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Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 System: a Thiol-Ba-
sed Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Physiol Rev 98:
1169–1203, 2018. Published May 2, 2018; doi:10.1152/physrev.00023.
2017.—The Kelch-like ECH-associated protein 1-NF-E2-related factor 2 (KEAP1-NRF2)
system forms the major node of cellular and organismal defense against oxidative and

electrophilic stresses of both exogenous and endogenous origins. KEAP1 acts as a cysteine
thiol-rich sensor of redox insults, whereas NRF2 is a transcription factor that robustly transduces
chemical signals to regulate a battery of cytoprotective genes. KEAP1 represses NRF2 activity
under quiescent conditions, whereas NRF2 is liberated from KEAP1-mediated repression on
exposure to stresses. The rapid inducibility of a response based on a derepression mechanism is
an important feature of the KEAP1-NRF2 system. Recent studies have unveiled the complexities of
the functional contributions of the KEAP1-NRF2 system and defined its broader involvement in
biological processes, including cell proliferation and differentiation, as well as cytoprotection. In this
review, we describe historical milestones in the initial characterization of the KEAP1-NRF2 system
and provide a comprehensive overview of the molecular mechanisms governing the functions of
KEAP1 and NRF2, as well as their roles in physiology and pathology. We also refer to the clinical
significance of the KEAP1-NRF2 system as an important prophylactic and therapeutic target for
various diseases, particularly aging-related disorders. We believe that controlled harnessing of the
KEAP1-NRF2 system is a key to healthy aging and well-being in humans.
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I. INTRODUCTION

A. Pre-NRF2 Era

Recognition of the concept that our environment has an
impact on our health, especially in the case of carcinogene-
sis, was first described by Percival Pott in 1775 in his pub-
lication Chirurgical Observations: Relative to the Cataract,
the Polypus of the Nose, the Cancer of the Scrotum, the
Different Kinds of Ruptures, and the Mortification of the
Toes and Feet (16). Pott noticed an unusually high inci-
dence of scrotal cancers among chimney sweeps in London

and suggested that coal soot is an environmental factor
triggering carcinogenesis. In 1915, the causal link between
environmental chemicals and carcinogenesis was clearly
demonstrated by Yamagiwa and Ichikawa (257). They
showed that chronic exposure of rabbit ears to coal tar
induced skin cancers. Nowadays, it is well appreciated that
avoiding and eliminating exposure to adverse environmen-
tal factors is critical in the prevention of chemical carcino-
genesis in humans.

In the 1960s and 70s, it was demonstrated that coal tar
carcinogens and carcinogens from other environmental and
occupational settings typically required biotransformation
to electrophilic metabolites that formed covalent adducts
between “ultimate” carcinogens and proteins, RNA and
DNA (34). This metabolic activation is typically catalyzed
by the microsomal cytochrome P-450 system and other
oxygenases, sometimes termed phase I enzymes (139).
While increasing attention was being paid to chemicals as a
cause of human cancers, others searched for effective inhib-
itors of chemical carcinogenesis, small molecules that in-
hibit the metabolic activation step(s) and/or enhance the
detoxication of procarcinogens or their reactive intermedi-
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ates. Initial interest in these “cancer chemopreventive”
compounds focused on food antioxidants and natural prod-
ucts, such as flavonoids and isothiocyanates, which were
presumed to be safe for humans. Pretreatment of rodents
with the food antioxidant 2 (3)-tert-butyl-4-hydroxyanisole
(BHA) effectively inhibited carcinogenesis, resulting from a
wide variety of carcinogens that included benzo[a]pyrene,
dimethyl-benz[a]anthracene, diethylnitrosamine, 4-nitro-
quinoline-N-oxide, urethane, and aflatoxin B1 (250).

Benson and colleagues (10) reported that BHA elevated the
enzymatic activities of glutathione S-transferases, epoxide
hydratase, NAD(P)H:quinone oxidoreductase, and other
detoxication enzymes in multiple tissues of the mouse.
Many classes of compounds (phenolic antioxidants, azo
dyes, polycyclic aromatics, flavonoids, coumarins, cin-
namates, indoles, isothiocyanates, 1,2-dithiole-3-thiones,
and thiocarbamates) were identified as inducers of these
enzymes. Several of these inducers contain a distinctive
chemical feature, or acquired this feature after metabolism,
that regulates the synthesis of these protective enzymes.
Such inducers are Michael reaction acceptors, which are
characterized by olefinic bonds that are rendered electro-
philic (positively charged) by conjugation with electron-
withdrawing substrates. The potency of inducers paralleled
their efficiency in Michael reactions and shared the com-
mon property of modifying sulfhydryl groups by oxidation,
reduction, or alkylation (229). Exposure of cells to low
doses of “soft” (non-DNA reactive) sulfhydryl reactive elec-
trophiles evoked a coordinated increase in these enzyme
activities (historically termed phase II enzymes), thereby
protecting cells against the toxicity of high doses of “hard”
(DNA-reactive) electrophiles. This cellular adaptation is
called the “electrophile counterattack response” (173).
Stemming from these observations, the hypothesis emerged
that the cellular “sensor” molecule that transduces the
chemical signal of these inducers does so by virtue of unique
and highly reactive sulfhydryl functions that recognize and
react with them (41).

B. Discovery of NRF2: a Key Effector of the
Electrophile Counterattack Response

The elevation of detoxication enzyme activities by electro-
philes is now attributable primarily to the increased tran-
scription of their respective genes. Cis-regulatory elements
critical for the inducible expression of genes encoding phase
II enzymes were identified and designated the antioxidant
responsive element (ARE) or electrophile responsive ele-
ment (EpRE) (55, 189, 190). However, trans regulatory
elements encoding transcription factors for the ARE/EpRE
were unknown until Itoh et al. established Nrf2-null mice
and analyzed their expression of phase II enzymes (78).
NRF2 (NF-E2-related factor 2) was originally isolated as a
homolog of the hematopoietic transcription factor NF-E2
p45, but its function was unknown (77, 143). They found

that the electrophile counterattack response was completely
absent in Nrf2-null mice, as the induction of phase II en-
zymes by BHA was abrogated. Identification of NRF2 as a
key regulator of the electrophile counterattack response
opened a door in toxicology to a new stage where underly-
ing regulatory mechanisms of various defense reactions and
adaptations continue to be deciphered and understood at
the molecular level.

C. Discovery of KEAP1: a Sensor for
Electrophiles

It has been shown that reactive oxygen species (ROS), such
as hydrogen peroxide and superoxide anion, and electro-
philes of extrinsic and intrinsic origin exert beneficial and
toxic effects on cellular functions. However, it has been a
long-standing question as to how our body or cells sense
these redox-disruptive stimuli and respond effectively to
them. Although NRF2 was identified as a key regulator of
the electrophile counterattack response, the mode of regu-
lation of NRF2 activity in response to chemical insults was
still a mystery.

However, the missing factor, the sensor of environmental
insults and regulator of NRF2 activity, was soon discov-
ered. In 1999, Itoh et al. (79) isolated, by yeast two-hybrid
screening, a new thiol-rich protein and negative regulator of
NRF2 and named it KEAP1 (Kelch-like ECH-associated
protein 1). KEAP1 promotes NRF2 degradation in un-
stressed conditions, whereas redox-disrupting stimuli di-
rectly modify KEAP1 thiols, leading to inactivation of
KEAP1 function, stabilization of NRF2, and induction of
cytoprotective genes (32, 58, 108, 266). Thus KEAP1 is a
biosensor for electrophiles and ROS.

D. Concise Overview of the KEAP1-NRF2
System

With these discoveries, the KEAP1-NRF2 system has be-
come recognized as the body’s dominant defense mecha-
nism against environmental insults. The KEAP1-NRF2 sys-
tem is a typical two-component system: KEAP1 as a sensor
for electrophiles, and NRF2 as an effector for the coordi-
nated activation of cytoprotective genes (FIGURE 1). In the
cytoplasm, KEAP1 forms a ubiquitin E3 ligase complex
with CULLIN3 (CUL3) and polyubiquitinates NRF2,
which marks NRF2 for rapid degradation through the pro-
teasome system. Thus in unstressed conditions, NRF2 is
synthesized, but constantly degraded. However, on expo-
sure to electrophiles or ROS, the reactive cysteine residues
of KEAP1 are directly modified, which reduces the ubiqui-
tin E3 ligase activity of the KEAP1-CUL3 complex and
results in NRF2 stabilization. Nascent NRF2 can then di-
rectly translocate into the nucleus, heterodimerize with one
of the small musculo-aponeurotic fibrosarcoma (sMAF)
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proteins, bind to the ARE/EpRE, and robustly activate a
battery of phase II genes, thereby acting as a master regula-
tory transcription factor.

Vigorous worldwide research on the KEAP1-NRF2 system
led to substantial accumulation of evidence demonstrating
the critical significance of NRF2 activity and its regulatory
mechanisms to the maintenance of our health. Importantly,
dysregulation of the KEAP1-NRF2 system underlies the
pathogenesis of various human diseases. It is now widely
recognized that the KEAP1-NRF2 system provides an at-
tractive target for drug development. In this review, we
provide a comprehensive overview of the KEAP1-NRF2
system. We discuss the molecular mechanisms by which the
KEAP1-NRF2 system senses and responds to intrinsic and
extrinsic redox disturbances and the roles the system plays
in organismal defense mechanisms. We consider the gener-
ally mitigating, but sometimes exacerbating, contributions
of the KEAP1-NRF2 system to various human pathological
conditions, such as diabetes, inflammation, and cancer.

II. IDENTIFICATION OF CNC-SMAF
TRANSCRIPTION FACTORS

A. Starting From cis-Regulatory Elements

A cis-regulatory element, termed the ARE/EpRE (TGAG/C-
NNNGC), was first defined from studies in 1990 in the
context of toxicology through studies on the mechanism of
induction of a glutathione S-transferase gene in response to

electrophiles (55, 189, 190). ARE/EpREs were also found in
promoter regions of other cytoprotective genes within the
phase II battery, confirming the inducible and concerted
nature of this gene expression response. Although the im-
portance of the ARE/EpRE was clearly shown, the tran-
scription factors that bind to the element and elicit tran-
scriptional activation remained unidentified.

Meanwhile, researchers in the molecular biology field iden-
tified a critical cis-regulatory element for erythroid-specific
transcriptional activation and named it the NF-E2 binding
site (ATGAG/CTCAGCA) (138). The NF-E2 binding activ-
ity was successfully purified from a large amount (700 g) of
cultured mouse erythroleukemia cells (4). NF-E2 p45 was
identified and isolated and became a founding member of
the mammalian cap ’n’ collar (CNC) transcription factor
family. Following the discovery of p45, other members of
the CNC family were identified as NRF1, NRF2, NRF3,
BACH1, and BACH2 (21, 77, 107, 143, 169) (FIGURE 2).

