
The Kidder Equation: uxx + 2xux/
√

1 − αu = 0

By Roberto Iacono and John P. Boyd

The Kidder problem is uxx + 2x(1 − αu)−1/2ux = 0 with u(0) = 1 and

u(∞) = 0 where α ∈ [0, 1]. This looks challenging because of the square

root singularity. We prove, however, that |u(x ; α) − erfc(x)| ≤ 0.046 for all

x, α. Other very simple but very accurate curve fits and bounds are

given in the text; |u(x ; α) − erfc(x + 0.15076x/(1 + 1.55607x2))| ≤ 0.0019.

Maple code for a rational Chebyshev pseudospectral method is given as a

table. Convergence is geometric until the coefficients are O(10−12) when

the coefficients an ∼ constant/n−6. An initial-value problem is obtained if

ux (0, α) is known; the slope Chebyshev series has only a fourth-order rate

of convergence until a simple change-of-coordinate restores a geometric rate

of convergence, empirically proportional to exp(−n/8). Kidder’s perturbation

theory (in powers of α) is much inferior to a delta-expansion given here for the

first time. A quadratic-over-quadratic Padé approximant in the exponentially

mapped coordinate z = erf(z) predicts the slope at the origin very accurately

up to about α ≈ 0.8. Finally, it is shown that the singular case u(x ; α = 1) can

be expressed in terms of the solution to the Blasius equation.

1. Introduction

Kidder showed nearly 60 years ago that flow through a porous medium could

be modeled by the solution of the nonlinear ordinary differential equation

(ODE) on a semi-infinite interval [24]

uxx + 2x
1

√
1 − αu

ux = 0, u(0) = 1, u(∞) = 0, (1)
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where the parameter α ∈ [0, 1]. Kidder himself observed that for α = 0, the

exact solution is

u0 = 1 − erf(x) ≡ erfc(x), (2)

where erf(x) = (2/
√

π)
∫ x

0
exp(−y2)dy is the usual error function and erfc(x)

is the complementary error function. Erfc(x) is a decent approximation to

u(x ; α) over the whole parameter range; the maximum error is for α = 1 where

max
x∈[0,∞]

|u − u0| = 0.046. (3)

He calculated a power series in the parameter α to second order where the

O(α) term is

u1 = −
1

2π

{

u0

[

1 +
√

πx exp(−x2)
]

− exp(−2x2)
}

(4)

and the O(α2) term is

u2 = −
1

π
u1 +

1

8π3/2
x exp(−3x2) −

1

2π
u0 −

1

16π1/2
x(5 − 2x2) exp(−x2)[u0]2

+
1

4π
(2 − x2) exp(−2x2)u0 +

3
√

3

16π

{

erf(
√

3x) − erf(x)
}

. (5)

In his classic book on nonlinear differential equations, Davis discusses the

Kidder equation and gives a table of u0, u1, and u2 on pages 410–411 [16].

There have been a number of numerical and analytical studies because

Agarwal and O’Regan proved existence theorems, specifically using Kidder’s

equation as an example [3]. Countryman and Kannan [15] proved that the

solution in enclosed by a pair of explicit analytic functions:

erfc

(

1

(1 − α)1/4
x

)

≤ u(x) ≤ erfc(x). (6)

Wazwaz [34, 35] applied the Adomian decomposition method, but his res-

ults are awful; his best prediction for ux (0; α = 1/2) is −1.025 versus the

true value of −1.1917. Noor and Mohyud-Din used He’s homotopy/variational

iteration method [26], but obtained the same incorrect slope numbers as

Wazwaz.

Parand et al. applied a pseudospectral method with a rational Chebyshev

basis and also with a basis of modified generalized Laguerre functions [28,

29]. Taghavi et al. also employed generalized Laguerre functions, but in

a nodal or Lagrangian basis [33]. Rezaei et al. applied a pseudospectral

method with a rational Legendre basis and also a sinc (“Whittaker cardinal”)

basis [30]. Khan et al. used a Laplace decomposition method combined with

Padé approximants [23]. Abbasbandy’s table 1 shows that all these authors

obtained incorrect results, too [1]. Only Rezaei et al. carried their computations
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Table 1

Maple Code to Compute u(x, α)

# diff(u,x,x) + (2*x/(sqrt(1-alpha*u))*diff(u,x)=0;

# u(0)=1 u(oo)=0;

restart; L:=1/2; # map parameter;

N:=200; # number of collocation points and basis functions;

Digits:=32; # number of Digits of floating point precision;

# Matlab accuracy is Digits=16;

itermax:= 5; # number of Newton iterations;

alpha:=1; # Kidder eq parameter;

with(LinearAlgebra); resida:= Vector(N,orientation=column):

u:= Vector(N,orientation=column): xa:= Vector(N,orientation=column):

a:= Vector(N,orientation=column,fill=0): Jacobian:= Matrix(N,N):

