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THE KAKEYA MAXIMAL FUNCTION AND THE SPHERICAL 

SUMMATION MULTIPLIERS. 

By ANTONIO CORDOBA. 

I. Introduction. The purpose of this paper is to start the program of 

getting a real variable understanding of the Bochner-Riesz spherical summation 

operators. These operators are defined on functions on R' by the formula 

TAf ()=mA (t) f ) 

where mx ( I) = (1- j2)x if < < 1 and mx (t) = 0 otherwise. 

They were first studied by Bochner [1] and Stein [11], [12], [13] in 

connection with summation of multiple Fourier Series. If X is bigger than a 

critical exponent depending of the dimension (X > (n - 1)/2), then the kernel of 

TX is integrable and therefore TX is bounded on every LP(Rn). Stein [11] and 

Calderon and Zygmund [2], showed that TA is bounded on LP, 1 < p < oo when 

X=critical index=(n-1)/2. The problem then, arises when we consider X 

smaller than that critical index. Herz [9] (See also Fefferman [4]) pointed out 

that TX is unbounded outside the range 

p (X) 
2 n +1+ < P < n -2S- 

n 
(X). n+I+2/X n - I-2X- 

Fefferman [5] showed that T is never bounded on L P except for the 

obvious cases: n = 1 or p =2; and also Fefferman [4] proved that TX is bounded 

on L P (Rn) provided that p (X) < p < p'(X) and X > (n - 1)/4. 

This result has been sharpened by Tomas [15] to X > (n - 1)/2(n + 1). 

Finally Carleson and Sjolin [3], Fefferman [6] and Hormander [10] proved 

that, in R2, TA is bounded on LP whenever X >0 and p(X) <p p'(X). 

So for n >2 we have the natural question: is TX (X >0) bounded on L P(R'), 

p(X) < p < p'(X)? 
Our approach to the problem is inspired by the work of Fefferman and it is 

as follows: The multiplier theorem for TX can be easily reduced to this problem: 
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2 ANTONIO CORDOBA. 

Suppose that (p: R->R is a smooth function supported on [-1,1] and let 
p (r) = '(r - 1)), where 8 is a small number. Consider the Fourier multiplier 

defined by tfp)= (I(I)f(1). 
Is it true that 

liTfil 2n <CjLog6jP11fj1 2n 
n-1 n-1 

for some constants C and p independent of 6? 

Now, Fefferman's approach to the problem is in the spirit of Cotlar's 

lemma and we can interpret it, in relation to the multiplier (p, as follows: The 

support of the kernel for T can be decomposed into a family of rectangles of 

eccentricity 8 -1/2 and the convolution operators, obtained by restricting the 

kernel to these rectangles, are "almost orthogonal". It happens that, in dimen- 

sion two, the key estimate is on L4(R2) and this fact is decisive in applying 
orthogonality methods that cannot be used in higher dimensions, when the 

important estimate is on 

2n 

Ln1 (R n). 

However that proof suggests the idea that, if we consider the maximal function: 

Ma i/2f (x) = Sup RkIf (Y)ldy 
xER IRIR 

(where the "Sup" is taken over rectangles of eccentricity 8 -1/2 and arbitrary 
direction), then this maximal function controls the multiplier (p. 

Part II is devoted to the maximal function and our main result is: 

THEOREM 1.1. MN is bounded on L2(R2) and there exists a constant C, 

independent of N, such that: 

IIMNf 112 < C[Log3N]2jIf 112 Vf E L2 (R2 

In Part III we prove that: 

11Tf 114 < Cj Log8 15/411 f 114, Vf E L4(R2). 

It would be interesting to answer the following questions for n > 2: 

(1) Are there constants C, p, independent of N, such that 

11 MNf 1l n < C[ LogN] Pll fI11n Vf E Ln (Rn)? 
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KAKEYA MAXIMAL FUNCTION. 3 

(2) Is there a constant C such that 

fITf(x)121 g(x)Idx< cfjf(x)12[Ma 2g2(x)] 1/2 dx 

Finally it is a pleasure to express my gratitude to my teacher and friend, 

Charles Fefferman, who introduced me to these problems and guided and 

helped me in this work. I would like to thank Karen McKeown for her excellent 

typing of my manuscript. 