A seminal discovery related to the vertebrate CNC family of
proteins is that they require sMAF factors as obligatory
heterodimeric partner molecules for efficient binding to the
ARE/EpRE/NF-E2 motif (68, 146). Both CNC proteins and
sMAF factors possess a well-conserved basic region-leucine
zipper (bZIP) motif. The CNC proteins also retain a char-
acteristic CNC domain that was defined based on sequence
homology of 43 amino acids with the Drosophila Cnc pro-
tein (142). The sMAF factors also retain a characteristic
extended homology region (FIGURE 2). As the sMAF factors
do not appear to possess any substantial extra-functional do-
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mains, including transactivation domains, the activity of the
CNC-sMAF heterodimers seems to be defined mainly by that
of the CNC factors. Of the CNC factors, NF-E2 p45, NRF1,
NRF2, and NRF3 possess transactivation domains and are
considered to be transcriptional activators (21, 77, 107, 143).
In contrast, BACH1 and BACH2 possess characteristic broad
complex-tramtrack-bric-a-brac (BTB) domains and lack any
canonical transactivation domains, thus representing tran-
scriptional repressors (39, 94, 153, 169). Consequently, based
on the binding sequence similarity and related information,
CNC-sMAF heterodimers emerged as strong candidates for
the transcriptional activation of phase II enzyme genes.

B. sMAF as an Obligatory Partner of
CNC Proteins

MAF family factors are DNA-binding transcription factors
that possess a well-conserved bZIP motif and an extended
homology region on the NH2-terminal side of the bZIP
motif (FIGURE 2). MAF transcription factors can form ho-
modimers and bind to the MAF recognition element, re-
ferred to as the MARE (TGCTGAG/CTCAGCA), that con-
tains an activating protein-1 binding site known as the
12-O-tetradecanoylphorbol-13-acetate-responsive ele-
ment (TRE) (TGAG/CTCA) (92, 102). MAF factors are
divided into two groups: large MAF factors that possess
transactivation domains, and sMAF factors that lack such
domains (15, 89, 144, 146) (FIGURE 2). A founding member

of the MAF family is v-MAF, which was isolated from avian
musculo-aponeurotic fibrosarcoma virus (159). Other large
MAF factors include the cellular counterpart of v-MAF
called c-MAF and also MAFA, MAFB, and NRL. These
large MAFs act as homodimers that activate transcription
(9, 159). In contrast, the three mammalian sMAFs, named
MAFF, MAFG, and MAFK, form homodimers that repress
transcription (145, 148, 150, 154). Homodimers of sMAF
are assumed to behave as competitive inhibitors of bZIP
transcription factors acting on MAREs.

Another important role of sMAFs is that of obligatory het-
erodimeric partner molecules of CNC proteins, allowing
them to bind to DNA and exert their function as transcrip-
tion regulators (5, 68). Genetic evidence that sMAF defi-
ciency recapitulates CNC deficiency strongly validates the
critical contribution of sMAFs to the function of CNC pro-
teins (261). For example, mice deficient in NF-E2 p45,
NRF2, or NRF1 display severe thrombocytopenia, an im-
paired response to oxidative stress, and neuronal dysfunc-
tion, respectively (78, 110, 205). In good agreement to this
observation, disruptions to the three sMAF factors in vari-
ous combinations result in all of these phenotypes with
various severities, depending on the extent of the sMAF
reduction (96, 97, 147, 163, 199, 261). Thus CNC-sMAF
heterodimers form a new functional unit of transcription
factors that are distinct from other bZIP family transcrip-
tion factors and regulate several biological processes, par-
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ticularly those related to cell differentiation, maturation,
and maintenance.

C. Unique Features of CNC-sMAF Binding
Elements

The NF-E2 p45-sMAF heterodimer is a critical regulator of
megakaryopoiesis through its binding to NF-E2 binding
sites (24, 38, 56, 121, 228). Importantly, NRF2 also associ-
ates with the NF-E2 binding site (77, 143), which led us to
recognize the sequence resemblance between the ARE/EpRE
and the NF-E2 binding site and to then discover NRF2 as an
ARE/EpRE binding transcription factor (FIGURE 3). This no-
tion has been supported unequivocally by genetic analyses
demonstrating that ARE/EpRE-regulated gene expression is
severely impaired in Nrf2-null mice (78), as well as in sMAF-
deficient mice (97). To date, genetic studies and other ap-
proaches have clearly established the NRF2-sMAF het-
erodimer as the trans-acting factor that interacts with the
ARE/EpRE and activates the expression of cytoprotective
genes.

The NF-E2 binding site and the ARE/EpRE are collectively
recognized as binding sites of CNC-sMAF heterodimers.
Based on recent analyses of the genomewide distribution of
CNC proteins, including NRF2, NF-E2 p45, NRF1, and
BACH2 (6, 29, 56, 62, 65, 131), the sequence GCTGAG/C-
TCAC/T has arisen as a common consensus binding site and
has been designated as the CNC-sMAF binding element
(CsMBE) (168). Asymmetry in the CsMBE reflects the dis-
tinct binding preferences of CNC and sMAF proteins.
Alignment of the DNA binding domains of various bZIP
transcription factors (including those belonging to the
CNC, ATF, JUN, FOS, and MAF families) revealed that a
single amino acid in the basic region is a unique feature of
MAF family proteins (FIGURE 4A). MAF proteins com-
monly possess a tyrosine (Tyr: Y) residue in their basic
region, which corresponds to alanine (Ala: A) in the other
bZIP transcription factors that include NRF2. The tyrosine

residue in the basic region of MAF family proteins is a key
to understanding the unique DNA binding preference of
MAF family proteins.

A comprehensive analysis revealed the DNA binding pref-
erences of the MAFG homodimer and the NRF2-MAFG
heterodimer (FIGURE 4B) (259). The “GC” dinucleotides on
each side of the MARE binding site are sufficient for DNA
binding of the MAFG homodimer (FIGURE 3). Instead, the
“GC” dinucleotide on one side and one-half of the TRE on
the other side of the binding site are required for DNA
binding of the NRF2-MAFG heterodimer (FIGURE 3). As
deduced from these observations, MAF proteins preferen-
tially recognize the flanking “GC” dinucleotide, whereas
CNC proteins recognize the core TRE. It should be noted
that a single base outside the core TRE substantially influ-
ences the DNA binding affinity of the NRF2-MAFG het-
erodimer, suggesting that CNC proteins recognize a re-
gion that is one base wider than that recognized by JUN
and FOS family proteins (104). Thus the “GC” in one-
half of the CsMBE (underlined in GCTGA

G/CTCAC/T) is
recognized by sMAF, whereas the other one-half (under-
lined in GCTGAG/CTCA

C
/T) is recognized by CNC.

To understand the structural basis of the unique DNA rec-
ognition mode of MAF proteins, a DNA binding domain of
MAFG was cocrystallized with the MARE-containing
DNA duplex (117). Crystallization of the MAFG ho-
modimer with the MARE revealed a critical role of the
Tyr/Ala difference in the basic region that discriminates
MAF proteins from other bZIP proteins, such as JUN, FOS,
and ATF family proteins. The MAF-specific tyrosine resi-
due is responsible for the unique DNA recognition mode.
Swapping the unique tyrosine residue Y64 of MAFG and
the corresponding alanine residue A502 of NRF2 resulted
in the simultaneous swapping of DNA recognition specific-
ity. MAFG Y64A did not require the “GC” dinucleotide for
DNA binding. The NRF2 A502Y mutant partially mim-
icked the DNA binding preference of the MAFG ho-
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modimer. Thus the heterodimer of NRF2 A502Y and
MafG acquired the ability to bind to MAF homodimer-
specific binding sites (MARE) and lost their ability to bind
to the CsMBE with high affinity (104). The significance of
high-affinity binding to the CsMBE was highlighted in a
study of mice expressing NRF2 A502Y instead of wild-type
NRF2 (168). Mice homozygously expressing NRF2 A502Y
recapitulated the major phenotypes of Nrf2-null mice, in-
dicating a strict requirement of the CsMBE for the NRF2-
mediated stress response and cytoprotection.

III. DEREPRESSION REGULATION OF NRF2
BY KEAP1

A. KEAP1-Based Ubiquitin E3 Ligase
Complex and Proteasomal Degradation
of NRF2

Phylogenetic conservation of the structure of NRF2
among species revealed the presence of six functional

domains: Neh1 (NRF2-ECH homology domain-1) to
Neh6 (79) (FIGURE 5A). Neh1 contains the CNC and
bZIP domains that mediate DNA binding and dimer for-
mation, whereas Neh3, Neh4, and Neh5 are transactiva-
tion domains. Of the transactivation domains, Neh4 and
Neh5 make a major contribution to transcriptional acti-
vation by recruiting histone acetyl-transferase cAMP re-
sponsive element binding protein (CBP) (93) and Media-
tor complex (197).

Truncated NRF2 lacking the Neh2 domain exhibited mark-
edly increased transcriptional activity, suggesting the exis-
tence of a repressor molecule that interacts with Neh2. To
this end, KEAP1 was isolated as this Neh2-interacting mol-
ecule by yeast two-hybrid screening (79) (FIGURE 5B). Soon
after its identification, KEAP1 was found to be a component
of ubiquitin E3 ligase (108). Thus Neh2 was found to be a
KEAP1-specific degron of NRF2, and this led to the discov-
ery of a unique derepression mechanism. Neh6 is a KEAP1-
independent degron of NRF2 as it harbors a cluster of ser-
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ine residues that are phosphorylated by glycogen synthase
kinase 3 (GSK-3), resulting in the facilitation of NRF2 deg-
radation.

The most important feature of NRF2 is its inducibility.
KEAP1 creates the inducible nature of NRF2 function by
serving as a substrate recognition component of the E3
ubiquitin ligase complex in cooperation with CUL3 and
RBX (32, 58, 108, 266). Under normal conditions, ubiqui-
tinated NRF2 undergoes proteasomal degradation, and it is
this constitutive degradation of NRF2 that maintains the
quantity and activity of NRF2 at a low level. The E3 ubiq-
uitin ligase activity of the KEAP1-CUL3 complex is dis-
rupted on exposure to electrophiles and ROS that modify
the cysteine residues of KEAP1, allowing newly synthesized
NRF2 to accumulate in the nucleus and activate transcrip-
tion (109). Thus the possession of highly reactive cysteine
residues renders KEAP1 an efficient and sensitive biosensor
of redox disturbance through switching on or off the ubiq-
uitin E3 ligase activity of the KEAP1-CUL3 complex.

Quantitative immunoblot analyses indicated that, in the
basal state, the cellular level of NRF2 was kept lower than
the levels of KEAP1 and CUL3 proteins. Challenge with an
electrophilic agent dramatically increased NRF2 to a level
greater than that of KEAP1 and CUL3, resulting in the
accumulation of NRF2 in the nucleus (76). By contrast,
KEAP1 and CUL3 did not display any changes in their
abundance, subcellular localization, or interaction in re-

sponse to electrophilic stimuli. Higher resolution immuno-
staining examination revealed that KEAP1 localizes in the
perinuclear cytoplasm (248) with loose attachment to the
actin cytoskeleton (88). This localization leads to a model in
which KEAP1 acts as a floodgate (76) (FIGURE 6). NRF2
moves into nucleus only when the floodgate (KEAP1) is
modified and opened. In summary, the regulation of levels
of NRF2 protein during a stress response is mediated by the
activity, but not the composition, of the KEAP1-CUL3
ubiquitin ligase complex.