D0Matrix:= Matrix(N,N): D1Matrix:= Matrix(N,N): D2Matrix:=
Matrix(N,N):

for ii from 1 by 1 to N do ta[ii]:= evalf( Pi*(2*ii-1)/(2*N) ); tt:=ta[ii];

xa[ii]:= evalf( L*cot(tt/2)**2 ); # collocation points;

uK[ii]:= evalf( 1 -erf(xa[ii]) ); # uK= exact u(x; alpha=0);

uKx[ii]:= evalf( - 2*exp(-xa[ii]**2)/sqrt(Pi) );

uKxx[ii]:= evalf( -2*xa[ii]*uKx[ii] );

for j from 1 by 1 to N do t:=ta[ii]; cplus:= evalf(cos((j+1)*tt));

cminus:= evalf(cos((j-1)*tt));

TL:= cplus-cminus; PT:= evalf( - (j+1)*sin((j+1)*tt) + (j-1)*sin((j-1)*tt) );

PTT:= evalf( -(j+1)*(j+1)*cplus + (j-1)*(j-1)*cminus);

S := evalf(sin(tt/2)); C := evalf(cos(tt/2));

TLx:= evalf( - S * S * S * PT/(L * C)); # “TLx” is d/dx

{TL_(j+1)-TL_(j-1) } ;

TLxx:= evalf( (S**5)*(2*C*S*PTT+(3-2*S*S)*PT )/(L*L * C*C*C* 2) );

D0Matrix[ii,j] := TL ; D1Matrix[ii,j]:=TLx ; D2Matrix[ii,j]:= TLxx; od: od:

for iter from 1 by 1 to itermax do # begin Newton’s iteration;

for ii from 1 by 1 to N do u:= uK[ii]; ux:=uKx[ii]; uxx:=uKxx[ii];

for j from 1 by 1 to N do u:= evalf(u + D0Matrix[ii,j]*a[j]);

ux:= evalf(ux + D1Matrix[ii,j]*a[j]); uxx:= evalf(uxx +
D2Matrix[ii,j]*a[j]); od:

sqf:= Re( 1/sqrt( 1 - alpha * u)); resida[ii]:= evalf( uxx + 2*xa[ii]*ux*sqf );

for j from 1 by 1 to N do

Jacobian[ii,j]:= evalf( D2Matrix[ii,j] +2*xa[ii] *sqf*D1Matrix[ii,j]

+ sqf*sqf*sqf *xa[ii] *ux *alpha* D0Matrix[ii,j] ); od: od:

delta:=LinearSolve( <Jacobian|resida>); print(‘delta=‘,delta);

(Continued)
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Table 1

Continued

for j from 1 by 1 to N do a[j]:=evalf( a[j]-Re( delta[j]) ); od: # update

resmax[iter]:=max(seq(abs(resida[k]),k=1..N));

print(iter,‘residual norm=‘,resmax[iter]);

od: # end of iter loop [Newton iteration];

with(plots); anpoints:= [ seq([j,abs(a[j]) ], j=1..N) ]:

logplot(anpoints, style=line,title=cat(”Cheb. coeffs., log-linear scales,

L=”,convert(L,string)));

x:=’x’; ng:=101; xmax:= 5;

for k from 1 to ng do xg[k]:= evalf(xmax*(k-1)/ng + 1.0E-6);

t:= evalf( 2*arccot( sqrt(xg[k]/L ) ) ); ug[k]:=evalf( 1 - erf(xg[k]) );

for j from 1 to N do ug[k]:=evalf( ug[k]+a[j]*(cos((j+1)*t) - cos((j-1)*t)));

od: od:

upoints:= [seq([xg[j],ug[j] ],j=1..ng) ]: plotu:=plot(upoints, style=line):

Kp:= plot(1 -erf(x),x=0..xmax,color=red); plots[display](plotu,Kp);

uxatzero:=evalf( - 2/sqrt(Pi)): # calculate du/dx at x=0;

for j from 1 to N do JJ:=(j+1); TLYplus:= -2*cos(JJ*Pi)*(JJ*JJ)/L;

JJ:=(j-1); TLYminus:= -2*cos(JJ*Pi)*(JJ*JJ)/L;

uxatzero:=uxatzero + a[j]*(TLYplus - TLYminus) ; od:

lprint(‘du/dx(0)=‘,uxatzero);

to moderately large degree, but converged, using two different methods, to

ux (0, α = 1/2) = −1.18868, which is too small by 0.3 %. Only Abbasbandy

and Maleki et al. [25] among previous authors obtained results accurate to

three decimal places or better.

Because of the considerable numerical disagreements, we felt further studies

would prove interesting.

2. Numerical studies

The code employs a rational Chebyshev pseudospectral method to discretize

the differential equation and boundary conditions. The pseudospectral method,

also known as “collocation,” “discrete ordinates” [31], and “selected points,”

demands that when the series is substituted into the differential equation, the

residual is zero at each of N “collocation” points. This gives a set of algebraic

equations with spectral coefficients as the unknowns. The pseudospectral
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interpolation points are

xi = L cot2
(

ti

2

)

↔ ti ≡
(2i − 1) π

2N
i = 1, . . . , N . (7)

The basis functions are the rational Chebyshev functions; these are defined

to be the images of cosine functions under a change-of-coordinate [6, 10]

TLn(x ; L) ≡ cos(2n arccot(
√

x/L), (8)

where L is a user-choosable map parameter, set equal to 1/2 here. Two tricks

are useful improvements over the standard method.

