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Abstract—We describe the design of Kaldi, a free, open-source
toolkit for speech recognition research. Kaldi provides a speech
recognition system based on finite-state transducers (using the
freely available OpenFst), together with detailed documentation
and scripts for building complete recognition systems. Kaldi
is written is C++, and the core library supports modeling of
arbitrary phonetic-context sizes, acoustic modeling with subspace
Gaussian mixture models (SGMM) as well as standard Gaussian
mixture models, together with all commonly used linear and
affine transforms. Kaldi is released under the Apache License
v2.0, which is highly nonrestrictive, making it suitable for a wide
community of users.

I. INTRODUCTION

Kaldi1 is an open-source toolkit for speech recognition
written in C++ and licensed under the Apache License v2.0.
The goal of Kaldi is to have modern and flexible code that is
easy to understand, modify and extend. Kaldi is available on
SourceForge (see http://kaldi.sf.net/). The tools compile on the
commonly used Unix-like systems and on Microsoft Windows.

Researchers on automatic speech recognition (ASR) have
several potential choices of open-source toolkits for building a
recognition system. Notable among these are: HTK [1], Julius
[2] (both written in C), Sphinx-4 [3] (written in Java), and the
RWTH ASR toolkit [4] (written in C++). Yet, our specific
requirements—a finite-state transducer (FST) based frame-
work, extensive linear algebra support, and a non-restrictive
license—led to the development of Kaldi. Important features
of Kaldi include:

Integration with Finite State Transducers: We compile
against the OpenFst toolkit [5] (using it as a library).

Extensive linear algebra support: We include a matrix
library that wraps standard BLAS and LAPACK routines.

Extensible design: We attempt to provide our algorithms
in the most generic form possible. For instance, our decoders
work with an interface that provides a score for a particular
frame and FST input symbol. Thus the decoder could work
from any suitable source of scores.

Open license: The code is licensed under Apache v2.0,
which is one of the least restrictive licenses available.

1According to legend, Kaldi was the Ethiopian goatherd who discovered
the coffee plant.

Complete recipes: We make available complete recipes
for building speech recognition systems, that work from
widely available databases such as those provided by the
Linguistic Data Consortium (LDC).

Thorough testing: The goal is for all or nearly all the
code to have corresponding test routines.

The main intended use for Kaldi is acoustic modeling
research; thus, we view the closest competitors as being HTK
and the RWTH ASR toolkit (RASR). The chief advantage
versus HTK is modern, flexible, cleanly structured code and
better WFST and math support; also, our license terms are
more open than either HTK or RASR.

The paper is organized as follows: we start by describing the
structure of the code and design choices (section II). This is
followed by describing the individual components of a speech
recognition system that the toolkit supports: feature extraction
(section III), acoustic modeling (section IV), phonetic decision
trees (section V), language modeling (section VI), and de-
coders (section VIII). Finally, we provide some benchmarking
results in section IX.

II. OVERVIEW OF THE TOOLKIT

We give a schematic overview of the Kaldi toolkit in figure
1. The toolkit depends on two external libraries that are
also freely available: one is OpenFst [5] for the finite-state
framework, and the other is numerical algebra libraries. We use
the standard “Basic Linear Algebra Subroutines” (BLAS)and
“Linear Algebra PACKage” (LAPACK)2 routines for the latter.

The library modules can be grouped into two distinct
halves, each depending on only one of the external libraries
(c.f. Figure 1). A single module, the DecodableInterface

(section VIII), bridges these two halves.
Access to the library functionalities is provided through

command-line tools written in C++, which are then called
from a scripting language for building and running a speech
recognizer. Each tool has very specific functionality with a
small set of command line arguments: for example, there
are separate executables for accumulating statistics, summing
accumulators, and updating a GMM-based acoustic model

2Available from: http://www.netlib.org/blas/ and
http://www.netlib.org/lapack/ respectively.
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Fig. 1. A simplified view of the different components of Kaldi. The library
modules can be grouped into those that depend on linear algebra libraries
and those that depend on OpenFst. The decodable class bridges these two
halves. Modules that are lower down in the schematic depend on one or more
modules that are higher up.

using maximum likelihood estimation. Moreover, all the tools
can read from and write to pipes which makes it easy to chain
together different tools.

To avoid “code rot”, We have tried to structure the toolkit
in such a way that implementing a new feature will generally
involve adding new code and command-line tools rather than
modifying existing ones.

III. FEATURE EXTRACTION

Our feature extraction and waveform-reading code aims to
create standard MFCC and PLP features, setting reasonable
defaults but leaving available the options that people are most
likely to want to tweak (for example, the number of mel
bins, minimum and maximum frequency cutoffs, etc.). We
support most commonly used feature extraction approaches:
e.g. VTLN, cepstral mean and variance normalization, LDA,
STC/MLLT, HLDA, and so on.

IV. ACOUSTIC MODELING

Our aim is for Kaldi to support conventional models (i.e.
diagonal GMMs) and Subspace Gaussian Mixture Models
(SGMMs), but to also be easily extensible to new kinds of
model.