II. The Maximal Function. Let N > 1 be a real number. By a rectangle 

of eccentricity N we mean a rectangle R such that: 

Length of the bigger side of R 

Length of the smaller side of R N 

Consider 6JN= {rectangles of eccentricity N); given a locally integrable 

function f we consider the maximal function 

Mf (x)= Sup 
I 

iff y)Idy. xERF%, JR RIJ 

The purpose of this chapter is to prove the following theorem: 

THEOREM 1.1. The operator M is bounded in L2(R2) and there exists a 

constant C (independent of N) such that: 

II Mf 112 <C (Log3N )211 f 112 (1) 

{fx:Mf(x)>a>O}J<C(Log3N) 
- If EL 
a2 fEL2(R2) (1') 

In order to prove Theorem 1.1 we fix a number 8 >0 and consider the 

maximal function 

M8af (x)= Sup i~fIf (y)Idy 
X ER IRI J 

where the "Sup" is taken over all the rectangles R such that: 

{ Length of the smaller side of R = 8 

Length of the bigger side of R = SN. 
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4 ANTONIO CORDOBA. 

(In the following we shall describe this situation by saying that R has dimension 
8 X SN; we shall define the direction of R as the direction of its bigger side.) 

PROPOSITION 1.2. There exists a constant C (independent of 8 and N) 
such that 

11 M65f 112 6 C (Log3N )1/211 f 112 Vf E L2(R2). (2) 

(When we know that Proposition 1.2 is true, then we shall put together the 

operators Ms to obtain the estimates [1], [1']). 

Proof of 1.2. 

(a) First of all we decompose the interval of directions [0,2S7] into eight 
subintervals of the same length: 

8 

7=1 [0,2,g] = [O, 4JU [4 2 U .. U [ 2,2g7 Xu Ii 

And consider, for every piece Ii, the maximal function M.' defined analogously 
as Ma8 but with rectangles of directions in the interval Ii. Obviously we have: 

8 

M6f (x) < E M,f (x) 
i=l 

So in order to prove the estimate [2], it is enough to prove it for each Mf. By 
the symmetry of the situation it is sufficient to show: 

I IM* 11 2 6 C (Log3N )1"211 f 112, with C independent of d and N. 

In the following we shall drop the index and we shall consider our maximal 

function M, = M,1. 

(b) We divide the plane, by vertical and horizontal lines, into a grid of 

squares of side SN. The operator M5 acts "independently" on the squares of the 

grid and so we can simplify the problem by considering only functions f 

supported on one of the squares of the grid. More precisely: 

Let R2=UQa: (where Q,anQ,=4 if a(X7&8 and side (Qa))=6N) and let 

f= E fa where fa. =f/ Qa. Then: Mfaf (x)MJf8 (x) = 0 if Q* n Q,* = ? . There- 

fore 
2 

IMaf (X)12 ~Mafa (X) ?9EIjM3a(X)J12. 
aa 

fWhere Q* is the square with the same center than Q but expanded by the factor 2. 
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KAKEYA MAXIMAL FUNCTION. 5 

Suppose that we have proved [2] for functions g with support on a square 
of side SN, then, given any f E L2(R2) we have: 

fIMj(x)l2dx S f E vja (x)s2dx S 9E CLogNf fa (x) 2dx 
a ~~~~~~a 

2 

=9CLogN | fa (x) dx = C'LogNflJf 2 
a 

and we are done. 

So let Q be a square with sides parallel to the coordinates axes and sides 
SN; suppose that f E L2(Q). 

Then Mjf(x)=O if xEQ*. 

We decompose the square Q* into 9N2 small squares { Qip} of side 8, by 
vertical and horizontal lines. The point is that for every square Qip we can find 
a rectangle Rip (of direction in the interval [0, 7/4] and dimensions 6 x> N) 
such that: 

(i) Qip n Rip 7q 

(ii) MIf(x)<2 I f(y)IydY XQ,;(x) 

So, if we define the linear operator: (f is fixed) 

Tf(g)(X)= R IJ g fg(y)dywXQIP(x) 

we have that Mjf(x) <2 Tf (f)(x). Then, in order to show the inequality [2], it 
is enough to prove that jITf(g)jj2< C(Log3N)l/211 g9l2 VgEL2(Q*), with C 
independent of f, 8 and N. 