B. Structure of CUL3-KEAP1-NRF2 Complex
Is Permissive for NRF2 Ubiquitination

To elucidate how NRF2 is ubiquitinated under normal con-
ditions, multiple biochemical and biophysical analyses were
conducted. Three domains have been identified in KEAP1: a
BTB, an intervening region (IVR), and a double glycine
repeat and COOH-terminal region (DC) domain (FIGURE

5B). Structure-function and molecular-dissection studies
have shown that the NRF2 Neh2 domain directly interacts
with the KEAP1 DC domain (79). Two discrete motifs in
the NRF2 Neh2 are critical for KEAP1-dependent NRF2
degradation (136, 233), implying that these two motifs me-
diate the interaction between the NRF2 Neh2 domain and
the KEAP1 DC domains.

The NRF2 Neh2 and KEAP1 DC domains show a unique
mode of interaction, referred to as the two-site binding
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model. This binding model was first suggested from stud-
ies of isothermal calorimetry and subsequently verified
by NMR structural analyses and molecular dissection
analyses (233, 234). The two distinct motifs DLG and
ETGE in the Neh2 domain are critical for its interaction
with the KEAP1 DC domain. Together, the DLG and
ETGE motifs bind to a KEAP1 homodimer, with each
motif interacting individually with its own molecule of
KEAP1 (57, 76). Thermodynamic examination revealed
a significant difference between the motifs when they
interact with the KEAP1 DC domain: the ETGE motif
exclusively utilizes hydrogen bonding, whereas the DLG
motif relies on both hydrophobic interactions and hydro-
gen bonding (57).

Kinetic analysis using surface plasmon resonance further
consolidated the qualitative difference suggested by the
thermodynamic examination (57). Surface plasmon reso-
nance signals indicated that the DLG and ETGE motifs
form low- and high-affinity binding sites, respectively, for
the KEAP1 DC domain (234). Detailed analyses of associ-
ation and dissociation rate constants indicated that the
DLG exhibits a single-state binding with fast association
and fast dissociation. In contrast, the ETGE shows two-
state binding with slow association and slow dissociation
steps, suggesting that a quick transient binding conforma-
tion is slowly transferred to a fully stable binding confor-
mation (57). The qualitative difference in the two binding
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sites provides an important clue for understanding how
NRF2 ubiquitination starts and stops in response to elec-
trophilic signals.

Structural analyses of the KEAP1-NRF2 system were car-
ried out using NMR, X-ray, and electron microscopy. The
solution structure of NRF2 Neh2 was examined using
NMR (233) and showed that NRF2 Neh2 adopts a rodlike
conformation with a central single �-helix flanked by the
DLG and ETGE motifs. Seven lysine residues that are ubi-
quitinated by the KEAP1-CUL3 E3 ubiquitin ligase com-
plex are clustered in the �-helix. Six of these lysines are
aligned on a single half-side of the helix surface, resulting in
their optimal presentation for high-efficiency ubiquitina-
tion.

The crystal structure of the KEAP1 DC domain obtained by
X-ray disclosed a �-barrel structure with six blades (57,
125, 170). Cocrystallization of the KEAP1 DC domain with
a peptide containing either the DLG motif or the EGTE
motif showed that the peptides interact at the bottom of the
�-barrel structure. The ETGE motif forms a �-hairpin
structure by hydrogen bonding and binds to the KEAP1 DC
domain in a key (ETGE) and keyhole (pocket in KEAP1 DC
domain) manner, whereas the extended DLG motif forms a
triple-helix structure using both hydrogen bonding and hy-
drophobic interaction and loosely attaches onto the bottom
surface of the KEAP1 DC domain (57). The interface be-
tween the DLG motif and the KEAP1 DC domain is wider
than the binding surface between the ETGE and the KEAP1
DC domain, which is in harmony with the kinetic and ther-
modynamic differences between the two interactions.

Single-particle analysis using electron microscopy revealed
a breathtaking structure of the KEAP1 homodimer and
rendered all of the existing biological, biochemical, and
biophysical results to be consistent with each other (161).
Two large spheres are joined at the end of their stems,
just like a cherry-bob (FIGURE 7). The stemlike structure
and the globular portion of KEAP1 correspond to the
BTB and DC domains, respectively. Superimposition of
the DC crystal structure to the globular portion of the
cherry-bob indicated that the NRF2 binding sites are
located on the bottom of the two globular portions. The
distance between the two binding pockets in the two
globular domains is ~80 Å (161), which is very close to
the expected distance between the DLG and ETGE mo-
tifs, as determined by the NMR solution structure anal-
ysis of Neh2 (233).

The next step was to find out how CUL3 is integrated into
the KEAP1-NRF2 complex. The interaction between
KEAP1 and CUL3 is another important issue for under-
standing the molecular mechanism underlying NRF2
ubiquitination. Interaction between the NH2-terminal
region of CUL3 and the IVR domain of KEAP1 was
detected in a molecular dissection analysis (108). Analy-
sis of the crystal structure of KLHL11, a BTB-Kelch fam-
ily protein that is closely related to KEAP1, was consis-
tent with this observation (20). A hydrophobic groove
called the “3-box” motif located between the BTB and
IVR domains of KLHL11 associates with the NH2-termi-
nal domain of CUL3. Further analysis is necessary to
clarify the composite structure of the CUL3-KEAP1-
NRF2 ternary complex.
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C. Functional Analyses of KEAP1 Domain
Structures

Transgenic complementation rescue is a powerful and so-
phisticated approach for establishing the in vivo functions of
proteins (145, 148, 150). Lethality in Keap1-null mice occurs
before weaning due to marked stenosis in the esophagus, thus
providing a phenotype for in vivo evaluation of structure-
function (148, 240). The esophageal lesions and subsequent
lethality observed in Keap1-null mice were completely rescued
by the simultaneous disruption of Nrf2 (240). Phenotypes re-
sulting from Keap1 deficiency can also be rescued by trans-
gene-derived KEAP1 expressed under the influence of the
Keap1 gene regulatory region (260). This approach of trans-
genic complementation rescue enabled us to evaluate the func-
tion of KEAP1 as a repressor of NRF2 by monitoring the
phenotypes caused by Keap1 deficiency. Replacing wild-type
KEAP1 with mutant KEAP1 in this experimental setting pro-
vided reliable answers concerning the in vivo functions of var-
ious domains in KEAP1. For instance, KEAP1 C273S mutant
(Cys273 substituted with serine) did not rescue the lethality of
Keap1-null mice, indicating that Cys273 is essential for
KEAP1 to repress NRF2 activity (260).

The essential functional contribution of the KEAP1 BTB do-
main, which mediates homodimer formation, was also dem-
onstrated by transgenic complementation rescue experiments.
Cross-breeding with transgenic mice expressing wild-type
KEAP1 rescued the lethality of Keap1-null mice, whereas
cross-breeding with transgenic mice expressing a BTB-defi-
cient KEAP1 did not (260). Five amino acids in the BTB do-
main that are critical for dimerization were mutated, and the
resulting KEAP1 BTB mutant failed to restore the function of
KEAP1 (218). These results, in combination with recognition
that the stoichiometry of the interaction between NRF2 Neh2
and KEAP1 is 1:2 (233), consolidate the critical significance of
homodimer formation of KEAP1 through the BTB domain for
the ubiquitination and degradation of NRF2. Collectively,
these results have been integrated into the “two-site binding
model” of NRF2 and KEAP1 that defines the structural basis
for the efficient ubiquitination of NRF2 (FIGURE 7).

D. Phylogenic Distribution of the KEAP1-
NRF2 System

The KEAP1-NRF2 system is very well conserved among
vertebrates, from fish to mammals. An NRF2 ortholog in
zebrafish heterodimerizes with zebrafish sMAF, and the
heterodimer binds to DNA and activates genes involved in
the adaptive stress response. Zebrafish KEAP1 regulates the
activity of the zebrafish NRF2-sMAF heterodimer in a man-
ner similar to that in mammals (112). The system is also
well conserved in invertebrates. For example, the NRF2
ortholog in Drosophila is called cap ’n’ collar (CNC). The
cnc gene in Drosophila produces multiple alternative splice
variants, with the products CncA, CncB, and CncC being

the major isoforms. These isoforms possess different
lengths of NH2-terminal regions and a common COOH-
terminal region containing a CNC domain and a bZIP mo-
tif. CncC is the longest isoform and best resembles mam-
malian NRF2. Similar to vertebrate NRF2, Drosophila
CncC requires sMAF for carrying out its NRF2-like func-
tions. A KEAP1 ortholog in Drosophila interacts with
CncC and acts as a negative regulator, just like KEAP1
regulates NRF2 in mammals (172).

In contrast, C. elegans possesses an NRF2 ortholog called
SKN-1 and operates through a different system of defense
against oxidative stress (13). Whereas SKN-1 possesses a CNC
domain and a basic region that highly resembles those of Dro-
sophila and vertebrate CNC proteins, it lacks a leucine zipper
for dimerization with sMAF. Thus SKN-1 binds to DNA as a
monomer that recognizes the sequence GTCAT (12), which
coincides with the CNC-side half-site of CsMBE (GCTGAG/C-
TCA

C/T). Therefore, it is not surprising that there is no or-
tholog of sMAF in C. elegans. In addition, there is no KEAP1
ortholog in C. elegans. Instead of electrophilic signaling,
which is directly sensed by KEAP1 in Drosophila and verte-
brates, SKN-1 activity is regulated by phosphorylation signals
mediated by p38 and AKT/mammalian target of rapamycin
(mTOR). SKN-1 translocates to the nucleus when it is phos-
phorylated by p38 MAPK in response to oxidative stress (73),
whereas nuclear localization of SKN-1 is inhibited when it is
phosphorylated by GSK-3 (3).

It should be noted that, due to their short life span, Dro-
sophila and C. elegans are often utilized for aging studies.
Activation of CncC by KEAP1 mutation extends the life
span of Drosophila (221). Disruption of SKN-1 in C. elegans
reduces resistance to stress and shortens longevity (236). The
contribution of SKN-1 to longevity is more prominent in the
presence of oxidative stress than in unstressed conditions, sug-
gesting that reinforcement of an oxidative stress response is an
effective antiaging mechanism. A recent study using naked
mole-rats, rodents with naturally long life spans, revealed that
a higher NRF2 activity is closely associated with their
longevity (123). Naked mole-rats have lower levels of
KEAP1 protein and higher levels of NRF2 target gene
than mice with shorter life spans. Maximum lifetime cor-
related positively with the ARE/CsMBE-binding activity
of NRF2. These reports strongly support the notion that
a higher NRF2 activity is advantageous for longevity.