A. Gaussian mixture models

We support GMMs with diagonal and full covariance struc-
tures. Rather than representing individual Gaussian densi-
ties separately, we directly implement a GMM class that
is parametrized by the natural parameters, i.e. means times
inverse covariances and inverse covariances. The GMM classes
also store the constant term in likelihood computation, which
consist of all the terms that do not depend on the data vector.
Such an implementation is suitable for efficient log-likelihood
computation with simple dot-products.

B. GMM-based acoustic model

The “acoustic model” class AmDiagGmm represents a collec-
tion of DiagGmm objects, indexed by “pdf-ids” that correspond
to context-dependent HMM states. This class does not repre-
sent any HMM structure, but just a collection of densities (i.e.
GMMs). There are separate classes that represent the HMM
structure, principally the topology and transition-modeling
code and the code responsible for compiling decoding graphs,
which provide a mapping between the HMM states and the
pdf index of the acoustic model class. Speaker adaptation
and other linear transforms like maximum likelihood linear
transform (MLLT) [6] or semi-tied covariance (STC) [7] are
implemented by separate classes.

C. HMM Topology

It is possible in Kaldi to separately specify the HMM
topology for each context-independent phone. The topology
format allows nonemitting states, and allows the user to pre-
specify tying of the p.d.f.’s in different HMM states.

D. Speaker adaptation

We support both model-space adaptation using maximum
likelihood linear regression (MLLR) [8] and feature-space
adaptation using feature-space MLLR (fMLLR), also known
as constrained MLLR [9]. For both MLLR and fMLLR,
multiple transforms can be estimated using a regression tree
[10]. When a single fMLLR transform is needed, it can be
used as an additional processing step in the feature pipeline.
The toolkit also supports speaker normalization using a linear
approximation to VTLN, similar to [11], or conventional
feature-level VTLN, or a more generic approach for gender
normalization which we call the “exponential transform” [12].
Both fMLLR and VTLN can be used for speaker adaptive
training (SAT) of the acoustic models.

E. Subspace Gaussian Mixture Models

For subspace Gaussian mixture models (SGMMs), the
toolkit provides an implementation of the approach described
in [13]. There is a single class AmSgmm that represents a whole
collection of pdf’s; unlike the GMM case there is no class that
represents a single pdf of the SGMM. Similar to the GMM
case, however, separate classes handle model estimation and
speaker adaptation using fMLLR.

V. PHONETIC DECISION TREES

Our goals in building the phonetic decision tree code were
to make it efficient for arbitrary context sizes (i.e. we avoided
enumerating contexts), and also to make it general enough
to support a wide range of approaches. The conventional
approach is, in each HMM-state of each monophone, to have
a decision tree that asks questions about, say, the left and
right phones. In our framework, the decision-tree roots can
be shared among the phones and among the states of the
phones, and questions can be asked about any phone in the
context window, and about the HMM state. Phonetic questions
can be supplied based on linguistic knowledge, but in our



recipes the questions are generated automatically based on
a tree-clustering of the phones. Questions about things like
phonetic stress (if marked in the dictionary) and word start/end
information are supported via an extended phone set; in this
case we share the decision-tree roots among the different
versions of the same phone.

VI. LANGUAGE MODELING

Since Kaldi uses an FST-based framework, it is possible, in
principle, to use any language model that can be represented as
an FST. We provide tools for converting LMs in the standard
ARPA format to FSTs. In our recipes, we have used the
IRSTLM toolkit 3 for purposes like LM pruning. For building
LMs from raw text, users may use the IRSTLM toolkit, for
which we provide installation help, or a more fully-featured
toolkit such as SRILM 4.

VII. CREATING DECODING GRAPHS

All our training and decoding algorithms use Weighted
Finite State Transducers (WFSTs). In the conventional
recipe [14], the input symbols on the decoding graph cor-
respond to context-dependent states (in our toolkit, these
symbols are numeric and we call them pdf-ids). However,
because we allow different phones to share the same pdf-ids,
we would have a number of problems with this approach,
including not being able to determinize the FSTs, and not
having sufficient information from the Viterbi path through an
FST to work out the phone sequence or to train the transition
probabilities. In order to fix these problems, we put on the
input of the FSTs a slightly more fine-grained integer identifier
that we call a “transition-id”, that encodes the pdf-id, the phone
it is a member of, and the arc (transition) within the topology
specification for that phone. There is a one-to-one mapping
between the “transition-ids” and the transition-probability pa-
rameters in the model: we decided make transitions as fine-
grained as we could without increasing the size of the decoding
graph.

