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The key player problem in complex oscillator networks
and electric power grids: Resistance centralities identify
local vulnerabilities

M. Tyloo1,2, L. Pagnier1,2, P. Jacquod2,3*

Identifying key players in coupled individual systems is a fundamental problem in network theory. We investigate
synchronizable network-coupled dynamical systems such as high-voltage electric power grids and coupled oscil-
lators on complex networks. We define key players as nodes that, once perturbed, generate the largest excursion
away from synchrony. A spectral decomposition of the coupling matrix gives an elegant solution to this identi-
fication problem.We show that, when the couplingmatrix is Laplacian, key players are peripheral in the sense of a
centrality measure defined from effective resistance distances. For linearly coupled systems, the ranking is effi-
ciently obtained through a single Laplacianmatrix inversion, regardless of the operational synchronous state. The
resulting ranking index is termed LRank. When nonlinearities are present, a weighted Laplacian matrix inversion
gives another ranking index, WLRank. LRank provides a faithful ranking even for well-developed nonlinearities,
corresponding to oscillator angle differences up to approximately Dq ≲ 40°.

INTRODUCTION

Because of growing electric power demand, increasing difficulties with
building new lines, and the emergence of intermittent new renewable
energy sources, electric power systems are more often operated closer
to their maximal capacity (1, 2). Accordingly, their operating state, its
robustness against potential disturbances, and its local vulnerabilities
need to be assessed more frequently and precisely. Furthermore, be-
cause electricity markets become more and more integrated, it is nec-
essary to perform these assessments over geographically larger areas.
Grid reliability is commonly assessed againstn− 1 feasibility, transient
stability, and voltage stability, by which one means that a grid is con-
sidered reliable if (i) it still has an acceptable operating state after any
one of its n components fails, (ii) that acceptable state is reached from
the original state following the transient dynamics generated by the
component failure, and (iii) the new operating state is robust against
further changes under operating conditions such as changes in power
productions and loads. This n − 1 contingency assessment is much
harder to implement in real-time for a power grid loaded close to
its capacity where the differential equations governing its dynamics
become nonlinear—the fast, standardly used linear approximation
breaks down as the grid is more and more heavily loaded. Nonlinear
assessment algorithms have significantly longer runtimes, which
makes them of little use for short-time evaluations. In the worst cases,
they sometimes even do not converge. Briefly, heavily loaded grids
need more frequent and more precise reliability assessments, which
are however harder to obtain, precisely because the loads are closer to
the grid capacities.

Developing real-time procedures for n − 1 contingency assessment
requires new, innovative algorithms. One appealing avenue is to op-
timize contingency ranking (3) to try and identify a subset of ns < n grid
components containing all the potentially critical components. The
n − 1 contingency assessment may then focus on that subset only,
with a substantial gain in runtime if ns≪ n. Identifying such a subset

requires a ranking algorithm for grid components, following some
well-chosen criterion. Procedures of this kind have been developed
in network models for social and computer sciences, biology, and
other fields, in the context of the historical and fundamental problem
of identifying the key players (4–8). They may be, for instance, the
players who, once removed, lead to the biggest changes in the other
player’s activity in game theory or to the biggest structural change in
a social network. That problem has been addressed with the introduc-
tion of graph-theoretic centrality measures (9, 10), which order nodes
from the most “central” to the most “peripheral”—in a sense that they
themselves define. A plethora of centrality indices has been introduced
and discussed in the literature on network theory (9, 10), leading up to
PageRank (11). The latter ranks nodes in a network according to the
stationary probability distribution of a Markov chain on the network;
accordingly, it gives a meaningful ranking of websites under the rea-
sonable assumption that web surfing is a random process. Their
computational efficiency makes PageRank and other purely graph-
theoretic indicators very attractive to identify key players on complex
networks. It is thus quite tempting to apply purely graph-theoretic
methods to identify fast and reliably key players in network-coupled
dynamical systems.

Processes such as web crawling for information retrieval are essen-
tially random diffusive walks on a complex network, with no physical
conservation law beyond the conservation of probability. The situation
is similar for disease (12) or rumor (13) spreading and for community
formation (14) where graph-theoretic concepts of index, centrality, be-
tweenness, coreness, and so forth have been successfully applied to
identify tightly bound communities.

Coupled dynamical systems such as complex supply networks
(15), electric power grids (16), consensus algorithm networks (17),
or more generally network-coupled oscillators (18, 19) are, however,
fundamentally different. There, the randomness of motion on the
network giving, e.g., the Markov chain at the core of PageRank, is
replaced by a deterministic dynamics supplemented by physical con-
servation laws that cannot be neglected. Pure or partially extended
graph-theoretic methods have been applied in vulnerability investi-
gations of electric power grids (20–22) and investigations of cascades
of failures in coupled communication and electric power networks
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(23, 24). They have, however, been partially or totally invalidated by
investigations onmore precise models of electric power transmission
that take fundamental physical laws into account (in this case, Ohm’s
and Kirchhoff’s laws) (25, 26). It is therefore doubtful that purely
topological graph-theoretic descriptors are able to identify the poten-
tially critical components in deterministic, network-coupled dynami-
cal systems. Purely graph-theoretic approaches need to be extended to
account for physical laws (20). The influence of the dynamics on tran-
sient performance for regular graphs on d-dimensional tori has been
emphasized in (27).

