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THE KAPLANSKY CONDITION AND RINGS

OF ALMOST STABLE RANGE 1

MOSHE ROITMAN

(Communicated by Irena Peeva)

Abstract. We present some variants of the Kaplansky condition for a K-
Hermite ring R to be an elementary divisor ring. For example, a commutative
K-Hermite ring R is an EDR iff for any elements x, y, z ∈ R such that (x, y) =
R there exists an element λ ∈ R such that x + λy = uv, where (u, z) =
(v, 1− z) = R.

We present an example of a Bézout domain that is an elementary divisor
ring but does not have almost stable range 1, thus answering a question of
Warren Wm. McGovern.

1. Introduction

First we recall some basic definitions and known results.
All rings here are commutative with unity. A ring R is Bézout if each finitely

generated ideal of R is principal.
Two rectangular matrices A and B in Mm,n(R) are equivalent if there exist

invertible matrices P ∈ Mm,m(R) and Q ∈ Mn,n(R) such that B = PAQ.
The ring R is K-Hermite if every rectangular matrix A over R is equivalent to

an upper or a lower triangular matrix (following [9, Appendix to §4] we use the
term ‘K-Hermite’ rather than ‘Hermite’ as in [8]). From [8] it follows that this
definition is equivalent to the definition given there. See also [5, Theorem 3]: by
this theorem, a ring is K-Hermite iff for every two elements a, b ∈ R, there are
elements a1, b1, d ∈ R such that (a, b) = (a1d+ b1d) and (a1, b1) = R. Parentheses
are used to denote the ideal generated by the specified elements.

A ring R is an elementary divisor ring (EDR) iff every rectangular matrix A
over R is equivalent to a diagonal matrix. It follows from [8] that this definition is
equivalent to the definition given there.

An EDR is K-Hermite, and a K-Hermite ring is Bézout. An integral domain is
Bézout iff it is K-Hermite.

By [5, Theorem 6] a ring R is an EDR iff it satisfies the following two conditions:

(1) R is K-Hermite;
(2) R satisfies Kaplansky’s condition (see §2, condition (K) below).
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By [4, Example 4.11], (1) �=⇒ (2). The question in [6] whether a Bézout domain
is an EDR (equivalently, whether it satisfies Kaplansky’s condition) is still open.
On the other hand, (2) �=⇒ (1) (Remark 2.1 below).

In section 2, we elaborate on the Kaplansky condition.
A row [r1, . . . , rn] over a ring R is unimodular if the elements r1, . . . , rn generate

the ideal R. The stable range sr(R) of a ring R is the least integer n ≥ 1 (if it exists)
such that for any unimodular row [r1, ..., rn+1] over R, there exist t1, ..., tn ∈ R such
that the row

[r1 + t1rn+1, ..., rn + tnrn+1]

is unimodular (see comments on [9, Theorem 5.2, Ch. VIII]). For background on
stable range see [1, §3, Ch. V].

The ring R has almost stable range 1 if every proper homomorphic image of R
has stable range 1 (see [10]). By [10, Theorem 3.7] a Bézout ring with almost stable
range 1 is an EDR. We elaborate on the almost stable range 1 condition in §3. In
particular, we present an elementary divisor domain (so Bézout) that does not have
almost stable range 1, thus answering the question of Warren Wm. McGovern in
[10] (Example 3.3). By Remark 3.2 below, a ring of stable range 1 is of almost
stable range 1. On the other hand, Z is of almost stable range 1 but is not of stable
range 1. Indeed, the stable range of Z is 2: clearly, there is no integer m such that
2 + 5m = ±1. Thus srZ > 1. On the other hand, the stable range of any Bézout
domain is ≤ 2; hence srZ = 2. More generally, the stable range of any K-Hermite
ring is ≤ 2 [11, Proposition 8]. Also by [12, Theorem 1], a Bézout ring is K-Hermite
iff it is of stable range ≤ 2.

