THE KAPLANSKY TEST PROBLEMS FOR \aleph_{1}-SEPARABLE GROUPS

PAUL C. EKLOF AND SAHARON SHELAH

(Communicated by Ronald M. Solomon)

Abstract

We answer a long-standing open question by proving in ordinary set theory, ZFC, that the Kaplansky test problems have negative answers for \aleph_{1}-separable abelian groups of cardinality \aleph_{1}. In fact, there is an \aleph_{1}-separable abelian group M such that M is isomorphic to $M \oplus M \oplus M$ but not to $M \oplus M$. We also derive some relevant information about the endomorphism ring of M.

Introduction

Kaplansky [15, pp. 12f.] posed two test problems in order to "know when we have a satisfactory [structure] theorem. ... We suggest that a tangible criterion be employed: the success of the alleged structure theorem in solving an explicit problem." The two problems were:
(I) If A is isomorphic to a direct summand of B and conversely, are A and B isomorphic?
(II) If $A \oplus A$ and $B \oplus B$ are isomorphic, are A and B isomorphic?

In fact, he says ([15, p. 75]) that he invented the problems "to show that Ulm's theorem [a structure theory for countable abelian p-groups] could really be used". For some other classes of abelian groups, such as finitely-generated groups, free groups, divisible groups, or completely decomposable torsion-free groups, the existence of a structure theory leads to an affirmative answer to the test problems. On the other hand, negative answers are taken as evidence of the absence of a useful classification theorem for a given class; Kaplansky says "I believe their defeat is convincing evidence that no reasonable invariants exist" [15, p. 75]. Negative answers to both questions have been proven, for example, for the class of uncountable abelian p-groups and for the class of countable torsion-free abelian groups.

Of particular interest is the method developed by Corner (cf. [1], [2], [4]) which, by realizing certain rings as endomorphism rings of groups, provides negative answers to both test problems (for a given class) as special cases of an even more extreme pathology. More precisely, Corner's method - where applicable - yields, for any positive integer r, an abelian group G_{r} (in the class) such that for any

[^0]positive integers m and k, the direct sum of m copies of G_{r} is isomorphic to the direct sum of k copies of G_{r} if and only if m is congruent to $k \bmod r$. (See, for example, [2] or [11, Thm. 91.6, p. 145].) Then we obtain negative answers to both test problems by letting $A=G_{2}\left(\cong G_{2} \oplus G_{2} \oplus G_{2}\right)$ and $B=G_{2} \oplus G_{2}$.

Our focus here is on the class of \aleph_{1}-separable abelian groups (of cardinality \aleph_{1}). We will prove, in ordinary set theory (ZFC), that both test problems have negative answers by deriving the Corner pathology:

Theorem 0.1. For any positive integer r there is an \aleph_{1}-separable group $M=M_{r}$ of cardinality \aleph_{1} such that for any positive integers m and k, M^{m} is isomorphic to M^{k} if and only if m is congruent to $k \bmod r$. (Here M^{m} denotes the direct sum of m copies of M.)

We do not determine the endomorphism ring of M, even modulo an ideal. However, we can derive a property of the endomorphism ring of M which is sufficient to imply the Corner pathology: see section 3.

A group M is called \aleph_{1}-separable [10, p. 184] (respectively, strongly \aleph_{1}-free) if it is abelian and every countable subset is contained in a countable free direct summand of M (resp., contained in a countable free subgroup H which is a direct summand of every countable subgroup of M containing H). Obviously, an \aleph_{1-} separable group is strongly \aleph_{1}-free, so a negative answer to one of the test problems for the class of \aleph_{1}-separable groups implies a negative answer to the problem for the class of strongly \aleph_{1}-free groups. (It is independent of ZFC whether these classes are different for groups of cardinality \aleph_{1} : the weak Continuum Hypothesis $\left(2^{\aleph_{0}}<\right.$ $2^{\aleph_{1}}$) implies that there are strongly \aleph_{1}-free groups of cardinality \aleph_{1} which are not \aleph_{1}-separable; on the other hand, Martin's Axiom (MA) plus the negation of the Continuum Hypothesis $(\neg \mathrm{CH})$ implies that every strongly \aleph_{1}-free group of cardinality \aleph_{1} is \aleph_{1}-separable; cf. [16].)