Here, we give an elegant solution to the key player problem for a
family of deterministic, network-coupled dynamical systems related
to the Kuramoto model (18, 19). While we focus mostly on high-
voltage electric power grids whose swing dynamics, under the loss-
less line approximation, is given by a second-order version of the
Kuramoto model (16, 28), we show that our approach also applies
to other generic models of network-coupled oscillators. Key players
in these systems can be defined in various ways. For instance, they
can be identified by an optimal geographical distribution of system
parameters such as inertia, damping, or natural frequencies or alter-
natively as those whose removal leads to the biggest change in op-
erating state. Here, we define key players as those nodes where a local
disturbance leads to the largest short-time transient network response.
In the context of electric power grids, transient stability is the ability of
the grid to maintain synchrony under relatively large disturbances
such as loss or fluctuations of power generation or of a large load
(29). If under such a fault, the system remains in the vicinity of its
original state, it has maintained synchrony. There are different mea-
sures to quantify the magnitude of the transient excursion, such as
nadir and maximal rate of change of the network-averaged fre-
quency (30, 31) or other dynamical quantities such as network suscep-
tibilities (32) and the wave dynamics following disturbances (33).
Here, we quantify the total transient excursion through perform-
ancemeasures that are time-integrated quadratic forms in the system’s
degrees of freedom (see Materials and Methods and the Supple-

mentary Materials). Transient excursions typically last 10 to 20 s
in large, continental power grids, which sets the time scales we are
interested in.

Anticipating on results to come, Fig. 1 illustrates the excellent
agreement between analytical theory and numerical calculations for
these performance measures. Particularly interesting is that in both
asymptotic limits of quickly and slowly decorrelating noisy distur-
bance, the performance measures are simply expressed in terms of
the resistance centrality (34, 35), which is a variation of the closeness
centrality (9) based on resistance distances (36). This is shown in the
insets of Fig. 1. Our main finding is that the resistance centrality is the
relevant quantity to construct ranking algorithms in network-coupled
dynamical systems.

RESULTS

We consider network-coupled dynamical systems defined by sets of
differential equations of the form

mi
€qi þ di _qi ¼ Pi � ∑

j
bijsin ðqi � qjÞ; i ¼ 1;…; n ð1Þ

The coupled individual systems are oscillators with a compact
angle degree of freedom qi ∈ ( − p, p). Their uncoupled dynamics
are determined by natural frequencies Pi (37), inertia parameters mi,
and damping parameters di. Because the degrees of freedom are
compact, the coupling between oscillators needs to be a periodic
function of angle differences, and here, we only keep its first Fourier
term. The coupling between pairs of oscillators is defined on a network
whose Laplacian matrix has elements L

ð0Þ
ij ¼ �bij if i ≠ j and L

ð0Þ
ii ¼

∑k≠ibik.Without inertia,mi = 0 ∀i, Eq. 1 gives the celebrated Kuramoto
model on a network with edge weights bij > 0, ∀i, j (18, 19). With in-
ertia on certain nodes, it is an approximate model for the swing dy-
namics of high-voltage electric power grids in the lossless line

Fig. 1. Comparison between theoretical predictions and numerical results for both performance measuresP1 andP2 defined in Eq. 3. Each point corresponds to
a noisy disturbance on a single node of the European electric power grid sketched in Fig. 2A (see Materials and Methods and the Supplementary Materials) and
governed by Eq. 1 with constant inertia and damping parameters. The time-dependent disturbance dPi(t) is defined by an Ornstein-Uhlenbeck noise of magnitude
dP0 = 1 and correlation time gt0 = 4 × 10−5 (red crosses), 4 × 10−4 (cyan), 4 × 10−3 (green), 4 × 10−2 (purple), 4 × 10−1 (black), and 4 (blue). Time scales are defined by the
ratio of damping to inertia parameters g = di/mi = 0.4 s−1, which is assumed constant with di = 0.02 s. The insets show P1 and P2 as a function of the resistance
distance–based graph-theoretic predictions of Eq. 6 valid in both limits of very large and very short noise correlation time t0. The limit of short t0 for P2 gives a node-
independent result (Eq. 6).
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approximation (16, 28, 38). The latter is justified in high-voltage trans-
mission grids, where the resistance is smaller than the reactance typ-
ically by a factor of 10 or more. Applied to high-voltage grids, Eq. 1
describes the transient behavior of power grids on time scales of up
to roughly 10 to 20 s. Over these time intervals, voltage amplitudes of
high-voltage power grids are almost constant; accordingly, it is jus-
tified to consider only the dynamics of voltage angles (29). Here, we
are interested in that transient time regime and accordingly focus on
the voltage angle dynamics given by Eq. 1. When angle differences
are small, a linear approximation sin(qi − qj) ≃ qi − qj is justified,
giving first-order (without) or second-order (with inertia) consensus
dynamics (17).