For general background see [8], [3, §6, Ch. 3] and [10].

2. On the Kaplansky condition

By [5] a K-Hermite ring R is an elementary divisor ring iff it satisfies Kaplansky’s
condition (see [8, Theorem 5.2]):

For any three elements a, b, c in R that generate the ideal R,(K)

there exist elements p, q ∈ R so that (pa, pb+ qc) = R.

Remark 2.1. A local ring R is of stable range 1; thus R satisfies Kaplansky’s con-
dition with p = 1. If R is also a Noetherian domain, then R is K-Hermite iff R is a
principal ideal ring. Hence a Noetherian local domain that is not a principal ideal
ring is of stable range 1 but is not K-Hermite.

In the proof of Lemma 2.3 below, we will use the following well-known fact:

Remark 2.2. Let R be a ring, let A be a matrix in Mm,n(R), let r be a row in
M1,n(R), and let 1 ≤ k ≤ n. Then r belongs to the submodule of Rn generated by
the rows of the matrix A iff there exists a matrix C ∈ Mk,m(R) such that r is the
first row of the matrix CA.

Lemma 2.3. Let A be a 2×2-matrix over a ring R, and let u be a unimodular row
of length 2 over R. Then u belongs to the submodule of R2 generated by the rows
of A ⇐⇒ there exists an invertible matrix P so that u is the first row of PA.

Proof. ( =⇒ ) : By Remark 2.2, there exists a 2-row r over R so that u = rA. Since
the row u is unimodular, the row r is also unimodular. Since r is unimodular of
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length 2, there exists an invertible matrix P with its first row equal to r. Thus u
is the first row of the matrix PA.

(⇐=) : This follows from Remark 2.2. �

Lemma 2.4. Let A be a 2 × 2 matrix over a ring R so that its entries generate
the ideal R. Then A is equivalent to a diagonal matrix ⇐⇒ the submodule of R2

generated by the rows of A contains a unimodular row.
In this case A is equivalent to a matrix of the form

(
1 0
0 ∗

)
.

Proof. ( =⇒ ) : By assumption, A is equivalent to a diagonal matrix D =
(
d1 0
0 d2

)
,

where d1, d2 ∈ R. Since the entries of A generate the ideal R, d1, d2 also generate
the ideal R. The sum of the rows of D, namely [d1, d2], is unimodular.

(⇐=) : By Lemma 2.3, the matrix A is equivalent over R to a matrix B with first
row unimodular. Hence the submodule generated by the columns of B contains a
column of the form

(
1
∗
)
. By Lemma 2.3 again (for columns), we obtain that A

is equivalent to a matrix
(
1 r
∗ ∗

)
. By subtracting the first column of the matrix(

1 r
∗ ∗

)
multiplied by r from its second column and by a similar elementary row

transformation, we obtain a diagonal matrix of the form
(
1 0
0 ∗

)
. �

Theorem 2.5 (see [8, Theorem 5.2] and [5, Corollary 5]). Let R be a ring. Let
A =

(
a b
0 c

)
a triangular 2 × 2-matrix over R so that (a, b, c) = R. Then A is

equivalent to a diagonal matrix over R iff there exist elements p, q in R so that
(pa, pb+ qc) = R.

Proof. Since p[a, b] + q[0, c] = [pa, pb + qc] for any elements p, q ∈ R, the theorem
follows from Lemma 2.4. �

Remark 2.6. Let R be any ring. If Kaplansky’s condition (pb + qc, pa) = R holds
for elements a, b, c, p, q ∈ R, then

(pb+ qc, a) = (p, c) = R.

Indeed, Kaplansky’s condition implies that

(pb+ qc, a) = (pb+ qc, p) = R,

so (p, c) = R. Cf. the next proposition. �
Proposition 2.7. Let R be a K-Hermite ring, and let a, b and c be elements of R
that generate the ideal R. Then the following four conditions are equivalent:

(1) The matrix
(
a b
0 c

)
is equivalent to a diagonal matrix.

