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Abstract— We study the problem of optimal estimation
using quantized innovations, with application to distributed
estimation over sensor networks. We show that the state
probability density conditioned on the quantized innovations
can be expressed as the sum of a Gaussian random vector
and a certain truncated Gaussian vector. This structure bears
close resemblance to the full information Kalman filter and so
allows us to effectively combine the Kalman structure with a
particle filter to recursively compute the state estimate. We call
the resuting filter the Kalman like particle filter (KLPF) and
observe that it delivers close to optimal performance using far
fewer particles than that of a particle filter directly applied to
the original problem. We also note that the conditional state
density follows a, so called, generalized closed skew-normal
(GCSN) distribution.

Index Terms— Distributed state estimation, Sign of Innova-
tion, Closed Skew Normal Distribution, Particle Filter, Wireless
sensor network, Kalman Filter.

I. INTRODUCTION

The problem of estimation with quantized measurements

is almost as old as the Kalman filter itself. An early survey

on the subject can be found in [1]. However, most of the

earlier techniques centered around using numerical integra-

tion methods to approximate the optimal state estimate. The

advent of particle filtering [2], [3] created a whole new set of

tools to handle non-linear estimation problems. For example,

[4] proposes a particle filtering solution for optimal filtering

using quantized sensor measurements. But, quantizing sensor

measurements can lead to large quantization noises when the

observed values are large which then leads to poor estimation

accuracy. In [5], this limitation is overcome by developing an

elegant distributed estimation approach based on quantizing

the innovation to one bit (the so called sign of innovation

or SOI). In [6], this is generalized to handle multiple

quantization levels. In both cases, it is assumed that the

conditional state density is approximately Gaussian leading

to a linear filter and a very simple characterization of its

error performance. Under the Gaussian assumption, the error

covariance matrix associated with the state estimation error

satisfies a modified Riccati recursion of the type that appears

in [7]. The only difference between this modified Riccati

and the traditional one is a scaling factor λ multiplying

the nonlinear term of the recursion. For the SOI Kalman

filter (SOI-KF), λ is 2
π while [6] presents a formula for

Ravi Teja Sukhavasi is with the department of Electrical Engineering, Cal-
ifornia Institute of Technology, Pasadena, USA teja@caltech.edu

Babak Hassibi is a faculty with the department of Electri-
cal Engineering, California Institute of Technology, Pasadena, USA
hassibi@caltech.edu

λ in the case of multiple quantization levels. Henceforth,

these filters will be referred to as SOI-KF and MLQ-KF,

and their associated Riccati recursions as SOI-Riccati and

MLQ-Riccati respectively.

For linear time invariant dynamical systems, if the Gaus-

sian assumption were realistic, convergence of the modified

Riccati must mean the convergence of the corresponding

linear filters. Using results presented in [7] one can find

linear time invariant systems for which the MLQ-Riccati

and SOI-Riccati converge. [8] provides examples for which

the actual error performance of SOI-KF and MLQ-KF do

not converge to their respective Riccatis, which warrants a

closer examination of the assumption of Gaussianity. This

is one of the questions addressed in this paper. We derive

a novel stochastic characterization of the conditional state

density (see theorem 3.1). Using this, it is straighforward to

see that the conditional state density is not Gaussian, as one

would expect, given the non-linear nature of quantization. In

fact, it belongs to a class of distributions which we refer to

as Generalized Closed Skew Normal (GCSN) distributions.

A careful literature review reveals that a related observation

has been made in [1]. In particular, with some effort, [1]

can be used to derive theorem 3.1. Specializing this result

to state space models, we develop a novel particle filtering

approach to optimally estimate the state using quantized mea-

surements/innovations. The authors were also subsequently

referred to a very similar work in [9], though the results

presented here are more general and the technique is sub-

stantially different. In the rest of the paper, we use the words

‘measurements’ and ‘innovations’ interchangealy since the

analysis will prove that the general structure of the filter does

not depend on whether sensor measurements or innovations

are quantized. The proposed filter requires far fewer particles

than that of a particle filter applied directly to the original

problem [8], as will be shown through various simulations.

We also develop a precise formulation of the conditional

state density and observe that it follows what we call a

generalized closed skew-normal distribution, which is very

similar to those studied in [10], [11]. Some useful properties

of this distribution are also provided in the Appendix. The

next section introduces the problem setup.