(c) Thus we have linearized the problem and we can consider the adjoint 
of Tf, Tf*. Given h and g in L2(Q*) we have: 

]g(y)T* (h)(y)dy= Tf (g)(x)h(x)dx= Tf ( g)(x)h(x) dx 

lP (x) R-iJR. g(Y)dYjdx 

S we hg(v Y) h(x)dx Xpe y)f dye 

So we have the formula: 

Tf* (h)/ y) h (x dx X R 
/ 8,P / y,\ 
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6 ANTONIO CORDOBA. 

r 

E EEE 

Fig. 1 

Now given h E L2(Q*) we have the decomposition h = h1 + + h3N (Fig. 1) 

where hi = h/Ei is the restriction of h to the vertical strip Ei of width 6. Then, 

in order to prove that IITf*(h)112? C(Log3N)l/21 hI12 it is enough to show that: 

*T7 (hi) 12 CN-12 (Log3N)/2 i= 1,...,3N 

because then 

3N 

Tf (h)l=|| T h)| ,gE (hi)1124 <CN-112 (Log3N )1/2 hil 
2 

< C (Log3N)l/2 IIhII2 

(d) So, suppose that the function h lies on the strip Ei. We decompose Ei 
into 3N squares {Qip}p= 1 ... 3N of side 8 and also we decompose the function 

h=hl+ +h3Nwhere hp=h/Qip. 

Then we have 

T1* (h)(x) = T* (hp) (x) fR hp(y)dyXR(X) 

which implies 

p Tf (h)(X) I < 6 2N = N 
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KAKEYA MAXIMAL FUNCTION. 7 

Therefore 

f Tf (h) (x)2dx 62N2 f (I E hp 112xRp (x) )dx 

= 1 2 EI1Ihplj2IlhqIj2IRip n Riql 
822p, q 

Now it is an easy geometrical fact that IRip n RiqI < 16 (N62)/(l p - ql + 1). Thus 

f 1Tf (h) (x) I2dx < Ck IhpII2I=hq2 < CN-lLog3Njh l11. p,q 1+Ip-qI 2 

Remark 1. Part (d) of the proof of Proposition 1.2 admits the following 

description: Suppose that we have a square room Q of side 1, and we want to 

illuminate the side AB with beams of light placed on the opposite side CD. 

Suppose that our beams have width N -1 (i.e., each one illuminates only an 

interval of length N-1 on AB) but we can place them arbitrarily on CD and 

also we have freedom to choose the direction of the light for each beam (Fig. 2). 

Then, if the whole wall AB is illuminated and if P is the portion of room 

illuminated, we have the estimate: 

| LogN 

C D 

A B 

Fig. 2 
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8 ANTONIO CORDOBA. 

(This result has been discovered independently by Rolf Anderson in relation 

with the following problem: Suppose that each interval [((i - 1)/n, 0), (i/n, 0)], 

i = 1, ... , n, is the base of a strip not parallel with the x axis. Let E (n, k) denote 

the linear measure of the intersection of the union of these strips with the lines 

y = 1, ... k. Is it true that E (n, k) >Cn-l/k?) 

To see that, we can consider a strip E of width N -1 over AB. We divide E 

into N small squares { Q,} and we can suppose that for every square Q, we have 

a triangle of light R, (R,n 0) 4). 

Then we have the operator T*: L2(E)->L2(Q) defined as follows: if 

f&L2(E) then 

f (fy)dy)xRx) T*f(x 
IRil ((x ) 

By (d) we know that 11 T* 11 < N - 1/2(LogN)1/2 

The adjoint of T*, T is an "average" defined on g E L2(Q) by 

Tg(x)=2 IRil g(y)dy)xQ(x) 

Consider g = Xp (P is the illuminated set), then obviously Txp(x) = lVx &E , so 

we have II TXPII2= IIXEII2= N-1/2 

On the other hand, l l TxplH2 < N -l/2(LogN)l/21 P l 1/2. So lPl> (LogN)-1. 
Q.E.D. 

The following proposition tells us that the estimate of proposition 1.2 is 

rather sharp. 