IV. MULTIPLE MECHANISMS REGULATING
NRF2 ACTIVITY

A. Cysteine Code and Two-Site Binding
Mechanism

KEAP1 is a thiol-rich protein containing many cysteine res-
idues, some of which are adjacent to basic amino acids that
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foster reactive anionic forms of the sulfhydryl group. Cova-
lent binding of electrophilic inducers to cysteine residues
has been observed using mass spectrometry (42, 63). The
significant contribution of the cysteine residues to the func-
tion of KEAP1 as a sensor has been demonstrated in cul-
tured cells (53, 113, 137, 227, 265), zebrafish (113), and
mice (191, 218, 260). These studies revealed three major
cysteine residues of KEAP1 that are critical for modulating
the ubiquitin E3 ligase activity of the KEAP1-CUL3 com-
plex. These critical cysteine residues are Cys151 in the BTB
domain and Cys273 and Cys288 in the IVR (FIGURE 8).

Substitution of Cys151 with serine did not affect the ubiq-
uitin conjugating activity of the KEAP1-CUL3 complex.
However, the KEAP1 C151S mutant did not respond to a
large group of electrophiles, including diethylmaleate, tert-
butylhydroquinone, dimethylfumarate, sulforaphane, and
nitric oxide, which led to continuous ubiquitination and
degradation of NRF2 (227). When Cys151 was substituted
with tryptophane, the KEAP1 C151W mutant failed to as-
sociate with the CUL3 complex and did not support the
ubiquitin E3 ligase activity of the KEAP1-CUL3 complex,
leading to the accumulation of NRF2 (47, 113). Consider-
ing the bulky nature of a tryptophane residue, KEAP1
C151W is likely to mimic an electrophile-conjugated inac-
tive state, whereas KEAP1 C151S is likely to mimic a con-
jugation-free active state.

Derivatives of the triterpenoid compound 2-cyano-3,12-di-
oxooleana-1,9-dien-28-oic-acid (CDDO) are exceedingly
potent inducers of the electrophile counterattack response.
These derivatives bind to Cys151 and disrupt the interac-
tion between KEAP1 and CUL3 (31, 76). Small molecules
possessing similar backbone structures to CDDO (e.g.,

CDDO-Im) have been developed as stereoselective KEAP1
Cys151-binding reagents (66). Although KEAP1 C151W
was shown to lose its association with CUL3 (47), most
NRF2-inducing electrophilic chemicals do not directly dis-
rupt the KEAP1-CUL3 interaction, with the only excep-
tions being CDDO-Im and possibly its derivatives (76). Ir-
respective of the precise structural mechanisms involved in
the KEAP1-CUL3 interaction, these results strongly sup-
port the contention that Cys151 serves as a primary sensor
cysteine by switching off KEAP1 activity on direct modifi-
cation by electrophiles.

Substitution of Cys273 and Cys288 with alanine or serine
abrogated the ubiquitin E3 ligase activity of the KEAP1-
CUL3 complex, leading to the accumulation of NRF2
(218). Notably, substitution of Cys273 with methionine or
tryptophane retained the KEAP1 activity that represses
NRF2. Similarly, substitution of Cys288 with glutamate,
asparagine, or arginine retained KEAP1 activity (191). The
KEAP1 C288E mutant molecule did not respond to 15d-
PGJ2 (15-deoxy-�12,14-prostaglandin J2), indicating that
KEAP1 uses Cys288 for sensing 15d-PGJ2 (191, 227) (FIG-

URE 8). For sensing nitro-fatty acids, 4-hydroxynonenal,
and As3�, all three major cysteine residues of KEAP1, i.e.,
Cys151, Cys273, and Cys288, are involved (191). All of the
functionally substitutable amino acids for Cys273 and
Cys288 required to maintain KEAP1 activity possess rela-
tively bulky characteristics. This suggests that the mecha-
nism by which KEAP1 responds to electrophiles through
Cys273 and Cys288 differs from that of the Cys151-depen-
dent response. The molecular basis for the Cys273- and
Cys288-dependent response remains to be clarified.

In addition to Cys151, Cys273, and Cys288, a few other
cysteine residues are suggested to participate in the sen-
sor functions of KEAP1. Cys226 and Cys613, together
with His-225, are required for sensing Cd2�, As3�, Se4�,
and Zn2� (137). Cys226 and Cys613 formed intramolec-
ular disulfide bonds when cells were treated with hydro-
gen peroxide, implying that Cys226 and Cys613 are lo-
cated in close proximity in the fully folded state of
KEAP1 (53). However, the cysteine residues responsible
for sensing hydrogen peroxide also remain to be fully
clarified.

Partial dissociation of NRF2 from KEAP1 appears to be an
alternative mechanism for the inhibition of NRF2 ubiquiti-
nation. As described above, biochemical and biophysical
analyses revealed that one molecule of NRF2 associates
with a KEAP1 homodimer using two discrete motifs. The
ETGE and DLG motifs utilize high-affinity and low-affinity
binding sites, respectively, with almost two magnitudes of
difference in their binding affinities (233). The KEAP1-
NRF2 association is not completely disrupted following
inactivation of KEAP1 by modification with electrophiles
(109). Therefore, a fascinating model is that the ETGE and
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DLG motifs serve as a hinge and latch, respectively, with
NRF2 ubiquitination ceasing when just the latch is released
or relaxed. Precisely how the latch is released is not clear
and may require a complete crystallographic rendering of
the complex for an answer.

B. KEAP1-Independent Mechanism of NRF2
Degradation

Although NRF2 activity is primarily regulated by KEAP1 in
response to electrophiles, several investigators realized that
NRF2 signaling can be activated through the PI3K-AKT
signaling pathway (85, 124, 132). A key mediator in this
action is GSK-3�, which is inhibited by AKT-mediated
phosphorylation (192). NRF2 is phosphorylated by GSK-
3�, enabling its recognition by �-transducin repeats-con-
taining protein (�-TrCP) that in turn marks NRF2 for ubiq-
uitination. Following its ubiquitination by the �-TrCP-
CUL1 E3 ubiquitin ligase complex, NRF2 is degraded
through the proteasome (174, 175). As already described,
Neh2 serves as the degron for KEAP1-CUL3-dependent
degradation of NRF2. By contrast, Neh6 is the degron ex-
ploited in �-TrCP-CUL1-dependent degradation of NRF2,
as it contains serine residue targets for phosphorylation by
GSK-3� (30) (FIGURE 9).

The functional interaction and contributions of the two
degradation mechanisms of NRF2 have been examined in
the context of postnatal liver development in mice (140,
224). When murine Keap1 and Pten (phosphatase and
tensin homolog deleted on chromosome 10) genes are
concomitantly disrupted in a hepatocyte-specific manner,
the mice die within 3 wk after birth. PTEN is a phospha-
tase that antagonizes PI3K. In the event of Pten defi-
ciency, inositol-3-phosphate levels increase and AKT is
activated, while GSK-3� is inhibited. Inhibition of
GSK-3� reduces NRF2 phosphorylation, such that NRF2
escapes KEAP1-independent �-TrCP-CUL1-dependent
degradation in the nucleus. Thus a Keap1::Pten double-
deficient condition is a state in which both pathways for
NRF2 degradation are inactivated. Indeed, Keap1::Pten
double-deficient mouse liver showed greater increases in
NRF2 accumulation and upregulation of NRF2 target
genes than seen in only Keap1-deficient mouse liver. No-
tably, during the first 3 wk after birth, Pten single-
deficient liver did not show any clear increase in NRF2
accumulation, suggesting that KEAP1-dependent degra-
dation of NRF2 in the cytoplasm is the primary mecha-
nism to regulate levels of NRF2 (140, 224). Inactivation
of KEAP1-independent degradation while preserving the
KEAP1-dependent pathway led to only a marginal dif-

FIGURE 9. Two degradation pathways of NRF2. KEAP1-CUL3-mediated degradation and �-TrCP-CUL1-

mediated degradation are considered to operate in the cytoplasm and nucleus, respectively. The latter is

influenced by the activation of PI3K-AKT signaling.
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ference in NRF2 protein levels in this experimental set-
ting.

C. KEAP1-NRF2 System and Autophagy

In addition to cross talk with the PI3K-AKT signaling
pathway, the KEAP1-NRF2 system has an intriguing
functional interaction with autophagy (52, 82, 114, 120,
187). KEAP1 directly interacts with p62, which is a cargo
receptor for selective autophagy. This interaction enables
p62 to compete with NRF2 for KEAP1 binding and acti-
vation of the NRF2 pathway (114, 120). Of note, p62
binds to KEAP1 at the bottom of the DC domain and
dislocates NRF2 from KEAP1, leading to the stabiliza-
tion of NRF2. Defective autophagy in liver impairs the
turnover of p62, causing severe liver injury. This is ac-
companied by the formation of inclusion bodies contain-
ing p62, KEAP1, and ubiquitinated proteins and leads to
an elevation in the expression of NRF2 target genes (114,
187). This liver injury model can be rescued by NRF2
disruption, indicating that constitutive activation of
NRF2 in the selective autophagy-defective condition is
deleterious for the functional integrity of hepatocytes.
Since p62 acts as an NRF2 target gene, a positive feed-

back loop between p62 and NRF2 operates: p62 accu-
mulation promotes NRF2 activation, and in turn acti-
vated NRF2 further increases p62 (82).

Detailed analyses showed that a serine residue in the phy-
logenetically conserved “STGE” motif in p62 is phosphor-
ylated, and that this phosphorylated STGE (pSTGE) motif
has a higher affinity for the KEAP1 DC domain than un-
modified STGE (67) (FIGURE 10). The kinase mTOR com-
plex 1 is responsible for phosphorylating p62, although the
involvement of other kinases has also been suggested (67).
When the pSTGE motif is compared with the ETGE and
DLG motifs of NRF2 in relation to affinity for the KEAP1
DC domain, pSTGE is lower than the ETGE and higher
than the DLG. Thus phosphorylated p62 may modulate the
interaction between NRF2 and KEAP1.

Several stimuli promoting autophagy-related conditions en-
hance the phosphorylation of p62 (67). When mitophagy is
induced by valinomycin, a mitochondrial uncoupling agent,
p62 is phosphorylated in concert with an increased expres-
sion of NRF2 target genes. Similarly, p62 is phosphorylated
and NRF2 is activated when xenophagy is induced on in-
vasion by microbes. In both cases, mTOR complex 1 is
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responsible for phosphorylating p62, and the level of
KEAP1 protein is reduced as a consequence of its au-
tophagic degradation. This decline in KEAP1 protein level
may also account for NRF2 stabilization, in addition to
effects on the hinge and latch mechanism described above
(sect. IVA).

The regulation of levels of NRF2 protein has been care-
fully analyzed; however, only recent studies have begun
in the case of KEAP1. KEAP1 is degraded through au-
tophagy in a p62-dependent manner (223). The half-lives
of NRF2 and KEAP1 degradation are ~20 min and 12 h,
respectively, indicating that the turnover rate of KEAP1
is considerably slower than for NRF2 (80, 223). How-
ever, treatment of cells with electrophiles such as tert-
butylhydroquinone shortened the half-life of KEAP1, im-
plying that electrophile-modified KEAP1 becomes a pref-
erential substrate for autophagy with an accelerated
turnover rate (223). As a consequence of KEAP1 degra-
dation, NRF2 is stabilized and activates Keap1 gene tran-
scription, thereby enabling the replenishment of de novo
synthesized KEAP1. The precise destiny of KEAP1 fol-
lowing modification by electrophiles, whether it is de-
graded or recycled, is currently not well elucidated.
Therefore, the mechanism by which KEAP1 turnover is
accelerated by electrophiles remains a potentially fasci-
nating, but untold story.