When the natural frequencies Pi are not too large, synchronous
solutions exist that satisfy Eq. 1 with €qi ¼ 0 and _qi ¼ w0, ∀i. Without
loss of generality, onemay consider Eq. 1 in a frame rotating with the
synchronous angular frequency w0, in which case, these states corre-
spond to stable fixed points with _qi ¼ 0. We consider a fixed point

with angle coordinatesqð0Þ ¼ ðqð0Þ1 ;…; qð0Þn Þ corresponding to natural
frequenciesPð0Þ ¼ ðPð0Þ

1 ;…; P
ð0Þ
n Þ, to which we add a time-dependent

disturbance, PiðtÞ ¼ P
ð0Þ
i þ dPiðtÞ. In the case of electric power grids,

wewill consider fixed points that are solutions to an optimal power flow
problem. These solutions account for physical grid constraints such as
thermal (i.e., capacity) limits of the lines and technical limitations of the
power plants as well as economic constraints following from different
production costs for different power plant types (see Materials and
Methods and the Supplementary Materials) (39). Linearizing the dy-
namics about that solution, Eq. 1 becomes

mi d€qi þ di d _qi ¼ dPiðtÞ �∑
j
bijcos q

ð0Þ
i � q

ð0Þ
j

� �

ðdqi � dqjÞ;

i ¼ 1;…; n ð2Þ

wheredqiðtÞ ¼ qiðtÞ � q
ð0Þ
i . This set of coupled differential equations

governs the small signal response of the system corresponding to
weak disturbances. The couplings are defined by a weighted Laplac-

ian matrix Lijðq
ð0ÞÞ ¼ �bijcosðqð0Þi � q

ð0Þ
j Þ if i ≠ j and Liiðq

ð0ÞÞ ¼

∑kbikcosðqð0Þi � q
ð0Þ
k Þ, which contains information about both the

topology of the network and the operational state of the system. This
weighted Laplacian matrix significantly differs from the network
LaplacianLð0Þ when angle differences between coupled nodes are large.

We assess the nodal vulnerability of the system defined in Eq. 1 via
the magnitude of the transient dynamics determined by Eq. 2 under a
time-dependent disturbance dPi(t). We take the latter as an Ornstein-
Uhlenbeck noise on the natural frequency of a single node, with
vanishing average, dPiðtÞ ¼ 0, variance dP2

0 , and correlation time

t0, dPiðt1ÞdPjðt2Þ ¼ dik djk dP
2
0exp½�∣t1 � t2∣=t0�. It is sequentially

applied on each of the k = 1,…, n nodes. This noisy test disturbance
is designed to investigate network properties on different time scales
by varying t0 and identify the set of most vulnerable nodes, i.e., the
key players, as the nodes where the system’s response to dPk(t) is
largest. Besides being a probe to test nodal vulnerabilities, these noisy
disturbances alternatively model fluctuating renewable energy
sources in electric power grids. In this latter case, however, the cor-
relation time t0 is no longer a free parameter and is typically of the
order of a minute or more, i.e., larger than any dynamical time scale
in the system, as we discuss below.We quantify the magnitude of the

response to the disturbance with the following two performance
measures (40)

P1 ¼ lim
T→∞

T�1∑
i
∫
T

0 ∣dqiðtÞ � DðtÞ∣2 dt ð3AÞ

P2 ¼ lim
T→∞

T�1∑
i
∫
T

0 ∣d _qiðtÞ � _DðtÞ∣2 dt ð3BÞ

They are similar to quadratic performancemeasures based onL2

orH2 norms previously considered in the context of electric power
grids, networks of coupled oscillators, or consensus algorithms
(30, 40–46) but differ from them in two respects. First, here, we sub-
tract the averages D(t) = n−1∑j dqj(t) and _DðtÞ ¼ n�1∑j d _qjðtÞ, because
the synchronous state does not change under a constant angle shift.
Without that subtraction, artificially large performance measures
may be obtained, which reflect a constant angle drift of the synchro-
nous operational state but not a large transient excursion. Second, we
divide P1,2 by T before taking T → ∞ because we consider a noisy
disturbance that is not limited in time and that would otherwise lead
to diverging values of P1,2.