First, define p(x ; α) by

u(x ; α) = erfc(x) + p(x ; α) ↔ p(x ; α) ≡ u(x ; α) − erfc(x), (9)

because Kidder proved that p(x ; 0) ≡ 0. Our experiments showed that

|p(x ; α)| ≤ 0.046 α ∈ [0, 1], x ∈ [0, ∞]. (10)

Thus, over the entire parameter range, u(x, α) is only a small perturbation

of u(x ; 0). We therefore chose to write the numerical solution in the form of

(9) so that the rational Chebyshev series is not required to approximate the

whole solution, but only the perturbation p(x ; α). This has multiple advantages.

First, errors in the series approximation of u0(x) are eliminated. Second, the

first guess u ≈ u0(x) was sufficiently good over the whole parameter range

that Newton’s iteration converged to machine precision in no more than five

iterations. It was not necessary to add lines of code to expand the initial

approximation as a Chebyshev series, but instead one could set the initial

values of the Chebyshev coefficients (of the perturbation) equal to zero. Third,

the perturbation p(x ; α) has homogeneous boundary conditions

p(0; α) = p(∞; α) = 0. (11)

Fourth, the homogeneous boundary conditions can be built-in to the

approximation by writing

u(x) ≈ uN ≡ erfc(x) +
N−1
∑

n=0

an {TLn+2(x ; L) − TLn(x ; L)} . (12)

Heinrichs and collaborators have shown that such difference-of-two-

Chebyshev bases yield discretization matrices with much better condition

numbers than the standard Chebyshev or rational Chebyshev basis [22, 17].

Furthermore, it isno longernecessary to reserve rowsof thepseudospectralmatrix
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Figure 1. Absolute values of the rational Chebyshev coefficients for u(x, α = 1/2) [red] and

u(x, α = 1) [solid black]. N = 200, map parameter L = 1/2 and floating point arithmetic

with 16 digit precision.

to impose boundary conditions: all rows of the matrix come from collocation

conditions on the differential equation, which simplifies programming.

The resulting system of algebraic equations for the coefficients of the series

was solved by Newton’s iteration. This requires an initialization, but as noted

above, the initial guess an ≡ 0 for all n, that is, u(x ; α) ≈ 1 − erf(x) was

successful without underrelaxation for the whole parameter range, α ∈ [0, 1].

No more complicated strategies such as continuation-in-a-parameter was

needed to generate a convergence-inducing initialization.

The rational Chebyshev algorithm, truncating the infinite series to N

terms, exhibits an apparent geometric rate of convergence with respect

to N over the whole parameter space except for α = 1. The complete

computer code in Maple is given in Table 1. We have avoided using

Maple-specific features so that the code can be easily translated into other

languages.

Despite the square root nonlinearity in the differential equation, this is a very

easy problem. It is amazing that so many inaccurate results have been published.

Figure 1 shows the only anomaly. When α �= 1, the rational Chebyshev

coefficients fall exponentially until flattening at a level controlled by floating

point precision. Here, the “round-off plateau” is just above the bottom of the

graph at about 10−19. For α = 1, however, the coefficient curve kinks after

falling to about 10−12. Such a break in form suggests that u(x, α = 1) is weakly

singular. This is confirmed in the next section.
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Table 2

Maple Code to Compute the Puiseaux Series in x about x = 0 when α = 1

nterms:=40; assume( y > 0, S > 0); u:= 1 - S*x;

for j from 1 to nterms do u:= u + p[j] * x**(1+j*(3/2) );

r:=sqrt(1 - u)*diff(u,x,x) + 2*x*diff(u,x);

rr:= subs(x=y*y,r); rrs:= series(rr,y,3*j+8);

p[j]:= solve(coeff(rrs,y,3*j-1),p[j]); od: assign(S= 1.32814);

3. Analysis of α = 1

3.1 Branch point at the origin: Explaining the kink in the rational Chebyshev

coefficients

The parameter value α = 1 is special because, recalling the boundary condition

u(0; α) = 1, the factor
√

1 − αu in the differential equation is singular at the

origin. Indeed, u(x ; 1) does not have a power series about the origin. Let S

denote −ux (0) ≈ 1.3282293391. Then direct substitution into the differential

equation shows that for small x ,

u(x) = 1 − Sx +
8

15

√
Sx5/2 −

8

45
x4 +

224

7, 425

x11/2

√
S

−
64

155, 925

x7

S

−
39, 104

66, 268, 125

x17/2

S3/2
−

237, 568

14, 910, 328, 125

x10

S2

+
40, 337, 152

1, 760, 412, 740, 625

x23/2

S5/2
+

92, 444, 672

360, 084, 424, 219, 875

x13

S3
+ . . .

(13)

Maple’s dsolve(...“series”) fails, but the Maple code in Table 2 suffices to

calculate the first 100 terms in a couple of minutes on a laptop.

The coefficients fluctuate with degree in addition to the steady exponential

decay, making it difficult to estimate the radius of convergence. However, if the

“envelope” of the power series coefficients pn is bounded by exp(− log(ρ̃)n),

then the radius of convergence ρ (in z ≡ x3/2) is approximately ρ = max(ρ̃).