D. Intranuclear Players for Regulating
NRF2 Activity

NRF2 was validated as a potent activator of transcription
compared with other members of the CNC family in a re-
porter cotransfection-transactivation assay using cultured
cells (107, 149). The transactivation domains Neh4 and
Neh5 of NRF2 interact with CBP and BRG1 (93, 267). CBP
is a histone acetyltransferase, and BRG1 is a component of
the SWI/SNF chromatin remodeling complex. The COOH-
terminal domain Neh3 of NRF2 interacts with CHD6,
which is a DNA-dependent ATPase and localizes at nuclear
sites of mRNA synthesis. CHD6 knockdown reduces the
basal and induced expression of NRF2 target genes (157).
Whereas these coactivators are important for transactiva-
tion, they may not explain fully the strong transactivation
mediated by NRF2.

MED16, a subunit of Mediator complex, is a newly discov-
ered member of coactivators that interact with the Neh4
and Neh5 transactivation domains (197). MED16 tethers
Mediator complex to NRF2 binding sites through its inter-
action with NRF2 (FIGURE 11). MED16 serves as a conduit
for Mediator complex in a manner that is specific for
NRF2-activating signals that include ROS and electro-
philes. In the absence of MED16, the inducible expression
of nearly three-fourths of NRF2 target genes is diminished
(197). Consistent with this result, MED16-deficient cells

are as susceptible to oxidative stress as are NRF2-deficient
cells.

Comprehensive studies have defined the direct target genes
of NRF2 (29, 62, 131), with much attention given to those
with an expression that is elevated by NRF2. However,
early gene expression studies using microarray analyses also
indicated that many genes are repressed by NRF2 (119). It
should be noted that several proinflammatory cytokine
genes are repressed by NRF2 (111). In particular, the
NRF2-mediated suppression of IL6 and IL1b gene expres-
sion appears to be critical for the anti-inflammatory effect
of NRF2. This observation reinforces the need to investi-
gate this aspect of NRF2 function and to identify the addi-
tional factors involved. It is also necessary to determine
whether or not NRF2 directly represses transcription in a
locus-specific manner, and, if so, how NRF2 inhibits the
recruitment of RNA polymerase II to the genes.

V. CONTRIBUTION OF NRF2 TO REDOX
HOMEOSTASIS AND CYTOPROTECTION

A. Mouse Models for Analyzing the
Contribution of the KEAP1-NRF2
Pathway to Various Diseases

The contribution of the KEAP1-NRF2 pathway to organis-
mal homeostasis has been demonstrated in many studies
using Nrf2-deficient and Keap1-deficient mice, either singly
or combined with other transgenic and gene knockout mice.
Studies representative of the pathological conditions that
are alleviated by genetic or pharmacological means through
NRF2 activation are shown in TABLE 1.

The first report on Nrf2-deficient mice in 1996 described no
apparent abnormalities in the birth, growth, or fertility of
the Nrf2-null mice (22). In 1997, a study using an indepen-
dently generated line of Nrf2-null mice made the seminal
discovery that NRF2 acts as a key regulator in the inducible
expression of cytoprotective genes in vivo (78). Subse-
quently, these mice have been distributed to laboratories
worldwide for further research. The 1997 pioneering dis-
covery has served as the foundation for revealing the critical
roles of NRF2 in stress defense mechanisms and remains the
most highly cited paper in the field. The initial studies also
instigated progress in the theory that a wide range of human
diseases may be caused by dysregulation or impaired NRF2
function during times of oxidative stress. The model has
been refined as conditional Nrf2 knockout mice were gen-
erated. This feature enabled the examination of loss-of-
function effects of NRF2 in a cell lineage-specific manner
(182, 254).

Subsequently, Keap1-null mice were generated and re-
ported in 2003 (240). Contrary to an initial expectation
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that Keap1 disruption would render these mice as exceed-
ingly robust due to constitutive stabilization of NRF2,
Keap1-null mice died before weaning due to impaired feed-
ing. The epithelial layers of the esophagus and forestomach
of Keap1-null pups were dramatically thickened, resulting
in stenosis of these tissues. Importantly, the abnormal thick-
ening of the epithelial layers and lethality at the weaning
stage were completely abrogated by simultaneous deletion
of the Nrf2 gene. This indicates that constitutive stabiliza-
tion of NRF2 was responsible for the phenotypes.

Conditional Keap1 knockout mice with a hepatocyte-spe-
cific Keap1 disruption were generated in 2006 and demon-
strated that the resultant increase in NRF2 signaling con-
ferred resistance to acetaminophen hepatotoxicity (162).
These mice turned out to be hypomorphic as the floxed
allele led to a lower level of Keap1 gene expression than
seen with the wild-type allele (222). This knockdown allele
Keap1FA (238), in combination with the knockout allele of
Keap1, enabled the generation of a series of mice with
graded expression levels of the Keap1 gene (222). Since a
single Keap1FA allele appears to express one-fifth of the
Keap1 mRNA level of a single wild-type allele (10% and

50%, respectively), the bi-allelic Keap1 expression levels
are ~0, 10, 20, 50, and 60% of wild-type levels in Keap1–/–,
Keap1FA/–, Keap1FA/FA, Keap1�/–, and Keap1FA/� mice, re-
spectively (FIGURE 12). Another conditional Keap1 knock-
out mouse line was established in 2010 (14) with a floxed
allele termed Keap1FB that does not exhibit knockdown
phenotypes (238). The Keap1FB allele is useful for analysis
of cell lineage-specific contributions of the Keap1 gene,
whereas Keap1FA is useful for changing Keap1 levels in the
whole body. In this regard, the Keap1FA knockdown mouse
serves as a useful tool for modeling the pharmacological
actions of pathway inducers in vivo.

B. Detoxification and Antioxidant Activities
of NRF2 Alleviate Various Pathological
Conditions

NRF2 was originally identified as a key regulator of phase II
detoxication enzymes in response to electrophiles, so not
surprisingly the first phenotypes found in Nrf2-null mice
reflected enhanced susceptibility to xenobiotics (FIGURE

13). Nrf2-null mice easily succumbed to acute respiratory
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distress syndrome after exposure to butylated hydroxytolu-
ene (23) and suffered acute liver toxicity following acet-
aminophen administration (50). Pharmacological activa-
tion of NRF2 signaling in wild-type mice effectively atten-
uated acetaminophen hepatotoxicity (183) and cigarette
smoke-induced emphysema (216). NRF2 plays a central
role in cancer prevention, as indicated by an exacerbated

susceptibility to chemical carcinogenesis and lost efficacy in
chemoprevention in carcinogen-challenged Nrf2-null mice
(178, 263).

Since NRF2 was also shown to activate oxidative stress
inducible genes (74), Nrf2-null mice were used to analyze
various pathological conditions related to oxidative stress.

Table 1. Pathological conditions that are alleviated by NRF2 activation or exacerbated by NRF2 disruption

Modifying Strategy of NRF2 Activity

Disease Species Pharmacological Genetic
Reference

Nos.

Chronic kidney disease Human Bardoxolone methyl (CDDO-Me) 33, 171

Acute kidney disease Mouse Bardoxolone methyl (CDDO-Me) 251

Diabetic nephropathy Mouse Nrf2–/– mice 83

Hyperoxic acute lung injury Mouse CDDO-Im Nrf2–/– mice 26, 181

Pleurisy Mouse 15D-PGJ2 Nrf2–/– mice 81

Emphysema Mouse CDDO-Im Nrf2–/– mice 216

Allergic asthma Mouse Keap1F/F:CAG-CreERT2 mice
� tamoxifen

217

Lung carcinogenesis Mouse CDDO-Im, CDDO-Me 231

Pulmonary hypertension Mouse Oltipraz Nrf2–/– mice, Keap1F/F

(knockdown; KD) mice
46

Cardiac ischemia-reperfusion Mouse 15D-PGJ2 Nrf2–/– mice 95

Cardiac hypertrophy Mouse Dihydro-CDDO-TEA 252

Multiple sclerosis Mouse Fumaric acid esters Nrf2–/– mice 127

Multiple sclerosis Human BG2 (dimethyl fumarate) 54, 59

Alzheimer’s disease Mouse Lentiviral expression of NRF2 91

Parkinson’s disease Mouse Triterpenoids 86

Huntington’s disease Mouse Triterpenoids 214

Amyotrophic lateral sclerosis Mouse Triterpenoids 155

Cerebral
ischemia-reperfusion

Mouse Neurite outgrowth-promoting
prostaglandin (NEPPs)

196

Type 2 diabetes Mouse CDDO-Im Nrf2–/– mice, Keap1F/– (KD)
mice

237

Type 1 diabetes Mouse Sulforaphane 212

Obesity Mouse CDDO-Im Nrf2–/– mice 203

Acetaminophen
hepatotoxicity

Mouse CDDO-Im Nrf2–/– mice 50, 183

Gastric carcinogenesis Mouse Oltipraz, sulforaphane Nrf2–/– mice 51, 178

Aflatoxin-induced liver
carcinogenesis

Rat CDDO-Im Nrf2–/– mice 84, 225,
263

Helicobacter pylori
colonization

Mouse Sulforaphane Nrf2–/– mice 262

UV-induced dermatitis Mouse TBE-31 Nrf2–/– mice, Keap1F/F (KD)
mice

106

X-ray irradiation-induced
dermatitis

Mouse Synthetic triterpenoid RTA 408 184

Diabetic retinopathy Mouse Nrf2–/– mice 253

Fuchs endothelial corneal
dystrophy (FECD)

Human tissue
culture

Sulforaphane 269

Noise-induced hearing loss Human, mouse CDDO-Im Nrf2–/– mice 64

Rheumatoid arthritis Mouse Nrf2–/– mice 130

Sepsis Mouse CDDO-Im Nrf2–/– mice 230

Renal ischemia-reperfusion Mouse CDDO-Im Nrf2–/– mice, Keap1F/F (KD)
mice

156
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Typical instances of oxidative tissue damage are ischemia-
reperfusion injuries of the brain, heart, and kidney. Exoge-
nous and endogenous NRF2 inducers alleviate tissue dam-
age following ischemia-reperfusion (95, 128, 156, 196,
198, 243). Noise-induced hearing loss is also considered an
ischemia-reperfusion injury and similarly is effectively pre-
vented by pretreatment with NRF2 inducers (64). Hyper-
oxic conditions give rise to oxidative tissue damage, partic-
ularly in the lung, and can be effectively prevented by NRF2
activation (26, 181). Ionizing radiation, including UV and
X-rays, is another important cause of oxidative stress.
NRF2 inducers protect skin from irradiation-induced der-
matitis (106, 184).