II. PROBLEM STATEMENT AND PRELIMINARIES

The broader problem that one would like to solve can

be cast as causal estimation of a random process {x(n)}
using a quantized version of a measurement process {y(n)},

where x(n) and y(n) can be vectors. Without any further
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structure, this is a difficult problem to analyze. When {x(n)}
and {y(n)} are jointly Gaussian, we will provide a novel

stochastic characterization of the probaility density of x(n)
causally conditioned on the quantized measurement process.

We use it to propose a novel filtering technique for the above

problem which reduces to an elegant particle filter when

{x(n)} has state space structure.

A. Notation

The following notation will be used in the rest of the paper.

1) If {u(n)}∞n=−∞ is a discrete time random process,

u(i : j) denotes the collection of random vari-

ables (u(i), . . . , u(j)). Un denotes the random vector

[u(0), . . . , u(n)]T and un denotes a realization of Un.

2) For a random vector Y , ‖Y ‖2 , E(Y −EY )(Y −EY )T

3) For random vectors X , Y , 〈X, Y 〉 , E(X −EX)(Y −
EY )T

4) For random variables (X1, . . . , Xn), L(X1, . . . , Xn)
denotes their linear span.

5) For a vector x, x(i) denotes its i-th component. In the

context of particle filtering, xi would denote the i-th
particle.

6) Nk(µ, Σ) denotes a k-dim normal random variable with

mean µ and covariance Σ. Nk(a, b, µ, Σ) denotes a k-

dim normal truncated to lie in (a, b), where a, b are

k-dim vectors and the truncation is component-wise.

7) Φ(x) = P (X ≤ x), where X ∼ N(0, 1),
Φ(a, b, µ, σ) = P (X ∈ (a, b)) when X ∼ N(µ, σ2)
and in general, Φ(I∗, µ, σ) = P (X ∈ I∗).

8) The notion of optimality to be used throughout the paper

is mean squared error optimality.

B. Problem Formulation

Suppose {x(n)} and {y(n)} have the following state space

structure.

x(n + 1) = A(n)x(n) + w(n) (1a)

y(n) = H(n)x(n) + v(n) (1b)

where x(n) ∈ R
d is the state, y(n) ∈ R is the observation,

and w(n) ∈ R
d and v(n) ∈ R are uncorrelated Gaussian

white noises with zero means and covariances W (n) and

R(n) , σ2
v(n), respectively. The initial state, x(0), of the

system, is also a zero mean Gaussian with covariance P (0)
and is uncorrelated with both w(n) and v(n). As in [5], [6],

we consider the sensor network configuration in which the

fusion center has sufficient power to broadcast its predicted

output and the corresponding error covariance to its sensors.

Sensors are assumed to have limited power and hence their

transmission of information should be limited. Here, we

assume that the energy required for receiving messages is

much less than that for transmitting.

Once a scheduling algorithm is in place, at each time

instant, a sensor S(n) makes a measurement y(n) and

computes the innovation ẽ(n) = y(n) − ŷ(n|n − 1), where

ŷ(n|n − 1) = hx̂(n|n − 1) together with the variance of

the innovation ‖ẽ(n)‖2 are received by the sensor from the

fusion center, with x̂(n|n − 1) being the one step predictor

of the state. [5], [6] propose methods to quantize ǫ(n) and

use the quantized innovations to update the state estimate.

These filters take the following shape

x̂(n/n) = x̂(n/n − 1) +
L (q(n))P (n)(H(n))T

√

H(n)P (n)(H(n))T + σ2
v

x̂(n + 1/n) = A(n)x̂(n/n)

P (n/n) = P (n) − λ
P (n)(H(n))T H(n)P (n)

H(n)P (n)(H(n))T + σ2
v

(2a)

P (n + 1) , P (n + 1/n) = A(n)P (n/n)(A(n))T + W (n)
(2b)

where q(n) denotes the quantized innovation while L (q(n))
and the value of λ depend on the quantization scheme used.

Eqs (2a) and (2b) constitute the modified Riccati recursion

with parameter λ. For SIO-KF, λ = 2
π and for MLQ-

KF, [6] provides a formula for λ and L (q(n)). The above

filter is derived based on the assumption that the conditional

distribution f (x(n)/qn−1) is Gaussian, which we will prove

is generally false. [8] provides examples where the error

performance of the filters in [5], [6] do not track the modified

riccati recursions that they were predicted to. Instead, the

optimal filter, which was approximated by a particle filter, has

been observed to have an error covariance matrix that obeys

the modified Riccatis. In order to approximate the optimal

filter, [8] employs a very basic particle filtering algorithm

which is outlined below for easy reference.