Alternatively, one can simply plot the partial sums of the series; this will track

u(x) up to some finite x and then explode at x equal to the radius of convergence.

Both methods give a radius of convergence about 2.5. Padé approximants

considerably extend the accuracy of the power series, but we omit the details.

Ironically, the ordinary power series about x = 0 for the nonsingular

solutions are much less useful than the Puiseaux series for the singular case,
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Figure 2. Absolute values of the rational Chebyshev coefficients for u(x, α = 1) [solid

black] and for fsing ≡ (8/15)Sx5/2 exp(−20x) where S = ux (0, 1) = 1.32822932866, which

was chosen to have the same convergence-limiting singularity as u(x, α = 1). N = 200, map

parameter L = 1/2, and floating point arithmetic with 16 digit precision.

α = 1. The power series for general α begins

u(x) = 1 − Sx +
1

3

S
√

1 − α
x3 −

1

12

αS2

(1 − α)3/2
x4

+
{

1

80

3α2 S3

(1 − α)5/2
+

1

10

S

1 − α

}

x5 + . . .

Noting that Noor and Mohyud-Din [7] used A = −S, there is a disagreement

in the sign of (S/10)(1 − α)−1x5; our choice was checked by computer algebra.

This shows that the radius of convergence is proportional to (1 − α) and

therefore is tiny when α is near one.

3.2 Rate of Convergence of rational Chebyshev series for a function with an

endpoint singularity

Theory predicts that the x5/2 singularity should degrade the exponential

convergence typical of rational Chebyshev series to a decay rate for the

coefficients an proportional to n−6 [17]. (This is the same as for a finite

interval expansion in Chebyshev polynomials; at a fixed point near x = 0,

the rational Chebyshev functions converge to Chebyshev polynomials with

increasing degree [6].) Figure 2 confirms this prediction by comparing the

rational Chebyshev coefficients of u(x, 1) with those of a function that is very

different but has a branch point at the origin of exactly the same strength

and type as in the Puiseaux series for u(x ; 1). For large degree, the rational

Chebyshev coefficients for the two functions are the same even though the

leading coefficients are very different.
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Table 3

Errors in Simple Analytic Approximations to u(x, 1)

Approximation Error in L∞ Norm

u0 + u1 + u2 [Kidder α power series] 0.084

u0 ≡ 1 − erf(x) 0.046

u0 −0.15724 x exp(−2x2) 0.0037

u0 − (0.15395 + 0.00583 x) x exp(−2x2) 0.0038

u0 − (0.212827 − 0.218239 x + 0.180116 x2) 0.00086

x exp(−2x2)

u0 − (0.195302 − 0.1190703 x + 0.0120895 x2 0.00046

+ 0.0827973 x3 ) x exp(−2x2)

Because the singularity is visible only when the coefficients have fallen to

10−12, the singularity is too weak to prevent the pseudospectral method from

returning very accurate answers even for this singular case.

Similar weak singularities arise in other classical nonlinear ODE such as

the Lane–Emden equation [12] and Thomas–Fermi equation [13, 4].

3.3 Curve-fitting, I

It is easy to least-squares fit analytic expressions to the Chebyshev numerical

solutions. Inspired by the Gaussians and error functions in Kidder’s perturbation

theory, we tried

u(x ; α) = erfc(x) + exp(−2x2)x PM , (14)

where PM (x) is a polynomial of degree M . These approximations and others

are cataloged for the most difficult case, α = 1, in Table 3.

It is noteworthy that Kidder’s three-term approximation has double the error

of this lowest order curve-fitted approximation. About 90% of the correction

to 1 − erf(x) is captured by −0.15724x exp(−2x2).

4. Curve-fitting, II: approximations in the form erfc(x + p(x))

In WKB approximations to the solution of linear second-order differential

equations, cosines and exponentials and Airy functions are uplifted to

approximations of equations with slowly varying coefficients by being given

arguments that are nonlinear in the coordinate x . We explored similar

possibilities here by writing

u(x ; α) = erfc(x + p(xα)) p(x ; α) ≡ −x + inverfc(u(x ; α)). (15)
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Figure 3. The inside-the-erfc function [solid] compared with rational functions that

approximate it [red dashed] for α = 1/2 [left] and α = 1 [right.]

We then performed a nonlinear curve-fit of a rational approximation to

p(x ; α) as calculated by the pseudospectral method.

The inverse complementary error function is not widely available in software

libraries, but the simple formulas needed can be found in the book [21] and

[20, 19, 32].

Figure 3 shows that p(x ; α) is very smooth and

max
x∈[0,∞]

∣

∣

∣

∣

u(x ; 1) − erfc

(

x +
0.15076x

1 + 1.55607x2

)
∣

∣

∣

∣

= 0.0019. (16)

An error of less than one part in 500 of the maximum of u is remarkable.

5. Slope at the origin

The spatial derivative of u(x ; α) at x = 0 has a special significance because if

this is known accurately, then the power series about the origin is completely

determined and a boundary value problem can be solved numerically as an

initial-value problem.