Metabolic disorders, such as obesity and diabetes and its
complications, are closely related to dysregulation of ox-
idative stress and are effectively treated with NRF2 in-

ducers (83, 203, 212, 237, 253). NRF2 activation in
multiple organs appears to orchestrate antidiabetic ef-
fects. For example, NRF2 induction in pancreatic �-cells
suppresses oxidative damage of pancreatic islets and
strongly restores insulin secretion in diabetic conditions
(255). NRF2 induction in skeletal muscles alters glyco-
gen metabolism and improves glucose tolerance (238).
NRF2 induction in the hypothalamus reduces oxidative
stress in astrocytes and protects leptin-secreting neurons,
thereby improving control of systemic metabolism and
obesity (256).

Neurodegenerative disorders, such as Alzheimer’s disease,
Parkinson’s disease, Huntington’s disease, and amyotro-
phic lateral sclerosis, are another important category of
diseases with etiopathogeneses likely linked to oxidative
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stress. NRF2 activation effectively alleviates the neuronal
signs of these diseases in murine models (17, 86, 91, 155,
214). The administration of NRF2 inducers reduces oxida-
tive damage in neural tissues in mouse models of Parkin-
son’s disease and Huntington’s disease (86, 214). However,
because neuroinflammation underlies these neurodegenera-
tive disorders, it is likely that the anti-inflammatory aspect
of NRF2 contributes substantially to improving these path-
ological conditions.

C. Excessive Activation of NRF2 Causes
Reductive Stress

G6PD is one of the major enzymes required for NADPH
production, and an increase in its activity causes reductive
stress. This reductive stress impairs cardiac function, as sug-
gested by studies on inheritable human disorders linked to
mutations in genes encoding �B-crystalline. The studies
also suggest that constitutive activation of NRF2 in the
myocardium is responsible for the reductive stress and con-
sequent protein aggregation and cardiomyopathy (176,
177). Mutant �B-crystalline binds to KEAP1 and stabilizes
NRF2. Transgenic mice expressing mutant �B-crystalline in
heart exhibit ventricular dysfunction (FIGURE 14). The car-
diomyopathy and protein aggregation caused by the trans-
gene is ameliorated by an Nrf2-null background (90). The
human LMNA gene that causes muscular dystrophy in-
creases cellular levels of p62/SQSTM1, activates the
KEAP1-NRF2 pathway, and leads to reductive stress, as
described in a recent report on myopathic lamin mutations
(40). This implies that aberrant activation of NRF2 is also
deleterious by causing proteotoxicity.

In contrast, transgenic mice with cardiomyocytic overex-
pression of NRF2 were resistant to myocardial oxidative
stress, as well as cardiac apoptosis, fibrosis, hypertrophy,
and dysfunction, under the sustained pressure overload in-
duced by transverse aortic arch constriction (246). The
study analyzed transgenic mice with a modest NRF2 ex-

pression, so their NRF2 accumulation levels might have
been less than in mice with genetic mutations in �B-crystal-
line and LMNA. Alternatively, simple overexpression of
NRF2 was not sufficient to cause myopathy, but NRF2 was
required for the development of myopathy under specific
conditions.

VI. NRF2 CONTRIBUTION TO ANTI-
INFLAMMATORY EFFECTS

A. NRF2 Promotes the Resolution of Acute
Inflammation

Besides increasing cellular antioxidant capacities, NRF2
evokes strong anti-inflammatory activity. Since NRF2 con-
fers resistance to oxidative and electrophilic insults on cells,
damage-associated molecular patterns are suppressed by
NRF2 in affected tissues. This action appears to be one of
the critical mechanisms behind the anti-inflammatory activ-
ity of NRF2 (FIGURE 15). In Nrf2-null mice, the following
disease outcomes were exacerbated and protracted: pleu-
risy induced by carrageenan; emphysema induced by elas-
tase and cigarette smoke; and pulmonary fibrosis induced
by bleomycin (28, 75, 81, 180). Nrf2-null mice are also
quite susceptible to lipopolysaccharide-induced acute in-
flammation, whereas NRF2 activation effectively protects
against mortality after lipopolysaccharide challenge (230).
When Nrf2 or Keap1 genes were disrupted specifically in
mouse myeloid cells, the Nrf2 mutants were susceptible to
microbial infection and subsequent sepsis, whereas the
Keap1 mutants were resistant (115). These results indicate
that NRF2 activation protects tissues by modulating innate
immunity. The endogenous NRF2 inducer 15d-PGJ2 plays
an important role in the anti-inflammatory function of
NRF2 by binding to KEAP1 and activating NRF2 (141). In
a model of concanavalin A-induced T-cell-mediated acute
immune hepatitis, NRF2 disruption enhanced susceptibil-
ity, whereas KEAP1 disruption resulted in resistance. This is
a similar pattern to that observed above in myeloid cells.
Similarly, almost complete protection was achieved by pre-
treatment with the NRF2 inducer CDDO-Im in wild-type,
but not in Nrf2-null mice (167).

B. NRF2 Ameliorates Chronic Inflammation

Tissue damage and inflammation are closely related to each
other. When the root cause of tissue damage is persistent,
inflammatory reactions can become chronic. An example is
sickle cell disease, which is caused by a point mutation in
the �-globin gene. Abnormally shaped red blood cells are
prone to hemolysis and easily release heme into plasma,
which provokes oxidative stress and inflammation. Sys-
temic activation of NRF2 promotes degradation of the re-
leased heme and suppresses inflammation, which leads to
the dramatic alleviation of organ damage in a sickle cell
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disease mouse model (98). In a mouse model of asthma,
NRF2 protects airway epithelia and effectively reduces al-
lergic inflammation and airway hyperresponsiveness (217).

The NRF2 inducer dimethyl fumarate exerts protective ef-
fects against neuroinflammation in a mouse model of
chronic multiple sclerosis (127). Importantly, dimethyl fu-
marate became a Food and Drug Administration-approved
drug after successful clinical trials for relapsing multiple
sclerosis, which is an autoimmune-based inflammation of
neural tissues (54, 59). Whether or not NRF2 inducers
modulate adaptive immunity is unclear in these cases, al-
though interesting studies have been published. T-cell-spe-
cific activation of NRF2 elevates the frequency of regula-
tory T cells (Tregs), which seems to be critical for protecting
kidney after ischemia-reperfusion (160). Another report de-
scribes that systemic activation of NRF2 alleviates a lethal
autoimmune condition due to Treg deficiency, suggesting
that NRF2 suppresses effector T-cell activities independent
of Tregs (220). The implication is that NRF2 influences the
activity of adaptive immunity.

C. Molecular Basis of NRF2-Mediated Anti-
Inflammatory Effects

Although NRF2-mediated tissue protection likely involves
reducing damage-associated molecular patterns, which
drive secondary inflammatory reactions, NRF2 directly an-
tagonizes the induction of proinflammatory genes, such as
IL6 and IL1b, to exert some of its anti-inflammatory func-
tions (111). When the cell-autonomous effects of NRF2

activation were examined in bone marrow-derived macro-
phages, NRF2 inhibited the expression of proinflammatory
cytokines induced by polarization toward M1 type macro-
phages. NRF2 appears to interfere with the transcriptional
activation machinery of proinflammatory genes in response
to induction signals (FIGURE 15). While the precise mecha-
nisms as to how NRF2 inhibits the transcriptional activa-
tion of proinflammatory cytokine genes remain to be eluci-
dated, this study clearly demonstrates that elements of the
anti-inflammatory function of NRF2 can be distinguished
from its classical antioxidant function.

VII. THE KEAP1-NRF2 SYSTEM IN
CARCINOGENESIS

A. Cancer Chemoprevention Through
Activation of NRF2

Many animal models and clinical trials have targeted the
NRF2 pathway for preventing chemical carcinogenesis
since the late 1990s, which was before NRF2 was identified
as a master regulator of cellular defense mechanisms. In the
early 1970s, phenolic antioxidants, such as butylated hy-
droxyanisole and butylated hydroxytoluene, were found to
effectively suppress carcinogenesis in rodents (249). Many
studies have shown that induction of cytoprotective en-
zymes is a critical and sufficient mechanism for protection
against carcinogenesis provoked by exogenous and endog-
enous factors. Now a plethora of natural and synthetic
compounds are known to activate NRF2 by inactivating
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KEAP1. Clinically relevant classes of compounds include
dithiolethiones (e.g., oltipraz; Ref. 48), isothiocyanates
(e.g., sulforaphane; Ref. 43), and triterpenoids (e.g.,
CDDO-Im; Refs. 126 and 264). Oltipraz, sulforaphane,
and CDDO-Im demonstrated a large dynamic range in po-
tency, with a 1,000-fold difference in concentrations re-
quired for target gene induction in cell culture (100). This
difference in potency may reflect in part their chemical
mechanism of interaction with sensor cysteines, as all of
these chemicals bind Cys151 of KEAP1 (44, 113). Among
these chemicals, oltipraz and sulforaphane have been act-
ively tested in clinical trials as chemoprevention agents.
Triterpenoids are in the process of clinical development as
therapeutic agents, but are also very promising agents for
disease prevention, in part due to their remarkable potency.

NRF2 plays an important role in the detoxication of ben-
zo[a]pyrene, a procarcinogen formed by the incomplete
combustion of carbon. The preventive effects of NRF2 ac-
tivation on benzo[a]pyrene-induced carcinogenesis have
been demonstrated in mice treated with multiple NRF2 in-
ducers, such as oltipraz (178, 179) and sulforaphane (51).
NRF2 activation increases the efficiency of conjugation and
excretion of benzo[a]pyrene, resulting in a reduced toxico-
logical impact. Pretreatment with NRF2 inducers reduces
tumor incidence in the forestomach. This protection is lost
in the Nrf2-null background, indicating that the pharmaco-
logical activation of NRF2 is responsible. Moreover, wild-
type mice treated with vehicle developed fewer forestomach
tumors than Nrf2-null mice, highlighting their intrinsic sen-
sitivity to carcinogenesis. NRF2 also modulates the pulmo-
nary response to various toxicological insults, including ex-
posures to diesel exhaust and cigarette smoke (69, 216).
Nrf2-null mice are predisposed to oxidative DNA damage
on exposure to diesel exhaust (2). NRF2 protects epithelial
cells of the respiratory tract from the cytotoxicity and geno-
toxicity of cigarette smoke. Nrf2-null mice are significantly
more susceptible to cigarette smoke-induced emphysema
and pulmonary damage compared with wild-type mice (69,
180).

The mycotoxin aflatoxin B1, produced by the fungus Asper-
gillus flavus, is a potent hepatic carcinogen in humans, rats,
and infant mice (101). This carcinogen is often found as a
contaminant in staple foods, especially corn and peanuts.
Food contamination by aflatoxin is very difficult to eradi-
cate, so methods for minimizing the detrimental health ef-
fects of aflatoxin is a critical issue in aflatoxin endemic areas
of South Asia, sub-Saharan Africa, and Central America.
Once ingested, aflatoxin is metabolically activated to afla-
toxin-8–9-exo epoxide by cytochrome P-450. This reactive
intermediate rapidly forms an N7-guanine DNA adduct
that leads to mutations within the cell. CDDO-Im, a potent
NRF2-inducing triterpenoid, confers complete lifetime pro-
tection against aflatoxin-induced hepatocellular carcino-
genesis in rats (84, 263). The protective actions of

CDDO-Im against aflatoxin DNA adduct formation and
acute toxicity are markedly attenuated in Nrf2 knockout
rat, which validates NRF2 as a key player in this protective
action (225). Additional studies using carcinogens targeting
other tissues further demonstrate the important role of
NRF2 in cancer chemoprevention, as reviewed in Slocum
and Kensler (211).