Dugas and Göbel [5] proved that ZFC $+2^{\aleph_{0}}<2^{\aleph_{1}}$ implies that the Corner pathology exists for the class of strongly \aleph_{1}-free groups of cardinality \aleph_{1}; in fact, they showed that there is a strongly \aleph_{1}-free group G whose endomorphism ring is an appropriate ring (the ring $A=A_{r}$ of the next section). (See also [12].) This group G cannot be \aleph_{1}-separable since the endomorphism ring of an \aleph_{1}-separable group has too many idempotents. However, Thomé ([20] and [21]) showed that ZFC plus $\mathrm{V}=\mathrm{L}$ (Gödel's Axiom of Constructibility) implies the Corner pathology for \aleph_{1}-separable groups of cardinality \aleph_{1}; he did this by constructing an \aleph_{1}-separable G such that $\operatorname{End}(G)$ is a split extension of A by I (in the sense of [3, p. 277]), where I is the ideal of endomorphisms with a countable image.

It follows from known structure theorems for the class of \aleph_{1}-separable groups of cardinality \aleph_{1} under the hypothesis MA $+\neg \mathrm{CH}$ that the Dugas-Göbel and Thomé realization results are not theorems of ZFC (cf. [7] or [17]). The fact that there are positive structure theorems for the class of \aleph_{1}-separable groups assuming MA + $\neg \mathrm{CH}$ or the stronger Proper Forcing Axiom (PFA) — see, for example, [8] or [18] — led to the question of whether the Kaplansky test problems could have affirmative answers for this class assuming, say, PFA. Thomé [21] gave a negative answer to the second test problem in ZFC, using a result of Jónsson [14] for countable torsion-free groups; however, till now, the first test problem as well as the Corner pathology were open (in ZFC).

Our construction of the Corner pathology involves a direct construction of the pathological group M using a tree-like ladder system and a "countable template"
which comes from the Corner example for countable torsion-free groups. A key role is played by a paper of Göbel and Goldsmith [13] which - while it does not itself prove any new results about the Kaplansky test problems for strongly \aleph_{1}-free or \aleph_{1}-separable groups - provides the tools for creating a suitable template from the Corner example.

1. The countable template

Fix a positive integer r. For this r, let $A=A_{r}$ be the countable ring constructed by Corner in [2]. (See also [11, p. 146].) Specifically, A is the ring freely generated by symbols ρ_{i} and $\sigma_{i}(i=0,1, \ldots, r)$ subject to the relations

$$
\rho_{j} \sigma_{i}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\sum_{i=0}^{r} \sigma_{i} \rho_{i}=1
$$

Then A is free as an abelian group, and $\sigma_{0} \rho_{0}, \ldots, \sigma_{r} \rho_{r}$ are pairwise orthogonal idempotents. Moreover, if M is a right A-module, then $M=M \sigma_{0} \rho_{0} \oplus M \sigma_{1} \rho_{1} \oplus \ldots \oplus$ $M \sigma_{r} \rho_{r}$, and $M \sigma_{i} \rho_{i} \cong M$ because $\sigma_{i} \rho_{i} \sigma_{i}: M \rightarrow M \sigma_{i} \rho_{i}$ and $\rho_{i} \sigma_{i} \rho_{i}: M \sigma_{i} \rho_{i} \rightarrow M$ are inverses; therefore $M \cong M^{r+1}$.

Our construction will work for any countable torsion-free ring A whose additive subgroup is free; but hereafter A will denote the ring A_{r} just defined.