(2) There exist elements p, q in R so that (pa, pb+ qc) = R.
(3) There exist elements p and q in R so that (pb+ qc, a) = (p, c) = R.
(4) For some elements λ, u, v ∈ R we have b+λc = uv, and (u, a) = (v, c) = R.

Moreover, in (4) we may choose the elements u and v such that (u, v) = R.

Proof. (1) ⇐⇒ (2) : This follows from Theorem 2.5.
(2) =⇒ (4) : Since (pa, pb + qc) = R we obtain R = (p, pb + qc) = (p, qc), so

(p, (pb+ qc)c) = R. Let v be an element of R so that

vp ≡ 1 (mod (pb+ qc)c);

thus vp ≡ 1 (mod c). We have v(pb + qc) ≡ b (mod c), so v(pb + qc) = b + λc for
some element λ ∈ R. Hence b+ λc = uv, where u = pb+ qc; thus (u, a) = (v, c) =
(u, v) = R.
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(4) =⇒ (3) : We have b ≡ uv (mod c). Let p ∈ R so that pv ≡ 1 (mod c).
Hence pb ≡ u (mod c), so there exists an element q ∈ R such that pb + qc = u.
Thus (3) holds.

(3) =⇒ (2) : Since R is a K-Hermite ring, we may write (d) = (p, q) and
d = p1p+ q1q with (p1, q1) = R. Hence

(p1, p1b+ q1c) = (p1, q1c) = R,

so (p1a, p1b + q1c) = (p1, c) = R. Condition (2) holds with p and q replaced by p1
and q1, respectively. �

In the proof of Proposition 2.7, we used the assumption that R is K-Hermite
just for the implication (3) =⇒ (2).

Remark 2.8. If R is a Bézout domain, then the following condition is equivalent to
the conditions of Proposition 2.7:

(∗) For some elements λ, a1, c1 ∈ R we have

b+ λc | (1− a1a)(1− c1c).

Indeed, assume condition (∗). Let u ∈ R so that

(u) = (b+ λc, 1− a1a);

thus (u, a) = R and b+λc
u |

(
1−a1a

u

)
(1 − c1c). Since ( b+λc

u , 1−a1a
u ) = R, we see

that v := b+λc
u divides 1− c1c, so (v, c) = R. Thus condition (∗) implies condition

(4) of Proposition 2.7. The converse implication is obvious. �
Since a K-Hermite ring is an EDR iff each matrix of the form

(
a b
0 c

)
with (a, b, c) =

(1) has a diagonal reduction [8], Proposition 2.7 provides necessary and sufficient
conditions for a K-Hermite ring to be an EDR. We present an additional condition
in the next proposition.

Theorem 2.9. Let R be a K-Hermite ring. The following two conditions are
equivalent:

(1) R is an elementary divisor ring.
(2) For any elements x, y, z ∈ R such that (x, y) = R, there exists an element

λ ∈ R such that x+ λy = uv, where (u, z) = (v, 1− z) = R.

Moreover, the elements u and v can be chosen such that (u, v) = R.

Proof. (1) =⇒ (2) [including the requirement that (u, v) = (1)]: We apply condi-
tion (4) of Proposition 2.7 to the elements a = z, b = x, c = y(1− z).

(2) =⇒ (1) : We verify condition (4) of Proposition 2.7. Let (a, b, c) = R. Let
(d) = (b, c); thus (d, a) = (b, c, a) = R. Hence a | 1− d1d for some element d1 ∈ R.
Also b = b1d, c = c1d, where (b1, c1) = R. We apply condition (2) of the present
proposition to the elements

x = b1, y = c1, z = d1d.