B. Somatic Mutations in the KEAP1-NRF2
System in Human Cancers

NRF2 activation is normally beneficial for the health and
survival of organisms, including worms, flies, and mam-
mals. However, cancer cells can acquire a similar advantage
for their survival through mechanisms that lead to consti-
tutive activation of NRF2 signaling. The first reports de-
scribing somatic mutations in KEAP1 and NRF2 genes in
human non-small cell lung cancers were published in 2006
and 2008, respectively (170, 201, 206). Since then, somatic
mutations involved in the KEAP1-NRF2 system have been
described in other cancers, such as breast (158), gallbladder
(200), esophagus, and skin cancers (103). Recent cancer
genome analyses exploiting deep sequencing revealed that
KEAP1 and NRF2 are frequently mutated in solid tumors
arising from tissues susceptible to environmental expo-
sures, such as head and neck, lung, liver, bladder, and the
upper digestive tract (18, 70). Missense mutations in CUL3
were found in sporadic papillary renal cell carcinoma and
head and neck carcinoma, which also leads to activated
NRF2 signaling (134, 166).

Mutations in the KEAP1, NRF2, and CUL3 genes appear
to be mutually exclusive (18, 122), suggesting that the con-
sequences of these mutations converge on the same path-
way. Indeed, according to the COSMIC (Catalogue of So-
matic Mutations in Cancer) database (FIGURE 16) (7), so-
matic nonsynonymous mutations in KEAP1 and CUL3
were found throughout the coding region. These mutations
are expected to abrogate the activity of the KEAP1-CUL3
complex, thus ameliorating the degradation of NRF2. In
contrast, mutations in NRF2 are almost exclusively found
in the ETGE and DLG motifs in the Neh2 domain, which
are essential for the binding of NRF2 to KEAP1. The pat-
tern of NRF2 mutations in human cancers serves as solid
evidence for the importance of the ETGE and DLG motifs
in regulating NRF2 stability through the two-site binding
interaction for NRF2 with KEAP1, as described in the
hinge-latch model for NRF2 activation introduced earlier in
this review.

These mutations disrupt the interaction between NRF2 and
KEAP1 without affecting the transcriptional activation
function of NRF2, resulting in constitutive stabilization of
NRF2 and persistent activation of its target genes. There-
fore, mutations in either the KEAP1, NRF2, or CUL3 gene
result in the constitutive activation of NRF2 signaling in
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cancers. Cancer cells with high levels of NRF2 activity un-
dergo metabolic reprogramming that drives aggressive pro-
liferation (140) as well as chemo- and radio-resistance to
anticancer therapy (226), thereby becoming extremely ma-
lignant and more difficult to manage clinically. These cells
are referred to as NRF2-addicted cancer cells (105, 226).

C. Pathways Leading to KEAP1-CUL3
Complex Dysfunction and NRF2 Induction
in Cancers

Clinical studies of tumor tissues using histology revealed
high levels of NRF2 accumulation in certain subsets of can-
cers (i.e., NRF2-addicted cancers) and found that NRF2
was persistently activated, as reflected in elevated target

gene expression. These studies have been conducted in mul-
tiple research institutes around the world and consistently
demonstrated that abundant and persistent activation of
NRF2 was associated significantly with poor prognoses in
various cancers, including lung, gallbladder, esophagus,
breast, head and neck, and renal cancers (19, 72, 87, 134,
164, 201, 202, 244). This association was expected as
NRF2 coordinately activates prosurvival genes through its
detoxication and antioxidant functions, thereby conferring
resistance to chemotherapy and radiotherapy in cancers.

Besides the somatic mutations in the KEAP1 and NRF2
genes, several other mechanisms have been described for the
constitutive stabilization of NRF2 (FIGURE 17). First, DNA
hypermethylation at the promoter region of KEAP1 in can-
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cer cells decreases KEAP1 expression, leading to NRF2 sta-
bilization. Such epigenetic abnormalities in the KEAP1
gene in lung cancers and malignant gliomas are also associ-
ated with poor clinical outcomes (151, 152). In papillary
thyroid carcinoma patients, promoter methylation of not
only KEAP1 but also CUL3 has been observed, which in-
creased the NRF2 signature of gene expression (133). Sec-
ond, aberrant accumulation of p62/SQSTM1, which dis-
rupts the KEAP1-NRF2 interaction, causes persistent acti-
vation of NRF2. The abnormal accumulation of p62/
SQSTM1 is often observed in hepatocellular carcinoma
(71, 129, 215), suggesting that increased NRF2 activity
contributes to the malignant progression of this cancer.
Third, loss of function of fumarate hydratase (FH) in can-
cers causes fumarate (an intermediate of the TCA cycle) to
pool and leads to elevated accumulation of NRF2. Patients
carrying heterozygous germline mutations in the FH gene
exhibit elevated levels of fumarate and develop hereditary
leiomyomatosis and renal cell cancer, a syndrome charac-
terized by smooth muscle tumors and papillary renal cell
carcinoma type 2 (232). Fumarate is weakly electrophilic
and modifies the cysteine residues of KEAP1, thereby stabi-
lizing NRF2 and leading to the elevated expression of
NRF2 target genes (1, 165). This action offers an explana-
tion, at least in part, for the highly malignant papillary renal
cell carcinoma type 2 phenotype seen in patients.

Fourth, exon skipping of the NRF2 gene results in the pro-
duction of NRF2 protein lacking a KEAP1-interaction do-
main (60). In lung cancers and head and neck cancers,
which frequently express high levels of NRF2, the recurrent

exclusion of exon 2 from NRF2 mRNA has been observed.
This results in deletion of the stretch of amino acids D16-
Q104 that span the DLG and ETGE motifs, as well as the
lysine clusters targeted for ubiquitination. Fifth, transcrip-
tional upregulation of the NRF2 gene by KRAS or BRAF-
driven oncogenic pathways involving MYC and JUN leads
to increased NRF2 activity (35). To summarize, the six
known mechanisms that lead to increased NRF2 activation
and accelerated cancer progression are as follows: somatic
mutation of KEAP1 or NRF2; aberrant accumulation of
p62/SQSTM1; epigenetic silencing of the KEAP1 or CUL3
gene; germline mutations in FH; exon skipping within the
NRF2 gene; and oncogene-mediated transcriptional up-
regulation of the NRF2 gene.

D. Roles of NRF2 in Cancer Initiation,
Progression, and Metastasis

NRF2 protects cells from DNA damaging insults, such as
ROS and electrophilic toxicants, thereby inhibiting the ini-
tiation of cancer. However, once a cell is transformed by
acquiring one or likely several oncogenic mutations, NRF2
in the pre-neoplastic or transformed cells contributes to
their resistance to stress and survival, thereby supporting
the establishment of cancers (FIGURE 18). An important
observation is that NRF2 activity is required for oncogenic
KRAS (KRASG12D)-driven lung carcinogenesis in a mouse
model (35). In the Nrf2-null background, neoplastic nod-
ules in lung tissues were fewer in number and smaller in size,
contained fewer Ki67-positive proliferating cells, and sur-
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vival of the mice was extended compared with wild type.
Similar outcomes were observed in a urethane-induced lung
carcinogenesis murine model in which KRAS mutations are
frequent (194). Nrf2-null mice are prone to developing lung
nodules after being treated with urethane, but the nodules
do not acquire malignant characteristics. In contrast, wild-
type mice are resistant to the initial development of lung
nodules, but the nodules evolve into malignant adenocarci-
noma. Consistent with this outcome, Keap1 knockdown
mice exhibited greater resistance to the initial development
of nodules, but cells isolated from pulmonary nodules in
Keap1-knockdown mice grew aggressively when engrafted
subcutaneously into immuno-deficient nude mice (195).
Similarly, activation of NRF2 by antioxidant antidiabetic
agents accelerated tumor metastasis in a xenograft model
using nude mice (245). These results indicate that NRF2
may play at least two roles during carcinogenesis: prevent-
ing cancer initiation and promoting malignant progression.

From the viewpoint of NRF2 function in the tumor mi-
croenvironment, NRF2 activation appears to be beneficial
for the cancer-bearing host. When cancer cells are injected
into tail veins of mice, Nrf2-null mice exhibit a higher num-
ber of lung metastatic nodules than wild-type mice (193).
Nrf2 deficiency, particularly in the myeloid cell linage, ele-
vates the activity of myeloid-derived suppressor cells, which
inhibits T-cell-mediated antitumor immunity (61). There-
fore, it is plausible that systemic administration of NRF2
inducers to cancer-bearing hosts would effectively reinforce
antitumor immunity to suppress cancer metastasis. How-
ever, administration of NRF2 inducers would need to be
very carefully controlled in the case of cancer bearing hosts
with immunosuppression (245).

E. NRF2 Contribution to Metabolic
Reprogramming of Cancer Cells

The KRAS-driven carcinogenesis model revealed that
NRF2 contributes to the establishment and progression of
cancer cells (35). This effect differs from acquisition of ele-

vated detoxication capacity (radio- and chemoresistance),
as this phenomenon can be seen even in the absence of
exogenous anticancer treatments. Cancer cells with high
NRF2 activity aggressively proliferate, which undoubtedly
contributes to their malignant nature (207, 268). The
means by which NRF2 promotes the proliferation of cancer
cells does not involve the canonical antioxidant and anti-
inflammatory functions of NRF2.

In this regard, detailed analyses of NRF2 target genes in
cancer cells identified metabolic enzymes that are involved
in the pentose phosphate pathway and glutamine metabo-
lism (140). In particular, in proliferating cells, NRF2 redi-
rects glucose and glutamine into anabolic pathways and
supports metabolic activities that are advantageous for pro-
liferation (140, 208). Comprehensive metabolomic profil-
ing of lung cancer cells revealed that the serine synthesis
pathway is also facilitated by NRF2 through ATF-4 activa-
tion (36). CRISPR library screening identified glutamine
transporter as a key factor supporting the growth of Keap1-
mutant lung cancer cells, leading to the discovery of depen-
dence on glutaminolysis of Keap1-mutant cancers (188).
These findings are particularly intriguing, as the pentose
phosphate pathway provides ribose for nucleotide synthesis
and NADPH for lipid synthesis, whereas glutamine is im-
portant for glutathione synthesis and anaplerosis (replen-
ishing) of TCA cycle intermediates that have been diverted
for the synthesis of amino acids and other biomolecules. In
addition, serine is an important one-carbon source for nu-
cleotide synthesis and methylation reactions.