Corner shows that there is a torsion-free countable abelian group G whose endomorphism ring is A; thus G is an A-module and hence $G \cong G^{r+1}$. Furthermore, he shows that G^{ℓ} is not isomorphic to G^{n} if $1 \leq \ell<n \leq r$, and hence G^{m} is not isomorphic to G^{k} if m is not congruent to $k \bmod r$. We shall require these and further properties of G, which we summarize in the following:
Proposition 1.1. There are countable free A-modules $B \subseteq H$ such that $G \cong H / B$ and B is the union of a chain of free A-modules, $B=\bigcup_{n \in \omega} B_{n}$, such that $B_{0}=0$ and for all $n \in \omega, H / B_{n}$ and B_{n+1} / B_{n} are free A-modules of rank ω. Moreover for any positive integers m and k, if m is not congruent to k mod r, then $G^{m} \oplus \mathbf{Z}^{(\omega)}$ is not isomorphic to $G^{k} \oplus \mathbf{Z}^{(\omega)}$.

The main work in proving Proposition 1.1 will be done in two lemmas from [13]. For the first one, we give a revised proof (cf. [13, p. 343]). We maintain the above notation.

Lemma 1.2. The group G is the union, $G=\bigcup_{n \geq 1} G_{n}$, of an increasing chain of free A-modules.
Proof. By [1, p. 699] G is the pure closure $\left\langle G_{1}\right\rangle_{*}$ in \hat{A} of a free A-module $G_{1}=$ $\bigoplus_{i \in I} e_{i} A \oplus A$ containing A. Here \hat{A} is the natural, or Z-adic, completion of A (cf. [1, p. 692]). We will define inductively $G_{n}=\bigoplus_{i \in I} e_{i, n} A \oplus A$ such that $G_{n} \supseteq G_{n-1}$ and for all $i \in I, n e_{i, n}+A=e_{i, n-1}+A$. Let $e_{i, 1}=e_{i}$ for all $i \in I$. If $G_{n-1} \subseteq G$ has been defined for some $n>1$, then since A is dense in \hat{A}, there exists $e_{i, n} \in \hat{A}$ such that $n e_{i, n}+A=e_{i, n-1}+A$; say $n e_{i, n}=e_{i, n-1}+a_{i}$. By the definition of $G, e_{i, n} \in G$. We need to show that $\left\{e_{i, n}: i \in I\right\} \cup\{1\}$ is A-linearly independent. Suppose that $\sum_{i \in I} e_{i, n} c_{i}+1 \cdot c_{0}=0$ for some $c_{0}, c_{i} \in A$. Then $\sum_{i \in I} n e_{i, n} c_{i}+n c_{0}=0$, so $\sum_{i \in I} e_{i, n-1} c_{i}+1 \cdot\left(\sum_{i \in I} a_{i} c_{i}+n c_{0}\right)=0$. By the A-linear
independence of $\left\{e_{i, n-1}: i \in I\right\} \cup\{1\}$, we can conclude that each c_{i} equals 0 and hence also c_{0} equals 0 . This completes the definition of G_{n}.

It remains to prove that $G \subseteq \bigcup_{n>1} G_{n}$. Let $g \in G \backslash G_{1}$. For some $n>1$, $n g \in G_{1}$. We claim that $g \in G_{n}$. Since $n g \in G_{n-1}, n g=\sum_{i \in I} e_{i, n-1} c_{i}+c_{0}$ for some $c_{i}, c_{0} \in A$. Then

$$
n g=\sum_{i \in I}\left(n e_{i, n}-a_{i}\right) c_{i}+c_{0}=n \sum_{i \in I} e_{i, n} c_{i}+a^{\prime}
$$

for some $a^{\prime} \in A$. Since A is pure in $\hat{A}, a^{\prime}=n a^{\prime \prime}$ for some $a^{\prime \prime} \in A$. Thus $g=$ $\sum_{i \in I} e_{i, n} c_{i}+a^{\prime \prime} \in G_{n}$.