PROPOSITION 1.3. For every N and for every 8 > 0 we can find a function 

f E L2(R2) such that if M is the maximal function of proposition 1.2 correspond- 

ing to such N and 8, then we have: 

11Mf 12 > [ (Log3N)1/2/ (LogLog3N)1/2] 11 f12 

Proof of 1.3. (a) We start with a triangle A0 of base with length 1 and 

height ho = 1. We "sprout" the triangle A0 to the height h1 = 2 to get the tree 

P1 composed of two triangles: Al, A 2 (as in Fig. 3). We have the estimate 

IPI1 < IAoI +4 1/41A0O =21A0o 
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KAKEYA MAXIMAL FUNCTION. 9 

hl=2 - - _ -L 

h=1 

Fig. 3 

(b) We repeat the preceding process with each one of the triangles A', 

A 2 to get the tree P2 composed of four triangles: Al, A2, A3, A4. We have 

IP21 < 1P11 +2/31A0j < 1A0o + 2(1/2+ 1/3)1A01. 

Suppose now that we iterate the process until the stage k. We get a tree Pk 

composed of 2k triangles of height h1 = k and base 2 -k. Furthermore, 

IPk<LIAo[1+2(1/2+1/3+.* +1/k)]_Logk. 

(c) Now for every triangle T on the tree Pk we consider the region T (Fig. 

4). 

And the point is that the regions T corresponding to the different triangles of 

the tree Pk are pairwise disjoint. 

So if E1= UT EPT we have IEkI-21 kk2 =k. 

Taking 8= 2 -k, N=k 2k and M. the corresponding maximal function of 

proposition 1.2, we have 

IIM3x~k 12 
J 
EkJ/2 1/2 

and lPkf <2 Log k so that 

fjM8xP,112> (LogN)/2 /(LogLogN)l/21jXPk112 
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10 ANTONIO CORDOBA. 

k T 

k 

Fig. 4 

This establishes proposition 1.3 for this particular 8; in order to do it with a 

general 8 we can work with the same construction but expanded by a 

convenient factor. 

Proof of Theorem 1. 1. We divide the interval [0, 2,g] into N pieces and we 
shall consider only the directions given by the angles: O, 2,glN,...,27r. 

Now given any rectangle R of eccentricity N, we can find a rectangle R, 
with the same dimensions as R and direction in the set 2 k,7N-l}k=l ... Nsuch 
that R cRl, (where R'. iis the double of RI). 

From this fact it is clear that, in order to estimate the norm of the maximal 

function, we can consider only rectangles with direction in the set 

{2k7TN} k= 1 ...-N 

By a similar argument we can consider 8 only of the form 2', n E Z. 

Some Notation: 

()T2-f (X) =SUP I Rgl(y)Idy 

x E=- R )4R* 
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KAKEYA MAXIMAL FUNCTION. 11 

where the "Sup" is taken over all the rectangles of dimensions 2' X 2nN and 

direction 'rjN -1* 

(ii) T2 = Sup Tl, Ti = Sup T2, T= Sup Ti = Sup T2n. 
/ n j n 

Now, given a >0, we can apply the standard covering lemma to get, for 

every i, a sequence of rectangles { R } with direction TN -li, pairwise disjoint 

and such that: 

Ea {x: Tf(x) > a} c URn 

%1 f tfI (y)l dy > a 

By the preceding remarks we know that 

N 
Ea ={x: Mf (x) > 4a} C U Ea' 

The Sieve. Thus we get N sequences of rectangles and we know that the 

sides of these rectangles are bounded. Let no be the biggest integer such that 

there exists in our N collections a rectangle of dimensions 20no X 2noN. 

Consider the family of rectangles in the N-collections that have dimensions 

2no x 2noN, then we can get a subfamily Bo with the following properties: 

(10) No rectangle in Bo is contained in the double of another rectangle in 

Bo. 

(20) If a rectangle has been eliminated then it is contained in the double of 

a rectangle of Bo. 

Now let n1 be the biggest integer such that n1 < no and there are rectangles 
in our primitive N-collections with dimensions 2 n X 2n'N. Consider the set of 

such rectangles and eliminate all of them that are contained in the double of a 

rectangle in Bo... 
By induction we get a family of rectangles Bk of side 2k X 2nkN (no> n1 

> ... > nk > ... ) in such a way that: 

(10) No rectangle of Bk is contained in the double of another rectangle in 

B,, < k. 