Notably, NRF2 plays a major role in these metabolic path-
ways in the presence of active proliferative signals rather
than in quiescent cells. PI3K-AKT signaling is a major pro-
liferative signal that inactivates GSK-3 by phosphorylation,
resulting in NRF2 accumulation through inhibition of
KEAP1-independent degradation (see FIGURE 9). As de-
scribed above, an increased abundance in NRF2 enables
activation of metabolic genes and promotes anabolic me-
tabolism. This functional expansion of NRF2 is not limited
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to cancer cells, but operates in normal cells within the tran-
sient and physiological magnitude of PI3K-AKT signal ac-
tivation. Examples include reactive hypertrophy of liver fol-
lowing portal vein branch ligation (204) and possibly liver
regeneration after partial hepatectomy (11, 241). In the
latter setting, the NRF2-NOTCH axis, a reciprocal activa-
tion of NRF2 and NOTCH signaling pathways, plays an
important role (241, 242). Still another intriguing recent
discovery is a contribution of NRF2 to translation (25).
NRF2 deficiency induces cysteine oxidation of subunits of
the translational machinery, resulting in impaired mRNA
translation. With these recent reports, it is clear that the
regulatory layers for NRF2-mediated effects on cell prolif-
eration have been expanded further than previously antici-
pated.

VIII. THERAPEUTIC APPLICATIONS OF
NRF2 AND MODULATION OF ITS
ACTIVITY

A. Development of NRF2 Inducers

Based on the profound contributions of NRF2 in the pre-
vention and alleviation of a wide variety of pathological
conditions in mouse models (TABLE 1), worldwide efforts
have been made to isolate from natural sources or develop
potent and potentially specific NRF2-inducing chemicals.
Among them, dimethyl fumarate (Tecfidera) has been ap-
proved by the Food and Drug Administration and Pharma-
ceuticals and Medical Devices Agency and is clinically pre-
scribed to patients with multiple sclerosis. CDDO-Me, a
member of the exceedingly potent class of oleanane triter-
penoid NRF2 inducers, is undergoing clinical trials in Japan
for diabetic nephropathy treatment, although its develop-
ment was paused in the United States due to the occurrence
of cardiac complications in patients with end-stage renal
disease (33, 171). Inducers with less potency and specificity
are also in clinical development, in particular nitro fatty
acids (37) and the broccoli-derived isothiocyanate sul-
foraphane (45). It is possible that modification of additional
cysteine residues beyond KEAP1 may trigger complemen-
tary signaling that enhances protective effects. Several small
trials in autism (210) and air pollution (49) using sul-
foraphane in the form of broccoli extracts have shown
promising effects likely to be NRF2 dependent, at least in
part. Although the cysteine residues of KEAP1 are highly
reactive and efficiently modified by these electrophiles,
strategies that do not require specificity of electrophilic at-
tack still need to be considered. Therefore, NRF2 inducers
with higher specificity might be found in the form of non-
electrophilic chemicals that disrupt the interaction between
KEAP1 and NRF2 by filling a KEAP1 pocket that forms an
interface with NRF2 (186).

B. Development of NRF2 Inhibitors

Cancers with persistent activation of NRF2 exhibit high
dependency on NRF2 function for drug resistance and cell
proliferation. In the treatment of these cancers, NRF2 in-
hibitors are expected to antagonize cancer progression and
sensitize cancer cells to therapy. However, compared with
NRF2 inducers, the development of NRF2 inhibitors is in
its infancy, so very few NRF2 inhibitors have been re-
ported. The plant-based product brusatol has been reported
to inhibit NRF2 (185). Brusatol effectively decreases the
protein levels of NRF2 and sensitizes cancer cells to chemo-
therapy and radiotherapy. Recently, another NRF2 inhibi-
tor, halofuginone, was found to exert a chemosensitizing
effect on cancer cells exhibiting constitutive NRF2 stabili-
zation (235). Interestingly, brusatol inhibits global protein
synthesis, possibly by targeting the ribosome (239), whereas
halofuginone inhibits proline tRNA synthetase and activates
the amino acid response pathway (99). This suggests that
the inhibition of protein synthesis is a particularly effective
means for antagonizing NRF2 activity. This approach is
possible because of the short half-life of NRF2. In contrast,
ML385 exploits an alternative mechanism by binding to the
DNA binding domain of NRF2 and shows significant che-
mosensitizing activity, specifically in non-small cell lung
cancer cells harboring KEAP1 mutations (209). An impor-
tant point to consider when developing NRF2 inhibitors is
the fact that systemic administration of NRF2 inhibitors
would reduce both canonical detoxication and antioxidant
defense responses, thereby changing the profiles or thresh-
olds of dose-limiting toxicities associated with standard-of-
care therapies. Therefore, a drug delivery system specific to
cancerous tissue and/or a well-designed medication proto-
col are necessary to achieve the best efficacy. Alternatively,
finding a therapeutic target that is selectively expressed in
NRF2-addicted cancers is a new opportunity as represented
by identification of an orphan nuclear receptor NR0B1 as a
unique therapeutic target for KEAP1-mutant non-small cell
lung cancers (8).

C. Diagnostic Use of Regulatory Single
Nucleotide Polymorphisms in the NRF2
Promoter and NRF2 Binding Sites

NRF2 activity is regulated through protein stabilization,
primarily by KEAP1, but is also regulated at the transcrip-
tional level. Thus two layers of regulation exist that control
the NRF2 activity that impacts on the susceptibility of mice
and humans to various pathological conditions (27, 64,
135, 219, 258) (FIGURE 19). Importantly, NRF2 autoregu-
lates transcription of the Nrf2 gene (118).

A single nucleotide polymorphism (SNP) in the promoter
region of the mouse Nrf2 gene was first described in 2002
from a linkage analysis of susceptibility to hyperoxic chal-
lenges of different strains of mice (27). The susceptible
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strain C57BL/6J and the resistant strain C3H/HeJ were
compared in that study. A decreased expression of lung
Nrf2 mRNA and a T to C substitution in the promoter
region of the Nrf2 gene were found in C57BL/6J mice, which
cosegregated with susceptibility phenotypes in the genome-
wide linkage analysis. Indeed, Nrf2-null mice were susceptible
to hyperoxia (26). Thus it is concluded that the Nrf2 pro-
moter SNP influences the transcription level of the Nrf2
gene, which affects susceptibility to hyperoxia.

In humans, similar to the mouse Nrf2 gene, a NRF2 pro-
moter SNP located 617 bp upstream from the transcription
start site lowers the level of NRF2 transcription (258) (FIG-

URE 20). Of note, individuals who possess this SNP are
more susceptible to acute lung injury and related diseases
(135). The presence of this SNP was also found to signifi-

cantly correlate with the incidence of non-small cell lung
cancer (219). The NRF2 SNP is also associated with sus-
ceptibility to noise-induced hearing loss, for which oxida-
tive damage is the major underlying cause (64).

In addition to the SNP in the NRF2 promoter, those in
NRF2 target sites (AREs/CsMBEs) may have substantial
biological impacts (FIGURE 20). Integration of genomewide
maps of the NRF2 occupancy with disease-susceptibility
loci revealed several associations between polymorphic
AREs/CsMBEs and disease-risk SNPs (247). Bioinformatic
analysis constructed an NRF2 binding prediction model
that successfully identified polymorphisms in the AREs/
CsMBE that affect NRF2 target gene expression (116).
Thus the NRF2 SNP and those in the NRF2 binding sites
are likely to be used for personalized medicine in the future
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as indicators for predicting disease susceptibility and drug
toxicity.

IX. CONCLUSIONS: PERSPECTIVE ON THE
KEAP1-NRF2 PATHWAY

Discovery of the Keap1-Nrf2 system revealed a revolution-
ary concept that has led to new approaches toward improv-
ing human health and combating diseases. One of the most
salient questions regarding the molecular mechanism of the
KEAP1-NRF2 system is how KEAP1 senses electrophilic
and oxidative stimuli and transduces them into stabilized
NRF2 and subsequent downstream signaling. To this end,
elucidation of the overall structure of active and inactive
CUL3-KEAP1-NRF2 complexes is underway. The specific
positions and numbers of modified cysteine residues differ
among chemical inducers, which likely leads to multiple
means for structural alterations in the CUL3-KEAP1-NRF2
complex. We believe that full details on the structural fea-
tures of inactivated or active KEAP1 are key to understand-
ing the whole structure-function basis of this critical cys-
teine-based biosensor.

Other important questions focus on the roles that NRF2
plays in carcinogenesis. For instance, how and when in their
etiology do cancers with constitutive NRF2 activation high-
jack and capitalize on the contributions of NRF2? Is NRF2
an actual oncogene or, as seems more likely, is it an impor-
tant, facilitative susceptibility determinant? Long-term ob-
servations of Keap1 knockdown mice and conditional
Keap1 knockout mice strongly suggest that simple Keap1
deficiency is not sufficient for the establishment of cancers.
In other words, NRF2 is not a driver of cancer nor a passive
passenger, but rather a copilot and navigator. The presence
of activated oncogenes in cells provides NRF2 a role for
promoting the malignant evolution of cancers. An intrigu-
ing question here is, during the multistep carcinogenesis,
when does NRF2 change its role from a faithful guardian to
a betrayer? The answer to this question will provide a the-
oretical basis as to how NRF2 inducers could be used for
cancer prevention and in which at-risk cohorts and when
and in what settings should NRF2 inhibitors be applied for
the treatment of cancer patients or prevention of recur-
rence. It is also necessary to recognize that there are settings
of oncogene-driven carcinogenesis where constitutive acti-
vation of NRF2 signaling is protective. Thus context is the
critical determinant of the risk and benefit mediated
through NRF2 that must be considered (213).

From a clinical point of view, NRF2 inducers and inhibitors
both have their own advantages and disadvantages. NRF2
inducers are expected to activate anticancer immunity, but
confer resistance to anticancer therapy in cancers. NRF2
inhibitors are expected to reduce proliferation and in-
crease the sensitivity of cancer cells to anticancer drugs.
However, when they act within a cancer microenviron-

ment, NRF2 inhibitors are expected to promote cancer
metastasis by activating the repressor activity of myeloid-
derived suppressor cells. We believe that the appropriate
use of NRF2 inducers and inhibitors will greatly reduce
the incidence of cancers and improve the prognosis of
cancer patients. In addition to appreciating context, it is
important to understand the nature of dose-response
curves of such agents, whether they are linear or “S” or
“U” shaped (100). Moreover, as NRF2 touches the etio-
pathogenesis of other acute and chronic diseases, ongoing clin-
ical trials (https://clinicaltrials.gov/) using multiple classes of
inducers should provide insights into the efficacy and optimi-
zation of interventions.

Health is a reflection of the ability of an organism to adapt
to stress. How one responds to environmental and endoge-
nous stress is inevitably a critical issue in maintaining
health. Various diseases and aging processes must be ana-
lyzed and evaluated under the influence of these stress fac-
tors. The KEAP1-NRF2 system, a thiol-based sensor-effec-
tor apparatus, plays a central role in responses for better
adaptation. Thus informed harnessing of this pathway is
key to the prosperity and continuation of the human spe-
cies.
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