Here, we calculate P1,2 for the network-coupled dynamical sys-
tem defined in Eq. 1 when (i) both inertia and damping parameters
are constant, mi ≡ m0 and di ≡ d0, (ii) the inertia vanishes, mi ≡ 0,
(iii) the ratio g ≡ di/mi is constant, and (iv) both inertia and damping
vary independently. In cases (i) to (iii), P1,2 can be analytically
expressed in terms of resistance centralities that will be introduced
in the next section (see Materials and Methods and the Supplemen-
tary Materials). The next paragraphs focus on case (i), following
which we present numerical data for case (iv), which illustrate the
general applicability of these results for not too short noise correla-
tion time.

The performancemeasuresP1,2 can be computed analytically from
Eq. 2 via Laplace transforms (seeMaterials andMethods and the Sup-
plementary Materials), for homogeneous damping and inertia, i.e.,
di = d = gmi, ∀i. In the two limits of long and short noise correlation
time t0, they can be expressed in terms of the resistance centrality of
the node k on which the noisy disturbance acts and of graph topo-
logical indices called generalized Kirchhoff indices (36, 40). Both quan-
tities are based on the resistance distance, which gives the effective
resistance Wij between any two nodes i and j on a fictitious electrical
network where each edge is a resistor of magnitude given by the inverse
edge weight in the network defined by the weighted Laplacian matrix.
One obtains

Wijðq
ð0ÞÞ ¼ L

†
iiðq

ð0ÞÞ þ L
†
jjðq

ð0ÞÞ � L
†
ijðq

ð0ÞÞ � L
†
jiðq

ð0ÞÞ ð4Þ

where L
† denotes the Moore-Penrose pseudo-inverse of L (36).

The resistance centrality of the kth node is then defined as C1(k) =
[n−1∑jWjk]

−1. It measures how central is the node kth in the electrical
network, in terms of its average resistance distance to all other nodes—
more central nodes have smaller C1(k). A network descriptor, the
Kirchhoff index, is further defined as (36)

Kf1≡ ∑
i<j

Wij ð5Þ

Generalized Kirchhoff indices Kfp and resistance centralities Cp(k)
can be defined analogously from the pth power of the weighted
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Laplacian matrix, which is also a Laplacian matrix (see Materials
and Methods and the Supplementary Materials). In terms of these
quantities, the performance measures defined in Eq. 3 depend on
the value of the noise correlation time t0 relative to the different time
scales in the system. The latter are the ratios d/la of the damping co-
efficient d with the nonzero eigenvalues la, a = 2, …, n, of Lðqð0ÞÞ
and the inverse ratio g−1 =m/d of damping to inertia parameters. In
high-voltage power grids, they are approximately given by d/la < 1 s
andm/d ≅ 2.5 s. Performance measures Eq. 3 can be obtained for any
correlation time t0 (see Materials and Methods and the Supplemen-
tary Materials). However, it is interesting to consider the specific
cases where t0 is the smallest (t0 ≪ d/la, g

−1) or the largest (t0 ≫
d/la, g

−1, appropriate for noisy power injections from new renew-
ables) time scale in the probed system. The performance measures
particularly take the asymptotic values

P1 ¼
dP2

0t0=d
� �

C�1
1 ðkÞ � n�2Kf 1

� �

; t0≪d=la; g
�1

dP2
0 C�1

2 ðkÞ � n�2Kf 2
� �

; t0≫d=la; g
�1

�

ð6AÞ

P2 ¼
dP2

0t0=dm
� �

ðn� 1Þ=n ; t0≪d=la; g
�1

dP2
0=dt0

� �

C�1
1 ðkÞ � n�2Kf 1

� �

; t0≫d=la; g
�1

�

ð6BÞ

in the two limits when t0 is the smallest or the largest time scale in the
system. After averaging over the location k of the disturbed node,
C�1
1;2

¼ 2Kf 1;2=n
2
, and one recovers the results in (40, 42, 43) for

the global robustness of the system.
These results are remarkable: They show that the magnitude of the

transient excursion under a local noisy disturbance is given by either
of the generalized resistance centralities C1(k) or C2(k) of the per-
turbed node and the generalized Kirchhoff indices Kf1,2. The latter
are global network descriptors and are therefore fixed in a given
network with fixed operational state. One concludes that perturbing
the less central nodes—those with largest inverse centralitiesC�1

1;2ðkÞ—
generates the largest transient excursion. In a given network, key
players are therefore nodes with smallest resistance centralities. It is
important to keep inmind, however, that these centralities correspond
to the weighted Laplacian defined above, where internodal couplings
are normalized by the cosine of voltage angle differences. Accordingly,
these centralities are dependent on the initial operating state. The
asymptotic analytical results of Eq. 6 are corroborated by numerical
results in the insets of Fig. 1, obtained directly from Eq. 1, i.e., with-
out the linearization of Eq. 2. The validity of the general analytical
expressions for any t0 (seeMaterials andMethods and the Supplemen-
tary Materials) is further confirmed in the main panel of Fig. 1 and by
further numerical results obtained for different networks shown in
Materials and Methods and the Supplementary Materials.