The slope at the origin, the negative of the defined-to-be-positive parameter

S in our power series analysis, can be approximated in various ways. Kidder’s

perturbation theory gives

ux (0) = −S = −
2

√
π

{

1 +
1

4

(

1 −
2

π

)

α

+

(

−
13

16
+

1

2π
−

√
π

24
+

5

32
π +

3
√

3

16

)

α2

}

. (17)
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Below we derive a better approximation, through a different perturbation

approach, and compute very accurate reference values for the slope using the

pseudospectral method.

5.1 Delta-expansion approximation

The presence of a weak algebraic nonlinearity in the Kidder equation suggests

that good approximations could be obtained using the delta-expansion method

by Bender and coworkers [5]. To this end, we consider a more general problem

u′′ + 2x(1 − αu)δu′ = 0 u(0) = 1 , u(∞) = 0, (18)

with δ a parameter, which reduces to the Kidder problem for δ = −1/2 (note that

in this subsection derivation with respect to x will also be denoted by a prime).

Because we know the solution to the problem for δ = 0, u = uo(x) = 1 − erf(x),

we may seek the solution, for a generic δ, as the series expansion

u(x) = u0(x) + δu1(x) + δ2u2(x) + .... . (19)

Placing this expansion in (19), and comparing powers of δ, yields a sequence

of linear, homogeneous boundary value problems that can be solved by

quadratures. The first two of them are

u′′
1 + 2xu′

1 = −2x F0u′
0, u1(0) = u1(∞) = 0, (20)

u′′
2 + 2xu′

2 = −2x F0u′
1 − x F2

0 u′
0, u2(0) = u2(∞) = 0, (21)

where we have defined

F0(x) ≡ ln[1 − αu0(x)]. (22)

Integrating once the equation for u1 gives

u′
1 = e−x2

(

C +
4

√
π

∫ x

0

dξ ξ F0(ξ )

)

, (23)

with C a constant that, multiplied by δ, determines the first-order term in the

expansion for the slope at the origin:

ux (0) = −2/
√

π + C δ + u′
2(0) δ2 + .... (24)

Integrating again, and using the boundary condition at x = 0, we get

u1 = C

∫ x

0

dξe−ξ 2 +
4

√
π

∫ x

0

dξ e−ξ 2

∫ ξ

0

dη η F0(η) (25)

with C that can now be determined by asking that u1 vanishes at infinity. After

an integration by parts of the term with the double integral, we obtain

C = −
4

√
π

∫ ∞

0

dx u0(x) F0(x). (26)
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Table 4

Errors in Perturbation Theory for the Slope at the Origin

α Pseudospectral δ-First Error O(α) Error δ-2d Error O(α2) Error

0.1 −1.139007206178300 −0.000093 −0.00038 0.000068 −0.00011

0.2 −1.150475486216286 −0.00041 −0.0016 0.00029 −0.00051

0.3 −1.162941458295912 −0.0010 −0.0038 0.00068 −0.0014

0.4 −1.176615666683335 −0.0020 −0.0072 0.0013 −0.0029

0.5 −1.191790649719421 −0.0034 −0.012 0.0021 −0.0054

0.6 −1.208894174540914 −0.0056 −0.019 0.0033 −0.0092

0.7 −1.228598473695921 −0.0087 −0.028 0.0048 −0.015

0.8 −1.252083790143917 −0.014 −0.042 0.0067 −0.024

0.9 −1.281881322203357 −0.022 −0.061 0.0090 −0.039

1.0 −1.32822934 −0.040 −0.097 0.0093 −0.070

Note: The pseudospectral computations were performed multiple times using

various precisions, map parameters L , and numbers of basis functions N . All

digits shown are believed trustworthy.

Thus, the slope for the Kidder problem to first order is given by

ux (0) = −
2

√
π

(

1 −
∫ ∞

0

dx x u0(x)F0(x)

)

. (27)

The second-order calculation is more laborious, but straightforward; we only

give here the resulting expression for the slope:
√

π

2
ux (0) = −1 +

∫ ∞

0

dx x u0(x)F0(x) −
(∫ ∞

0

dx x u0(x)F0(x)

)2

(28)

−
1

4

∫ ∞

0

dx x u0(x)F2
0 (x) +

∫ ∞

0

dx x u0(x)F0(x)

∫ x

0

dξ ξ F0(ξ ).

In Table 4 and Figure 4, the first-order and second-order approximations

for ux (0) we have derived are compared with the corresponding results from

the expansion in α, Equation (17), using the pseudospectral calculation as

a reference. The results from the delta-expansion approach are significantly

more accurate than the latter at both orders.

5.2 Chebyshev approximations

It is trivial to expand the slope at the origin as a Chebyshev polynomial series

merely by evaluating du/dx(x ; α) at the discrete parameter values

α j =
1

2

{

1 + cos

(

π
(2 j − 1)

2M

)}

, j = 1, 2, . . . M (29)
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Figure 4. Slope at the origin versus the parameter α. The exact values are the solid black

curve. The dotted curves are the first-order Kidder (α-power series, green) and delta-expansion

(red). The green and red dashed lines are the α and delta series at second order. At both

orders, the delta-expansion is much more accurate than the power series in α.

and then calculating the M-point Chebyshev interpolant through a matrix

vector multiplication or a Fast Cosine Transform [10].