The second lemma is proved in [13, Lemma 2.5], generalizing [9, Lemma XII.1.4]. We state it here for the sake of completeness.
Lemma 1.3. Let G be a countable A-module which is the union, $G=\bigcup_{n \geq 1} G_{n}$, of an increasing chain of free A-modules. Then there exist countable free A-modules $B \subseteq H$ such that $G \cong H / B$ and B is the union of a chain of free A-modules, $B=\bigcup_{n \geq 1} B_{n}$, such that for all $n \geq 1, H / B_{n}$ and B_{n+1} / B_{n} are free A-modules.
Proof of Proposition 1.1. The existence of H, B, and the B_{n} is now an immediate consequence of Lemmas 1.2 and 1.3. All that is left to show is that if m is not congruent to $k \bmod r$, then $G^{m} \oplus \mathbf{Z}^{(\omega)}$ is not isomorphic to $G^{k} \oplus \mathbf{Z}^{(\omega)}$. Since G^{m} is not isomorphic to G^{k}, it is enough to show that $R_{\mathbf{Z}}\left(G^{l} \oplus \mathbf{Z}^{(\omega)}\right)=G^{l}$ for any $l \in \omega$. Here $R_{\mathbf{Z}}(N)$ is the \mathbf{Z}-radical of N, that is, $R_{\mathbf{Z}}(N)=\bigcap\{\operatorname{ker}(\varphi): \varphi: N \rightarrow \mathbf{Z}\}$. (See, for example, [9, pp. 289f.].) To show that $R_{\mathbf{Z}}\left(G^{l} \oplus \mathbf{Z}^{(\omega)}\right)=G^{l}$ it is enough to show that $\operatorname{Hom}\left(G^{l}, \mathbf{Z}\right)=0$, or, equivalently, $\operatorname{Hom}(G, \mathbf{Z})=0$. This follows from Observation 2.7 of [13], but we give here a self-contained argument based on the notation of Lemma 1.2. Suppose $\psi \in \operatorname{Hom}(G, \mathbf{Z})$; we can regard ψ as an endomorphism of G by identifying \mathbf{Z} with the subgroup $\langle 1\rangle$ of $A \subseteq G$ which is generated by the unit 1 of A. Since the endomorphism ring of G is A, there is $a \in A$ such that $\psi(g)=g a$ for all $g \in G$. By considering $\psi(1)=1 a=a$, we see that $a \in\langle 1\rangle$. Now consider $\psi\left(e_{i}\right)$ for any e_{i}; since $\psi\left(e_{i}\right)=e_{i} a$ and since $e_{i} A \cap\langle 1\rangle=\{0\}$, we see that $a=0$.

2. The main construction

Fix a positive integer r and let A, H, B, B_{n} and G be as in Proposition 1.1. For each $n \in \omega$, fix a basis $\left\{b_{n, i}+B_{n}: i \in \omega\right\}$ of B_{n+1} / B_{n} (as A-module). Also, fix a set of representatives $\left\{h_{i}: i \in \omega\right\}$ for H / B where $h_{0}=0$; thus each coset $h+B$ equals $h_{i}+B$ for a unique $i \in \omega$.

Fix a stationary subset E of ω_{1} consisting of limit ordinals and a ladder system $\left\{\eta_{\delta}: \delta \in E\right\}$. That is, for every δ in $E, \eta_{\delta}: \omega \rightarrow \delta$ is a strictly increasing function whose range is cofinal in δ; we shall also choose η_{δ} so that its range is disjoint from E. Furthermore, we choose a ladder system which is tree-like, that is, for all $\delta, \gamma \in E$ and $n, m \in \omega, \eta_{\delta}(n)=\eta_{\gamma}(m)$ implies that $m=n$ and $\eta_{\delta}(l)=\eta_{\gamma}(l)$ for all $l<n$ (cf. [9, pp. 368, 386]).

Inductively define free A-modules $M_{\beta}\left(\beta<\omega_{1}\right)$ as follows: if β is a limit ordinal, $M_{\beta}=\bigcup_{\alpha<\beta} M_{\alpha}$; if $\beta=\alpha+1$ where $\alpha \notin E$, let

$$
M_{\beta}=M_{\alpha} \oplus \bigoplus_{i \in \omega} x_{\alpha, i} A
$$

If $\beta=\delta+1$ where $\delta \in E$, define an embedding $\iota_{\delta}: B \rightarrow M_{\delta}$ by sending the basis element $b_{n, i}$ to $x_{\eta_{\delta}(n), i}$. Essentially $M_{\delta+1}$ will be defined to be the pushout of

$$
\begin{array}{llll}
M_{\delta} & & \\
\uparrow \iota_{\delta} & & \\
B & \hookrightarrow & H
\end{array}
$$