(20) If R is a rectangle in our primitive N-collection with dimensions 

2nk X 2nkN then, either R is in Bk or R is contained in the double of a rectangle 

in Uj B,. 

Obviously Ea C R uBk UR. 
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12 ANTONIO CORDOBA. 

More Notation. 

With k = 0, 1, 2, .. ., let us define 

Ak = {rectangles in UB, of side 2' X 2N 

with: no- kLogN > n > nO-(k + )LogN}. 

Let 
- - 

E.= U R, E= U R 
R i R ( AiREA 

then we know that Ea c UEj. 
Observe that the family of sets { Ei is "almost disjoint" i.e. Ei n E= if 

i- > 2. This is because if Ri E Ai, R, E CA and i-> 2 then the big side of R 

is smaller than the small side of Ri and so, if Ri n R, we have that R c R. 
and this is impossible. 

Let fi =fI E i = 0,1, ... and let Si be the maximal function defined as 
follows: 

Sig (x) = sup1 1 fg(y)I dy 
x ER I RI J 

where the "Sup" is taken over rectangles of dimensions 2' X 27N where 

nO + 2-i LogN > n > nO + 2-(i + l)LogN 

By proposition 1.2 we know that Si is bounded in L2(R2) with norm 
< C [LogN]3/2 (C independent of N and i). 

Now if xC Ei = UR E A,R we know that there exists R E Ai such that x E R, 
and then 

S,fL (x) > Jf i(y)ldy>-j Jfi(Y)Jdy>i6 

which yields Ei c {x: Si fi(x) > (1/16) a}, so that 

Ei?< C(Log3N)3 2 

a2 

Then 

JEa,l < Ezil < C(Log3N)3 2 j1j2= C(Log3N)3 2 ff(X)2xE(x)dx 

< C (Log3N)3 11 
f 

112 

and this proves inequality [1']. 
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KAKEYA MAXIMAL FUNCTION. 13 

We can get the strong type inequality [1] from [1'] by using the interpola- 

tion theorems of Riesz-Thorin and Marcinkiewicz. Q.E.D. 

III. The Carleson-Sjolin-Fefferman-Hormander Multiplier Theorem. 

Suppose that p0: R-iR is a smooth function with support on (-1,1) and let 

p(r)= po((r-1)/8) where 8 >0 is a small number. 

Consider the Fourier multiplier defined by 

(() (P |(l) t (), f E Co?? (R 2 

THEOREM 2.1. There exists a constant C independent of 8 such that 

1ITf 114 < C I log8 15/411 f 114, Vf E COo" (R 2) (1) 

Proof. (a) First of all let us compute the kernel 

K (x) = fp (r)rJo (2,X 1 Xr) dr 

where JO is the Bessel function of order zero. 

Considering the asymptotic expansion of JO it follows that, modulo an 

L'-kernel with norm independent of 8, K (x) looks like: 

1 exp(-2qJilxl) (K )2i lx3/2 =fo (r) exp(-2qJi I xl r) dr 

1~2 exp( 27rilXl)pfo, (r) exp(-2qJilxlr)dr. 

where ip(r) = 9p0(r)(1 + Sr)"/2 has approximately the same bounds that %9O as a 

function in the Schwartz class S. 

This estimate tell us that, in order to get (1), it is enough to consider 

functions f supported on a square of side 8 -2 

We need a decomposition of the kernel and of the multiplier: Let 

{ 4'j} X=1.. 2l5 -1/2 be a smooth partition of unity on the circle such that 

(i) .,1, (w) = ,,(S 
- 

1/2W) 

(ii) i(w) = (W _ i 1/2w) 

Where 41 is a smooth function with support on (-1,1). 
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14 ANTONIO CORDOBA. 

As in I we will consider only the part of the operator given by 

18-l/2 

Tf (x)= E T-f (x) 
j=' 

where T m= m f (f), and m1(,)=q(II)Ai (O) with = (ItI,) the polar coordi- 

nates in the plane. 

We have 

ET ~~~2 2 

f Tf (x)I4dx iT(x) T(X) dx=f E Tif*Tf() d 

? C E J l Tif fA) I2d = CE if (x)f(x) 12 dx, 
ij ij 

C independent of S. 