Alg 1. Particle Filter

1) Set n = 0. For i = 1, · · · , N , initialize the particles,

xi (0| − 1) ∼ f(x(0)) and set x̂(0| − 1) = 0

2) At time n, set q(n) = Q (y(n) − H(n)x̂(n|n − 1)),
where Q(.) is a quantization rule.

3) Suppose the quantized value q(n) implies that

y(n) − H(n)x̂(n|n − 1) ∈ I(n), then

v(n) + H(n)(x(n) − x̂(n/n − 1)) ∈ I(n). The

importance weights are now calculated as follows

wi(n) = Φ(I(n), H(n)(x(n) − x̂(n/n − 1)), σv(n))

4) Measurement update is given by

x̂(n/n) =
∑N

i=1 wi(n)xi(n/n − 1), where wi(n) are

the normalized weights, i.e., wj(n) = wj(n)
P

N
i=1

wi(n)

5) Resample N particles with replacement accoding to,

Prob
(
xi(n/n) = xj(n/n − 1)

)
= wj(n)

6) For i = 1, · · · , N , predict new particles according to,

xi(n + 1/n) ∼ f
(
x(n + 1)|xi(n|n)

)
, i.e.,

xi(n + 1/n) = A(n)xi(n/n) + Nk(0, W (n))

where W (n) is the covariance of the process noise at

time n.

7) Set x̂(n + 1|n) = A(n)x̂(n|n). Also, set n = n + 1
and iterate from step 2.
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The particles in Alg 1 describe the conditional state

density f (x(n)/qn) and simulations suggest that one needs

upwards of a few hundred particles to get satisfactory error

performance for most systems. In the following sections,

we disprove the premise behind MLQ-KF and SOI-KF and

develop a novel particle filtering technique (KLPF) which

converges to the optimal filter asymptotically. Simulations

show that the KLPF needs far fewer particles than the particle

filter of Alg 1. The difference partly lies in using particles to

describe a probability density funtion with much less support

than the conditional state density.

III. FULL INFORMATION VS QUANTIZED INNOVATIONS

Suppose {x(n)} and {y(n)} are jointly Gaussian, then it is

well known that the probability density of x(n) conditioned

on Yn is a Gaussian with the following parameters

x(n)/ (Yn = yn) ∼ Nk(0, R∆) + Rxy(n)(Ry(n))−1yn,
(3)

Rx(n) , ‖x(n)‖2, Ry(n) , ‖Yn‖2, Rxy(n) , 〈x(n),Yn〉
and R∆ , Rx(n) − Rxy(n)(Ry(n))−1Ryx(n)

When {x(n)} has an underlying state space structure and

{y(n)} is a linear measurement of {x(n)} corrupted by

additive white Gaussian noise, as defined in Eq (1), it is

well known that the following Riccati recursion propogates

the error covariance P (n) = R∆

P (n) , P (n/n − 1) = A(n)P (n − 1/n− 1)A(n)T + Q(n)

P (n/n) = P (n) − P (n)H(n)(H(n))T P (n)

H(n)P (n)(H(n))T + σ2
v

(4)

P (0) = ‖x(0)‖2

We would like to address the problem of optimal estimation

using a quantized version of the observation process. Let

Q(.) be a general quantization rule which generates the quan-

tized measurement process {q(n)}, where q(n) = Q(yn).
Note that we allow the quantization rule to depend on all

the past measurements y(i), i ≤ n. This includes, as a

special case, the method of quantizing the innovations first

proposed in [5]. We will show that the probability density of

x(n) conditioned on the quantized measurements Qn admits

a characterization very similar to Eq (3). We state the result

in the following theorem.

Theorem 3.1: The probability density of x(n) conditioned

on the quantized measurement Qn can be expressed as

x(n)/ (Qn =qn) ∼Nk(0, R∆)

+ Rxy(n)(Ry(n))−1 (Yn/ (Qn =qn))
(5)

where Nk(0, R∆) and Yn/ (Qn = qn) are independent.