but we will be more explicit in order to avoid the necessity of identifying isomorphic copies. Let $y_{\delta, 0}=0$, and let $\left\{y_{\delta, i}: i \in \omega \backslash\{0\}\right\}$ be a new set of distinct elements (not in M_{δ}). Then define $M_{\delta+1}$ to be $\left\{y_{\delta, i}+u: u \in M_{\delta}, i \in \omega\right\}$, where the operations on $M_{\delta+1}$ extend those on M_{δ} and are otherwise determined by the rules

$$
\begin{array}{lll}
y_{\delta, i}+y_{\delta, j}=y_{\delta, k}+\iota_{\delta}(b) & \text { if } & h_{i}+h_{j}=h_{k}+b, \\
y_{\delta, i} a=y_{\delta, \ell}+\iota_{\delta}(b) & \text { if } & h_{i} a=h_{\ell}+b,
\end{array}
$$

where $b \in B$ and $a \in A$. Then there is an embedding $\theta_{\delta}: H \rightarrow M_{\delta+1}$ extending ι_{δ} which takes h_{i} to $y_{\delta, i}$ and induces an isomorphism of H / B with $M_{\delta+1} / M_{\delta}$.

This completes the inductive definition of the M_{β}. Let $M=\bigcup_{\beta<\omega_{1}} M_{\beta}$. Note that it follows from the construction that every element of M has a unique representation in the form

$$
\sum_{j=1}^{s} y_{\delta_{j}, n_{j}}+\sum_{\ell=1}^{t} x_{\alpha_{\ell}, i_{\ell}} a_{\ell}
$$

where $\delta_{1}<\delta_{2}<\ldots<\delta_{s}$ are elements of $E, n_{j} \in \omega \backslash\{0\}, \alpha_{\ell} \in \omega_{1} \backslash E, i_{\ell} \in \omega$, $a_{\ell} \in A$, and the pairs $\left(\alpha_{\ell}, i_{\ell}\right)(\ell=1, \ldots, t)$ are distinct.

Since M is constructed to be an A-module, M is isomorphic to M^{r+1}. We claim that
$(\dagger) M$ is \aleph_{1}-separable; in fact for all $\alpha<\omega_{1}, M_{\alpha+1}$ is a free direct summand of M.
Assuming this for the moment, we can show that
$(\dagger \dagger) M^{m}$ is not isomorphic to M^{k} if m is not congruent to $k \bmod r$.
In brief, this is because M^{m} and M^{k} are not quotient-equivalent (cf. [9, pp. 251f.]), since for all $\delta \in E,\left(M_{\delta+1} / M_{\delta}\right)^{m} \oplus \mathbf{Z}^{(\omega)}$ is not isomorphic to $\left(M_{\delta+1} / M_{\delta}\right)^{k} \oplus$ $\mathbf{Z}^{(\omega)}$ by Proposition 1.1. In more detail, if there is an isomorphism $\varphi: M^{m} \rightarrow M^{k}$, then there is a closed unbounded subset C of ω_{1} such that for $\beta \in C, \varphi\left[M_{\beta}^{m}\right]=M_{\beta}^{k}$. Since E is stationary in ω_{1}, there exist $\delta \in C \cap E$; choose $\beta>\delta$ such that $\beta \in C$. Then φ induces an isomorphism of $M_{\beta}^{m} / M_{\delta}^{m}$ with $M_{\beta}^{k} / M_{\delta}^{k}$. Since $M_{\beta} / M_{\delta+1}$ is free (of infinite rank) by (\dagger), we can conclude that

$$
\begin{aligned}
&\left(M_{\delta+1} / M_{\delta}\right)^{m} \oplus \mathbf{Z}^{(\omega)} \cong\left(M_{\delta+1}^{m} / M_{\delta}^{m}\right) \oplus\left(M_{\beta}^{m} / M_{\delta+1}^{m}\right) \cong M_{\beta}^{m} / M_{\delta}^{m} \cong M_{\beta}^{k} / M_{\delta}^{k} \\
& \cong\left(M_{\delta+1}^{k} / M_{\delta}^{k}\right) \oplus\left(M_{\beta}^{k} / M_{\delta+1}^{k}\right) \cong\left(M_{\delta+1} / M_{\delta}\right)^{k} \oplus \mathbf{Z}^{(\omega)}
\end{aligned}
$$