This is because no point belongs to more than 4 of the sets Aii = Suppmi + 

Suppmj. 
We will decompose K1 the kemel of T1, and then we will get the 

decomposition of Ki by rotation. 

Now by integration by parts we can observe that: 

(i) If, in polar coordinates x = (R, 0), we are in the "rectangle" 

R-2mS - 1, I sin(0 )I-2'8 1/2 m, n > 0. 

Then we have the estimate I K1(R, 5 )I < A p,3/2 (2m2n) - P with Ap independent 

of 8 (we use a p > 1 to be fixed later). 

(ii) In the region R2-2 m6 -1 (m>O), and Isin(0)l I2mS1/2 we can use the 

obvious estimate I K1(R, 5 )I < 8 3/2 1p1 K. 11 m 

(iii) Finally if R 2 -2m -1 and I sinO ,1-2n2mS 1/2 then as before, integra- 

tion by parts shows that for each p>> 1 there exists a constant Ap such that 

I K, (R5 O )I < A2 2- npS 3/2 

if (R ,0) lies in the "rectangle" R -2-m -1, 1sin0l,0-2n2m6l/2. 

We can observe also that K1 is negligible outside the region 0 1 < I/8. 

These estimates suggest the following decomposition of K1: 

ILog8 | 

K,= E Gk +negligible. 
k=O 
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KAKEYA MAXIMAL FUNCTION. 15 

where Gic lies on the "rectangle" Rk' defined as follows: 

R1=((r,0)1S-1<r<2S-1 and IsinOI<S 1/2 

or r< '-1 and Irsin0l 6-1/2} 

R ' {(r, 0)12k -1< r< 2k+1 -1 and Isinl 0<2k 1/2 or 

8 -1<r2kS-1 and 2k1 s1/2?IsinOI<2k 1/2or 

O<r?< 86 and 2k161/2 IrsinOl 2k61/2 } 

I~~~~~~~~~~~~~~ I1 

Fig. 5 

In particular this decomposition shows that 

JI K1 (x)I dx < C, independent of S. 

And we have the estimate I Gkl(x)l < A2kPIR kIL -1. 

By rotation we get for every =1, ... 27TS -1/2 a family of "rectangles" 

{kRk=l }.1 ILog,61 and a decomposition of the kernel: 

ILog3 I 

K, = E Gk, + negligible term. 
k=O 

(b) Let us now introduce some more machinery. Let f5 be a smooth 

function = 1,* ... 2X6 -1/2 such that: 

(i) j=-1 on llx-oll<28 1/2 

(ii) j=-O on jjx-, 4jj>4S1/2 

(iii) kj,(x)I <1 everywhere. 
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16 ANTONIO CORDOBA. 

where w, = cos(2q/3' 1!2)+ i sin(2q/' 1/2), j = 1, 2... [ -1/2] 

Also we can assume that k,(x) = 5(8- 1/2(x -_ W)) where 4 is a smooth 
function supported on I I x I I < 4. 

We need some information about the Fourier transform of 

i ( )eix t dx = Se -*it c+(6 1/24) 

Using the formula 

e -i"2i.X (p ) /2ei3'/2.X 

we have that 

kk1(()I < Ap,6 -P/2I I P, Ap independent of S. 

This estimate implies the following: Suppose that f is supported in a square Q 
of side 3-1/2 and let ji )=42(()f(s). 

(i) Since 

fk l k I (()Il d ( ? Ap 6 3 - p/2f r -P1ldr?< Ap P/4 

it follows that, with p large enough, the portion of fi that lies outside the set 
{x: dist(x, Q) -/4 is negligible. 

(ii) Let iT (r)=iT(2 -' 1/2r) where T is a smooth function supported on (1,3) 
and such that: n? X 1 (r) =1 in the region r > 28 -1/2 and let T be given by 

00 

E i (r)=1 on (o,oo). 
n=O 

Define Tn(x)= (IxI). Then we have 

4 Log81 

fi = (pi *f Tn i. *f + negligible term. 
n=O 

For each n we have 

(fJIr vTn.i *f(x)ldx) <?22nd 
- 1 

fTn' *f (x)12dx 

JEtTn (f )22d(A 2nPlIf 

This is because Xji I * i (()I2 K A 2nP. To see this we start with the following 
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KAKEYA MAXIMAL FUNCTION. 17 

estimate for ?n: 