Proof: The proof is fairly straightforward. The theorem

will be proved by showing that the moment generating

fuction of x(n)/ (Qn = qn) can be seen as the product

of two moment generating functions corresponding to the

two random variables in Eq (5). For brevity, we will write

x(n)/ (Qn = qn) as x(n)/qn.

f(x(n)/qn) =

∫

f(x(n),yn/qn)dyn

Noting that f(x(n)/yn,qn) = f(x(n)/yn), we can write

EetT x(n)/qn =

∫

etT x(n)f(x(n)/yn)f(yn/qn)dx(n)dyn

(∗)
= e

1

2
tT R∆t

∫

etT Rxy(n)(Ry(n))−1
ynf(yn/qn)dyn

︸ ︷︷ ︸

, mfg of Rxy(n)(Ry(n))−1yn/qn

=⇒ Mx(n)/qn
(t) = MZ(t)Myn/qn

((Ry(n))−1Ryx(n)t)
(6)

where Z ∼ Nk(0, R∆). In getting (∗), we used the fact that

x(n)/yn ∼ Nk(Rxy(n)(Ry(n))−1yn, R∆). For any random

variable Y , it is easy to see that MY (AT t) = MAY (t). The

result is now obvious from Eq (6).

Comparing Eqs (3) and (5), the only difference is the mea-

surement vector yn being replaced by the random variable

Yq(n) , Yn/qn. It is easy to see that Yq(n) is a multivariate

gaussian random variable truncated to lie in the region

defined by qn. It is worth noting that the covariance of

x(n)/qn, ‖x(n)/qn‖2, is given by

R∆ + Rxy(n)(Ry(n))−1‖Yn/qn‖2(Ry(n))−1Ryx(n)

As the quantization scheme becomes finer (in an appropriate

manner), Yq(n) clearly converges to Yn and x(n)/qn ap-

proaches a Gaussian as is well known. Using theorem 3.1,

it is easy to see that x(n)/qn is not Gaussian in general,

contrary to the assumption made in [5], [6]. It belongs

to a class of distributions, which we call the Generalized

Skew Normal Distributions (GCSN), the details of which

are provided in the Appendix.

We will use theorem 3.1 to propose a novel particle

filtering scheme. We begin by noting that

Ex(n)/qn = Rxy(n)(Ry(n))−1EYq(n) (7)

The filter is implemented for the quantization scheme pro-

posed in [5], [6]. At time n, the sensor which is sched-

uled to make the measurement receives a prediction of its

measurement ŷ(n) , ŷ(n/n − 1) and the error covariance

‖y(n) − ŷ(n/n − 1)‖2. The sensor, then quantizes
ẽ(n)

‖ẽ(n)‖ ,

where ẽ(n) , y(n) − ŷ(n/n − 1), using the following

quantizer and transmits the result to the fusion center.

Q(x) =







qK if x > rK−1

qi if ri−1 < x ≤ ri, i ≥ 2

q1 if x ≤ r1

where (r1, . . . , rK−1) are the quantization levels. Using the

convention, r0 = −∞ and rK = ∞, we can re-write

the quantization levels as (r0, . . . , rK). The output of the

quantizer at time n will be denoted by q(n) and the lower and

upper limits of the interval implied by q(n) will be denoted
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by r1(n) and r2(n) respectively. We assume that the fusion

center has access to the exact value of q(n) at every instant.

Note that ŷ(n/n−1) is an estimate of the measurement, not

necessarily the optimal. Hence y(n) − ŷ(n/n− 1) is not an

innovation in the true sense of the word, unless the estimator

employed at the fusion center is optimal. Nevetheless, we

will refer to q(n) as the quantized innovation. With this

setup, we will develop a filtering technique which needs

far fewer particles to achieve optimal performance than the

simple particle filter applied to the original problem.

IV. THE FILTER

We shall begin with the observation that Yq(n) is a

multivariate normal distribution truncated as follows

Yq(n) = Yn/
(

ẽ(j) ∈ (r1(j), r2(j)) ∀ j ≤ n
)

= Yn/
(

y(j) ∈ (r1(j) + ŷ(j), r2(j) + ŷ(j)) ∀ j ≤ n
)

Let s1(n) , r1(j) + ŷ(j) and s2(n) , r2(j) + ŷ(j).
Then, clearly, Yq(n) is a multivariate normal with its j-th

component truncated to lie in the interval (s1(j), s2(j)) ∀
j ≤ n, i.e., Yq(n) ∼ Nn+1(s1,n, s2,n, 0, Ry(n)). From Eq

(7), it is clear that the optimal state estimate can be computed

by first computing the mean of the truncated normal. Before

proposing the filter, we need a couple of results for

(a) relating the distributions of Yq(n) and Yq(n − 1) and

(b) generating scalar truncated normal random variables.