which contradicts Proposition 1.1.
We are left with the task of proving (\dagger). First we shall show that each $M_{\alpha+1}$ is a direct summand of M by defining a projection π_{α} of M onto $M_{\alpha+1}$ (that is, $\pi_{\alpha} \upharpoonright M_{\alpha+1}$ is the identity). For every integer k there is a projection $\rho_{k}: H \rightarrow$ B_{k+1}, since H / B_{k+1} is free. Given α, for each $\delta \in E$ with $\delta>\alpha$, let k_{δ} be the maximal integer k such that $\eta_{\delta}(k) \leq \alpha$. For each $\delta \in E$, we let π_{α} act like $\rho_{k_{\delta}}$ on the isomorphic copy, $\theta_{\delta}[H]$, of H. More precisely, for each element z of $\theta_{\delta}[H]$, define $\pi_{\alpha}(z)$ to be $\theta_{\delta}\left(\rho_{k_{\delta}}\left(\theta_{\delta}^{-1}(z)\right)\right)$; if $\nu \not \bigcup \bigcup\left\{\operatorname{ran}\left(\eta_{\delta}\right): \delta \in E\right\}$ and $\nu>\alpha$, define $\pi_{\alpha}\left(x_{\nu, i}\right)=0$. Extend to an arbitrary element of M by additivity; this will define
a homomorphism on M provided that π_{α} is well-defined. It is easy to see, using the unique representation of elements, that the question of well-definition reduces to showing that the definition of $\pi_{\alpha}\left(x_{\beta, i}\right)$ for $x_{\beta, i} \in \theta_{\delta}[H]$ is independent of δ. If $\beta \leq \alpha$, then $\pi_{\alpha}\left(x_{\beta, i}\right)=x_{\beta, i}$. Say $\beta>\alpha$ and $\beta=\eta_{\delta}(n)=\eta_{\gamma}(n)$; by the tree-like property, $\eta_{\delta}(m)=\eta_{\gamma}(m)$ for all $m \leq n$, and hence $k_{\delta}=k_{\gamma}$. Hence $\pi_{\alpha}\left(x_{\beta, i}\right)$ is well-defined because $\rho_{k_{\delta}}=\rho_{k_{\gamma}}$ and thus $\theta_{\delta}\left(\rho_{k_{\delta}}\left(\theta_{\delta}^{-1}\left(x_{\beta, i}\right)\right)\right)=\theta_{\gamma}\left(\rho_{k_{\gamma}}\left(\theta_{\gamma}^{-1}\left(x_{\beta, i}\right)\right)\right)$.

It remains to prove that each M_{β} is \aleph_{1}-free (as an abelian group). Since A is free as an abelian group, it suffices to show that $M_{\delta+1}$ is a free A-module for every $\delta \in E$. We will inductively define S_{n} so that

$$
B=\bigcup_{n \in \omega} S_{n} \cup\left\{x_{\nu, i}: \nu \in \delta \backslash\left(E \cup \bigcup\left\{\operatorname{ran}\left(\eta_{\mu}\right): \mu \in E \cap(\delta+1)\right\}\right), i \in \omega\right\}
$$

