be also done in
higher dimensions. It will be interesting to have a flow which achieves this
limit. The large complex structure limit of a K3 surface X can be identified
as the mirror to the large Kähler limit of X as shown in [GrWi], so we
can fix the complex structure on X and deform the Kähler class to infinity.
Let f : X → CP1 be an elliptic K3 surface. Let χ ≥ 0 be the pullback
of a Kähler form on CP1 and ω0 be a Kähler form on X. We construct
a reference Kähler metric ωt = χ + tω1 and [ωt] tends to [χ] as t → 0. We
can always scale ω1 so that the volume of each fibre of f with respect to ωt

is t. Suppose that Ω is a Ricci-flat volume form on X with ∂∂ log Ω = 0.
Then Yau’s proof [Ya2] of the Calabi conjecture yields a unique solution ϕt
to the following Monge–Ampère equation for t ∈ (0, 1]

{
(ωt+

√−1∂∂ϕt )
2

Ω
= Ct∫

X ϕtΩ = 0,
(7.1)
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where Ct = [ωt]2. Therefore we obtain a family of Ricci-flat metrics
ω(t, ·) = ωt + √−1∂∂ϕt . The following theorem is the main result of
this section.

Theorem 7.1 Let f : X → CP1 be an elliptically fibred K3 surface with
24 singular fibres of type I1. Then the Ricci-flat metrics ω(t, ·) converges
to the pullback of a Kähler metric ω̂ on CP1 in any compact subset of Xreg

in the C1,1 topology as t → 0. The Kähler metric ω̂ on CP1 satisfies the
equation

Ric(ω̂) = ωWP. (7.2)

Proof All the estimates can be obtained by the same argument in Sect. 5
with little modification. It is relatively easy compared to the Kähler–Ricci
flow because there is no ∂ϕ

∂t term. Let CP1
reg be the set of all points s ∈ CP1

with f −1(s) being a nonsingular fibre. We apply the similar argument in
Sect. 6 to prove the uniform convergence of (7.1) away from the singular
fibres to the solution ϕ0 ∈ C0(CP1) ∩ C∞(CP1

reg) solving the following
equation

χ + √−1∂∂ϕ0

χ
= Ω

2χ ∧ ωSF
.

Therefore ωt converges to ω̂ = χ +√−1∂∂ϕ0 and ω̂ satisfies (7.2). This
completes the proof of the theorem. 
�

This limit metric ω̂ coincides with McLean’s metric as obtained by
Gross and Wilson [GrWi]. Their construction is certainly more delicate and
gives an accurate approximation near the singular fibres by the Ooguri–Vafa
metrics. Also McLean’s metric is an example of the generalized Kähler–
Einstein metric defined in Definition 3.2 satisfying

Ric(ω) = λω + ωWP

when λ = 0.

8 Generalizations and problems

8.1 A metric classification for surfaces of non-negative Kodaira dimen-
sion In this section we will give a metric classification for surfaces of
non-negative Kodaira dimension. Any surface X with nef canonical line
bundle KX must be a minimal surface and kod(X) ≥ 0.

Now we assume that X is a minimal surface of non-negative Kodaira
dimension.

1. When kod(X) = 2, X is a minimal surface of general type and we have
the following theorem.
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Theorem 8.1 [TiZha] If X is a minimal complex surface of general type,
then the global solution of the Kähler–Ricci flow converges to a positive
current ω∞ which descends to the Kähler–Einstein orbifold metric on its
canonical model. In particular, ω∞ is smooth outside finitely many rational
curves and has local continuous potential.

2. When kod(X) = 1, X is a minimal elliptic surface. By Theorem 1.1, the
Kähler–Ricci flow deforms any Kähler metric to the unique generalized
Kähler–Einstein metric ω∞ on its canonical model Xcan.

3. When kod(X) = 0, X is a Calabi–Yau surface. The normalized Kähler–
Ricci flow defined in [Ca] deforms any Kähler metric to the unique
Ricci-flat Kähler metric in the same Kähler class.