Thus there are elements λ1, u1, v ∈ R so that b1+λ1c1 = u1v, where (u1, 1−d1d) =
(v, d1d) = R. Let u = du1; thus (u, a) = 1. Let λ = λ1d. Hence b + λc =
d(b1 + λ1c1) = uv and (u, a) = R. We have (v, c) = (v, dc1) = (v, c1) since
(v, d) = R. Since v divides b1 + λ1c1, it follows that (v, c1) | b1, so (v, c1) = R.
Thus (v, c) = R, as required. �
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Proposition 2.10. Let R be a Bézout domain. The following two conditions are
equivalent:

(1) R is an elementary divisor ring.
(2) For any nonzero elements x, y, z ∈ R, there exist elements λ, a, b ∈ R such

that x+ λy | y(1− az)(1− b(1− z)) in R.

Proof. (1) =⇒ (2) : Let (d) = (x, y); thus x
d and y

d are comaximal. By Theo-
rem 2.9, there are elements λ, a, b ∈ R so that (xd + λ y

d ) | (1 − az)(1 − bz(1 − z)).
Hence x+ λy | d(1− az)(1− b(1− z)), so x+ λy | y(1− az)(1− b(1− z)).

(2) =⇒ (1) : Let x0 and y0 be comaximal elements in R, and let z ∈ R. Thus
(x0+λy0) | y0(1−az)(1−b(1−z)) for some elements λ, a, b ∈ R. Since the elements
x0 + λy0 and y0 are comaximal, we obtain that (x0 + λy0) | (1− az)(1− b(1− z)),
so R is an EDR by Remark 2.8. �

3. On rings of almost stable range 1

Proposition 3.1. Let R be any ring. The following conditions are equivalent:

(1) R is of almost stable range 1.
(2) For each nonzero element z ∈ R, the ring R/zR is of stable range 1.
(3) For every three elements x, y, z ∈ R such that (x, y) = R and z �= 0, there

exists an element λ ∈ R such that (x+ λy, z) = R.

Proof (Cf. [1, Proposition 3.2, Ch. V]).
(1) =⇒ (2) =⇒ (3): Clear.
(3) =⇒ (1) : Let I be a nonzero ideal of R and let z be a nonzero element in

I. Let x+ I, y + I be two comaximal elements in R/I. Hence there exist elements
r, s ∈ R such that 1 − rx− sy ∈ I. By assumption, there exists an element λ ∈ R
such that (x+ λ(1− rx), z)R = R. Thus x+ λsy is invertible modulo the ideal I.
It follows that R/I is of stable range 1, so R is almost of stable range 1. �

Remark 3.2. The implication (3) =⇒ (1) in the previous proposition is clear since
if T is a homomorphic image of a ring R with finite stable range, then sr(T ) ≤ sr(R)
[1, Proposition 3.2, Ch. V], although this fact was not used explicitly but rather
its proof (in the above proof of the implication (2) =⇒ (3) we have sr(R/I) ≤
sr(R/(z)) = 1). This fact implies that if R is an arbitrary ring of stable range 1,
then R is of almost stable range 1, thus answering the question in [10, Remark 3.3].
See also [10, Proposition 3.2].

As we have seen in §2, the stable range 1 property implies Kaplansky’s condition
for an arbitrary ring. The converse is false since even if R is an elementary divi-
sor domain so that R satisfies Kaplansky’s condition, R does not necessarily have
almost stable range 1.

Example 3.3. An elementary divisor domain (and so Bézout) that does not have
almost stable range 1 (this example answers the question in [10, Remark 4.7]).

We use a well-known example of a Bézout domain, namely, R = Z+XQ[X] (for
a general theorem on pullbacks of Bézout domains, see [7, Theorem 1.9]). R is an
elementary divisor ring by [2, Theorem 4.61]. However, R/XQ[X] is isomorphic to
Z and srZ = 2. Hence R does not have almost stable range 1. �
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We conjecture that a Bézout domain that is a pullback of type � (as defined in
[7]) of elementary divisor domains is again an EDR. In this case the conditions of
[7, Theorem 1.9] must be satisfied. If this conjecture proves to be false, this will
yield a negative answer to the question in [6] as to whether a Bézout domain is an
EDR.
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