The Chebyshev coefficients in the ensuing approximation,

du

dx
(0; α) ≈

M−1
∑

n=0

bnTn(2α − 1), α ∈ [0, 1] (30)

are very closely approximated by bn ∼ −1/n4 as shown in Figure 5.

This fourth-order rate of convergence (and also the fact that the coefficients

are all of the same sign) implies that du/dx(0; α) has the same three-halves

power singularity at α = 1 as du/dx(x ; 1) has at x = 0 for α = 1. (Note

that u itself has a weaker five-haves singularity and sixth order Chebyshev

convergence as discussed n Sec. 3.2.)

The pernicious effects of such singularities can be greatly diminished by a

change of coordinate. However, the singularity is usually only weakened but not

eliminated unless the mapping is exponential near the singularity, which can lead

to lamentably large condition numbers and round-off difficulties. Furthermore,

the lowest few coefficients in the transformed series often converge at a lower

rate than the untransformed series and only at a finite “crossover degree” do

the transformed coefficients dip below those of the original series [7].
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Log-linear plotLog-log plot

unmapped

& 1/n4

unmapped

& 1/n4

mapped
mapped

envelope

Figure 5. Chebyshev coefficients of the expansion of du/dx(0, α) on α ∈ [0, 1] using

a standard Chebyshev interpolant [upper curves, black] and the same with use of the

transformation described in the text [lower curves, green]. The power law 1/n4 is shown as a

thin, dotted red curve in both panels, but is graphically indistinguishable from the unmapped

coefficients. The panels are identical except that degree n is on a logarithmic scale on the left

and a linear scale on the right. The mapped coefficients oscillate, but are tightly bounded by a

straight line (“envelope of the Chebyshev coefficients”) on the log-linear plot, showing a

geometric rate of convergence. Slopes were calculated in 32-digit arithmetic using a basis of

100 rational Chebyshev functions with L = 1.

Here, however, a simple sine map is completely successful. The pseudospectral

rational Chebyshev code is applied to compute the slope at

α j = sin

(

π

4

{

1 + cos

(

π
(2 j − 1)

2M

)})

, j = 1, 2, . . . M. (31)

This is equivalent to expanding

du

dx
(0; α) ≈

M−1
∑

n=0

bmap
n Tn

(

4

π
arcsin(α) − 1

)

, α ∈ [0, 1]. (32)

It is often simplest to use the identity Tn(cos(t)) = cos(nt) and evaluate the

Chebyshev series as a cosine series:

du

dx
(0; α) ≈

M−1
∑

n=0

bmap
n cos(nt[α]), (33)

t(α) = arccos

(

4

π
arcsin(α) − 1

)

. (34)

Table 5 compares the mapped and unmapped coefficients. The absolute error

in a Chebyshev series is bounded by the sum of the absolute values of the
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Table 5

Chebyshev Coefficients for the Expansion of the Slope at the Origin

n bn[Unmapped] b
map
n

∑∞
m=n+1 |bmap

m |

0 −1.21 −1.231156749 0.115

1 −0.93e-1 −0.1060222204 0.895e-2

2 −0.18e-1 0.7559800182e-3 0.820e-2

3 −0.54e-2 0.5491086172e-2 0.270e-2

4 −0.22e-2 0.1931853685e-2 0.772e-3

5 −0.10e-2 0.5622806751e-3 0.210e-3

6 −0.54e-3 0.1533651140e-3 0.566e-4

7 −0.31e-3 0.4119750581e-4 0.154e-4

8 −0.19e-3 0.1108573988e-4 0.433e-5

9 −0.12e-3 0.2980013212e-5 0.135e-5

10 −0.83e-4 0.7660439328e-6 0.586e-6

11 −0.55e-4 0.1522246725e-6 0.434e-6

12 −0.41e-4 -0.1505159380e-7 0.419e-6

13 −0.30e-4 -0.5229794399e-7 0.367e-6

14 −0.23e-4 -0.4957522833e-7 0.317e-6

15 −0.17e-4 -0.3440774427e-7 0.283e-6

16 −0.13e-4 -0.1641497670e-7 0.266e-6

17 −0.10e-4 0.3707242865e-9 0.266e-6

18 −0.86e-5 0.1404289584e-7 0.252e-6

19 −0.69e-5 0.2378556137e-7 0.228e-6

20 −0.57e-5 0.2948507719e-7 0.198e-6

neglected higher coefficients; this bound on truncation up to and including bn

is shown as the rightmost column.

Power laws are linear on a graph with both vertical and horizontal logarithmic

scales and geometric convergence is linear on a graph with a logarithmic

vertical scale and linear horizontal scale. In Figure 5, the log–log plot [left]

shows that the Chebyshev coefficients of du(0; α)/dx indeed converge at a

fourth-order rate. The log-linear plot shows that the mapped coefficients are

bounded by a straight line (“envelope”) proportional to roughly exp(−n/8).