I -n (()J1< A 2 - n( p - 2)85 - la p/21l1 
- 
p 

Now given (0 and k >0 there are, at most, 2k indices i such that dist 

((0, Supp4i)- 2k3 1/2 and for each one we have 

0 ^s.(t )j < A 86-12 -n(p-2)3p/2[2k3 1/2] =-A 2 (p)2 Tn ~~~~~~~~~~~~~~p 

Multiplying by 2k and adding in k, we get 

I, lT*(i(()12 < A 2 -nP 

(c) Given a square Q of side 6 -2, we decompose it into a family {Q} of 

squares of side 8- 1 by horizontal and vertical lines. The index a= (a1, a2) for 

the square Qa means that its center has coordinates (al 1, a283 ). We shall 

prove: 

(1) If fa is supported in the square Qa then 

11 Tfa 114 < CILogS 15/411 fa 114 

(2) If fa lies on Qa and f: lies on Q, then 

f Tfa (x)Tf: (x)j2dx 12 A 15jLog3 I5(IIa-I1 + 1) P Ifa 11211f3 112 

Obviously estimates (1) and (2) imply theorem 2.1. 

Proof of (1). Suppose that f E L4(Q) (side of Q =8 1). As usual we divide 

Q into 8 -1/2 vertical strips Pl,... ,P-/2 of width 6P-1/2 and we decompose 

f =fk, fk =f/Pk 

It is enough to show that for each k 

II Tfk114 <CS3/81 Log6 I5/411 fkII45 C independent of 3. 

Therefore we shall assume that f is supported in the strip P. Now we have 

fI Tf(x)14 dx CE flTf(x)T1if (x)12dx 

2 

? CE f G k *f (X)EG/*j (X) dx + negligible term 
i, k 

ILog3 I 

<ClLogs12 E E Gk' * fi (x)GI *fj (x) Idx 
kl=i j i, 

+ negligible term.t [V] 

fAs always, a term is called "negligible" if its L4 norm is dominated by a I f 114 
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18 ANTONIO CORDOBA. 

Now we fix k, 1 (suppose k > 1) and we consider 

Gki *fi (x) G/I *(x)2dx 

We decompose the strip P into 8-1/2 squares {(Q.} (enumerated from the top 

to the bottom) and set f= f, fu = f/ Q. 
Therefore i = E f wherefu, i= i*fu 
Then fu =ln/4tLog T. i *fU + negligible term, and 

1/4lLog8l 2 

Gi *f (x)|< CjLog I Gki * Tn' 
n=O u 

+ negligible term for every k, i. 

Thus 
2 

I l CJLog6J12 Gf Gl *Tm' *fv (X) dx 
m,n z4 u v 

+ negligible term. 

Now we fix m, n and consider 

Ik,l,m,n E Gki*n(P^i *fU(x)G *m v(X) dx 

If we fix i, j then for each u, v we have 

A" VSupp(Gi * Ti *f G *T j *f)C{SuppG + Q* n { Supp G/'+ Q*m) 

(where Q*' is the square with the same center as Q but expanded by a factor of 

2s). 

And, by the geometry of the situation, no point belongs to more than 

22(k+l+m+n) of these sets At,. Therefore 

k,l,m,n < C24(k+I + m + n) 2 S f| G ki * fu (x) Gl *Tm4j *fv (x) Idx 

and 

IG *Tn4i *fu(x)I <Ap2kP63/2fjrnki *fu (x)j dx 

G1* qTm4j*fv (x)| Ap21P3/2f ITm4 *fv (x)Idx 

Supp(Gk*Tn' *fuiG! *Tm4 *fv)f < C22(k+l+m+ n) 
3/2 

k (Pi oi l~~~u-vj+1 
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KAKEYA MAXIMAL FUNCTION. 19 

Thus 

Ik,I m,n < Ap26(k+l+m+n).2-2p(k+l)89/2 

2 2 

ITn(pjlt<i*fu( y)Idy ) ( Tm(Ai *fv y( I dy) 

U,V ~ ~ ,vIu-vI+1 

uLv ~ ~~ ju-vj+1 
< A 2 -p(k+ 1+m+n)8s5/2 

2 
u t 2 

?Ap2P(k+l+m+n)s3/2 jL og II fII 

< Ap2 - p(k+ 1+ m+ n)3/2I Log8I 11 f 114 

So going back to [V] we get (if p is big enough) 

f ITf (x) 14 dx < C Log 15833/2 E 2 - p(k+ 1+m+ n)l f 114 
k, 1, m, n 

< CS 3/2 I LogS 1511 f 11 4 

This completes the proof of (1). 