When X is not minimal, the Kähler–Ricci flow (1.1) must develop sin-
gularities in finite time. Let ω0 be the initial Kähler metric and T be the first
time when e−t[ω0]−(1−e−t)2πc1(X) fails to be a Kähler class. The Kähler–
Ricci flow has a smooth solution ω(t, ·) on [0, T ) (Theorem 2.1) converging
to a degenerate metric as t tends to T (cf. [TiZha]). This degenerate met-
ric is actually smooth outsidea subvariety C. Such a C is characterized by
the condition that e−T [ω0] − (1 − e−T )2πc1(X) vanishes along C. This
implies that C is a disjoint union of finitely many rational curves with
self-intersection −1. Then we can blow down these (−1)-curves and ob-
tain a complex surface X ′. Also e−T [ω0] − (1 − e−T )2πc1(X) descends to
a Kähler class on X ′ and ω(T, ·) descends to a singular Kähler metric ω′

0
on X ′ with a bounded continuous local potential and a bounded volume form
(cf. [TiZha]). We can consider the Kähler–Ricci flow (1.1) on X ′ with ω′

0 as
the initial data. We expect that (1.1) has a unique and smooth solution ω′(t, ·)
on X ′ × (0, T ′), where T ′ is either ∞ or the first time when [ω′(t, ·)] fails to
be a Kähler class on X ′. If T ′ < ∞, we can repeat the previous procedure
and continue the flow (1.1), and we will obtain a minimal complex surface
in finite time. Then the flow has a global solution which falls into one of the
cases described above. The problem of contracting exceptional divisors by
the Kähler–Ricci flow is also addressed in [CaLa].

8.2 Higher dimensions In this section, we discuss possible generalizations
of Theorem 1.1 in higher dimensions. First, as we assumed in Sect. 3, let
X be an n-dimensional non-singular algebraic variety such that Km

X is base
point free for m sufficiently large. Then the pluricanonical map defines
a holomorphic fibration f : X → Xcan by the linear system |Km

X |, where
Xcan is the canonical model of X.

1. If kod(X) = n, KX is big and nef. Hence X is a minimal model of
general type. The Kähler–Ricci flow will deform any Kähler metric to
a singular canonical Kähler–Einstein metric on X (cf. [Ts,TiZha]).

2. If kod(X) = 1, Xcan is a curve. With little modification of the proof,
Theorem 1.1 can be generalized and the Kähler–Ricci flow will converge.
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3. If 1 < kod(X) < n, the fibration structure of f can be very complicated.
A large number of the calculations can be carried out as in this paper
and we expect the Kähler–Ricci flow will converge appropriately to the
pullback of a canonical metric ω∞ on the Xcan such that Ric(ω∞) =
−ω∞ + ωWP on X◦

can.

In general, when KX is nef (not necessarily semi-ample), the Kähler–Ricci
flow has long time existence. Yet it does not necessarily converge, although
the abundance conjecture predicts that Km

X is globally generated for m
sufficiently large. Hence, the problem of convergence of the Kähler–Ricci
flow for nef KX can be considered as the analytic version of the abundance
conjecture. If KX is not nef, the flow will develop finite time singularities.
Let ω0 be the initial Kähler metric and T the first time such that e−t[ω0] −
(1−e−t)2πc1(X) fails to be a Kähler class. The potential ϕ(T, ·) is bounded
and smooth outside an analytic set of X(cf. [TiZha]). Let X1 be the metric
completion of ω(T, ·). We conjecture that X1 is an analytic variety, possibly
obtained by certain standard algebraic procedures such as a flip. In general,
X1 might have singularities and it is not clear at all how to develop the
notion of a weak Ricci flow on a singular variety. Suppose such a procedure
can be achieved and the Kähler–Ricci flow can continue on X1, then after
applying the above procedure finitely many times on X1, X2, ..., X N , KX N

will be nef and we obtain the minimal model of X. Then the Kähler–Ricci
flow has a global solution. We expect that this global solution converges to
a generalized Kähler–Einstein metric on the canonical model in a suitable
sense.
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