The generalized resistance centralities and Kirchhoff indices ap-
pearing in Eq. 6 depend on the operational state via the weighted
Laplacian Lðqð0ÞÞ. For a narrow distribution of natural frequencies
Pi ≪ ∑jbij, ∀i, angle differences between coupled nodes remain
small, and the weighted Laplacian is close to the network Laplacian,
Lðqð0ÞÞ≃Lð0Þ. The resistance centralitiesC

ð0Þ
1 andC

ð0Þ
2 for the network

Laplacian of the European electric power grid (see Materials and
Methods and the Supplementary Materials) are shown in Fig. 2.
For both centralities, the less central nodes are dominantly located
in the Balkans and Spain. In addition, forC

ð0Þ
1 , nodes in Denmark and

Sicily are also among the most peripheral. The general pattern of

these most peripheral nodes looks very similar to the pattern of most
sensitive nodes numerically found in (47) and includes particularly
many, but not all dead ends, which have been numerically found to
undermine grid stability (48).

The asymptotic results of Eq. 6, together with the numerical results
of Fig. 1, make a strong point that nodal sensitivity to fast or slowly
decorrelating noise disturbances can be predicted by generalized
resistance centralities. One may wonder at this point how gener-
alized resistance centralities differ in that prediction from other,
more common centralities such as geodesic centrality, nodal degree,
or PageRank. Table 1 compares these centralities to each other and to
the performance measures corresponding to slowly decorrelating
noisy disturbances acting on the 10 nodes shown in Fig. 2A. As
expected from Eq. 6, P1 and P2 are almost perfectly correlated with
the inverse resistance centralitiesC�1

2 andC�1
1 , respectively, but with

no other centrality metrics. For the full set of nodes of the Europen
electric power grid, we found Pearson correlation coefficients
r P1;C

�1
2

� �

¼ 0:997 and r P2;C
�1
1

� �

¼ 0:975 fully corroborating
the prediction of Eq. 6.

DISCUSSION

Once a one-to-one relation between the generalized resistance cen-
tralities C1(k) and C2(k) of the disturbed node k and the magnitude
of the induced transient response is established, ranking of nodes from
most to least critical is tantamount to ranking them from smallest to
largest C1 or C2. From Eq. 6, which of these two centralities is relevant
depends on whether one is interested (i) in the transient response un-
der fast or slowly decorrelating noise or (ii) in investigating transient
behaviors for angles (using the performance measure P1) or frequen-
cies (P2). While this gives a priori four different rankings, Eq. 6 leads
to only two rankings, based on either C�1

1 or C�1
2 , which can be ob-

tained through the performance measureP1 only, in asymptotic limit
of either very fast (shortest time scale t0) or very slowly (largest t0)
decorrelating noise. From here on, we therefore focus on the angle
performance measure P1 of Eq. 3a and consider the two asymptotic
limits in Eq. 6a.

We therefore define WLRank1 and WLRank2 (49) as two rankings,
which order nodes from smallest to largest C1 and C2, respectively.
Smallest WLRank1,2 therefore identify the most vulnerable nodes in a
given network. Figure 3 shows that they differ very significantly. In par-
ticular, a number of nodes are among the most critical according to
WLRank1 but not toWLRank2 and vice versa. This discrepancy means
that nodes are not central in an absolute sense, instead, their centrality
and hence how critical they are depend on details of the disturbance—
in the present case, the correlation time t0—and the performance
measure of interest. One should therefore choose to use one or the
other centrality measure, according to the network sensitivity one
wants to check.

The resistance centralities in Eq. 6 correspond to the network de-
fined by the weighted Laplacian Lðqð0ÞÞ defined in Eq. 2. They
therefore depend on the unperturbed, operating state q(0), and con-
sequently, WLRank depends not only on the network topology but
also, as expected, on the natural frequencies and the coupling be-
tween the nodal degrees of freedom. As mentioned above, in the
strong coupling limit, angle differences between coupled nodes re-
main small and Lðqð0ÞÞ≃Lð0Þ . In that limit, one therefore expects
nodal ranking to be given by resistance distances corresponding to
the network Laplacian L

ð0Þ. How long this remains true is of central
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interest, and to answer this question, we define further rankings
LRank1,2 as the rankings using resistance centralities C