Our decoding-graph construction process is based on the
recipe described in [14]; however, there are a number of
differences. One important one relates to the way we handle
“weight-pushing”, which is the operation that is supposed to
ensure that the FST is stochastic. “Stochastic” means that
the weights in the FST sum to one in the appropriate sense,
for each state (like a properly normalized HMM). Weight
pushing may fail or may lead to bad pruning behavior if the
FST representing the grammar or language model (G) is not
stochastic, e.g. for backoff language models. Our approach
is to avoid weight-pushing altogether, but to ensure that
each stage of graph creation “preserves stochasticity” in an
appropriate sense. Informally, what this means is that the “non-
sum-to-one-ness” (the failure to sum to one) will never get
worse than what was originally present in G.

3Available from: http://hlt.fbk.eu/en/irstlm
4Available from: http://www.speech.sri.com/projects/srilm/

TABLE I
BASIC TRIPHONE SYSTEM ON RESOURCE MANAGEMENT: %WERS

Test set
Feb’89 Oct’89 Feb’91 Sep’92 Avg

HTK 2.77 4.02 3.30 6.29 4.10
Kaldi 3.20 4.21 3.50 5.86 4.06

VIII. DECODERS

We have several decoders, from simple to highly optimized;
more will be added to handle things like on-the-fly language
model rescoring and lattice generation. By “decoder” we mean
a C++ class that implements the core decoding algorithm. The
decoders do not require a particular type of acoustic model:
they need an object satisfying a very simple interface with a
function that provides some kind of acoustic model score for
a particular (input-symbol and frame).

class DecodableInterface {
public:
virtual float LogLikelihood(int frame, int index) = 0;
virtual bool IsLastFrame(int frame) = 0;
virtual int NumIndices() = 0;
virtual ˜DecodableInterface() {}

};

Command-line decoding programs are all quite simple, do
just one pass of decoding, and are all specialized for one
decoder and one acoustic-model type. Multi-pass decoding is
implemented at the script level.

IX. EXPERIMENTS

We report experimental results on the Resource Manage-
ment (RM) corpus and on Wall Street Journal. The results re-
ported here correspond to version 1.0 of Kaldi; the scripts that
correspond to these experiments may be found in egs/rm/s1

and egs/wsj/s1.

A. Comparison with previously published results

Table I shows the results of a context-dependent triphone
system with mixture-of-Gaussian densities; the HTK baseline
numbers are taken from [15] and the systems use essentially
the same algorithms. The features are MFCCs with per-speaker
cepstral mean subtraction. The language model is the word-
pair bigram language model supplied with the RM corpus.
The WERs are essentially the same. Decoding time was about
0.13×RT, measured on an Intel Xeon CPU at 2.27GHz. The
system identifier for the Kaldi results is tri3c.

Table II shows similar results for the Wall Street Journal
system, this time without cepstral mean subtraction. The WSJ
corpus comes with bigram and trigram language models. and
we compare with published numbers using the bigram lan-
guage model. The baseline results are reported in [16], which
we refer to as “Bell Labs” (for the authors’ affiliation), and a
HTK system described in [17]. The HTK system was gender-
dependent (a gender-independent baseline was not reported),
so the HTK results are slightly better. Our decoding time was
about 0.5×RT.



TABLE II
BASIC TRIPHONE SYSTEM, WSJ, 20K OPEN VOCABULARY, BIGRAM LM,

SI-284 TRAIN: %WERS

Test set
Nov’92 Nov’93

Bell 11.9 15.4
HTK (+GD) 11.1 14.5

KALDI 11.8 15.0

TABLE III
RESULTS ON RM AND ON WSJ, 20K OPEN VOCABULARY, BIGRAM LM,

TRAINED ON HALF OF SI-84: %WERS

RM (Avg) WSJ Nov’92 WSJ Nov’93
Triphone 3.97 12.5 18.3

+ fMLLR 3.59 11.4 15.5
+ LVTLN 3.30 11.1 16.4

Splice-9 + LDA + MLLT 3.88 12.2 17.7
+ SAT (fMLLR) 2.70 9.6 13.7
+ SGMM + spk-vecs 2.45 10.0 13.4

+ fMLLR 2.31 9.8 12.9
+ ET 2.15 9.0 12.3

B. Other experiments

Here we report some more results on both the WSJ test sets
(Nov’92 and Nov’93) using systems trained on just the SI-84
part of the training data, that demonstrate different features that
are supported by Kaldi. We also report results on the RM task,
averaged over 6 test sets: the 4 mentioned in table I together
with Mar’87 and Oct’87. The best result for a conventional
GMM system is achieved by a SAT system that splices 9
frames (4 on each side of the current frame) and uses LDA
to project down to 40 dimensions, together with MLLT. We
achieve better performance on average, with an SGMM system
trained on the same features, with speaker vectors and fMLLR
adaptation. The last line, with the best results, includes the
“exponential transform” [12] in the features.

X. CONCLUSIONS

We described the design of Kaldi, a free and open-source
speech recognition toolkit. The toolkit currently supports mod-
eling of context-dependent phones of arbitrary context lengths,
and all commonly used techniques that can be estimated using
maximum likelihood. It also supports the recently proposed
SGMMs. Development of Kaldi is continuing and we are
working on using large language models in the FST frame-
work, lattice generation and discriminative training.
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