The mapping is quadratic near α = 1, that is, the mapping

z = (4/π )arcsin(α) − 1 where z ∈ [−1, 1] is the Chebyshev argument gives

1 − α ≈
π2

32
(z − 1)2 + O([z − 1]4). (35)
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Table 6

Values of S(α) from the Padé Approach Using erf(x) as the Independent Variable

α Pseudospectral Eq.(46)

0.1 1.1390072 1.1387134

0.2 1.1504755 1.1501254

0.3 1.1629415 1.1627908

0.4 1.1766157 1.1769121

0.5 1.1917906 1.1927055

0.6 1.2088942 1.2103471

0.7 1.2285985 1.2297778

0.8 1.2520838 1.2499364

0.9 1.2818813 1.2646350

1.0 1.3282293 1.1283792

Thus, (1 − α)3/2 becomes (z − 1)3 near the endpoint z = 1, but the cube is

not singular. The mapping has destroyed the singularity.

Note that in view of the logarithmic singularities also lurking in the Kidder

equation, it was far from obvious a priori that the mapping would work so well.

6. A heuristic explanation for why u(x, α) differs so little from erfc(x)

Define v(x ; α) ≡ ux (x ; α). Without approximation,

vx + q(x ; α)v = 0, v(x, 0) = −S exp

(

−
∫ x

0

q(y; α)dy

)

, (36)

q(x ; α) ≡
2x

√

1 − αu(x ; α)
. (37)

When α = 0, q(x ; α) = 2x whose integral is x2 and thus v(x ; 0) = −S

exp(−x2). When α = 1, the denominator is not everywhere one, but instead

has a square root singularity at x = 0 where the denominator vanishes. Why,

then, does u(x ; 1) differ from u(x ; 0) by less than 0.046?

The answer is that the denominator of q(x ; α) differs from one only near the

origin where the numerator is small, too. Figure 6 shows that the coefficient

q(x ; α) does not vary greatly with α. The relative insensitivity of this coefficient

of the differential equation translates to a similar insensitivity to the parameter

α in u(x ; α) itself.
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Figure 6. (Left) The solid black curve is q(x ; α) ≡ 2x/
√

1 − αu(x ; α) for the extreme case

of α = 1 and where u(x ; α) was approximated by u(x ; 1) ≈ 1 − erf(x). The dashed curve is

q(x ; α = 0) = 2x . (Right) q(x ; α = 1) − q(x ; α = 0).

7. Padé approximants

Padé approximants provide a simple way for extending the accuracy of the

series expansions about the origin beyond their range of convergence. They

have been used for the Kidder problem in [34] and [26], with awful results

(see, e.g., table 6.1 of [26]): the accuracy of S(α) is poor for α = 0.5, and

further deteriorates at smaller and larger values of α, because, against all the

available numerical and analytical evidence, S is found to be a decreasing

function of α. It is interesting to look at the reasons for this failure.

In the cited works, the series expansion of u(x) is used to construct low-order

approximants; in particular, the (2, 2) and (3, 3) diagonal Padé’s, which are ratios

of polynomials of second and third degrees, respectively. Being derived from

the series, the coefficients of the polynomials depend on S, so the accuracy of

the approximants depends on how accurately one can determine S using some

additional constraint. A seemingly reasonable approach is “Padé-shooting,”

which is to impose the boundary condition on u at infinity, setting to zero the

coefficient of the highest order term in the numerator of the Padé rational

approximation. This was pioneered for general nonlinear ODEs by Fernandez

[18] and Boyd [8]. It was applied to the Kidder equation in [34] and [26], but

the resulting expressions for S(α) are terribly inaccurate. This just shows that

the low-order Padé’s in consideration cannot capture the large-x behavior of the

solution to the Kidder problem, which is characterized by a fast, nonalgebraic

decay (ux approximately decays as e−x2

at large x). It also suggests that

better rational approximations could be obtained by first introducing a new



80 R. Iacono and J. P. Boyd

independent variable that incorporates the exponential decay. A natural choice

is

z ≡
2

√
π

∫ x

0

dξ e−ξ 2 = erf(x), (38)

which yields

ux =
2

√
π

e−x2

uz. (39)

The function u(z) is defined over [0, 1], and vanishes for z = 1. Its derivative

at the origin is given by

uz(0) =
√

π

2
ux (0) ≡ −S̃, (40)

where S̃ is the S parameter, scaled by its value for α = 0 [S̃(0) = 1]. Computing

higher order derivatives, we obtain the following series expansion for u(z)

about the origin:

u(z) = 1 − S̃ z + AS̃ z3 − BS̃2z4 + ..., (41)

with

A ≡
π

12

[

1

(1 − α)1/2
− 1

]

, B ≡
π

48

α

(1 − α)3/2
. (42)

The terms up to z3 in the expansion are sufficient to compute the (2, 2) Padé

u(z) =
(1 − z)[1 + az]

1 + bz + cz2
, (43)

where

a =
A

S̃ − 1
− S, b =

A

S̃ − 1
− 1, c = A . (44)

Then, to determine S̃, we can go to next order, and equate the coefficient

of the z4 term in (41) with the corresponding term in the expansion of the

approximant. This yields a quadratic equation for S̃,

S̃2 +
(

A

B
− 1

)

S̃ −
A

B
(A + 1) = 0. (45)

with the meaningful (positive) root given by

S̃ =
1

2

⎡

⎣−
(

A

B
− 1

)

+

√

(

A

B
− 1

)2

+ 4
A

B
(A + 1)

⎤

⎦ . (46)

As shown in Table 6, this expression gives accurate values for the slope

up to α ≃ 0.8 (the corresponding profiles, computed from the Padé (43),
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are also accurate). Then accuracy is lost, because of the shrinking of the

convergence range of the series expansion for α → 1. In any case, the change

of independent variable has allowed for a tremendous improvement on the

results of [34] and [26].