ð0Þ
1;2 obtained

from the network Laplacian L
ð0Þ . As long as angle differences be-

tween network-coupled nodes are not too large, the ranking LRank
based on the network Laplacian matrix is almost the same as the true
ranking WLRank based on the weighted Laplacian. This is shown in
Fig. 4 for three electric power gridmodels and one randomnetwork of
coupled oscillators. For the electric power grid models, injections/
natural frequencies are limited by the standard operational constraint
that the thermal limit of each power line is, at most, only weakly ex-
ceeded. This corresponds approximately to a maximal angle
difference of max(Dq) ≃ 30° between any pair of coupled nodes. Ac-
cordingly, we find that even in relatively strongly loaded power grids
(corresponding, for instance, to the exceptional situation of the fall of
2016 when 20 French nuclear reactors were simultaneously offline;
see red points in Fig. 4C), there is not much of a difference between

LRank and WLRank. The two rankings start to differ from one an-
other only when at least some natural frequencies become compara-
ble with the corresponding nodal index, Pi ≲ ∑jbij, and angle
differences become very large. This case has been investigated for
an inertialess coupled oscillator system on a random rewired
network with constant couplings (see Materials and Methods and
the Supplementary Materials) (50). It is shown in green in Fig. 4D
and corresponds to max(Dq) = 106°.

In Fig. 5, we investigate more closely when the approximate rank-
ing LRank starts to differ from the true ranking WLRank. To that
end, we used the randomly rewired model of inertialess coupled oscil-
lators of Fig. 4D and calculated the percentage of nodes with highest
LRank necessary to give the top 15% ranked nodes with WLRank2.
The results are plotted as a function of the maximal angle difference
between directly coupled nodes. Each of the 12,000 red crosses in Fig. 5
corresponds to one of 1000 natural frequency vectors P(0), with com-
ponents randomly distributed in (−0.5,0.5) and summing to zero,
multiplied by a prefactor b = 0.4,0.6,…2.4,2.6. The blue crosses cor-
respond to running averages more than 500 red crosses with consec-
utive values of max(Dq). One sees that, up to almost max(Dq) ≃ 40°,
the set of the 18% of nodes with highest LRank2 always includes the
top 15% ranked nodes with WLRank2. Similar results for obtaining
the top 10 and 20% ranked nodes with WLRank2 and for rankings
using C1 instead of C2 are shown in Materials and Methods and the
Supplementary Materials.

It is quite unexpected that nodal ranking remains almost the same
up to angle differences of about 40°, since coupling nonlinearities are
already well developed there. This is illustrated in the inset of Fig. 5,

which plots the Frobenius distance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑ij Lijðq
ð0ÞÞ � L

ð0Þ
ij

� �2
r

between

the network LaplacianLð0Þ and the weighted LaplacianLðqð0ÞÞ. When
max(Dq)≃ 40°, the Frobenius distance has already reached about 27%
of its maximal observed value, indicating that coupling nonlinearities
are already strong. Yet, obtaining a desired set of the ns most critical
nodes for any configuration withmax(Dq)≲ 40°, including cases with
nonegligible nonlinearities, is achieved with a single matrix inversion
of the network Laplacian L

ð0Þ, while considering a slightly extended
set of ns + dns nodes with highest LRank, dns/ns ≪ 1. This is a mod-
erate price to pay, compared to the price of calculating WLRank for
each configuration, which each time requires inverting the weighted
Laplacian matrix Lðqð0ÞÞ. That latter procedure would be too time
consuming for real-time assessment of large networks.

A B C

Fig. 2. Synchronous high-voltage power grid of continental Europe. (A) Topology of the European electric power grid (see Materials and Methods and the Sup-
plementary Materials) and location of the 10 test nodes listed in Table 1. Normalized generalized resistance centralities C

ð0Þ
1 ðiÞ (B) and C

ð0Þ
2 ðiÞ (C) for the network

Laplacian matrix of the European electric power grid.

Table 1. Centrality metrics and performance measures P1;2 for the

European electric power grid (see Materials and Methods and

the Supplementary Materials) with noisy disturbances with large

correlation time t0 applied on the nodes shown in Fig. 2A. The
performance measures P1 and P2 are almost perfectly correlated with
the inverse resistance centralities C2

−1 and C1
−1, respectively, but neither

with the geodesic centrality, nor the degree, nor PageRank.

Node no. Cgeo Degree PageRank C1 C2 P
num
1 P

num
2 (g2)

1 7.84 4 2782 31.86 5.18 0.047 0.035

2 6.8 1 199 22.45 5.68 0.021 0.118

3 5.56 10 3802 22.45 2.33 0.32 0.116

4 4.79 3 362 21.74 3.79 0.126 0.127

5 7.08 1 1217 21.74 5.34 0.026 0.125

6 4.38 6 3091 21.69 5.65 0.023 0.129

7 5.11 2 445 19.4 5.89 0.016 0.164

8 4.15 6 3648 19.38 1.83 0.453 0.172

9 5.06 1 8 10.2 5.2 0.047 0.449

10 2.72 4 3124 7.49 2.17 0.335 0.64
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So far, we have assumed constant inertia and damping parameters,
which led us to the analytical expressions given in Eq. 6 for the per-
formance measures. Analytical results can further be obtained for
inertialess systems withmi = 0 as well as in the case of homogeneous
damping to inertia ratio, di/mi≡ g. In this latter case, the ranking is again
given by a resistance centrality, but this time, related to the inertia-
weighted matrix M