Lemma 4.1: Let (Z1, Z2, · · · , Zn) ∼ fn (zn), where

fn (zn) = Nn (zn; s1,n, s2,n, 0, Rz(n)) ,

then the marginal of the first n − 1 components is given by

(Z1, · · · , Zn−1) ∼ fn (zn−1)

∝

≡fn−1(zn−1)
︷ ︸︸ ︷

Nn−1 (zn−1; s1,n−1, s2,n−1, 0, Rz(n − 1))×

Φ
(

s1(n), s2(n), Ez(n)/zn−1,
√

R∆n

)

Also the conditional distribution of Zn/Z1:n−1 is given by

fn (z(n)/zn−1)= N
(

z(n); s1(n), s2(n), Ez(n)/zn−1, R∆n

)

Ez(n)/zn−1 , Rz(n; n, 1:n−1)(Rz(n−1))−1zn−1

R∆n , Rz(n; n, n)

− Rz(n; n, 1:n−1)(Rz(n−1))−1Rz(n; 1 :n−1, n)

Note that fn (z(n)/zn−1) is a one dimensional truncated

normal.

The following Lemma describes a standard technique to

generate scalar truncated normal random variables.

Lemma 4.2: Let U ∼ U(0, 1), then

Y = Φ−1 ((Φ(b) − Φ(a)) U + Φ(a))

is distributed as N(a, b, 0, 1)
We will now propose a particle filtering technique to recur-

sively compute the state estimate.

Alg 2. Truncated Normal Particle Filter

1) At n = 0, generate

{yi(0)}N
i=1 ∼ N(s1(0), s2(0), 0, Ry(0)) using the

technique outlined in Lemma 4.2.

2) At time n, for each particle {yi
n−1}, compute the

weight as

wi(n) = Φ
(
s1(n), s2(n), Ey(n)/yi

n−1,
√

R∆n

)

3) Generate

{yi(n)}N
i=1 ∼ N

(
s1(n), s2(n), Ey(n)/yi

n−1, R∆n

)

and define yi
n =

[
y

i
n−1

yi(n)

]

.

4) Measurement update

x̂(n|n) = Rxy(n)(Ry(n))−1

∑N
i=1 wi(n)yi

n
∑N

i=1 wi(n)
(8)

5) Resample the N particles {yi
n}N

i=1 with replacement

accoding to Prob
(
yi

n

)
= wi(n) where the normalized

weights are given by wi(n) = wj(n)
P

N
i=1

wi(n)

6) Set x̂(n + 1|n) = A(n)x̂(n|n). Also, set n = n + 1
and iterate from step 2.

In the filter proposed above, it is important to note that the

dimension of the particle yi
n is n and hence increases with

time. In the absence of any structure on the random processes

{x(n)} and {y(n)}, the computations involved in running

the above filter will quickly become infeasible. Alg 2 is of

purely theoretical interest but the technique presented above

is greatly simplified when x(n) has state space structure. In

the following subsection, we will show how to overcome

the problem of increasing particle dimension when {x(n)}
is a Gauss Markov process and {y(n)} is a linear mea-

surement of {x(n)} corrupted by additive white Gaussian

noise. The filter takes an elegant formulation in which the

particle dimension remains fixed and is equal to the state

dimension. This approach requires far fewer particles than

Alg 1 and the filtering technique is quite general, in that,

it can handle arbitrary number of quantization levels and

arbitrary quantization intervals. We will also observe that

the filter requires fewer and fewer particles as the number of

quantization levels increases.

A. Exploiting State Space Structure - The Kalman Like

Particle Filter

Suppose {x(n)} and {y(n)} have the state space structure

defined in Eq (1). Then we know that Rxy(n)(Ry(n))−1yi
n

is the optimal estimate of x(n) given the measurement

vector yi
n and hence can be computed by running a Kalman

filter using yi
n, the specific realization of the measurement

vector Yn. Similarly Ey(n)/yi
n−1 is the optimal estimate

of y(n) given Yn−1 = yi
n−1 and R∆n is the resulting

error covariance. All these quantities emerge naturally in the
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following Kalman filtering steps.

xi(0/0) =
P (0)H(0)T

H(0)P (0)(H(0))T + σ2
v(0)

yi(0) (9a)

P (k + 1) , P (k + 1/k) = AP (k/k)AT + W (k) (9b)