Proof of (2). Suppose that f is supported in the square Ql, g in Q2 and 

dist(Q1,Q2)=d 8 1. We have to show that 

fI Tf (x)Tg(x)|4 < Ap(1 + d ) PI Log3 1511 f 11211 gIt2 

As before we decompose Qi and Q2 into vertical strips and also we 

decompose the functions f = Y fk' g = X g1. 

Then it is enough to show that Vk, 1 

f Tfk (x)Tg (x)2dx A( + d) 3/2 1511 f g 

So in the following we shall assume that f lies on a vertical strip P and g on a 

vertical strip P' such that dist( p, p') _ d- 

Then 

fITf(x)Tg(x)I2dx< CE fITii (x)T1g,.(x)12dx 
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20 ANTONIO CORDOBA. 

We decompose the strips P and P' into a family of squares 

P=UQU,P =UQV, IQuI=IQV'l=6 1 

and fu =f/ Qu, g,, = g/ Q,. Then with the same notation as in part (1) we have 

fI Tf (x)Tg(x)12dx 
ILogjI ILog3I 

< CILogSj4 E E24(k+l+m+n) I |G 
k,l=1 m,n=l i,j U,v 

Gl * Tm *g(x)2 dx + negligible term. 

Now we decompose the sum into two parts; i.e. we consider the sets of 
indices: 

11= {(k,l,m,n)Isup{2k,21,2n,2m} > d/4} 

J2= {(k,1,m,n)I sup{2k,521,2n, 2m} < d/4} 

And it is clear that if (k, 1, m, n) E J2 then 

I Gk * TnOdi *fu (X) G/ * Tmoj * g v (x) I-0 

Now, suppose that (k,l, m, n) EJl. Then 

E E |I Gki* T'Pi *u ( x) 12 | Gl * Tm'j 
* 

gv (x) 12 dx 
i,j U,v 

f= | IGc 6k* Tnoi*fu (X)I2 G/*rTmj*gv(X)2dx 

u,u dx) ~~~~~~~~~1/2 
<(| E |Gkk*TnOi *fu (X) k*^ n<ri *fU (x)| x 

1/2 

(|E E |G/i*Tm,fj * gvD(X) Gl' * TI m jgD' (X) I dx) 

< CjLog3 1583/22-p(k+l+m+n)llf 11211 gI2 

And now we use the fact that in J, one of the four numbers 2k, 21, 2m, 2n is 

bigger than d/4. 
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KAKEYA MAXIMAL FUNCTION. 21 

COROLLARY 2.3. (Carleson- Sjolin-Fefferman-Hormander). The operator 

TX defined by (() = mx ()f (), where mA(x) = (1- 1jj2)j if 1j1 < 1 and mx(() = 

0 otherwise, is bounded in LP (R2) if 

4 _<p< 4 (1>x>0) 

Proof. We define a partition of unity on [0,1] as follows: For every n, X. 
is a smooth function with support on [1-2-n+2 , 1-2-n-1] such that IDPXn(r) 

< A 2nP (with Ap independent of n) and X1 n (r) = 1 on [0, 1]. Then mx(() = 
' 
n = 1MA( X n (1 ). 

If we apply theorem 2.1 to the operator Txn defined by the multiplier 

MX(()Xn(tl) we get that 

11 Tf 114 < C2-nXn5/41f114 

and then Corollary 2.3 can be deduced from this estimate by standard argu- 

ments of interpolation, duality and adding a geometric series. Q.E.D. 

Remark. Theorem 2.1 can be used to prove a sharper version of corollary 

2.3 i.e., suppose that m is a smooth function on [0,1] such that behaves like 

(Log1 1 } near Ixl=1. 

Then m is a multiplier for L P (R2), (4/3) < P < 4 provided that p > 9/4. 
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