�1=2
LM

�1=2 with M being the diagonal matrix
whose ith diagonal entry is given by mi (see Materials and Methods
and the Supplementary Materials) but not in the case of independently
varying mi and di. We therefore lastly address this more general case
using a purely numerical approach. This question is especially impor-
tant for electric power grids where only nodes connected to rotating
machines (such as conventional power plants) have inertia and
consumer nodes have significantly smaller damping parameters (38).
Time scales in electric power grids have typical values mi/di ∈ [1,3]s
and di/la ≲ 1s, and accordingly, we focus on the regime of large noise
correlation time t0 ≫ mi/di, di/la, which is appropriate for persisting
power fluctuations such as those arising from renewable energy sources.
Figure 6 shows results corresponding to inertia and damping param-
eters fluctuating randomly from node to node by up to 40%. The rank-
ing obtained from a full numerical calculation is compared to the
ranking obtained from a direct calculation of the centrality of the
weighted LaplacianLijðq

ð0ÞÞ, corresponding to the long correlation time
asymptotic limit of Eq. 6. One sees that the centrality-based ranking is

Fig. 3. Comparison of the two nodal rankings WLRank1 and WLRank2 ob-

tained from the generalized resistance centralities C1 and C2, respectively,

for the 3809 nodes of the European electric power grid sketched in Fig. 2A

(see Materials and Methods and the Supplementary Materials). Blue dots cor-
respond to a moderate load during a standard winter weekday, and red dots cor-
respond to a significantly heavier load corresponding to the exceptional
November 2016 situation with a rather large consumption and 20 French nuclear
reactors shut down.

Fig. 4. Comparison between LRank and WLRank corresponding to P1 for noisy disturbances with large correlation time t0. (A to C) Electric power grid models
for normally (blue) and more heavily loaded (red) operating states governed by Eq. 1. (A) IEEE 57 bus test case where the more loaded case has injections six times
larger than the moderately loaded, tabulated case (52). (B) MATPOWER Pegase 2869 test where the more loaded case has injections 30% larger than the moderately
loaded, tabulated case (53). (C) European electric power grid model sketched in Fig. 2A (see Materials and Methods and the Supplementary Materials) where the
moderately loaded case corresponds to a standard winter weekday and the more heavily loaded case to the November 2016 situation with 20 French nuclear reactors
offline. For both cases, the operational state is obtained from an optimal power flow including physical, technological, and economic constraints (see Materials and
Methods and the Supplementary Materials). (D) Inertialess coupled oscillators governed by Eq. 1 with mi = 0, ∀i, on a random network with 1000 nodes obtained by
rewiring a cyclic graph with constant nearest and next-to-nearest neighbor coupling with a probability of 0.5 (see Materials and Methods and the Supplementary
Materials) (50). Natural frequencies are randomly distributed as Pi ∈ [ − 1.8,1.63] (blue), Pi ∈ [ − 2.16,1.95] (red), and Pi ∈ [ − 2.7,2.45] (green), corresponding to maximal
angle differences max(Dq) = 31o, 70o, and 106o, respectively.
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close to the true, numerically obtained ranking, even in this case of
strongly fluctuating inertia and damping parameters. This extends the
validity of Eq. 6 for large t0 in a much wider range of parameters than
their derivation would suggest.

CONCLUSION

We have formulated a key player problem in deterministic, network-
coupled dynamical systems. The formulation is based on the dynam-
ical response to a nodal additive disturbance of the initial problem,

and the most critical nodes—the key players—are defined as those
where the response to the disturbance is largest.While thismanuscript
focused on (i) noisy Ornstein-Uhlenbeck disturbances, (ii) network-
coupled systems on undirected graphs, particularly with symmetric
couplings bij = bji in Eq. 1, and (iii) performancemeasures of the tran-
sient response that are quadratic forms in the system’s degrees of free-
dom, the method is not restricted to these cases. First, it can be used to
deal with different disturbances, and in Materials and Methods and
the Supplementary Materials, we calculate P1;2 for a box disturbance
dPi(t) = dikdP0Q(t)Q(t0 − t) with the Heaviside function Q(t). This
disturbance gives the same ranking as the Ornstein-Uhlenbeck noise
disturbance considered above. Second, asymmetric couplings oc-
curring, e.g., in directed graphs (51), in Kuramoto models with frus-
tration (19), or in electric power grids withOhmic dissipation (16) can
also be considered. In this case, the internodal coupling is given by
asymmetric real matrices instead of symmetric Laplacian matrices.
However, the definition of the resistance distance (Eq. 4) remains
valid even if L is replaced by an asymmetric matrix A, in that it still
gives Wii = 0, Wij ≥ 0, and Wij ≤ Wik + Wki, ∀i, j, k as long as the syn-
chronous fixed point considered remains stable. Third, nonquadratic
performance measures can, in principle, be considered within the spec-
tral decomposition used in this article. One may think of average fre-
quency nadir and rate of change of frequency, which are linear
performance measures (30, 31). It is, at present, unclear whether these
quantities can be analytically related to the location of disturbances via
resistance or other centralities.