is an A-basis of $M_{\delta+1}$. Let S_{0} be the image under θ_{δ} of a basis of H. Fix a bijection $\psi: \omega \rightarrow E \cap \delta$; also, for convenience, let $\psi(-1)=\delta$. Suppose that S_{m} has been defined for $m \leq n$ so that $\bigcup_{m \leq n} S_{m}$ is A-linearly independent and generates $\bigcup\left\{\theta_{\psi(m)}[H]:-1 \leq m<n\right\}$. Let $\gamma=\psi(n)$, and let $k=k_{n}$ be maximal such that $\eta_{\gamma}(k)=\eta_{\psi(m)}(k)$ for some $-1 \leq m<n$. Notice that $\left\{x_{\eta_{\gamma}(\ell), i}: \ell \leq k, i \in \omega\right\}$ is contained in the A-submodule generated by $\bigcup_{m \leq n} S_{m}$. Since H / B_{k+1} is A-free, we can write $H=B_{k+1} \oplus C_{k}$ for some A-free module $C_{k}\left(=\operatorname{ker}\left(\rho_{k}\right)\right)$; let S_{n+1} be the image under θ_{γ} of a basis of C_{k}. This completes the inductive construction. One can then easily verify that B is an A-basis of $M_{\delta+1}$; indeed, the fact that $\bigcup_{m \leq n} S_{m}$ is A-linearly independent can be proved by induction on n, using the unique representation of elements of M to show that if $\sum_{i=1}^{r} z_{i} a_{i} \in\left\langle\bigcup_{m \leq n} S_{m}\right\rangle$, where z_{1}, \ldots, z_{r} are distinct elements of S_{n+1}, then $a_{i}=0$ for all $i=1, \ldots, r$.

3. The endomorphism Ring of M

While we cannot show that $\operatorname{End}(M)$ is a split extension of A by an ideal, we can obtain enough information about $\operatorname{End}(M)$ to imply the negative results on the Kaplansky test problems. (A similar idea is used in [19, p. 118].)

The ring A is naturally a subring of $\operatorname{End}(M)$. We say that A is algebraically closed in $\operatorname{End}(M)$ when every finite set of ring equations with parameters from A (i.e., polynomials in several variables over A) which is satisfied in $\operatorname{End}(M)$ is also satisfied in A.

Proposition 3.1. If $A=A_{r}$ is as in section 1, and A is algebraically closed in $\operatorname{End}(M)$, then for any positive integers m and k, M^{m} is isomorphic to M^{k} if and only if m is congruent to k mod r.
Proof. Since M is an A-module, $M \cong M^{r+1}$. If M^{ℓ} is isomorphic to M^{n} where $1 \leq \ell<n \leq r$, then $\sum_{i=1}^{\ell} M \sigma_{i} \rho_{i} \cong \sum_{i=1}^{n} M \sigma_{i} \rho_{i}$, so by Lemma 2 of [2], there are elements x and y of $\operatorname{End}(M)$ such that $x y=\sum_{i=1}^{\ell} \sigma_{i} \rho_{i}$ and $y x=\sum_{i=1}^{n} \sigma_{i} \rho_{i}$. So by hypothesis, such elements x and y exist in A. We then obtain a contradiction as in [2, p. 45].

Proposition 3.2. If M is defined as in section 2, then A is algebraically closed in $\operatorname{End}(M)$.
Proof. For any $\sigma \in \operatorname{End}(M)$, there is a closed unbounded subset C_{σ} of ω_{1} such that for all $\alpha \in C_{\sigma}, \sigma\left[M_{\alpha}\right] \subseteq M_{\alpha}$. For any $\sigma_{1}, \ldots, \sigma_{n}$ in $\operatorname{End}(M)$, choose $\alpha<\beta$ in $C_{\sigma_{1}} \cap \ldots \cap C_{\sigma_{n}}$ so that also $\alpha \in E$. Then each σ_{i} induces an endomorphism,
also denoted σ_{i}, of M_{β} / M_{α}. The endomorphism ring of M_{β} / M_{α} is $\operatorname{End}\left(G \oplus \mathbf{Z}^{(\omega)}\right)$, and restriction to G defines a natural homomorphism, π, of $\operatorname{End}\left(G \oplus \mathbf{Z}^{(\omega)}\right)$ onto $\operatorname{End}(G) \cong A$, because $\operatorname{Hom}\left(G, \mathbf{Z}^{(\omega)}\right)=0$. If $\sigma_{i}=a \in A$ (regarded as an element of $\operatorname{End}(M)$), then $\pi(a)=a$. Hence if $\sigma_{1}, \ldots, \sigma_{m}$ satisfy some ring equations over A, then so do $\pi\left(\sigma_{1}\right), \ldots, \pi\left(\sigma_{m}\right)$.