P (k + 1/k + 1) = P (k) − P (k)H(k)(H(k))T P (k)

H(k)P (k)(H(k))T + σ2
v(k)

(9c)

xi(k + 1) , xi(k + 1/k) = Axi(k/k) (9d)

xi(k + 1/k + 1) = xi(k + 1)+ (9e)

P (k)(H(k))T

H(k)P (k)(H(k))T + σ2
v(k)

(yi(k + 1) − H(k + 1)xi(k + 1))

(9f)

Now, Rxy(n)(Ry(n))−1yi
n, R∆n and Ey(n)/yi

n−1 can be

calculated as follows

Rxy(n)(Ry(n))−1yi
n = xi(n/n) (10a)

R∆n = H(n)P (n)(H(n))T + σ2
v(n) (10b)

Ey(n)/yi
n−1 = H(n)xi(n) (10c)

Now consider Eq (8), we can write it alternately as

x̂(n|n) = Rxy(n)(Ry(n))−1

∑N
i=1 wi(n)yi

n
∑N

i=1 wi(n)

=

N∑

i=1

wi(n)Rxy(n)(Ry(n))−1yi
n =

N∑

i=1

wi(n)xi(n/n)

(11)

From Eqs (10) and (11), it is easy to see that all the

information in yi
n is captured in xi(n/n). Hence, we only

need to work with {xi(n/n)}N
i=1 at any time n. We can now

desribe the new filter as follows.

Alg 3. Kalman Like Particle Filter (KLPF)

1) At n = 0, generate {xi(0)} ∼ N(0, P (0)) and

{yi(0)}N
i=1 ∼ N(s1(0), s2(0), 0, Ry(0)) using the

technique outlined in Lemma 4.2. Compute {xi(0/0)}
using Eq (9a) and xi(1/0) = A(0)xi(0/0)

2) Generate

{yi(n)}N
i=1 ∼ N

(
s1(n), s2(n), H(n)xi(n), R∆n

)
Use

Eq (10b) to compute R∆n. Then form {xi(n/n)}
using Eq (9).

3) At time n, for each particle {xi(n)}, compute the

weight {wi(n)} as

wi(n) = Φ
(

s1(n), s2(n), H(n)xi(n),
√

R∆n

)

4) (Measurement update)

Normalize the weights to get wi(n) = wj(n)
P

N
i=1

wi(n)
and

compute the measurement updated state estimate using

Eq (11), i.e., x̂(n/n) =
∑N

i=1 wi(n)xi(n/n)
5) Resample the N particles {xi(n/n)}N

i=1 with

replacement accoding to Prob
(
xi(n/n)

)
= wi(n) and

compute xi(n + 1) = A(n + 1)xi(n/n).
6) Set x̂(n + 1|n) = A(n)x̂(n|n). Also, set n = n + 1

and iterate from step 2.

TABLE I

SUMMARY OF NUMERICAL RESULTS

Example 1 Example 2

SOI 2 bit SOI 2 bit

SOI-KF no - yes -

MLQ-KF - no - yes

Alg 1 2500 10000 500 750

KLPF 500 90 25 3

From the above implementation, in terms of complexity, the

KLPF is clearly equivalent to running N parallel Kalman

filters. Hence, the complexity of the KLPF scales linearly

in N , the number of particles. Also, it converges to the

optimal filter as N → ∞. But for most systems, simulations

suggest that the KLPF delivers close to optimal performance

for N ≤ 50. The particles in the KLPF describe the random

variable Rxy(n)(Ry(n))−1Yq(n). The support of its distri-

bution clearly decreases with increasing quantization levels.

As a result KLPF needs fewer particles as the quantization

becomes finer, a property that Alg 1 does not share. This

will be demonstrated through examples in Section V.

The scenario considered thus far involves one measure-

ment per time instant. But Alg 3 can be easily extended to

handle multiple measurements from different sensors at a

given time instant. Here it is assumed that the measurement

noise processes are uncorrelated across different sensors.

The proof is simple and is not detailed here due to space

constraints.