We gave an elegant answer to this key player problem: Ranking
nodes from most to least critical is tantamount to ranking nodes
from least to most central in the sense of resistance centralities. De-
pending on how the problem is formulated—mostly on details of the
disturbance and on how the magnitude of the transient response is
measured—different centralities have to be considered, giving differ-
ent rankings. The key player problem in deterministic systems is
therefore not uniquely defined, and its formulation must be tailored
to reflect the most relevant dynamical properties one wants to eval-
uate. Averaged rankings, reflecting several such properties, simulta-
neously could also be considered. Last, we found numerically that
resistance centralities are still accurate to identify the most critical

Fig. 5. Percentage of the nodes with highest LRank2 necessary to give the

top 15% ranked nodes with WLRank2 for a random network of inertialess

coupled oscillators with 1000 nodes obtained by rewiring with a probability

of 0.5 of a cyclic network with constant nearest and next-to-nearest neigh-

bor coupling (see Materials and Methods and the Supplementary Materials)

(50). Each of the 12,000 red crosses corresponds to one of 1000 random natural
frequency vector P(0) with components randomly distributed in (−0.5,0.5) and
summing to zero, multiplied by a prefactor b = 0.4,0.6,…,2.4,2.6. The blue crosses
correspond to running averages more than 500 red crosses with consecutive values
of max(Dq). Inset: Running averages of the Frobenius distance between the
matrices Lðqð0ÞÞ and L

ð0Þ . The steps in the curve reflect discrete increments of b.

Fig. 6. Comparison between WLRank and numerical ranking for systems with inhomogeneous inertia and damping parameters. (Left) Numerically obtained
ranking based on the performance measure P1 plotted against the ranking WLRank2 based on the centrality C2 and (right) numerically obtained ranking based on the
performance measure P2 plotted against the ranking WLRank1 based on the centrality C1. Each point is an average *over* more than 40 different noisy disturbances on
a single node of the European electric power grid sketched in Fig. 2A, with independently fluctuating damping and inertia coefficients, di = d0 + ddi and mi = m0 + dmi

with dmi/m0, ddi/d0 ∈ [−0.4,0.4] and g = d0/m0 = 0.4 s−1. The noise correlation time is given by gt0 = 4.
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nodes evenwhen nodal dynamical parameters (damping and inertia)
are not homogeneous.

The results shown in Fig. 6 are rather unexpected, and further
inspection of our analytical results (Eq. 6 and eq. S14B) suggests that
an inertia dependence could emerge in the opposite limit of short
correlation time t0≪mi/di, di/la. This point deserves further inves-
tigations. It would be furthermore interesting to extend our investi-
gations to cases of distributions of inertia and damping parameters
corresponding to realistic electric power grids. Work along those
lines is in progress.

MATERIALS AND METHODS

Four different networks were considered. Data for implementing the
IEEE 57 bus test case and the MATPOWER Pegase 2869 test case
have been obtained from (52, 53). The random networks were ob-
tained through the rewiring procedure of initially regular networks
discussed in (50). We constructed the European power grid model
from publicly available data on power plants and bus locations.More
details on the procedure were given in the Supplementary Materials
and in (54).

Several operational states of the European power grid were ob-
tained from an optimal power flow. The latter minimizes a cost
function including production costs for all available power plants,
under constraints that power flows do not exceed the thermal line
capacity of each power line and that productions do not exceed
rated powers for each power plant.

For each network considered, Eq. 1 was numerically integrated
using a fourth-order Runge-Kutta algorithm. Values for the
performance measures were then calculated by numerical integra-
tion of the obtained time-dependent voltage angle and frequencies.
Resistance distances, centralities, and Kirchhoff indices were
calculated through a direct inversion of the Laplacian matrix.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/

content/full/5/11/eaaw8359/DC1

Section S1. Calculation of the performance measures

Section S2. Resistance distances, centralities, and Kirchhoff indices

Section S3. Numerical models

Section S4. Numerical comparison of LRank with WLRank.

Fig. S1. Comparison between theoretical predictions and numerical results for both

performance measures P1 and P2.

Fig. S2. Comparison of the performance measures P1, P2 obtained numerically and in eq. S14.

Fig. S3. Percentage of the nodes with highest LRank necessary to include the nodes with 10%

and 20% highest WLRank.
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