Propositions 3.1 and 3.2 provide an alternative proof of $(\dagger \dagger)$.

References

[1] A. L. S. Corner, Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc. 13 (1963), 687-710. MR 27:3704
[2] A. L. S. Corner, On a conjecture of Pierce concerning direct decompositions of Abelian groups, in Proceedings of the Colloquium on Abelian Groups, Tihany, Akad. Kiadó, Budapest (1964), 43-48. MR 30:148
[3] A. L. S. Corner, On endomorphism rings of primary Abelian groups, Quart. J. Math. Oxford Ser. (2) 20 (1969), 277-296. MR 41:3594
[4] A. L. S. Corner and R. Göbel, Prescribing endomorphism algebras, a unified treatment, Proc. London Math. Soc (3) 50 (1985), 447-479. MR 86h:16031
[5] M. Dugas and R. Göbel, Every cotorsion-free ring is an endomorphism ring, Proc. London Math. Soc. (3) 45 (1982), 319-336. MR 84b:20064
[6] M. Dugas and R. Göbel, Every cotorsion-free algebra is an endomorphism algebra, Math. Z. 181 (1982), 451-470. MR 84h:13008
[7] P. C. Eklof, The structure of ω_{1}-separable groups, Trans. Amer. Math. Soc., 279 (1983), 497-523. MR 84k:03124
[8] P. C. Eklof, Set theory and structure theorems, in Abelian Group Theory, Lec. Notes in Math. No. 1006 (1983), Springer-Verlag, 275-284. MR 85a:03061
[9] P. C. Eklof and A. H. Mekler, Almost Free Modules, North-Holland (1990). MR 92e:20001
[10] L. Fuchs, Abelian Groups, Pergamon Press (1960). MR 22:2644
[11] L. Fuchs, Infinite Abelian Groups, vol. II, Academic Press (1973). MR 50:2362
[12] R. Göbel, An easy topological construction for realising endomorphism rings, Proc. Royal Irish Acad. Sect. A 92 (1992), 281-284. MR 93k:16053
[13] R. Göbel and B. Goldsmith, The Kaplansky test problems - an approach via radicals, J. Pure and Appl. Algebra 99 (1995), 331-344. MR 96b:20067
[14] B. Jónsson, On direct decompositions of torsion-free abelian groups, Math. Scand. 5 (1957), 230-235. MR 21:7170
[15] I. Kaplansky, Infinite abelian groups, rev. ed., Univ. of Michigan Press (1969). MR 38:2208
[16] A. H. Mekler, How to construct almost free groups, Can. J. Math. 32 (1980), 1206-1228. MR 82b:20038
[17] A. H. Mekler, Proper forcing and abelian groups, in Abelian Group Theory, Lecture Notes in Mathematics No. 1006, Springer-Verlag, 1983, 285-303. MR 85h:03053
[18] A. H. Mekler, The structure of groups which are almost the direct sum of countable abelian groups, Trans. Amer. Math. Soc. 303 (1987), 145-160. MR 89e:20095
[19] S. Shelah, Kaplansky test problem for R-modules, Israel J. Math. 74 (1991), 91-127. MR 93e:03048
[20] B. Thomé, Aleph-1-separable Groups, Kaplansky's Test Problems, and Endomorphism Rings, Ph.D. Dissertation, Univ. of California, Irvine (1988).
[21] B. Thomé, \aleph_{1}-separable groups and Kaplansky's test problems, Forum Math. 2 (1990), 203212. MR 92a:20062

Department of Mathematics, University of California, Irvine, California 92697
E-mail address: peklof@math.uci.edu
Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706 Current address: Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel
E-mail address: shelah@math.huji.ac.il

[^0]: Received by the editors December 10, 1996.
 1991 Mathematics Subject Classification. Primary 20K20; Secondary 03E35.
 Key words and phrases. Kaplansky test problems, \aleph_{1}-separable group, endomorphism ring.
 Travel supported by NSF Grant DMS-9501415.
 Research supported by German-Israeli Foundation for Scientific Research \& Development Grant No. G-294.081.06/93. Pub. No. 625.