V. SIMULATIONS

In Alg 1, the particles describe the full probability density

of the state conditioned on quantized measurements. While

in Alg 3, part of the information about the conditional state

density is captured neatly by the Kalman filter. So, the

particles describe a truncated Gaussian which has much less

support than the full conditional distribution. We give two

examples in this section to demonstrate the effectiveness

of KLPF. Table I summarizes the highlights from the two

examples

In Table I, a ‘yes’ indicates that the filter works and is

close to optimal, a ‘no’ indicates that its estimation error

diverges and a ‘-’ means that the quantization method does

not apply to the filter. ‘SOI’ stands for ‘sign of innovation’

and ‘2-bit’ stands for a quantization rule with quantization

intervals given by (−∞,−1.2437), (−1.2437,−0.3823),
(−0.3823, 0.3823), (0.3823, 1.2437) and (1.2437,∞). If

the innovation falls in the interval (−0.3823, 0.3823), no

measurement update is done, so that 2 bits will suffice to

represent the output of the above quantizer. The numbers in

front of Alg 1 and KLPF denote the number of particles

required to approximate the optimal filter. Clearly, KLPF

requires far fewer particles than Alg 1. Also evident from

Table I is the fact that KLPF needs dramatically fewer

particles as the quantization becomes finer.
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A. Example 1

We re-use this example from [8]. Consider a linear time in-

variant system of the form (1) with the following parameters:

A =
[

0.95 1 0
0 0.9 10
0 0 0.95

]

, h = [ 1 0 2 ], W = 2I3, R , σ2
v = 2.5

and P (0) = 0.01I3, where Im denotes an m × m identity

matrix. Note that A is a stable matrix. As can be seen

from the plot, SOI-KF diverges but KLPF delivers optimal

performance with much fewer particles than Alg 1. MLQ-

KF with 4 levels of quantization also diverges while KLPF

converges to the optimal filter with just 90 particles. But the

plot isn’t included due to space limitations.
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B. Example 2

A simple tracking system can be characterized by the

following parameters, A =
[

1 τ
0 1

]

, h = [ 1 0 ], W =
[

τ4

4

τ3

2

τ3

2
τ2

]

,

σ2
v = 0.81 and P (0) = 0.01I3 and the sampling period

τ = 0.1.
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In Example 2, note that KLPF works with much fewer

particles than in Example 1. One can attribute this to the

much higher value of the optimal mean squared error in

Example 1 than in Example 2, as can be seen from the plots.

VI. CONCLUSIONS

We propose a Kalman like particle filter (KLPF) that,

in the examples studied, required moderately small num-

ber of particles and therefore can obtain close to optimal

performance with a computational complexity comaparable

to the conventional Kalman filter. An important open issue

is to determine the number of particles necessary to closely

approximate the optimal filter. As earlier observed in [8], the

error covariance matrix of the optimal filter seems to follow

the modified Riccati recursion introduced in [7]. Determining

whether this is the case, and why, remains an interesting open

question.
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APPENDIX

Definition 1: For x ∈ R
n, we define the generalized closed

skew-normal distribution, GCSNk,n(x; µ, Σ, D, s1, s2, ∆), as fol-
lows

GCSNk,n(x; µ, Σ, D, s1, s2, ∆) , Nk (x;µ, Σ) Lk,n(.)

Lk,n(.) =
Φn (s1, s2; D (x − µ) , ∆)

Φn (s1, s2; 0, ∆ + DΣDT )
(12)

Nk(x; µ, Σ) is a k-dim gaussian r.v and Φn(y1, y2; ν,∆) =

P (y
(1)
1 ≤ X1 ≤ y

(1)
2 , . . . , y

(n)
1 ≤ Xn ≤ y

(n)
2 ) where

(X1, . . . , Xn) ∼ Nn(x; ν, ∆).
The sizes of the matrices involved follow accordingly. This is a very
simple generalization of the closed skew-normal (CSN) distribution
defined in [11]. Infact, it reduces to the CSN if y1 = −∞ in all
its components. Naturally, it inherits most of its closure properties.
Due to space limitations, they could not be proved here. The proofs
infact are very similar to those in [11]. Skew elliptical distributions
generated a lot of interest because they provide a much needed tool
to handle skewness in statistical modeling and have a good number
of properties in common with the standard normal distribution, such
as closure under marginlization and conditioning. We conclude the
appendix by stating the conditional state distribution without proof.

Result 1 (Conditional State Distribution): The state density
conditioned on the quantized measurements is given by

x(n)/qn = GCSNk,n(0, Rx(n), D(n), s1(n), s2(n), ∆(n))

where ∆(n) = Ry(n) − Ryx(n) (Rx(n))−1 Rxy(n) and D(n) =
Ryx(n) (Rx(n))−1
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