8. Connection with the Blasius function

The similarity solution for the idealized flow of a viscous fluid past an

infinitesimally thick, semi-infinite flat plate is the Blasius function f (x).

A thorough discussion is given in [11, 9]. Boyd [11] provides a table of

coefficients in a rational Chebyshev series which can be used to compute the

Blasius function and its derivatives to about 15 decimal places. Because the

Blasius function is parameter-free, the tabulated coefficients are mere numbers,

not functions of a parameter. Remarkably, the Blasius function can be used to

evaluate the limiting solution to Kidder’s equation as expressed by the following.

THEOREM 1 Blasius–Kidder connection. Define the Blasius function as the

solution to

2 fηηη + f fηη = 0, η ∈ [0, ∞] (47)

subject to f (0) = fη(0) = 0, fη(∞) = 1. Let u(x ; α = 1) denote the solution

to the Kidder equation.

Then

u(x ; α = 1) = 1 −
(

fη(2 f −1(x))
)2

, (48)

where f −1(x) is the inverse of the Blasius function, that is, the equation

f (η) = x is solved by η = f −1(x).

Proof: Writing

fη(η) = X ( f ), (49)

transforms the Blasius equation into the second-order problem

X X f f + X2
f + (1/2) f X f = 0; X (0) = 0, X (∞) = 1. (50)

On the other hand, writing

2x = x̃, u(x̃) = 1 − Y 2, (51)

transforms the Kidder equation into

Y Yx̃ x̃ + Y 2
x̃ + (1/2)x̃Yx̃ = 0; Y (0) = (1 − α)1/2, Y (∞) = 1 . (52)

Clearly, the boundary value problems for X and Y exactly coincide for α = 1.

Thus, for this limiting value,

Y (x̃) = X ( f ), (53)



82 R. Iacono and J. P. Boyd

Together with the definitions of X , Y , and x̃ , this implies (48), thus completing

the proof.

We have also checked (48) numerically. The Blasius function was inverted

by solving f (η) = x using Newton’s iteration

η(n+1) = η(n) −
f (η(n)) − x

fη(η(n))
. (54)

A Never-Failing Newton’s Initialization [14], derived from power series and

asymptotic approximations to the Blasius function, is

η(0) =
{

2.45 +
√

x, x < 2

x + 1.72, x ≥ 2.
(55)

9. Summary

The study reported here and the works we cite have made the Kidder function

u(x ; α) a noncanonical special function. “Noncanonical” in that it does not

appear in either the NBS Handbook of Mathematical Functions [2] or its

successor, the NIST Digital Library [27]. “Special function” in that the catalog

of properties, expansions, and approximations is now as extensive as for many

of the canonical functions.

This function is a good classroom example for classes in numerical analysis.

The numerical subtlety is that although u(x ; α) is singular at α = 1 and

singular as a function of x near the left endpoint for α near one, blind

application of Chebyshev pseudospectral methods yields 12 decimal place

accuracy and apparent geometric convergence! When a singularity is weak in

the sense that only a high-order derivative is infinite, and the singularity is at

an endpoint, it may be ignorable for practical purposes. Singularity-induced

degradation of the convergence rate from exponential to a power law in degree

n does appear for the Kidder problem, but only at very high degree. The

standard remedy for branch points on or near the expansion interval is to use a

change-of-coordinate. Although not really needed here, a simple sine mapping

restores geometric convergence.

The Kidder problem is also a good example for classes in perturbation

methods. It is possible to explicitly extend both Kidder’s power series in α

[the obvious perturbation parameter] and the delta-expansion [in which the

perturbation parameter is the nonlinearity exponent] to second order. The delta

expansion is much superior. An approximation which is a quadratic polynomial

in an exponentially mapped coordinate z(x) divided by another quadratic

polynomial in the same variable gives estimates of the slope at the origin

accurate to one part in 4000 for α = 0.4 and to one part in 400 for α = 0.8,

a vast improvement on the analogous results from the α power series. The



The Kidder Equation 83

superiority of the delta-expansion is another piece of evidence that nonobvious

choices of perturbation parameter can be very effective [5, 36, 37].

Finally, the Kidder problem is an illustration of the duality that is seen

in many other classic problems such as the Blasius flow. On the one hand,

the ODE is hard because it is a nonlinear boundary value problem with

an unbounded domain, singularities and near-singularities, and no explicit

solution is known. On the other, the function is smooth, never deviating more

than 0.05 from the complementary error function over its entire parameter

range, well-approximated by remarkably simple expressions.

One is reminded of the old joke about the Cambridge mathematician who

became stuck in the middle of a classroom demonstration he had described at

the beginning as obvious, disappeared into his adjoining office to calculate

furiously for half an hour, and finally returned just before the end of the class

to inform the students, “Oh, yes, it’s really obvious!”

We hope our contributions have made the Kidder problem a little more

obvious.
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