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The Kinematics of Hyper-Redundant 
Robot Locomotion 

Gregory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS .  Chirikjian, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMember, IEEE, and Joel W. Burdick 

Abstract-This paper considers the kinematics of hyper- 
redundant (or “serpentine”) robot locomotion over uneven solid 
terrain, and presents algorithms to implement a variety of 
“gaits.” The analysis and algorithms are based on a continuous 
backbone curve model which captures the robot’s macroscopic 
geometry. Two classes of gaits, based on stationary waves and 
traveling waves of mechanism deformation, are introduced for 
hyper-redundant robots of both constant and variable length. 
We also illustrate how the locomotion algorithms can be used 
to plan the manipulation of objects which are grasped in a 
tentacle-like manner. Several of these gaits and the manipulation 
algorithm have been implemented on a 30 degree-of-freedom 
hyper-redundant robot. Experimental results are presented to 
demonstrate and validate these concepts and our modeling 
assumptions. 

I. INTRODUCTION 

YPER-REDUNDANT” robots have a large or in- “H finite degree of kinematic redundancy. They are 
analogous in morphology to snakes, tentacles, and elephant 
trunks. Their high degree of articulation makes hyper- 
redundant robots superior for operation in highly constrained 
environments, such as nuclear reactor cores, underground 
toxic waste tanks, or the human intestine. Many conceivable 
applications require the hyper-redundant robot to maneuver, 
via some form of locomotion, around its environment. 
This paper considers how to implement various forms of 
hyper-redundant robot locomotion. 

Definition: Hyper-redundant robot locomotion is the pro- 
cess of generating net displacements of a hyper-redundant 
robotic mechanism via internal mechanism deformations. Ac- 
tuatable wheels, tracks, or legs are not necessary. 

Definition: A gait is a distinct repetitive cycle of mecha- 
nism deformation that leads to net robot displacement. 

For a given mechanism, different gaits will have corre- 
spondingly different speed, robustness, and maneuverability 
characteristics. A gait which is well suited to one type of 
terrain or task may be ill-suited to another situation. For 
maximum adaptability, a hyper-redundant robot should be 
capable of switching between several different gaits types. 

This paper considers the kinematics of two classes of gaits 
that can be used by hyper-redundant robots to locomote 
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over uneven terrain. These gaits are based on stationary 
and traveling waves of mechanism deformation, and have 
analogues in inchworm and caterpillar locomotion and the 
creeping gaits of snakes. These gaits are largely “kinematic” 
in nature. That is, dynamic effects and a detailed model of 
the friction between the mechanism and the ground are not 
critical to the function or understanding of these gaits at 
reasonable speeds. In contrast, dynamic effects, the internal 
distribution of mechanism forces, and a frictional model are 
important for some gaits, such as those which are analogous 
to the undulatory and concertina gaits used by snakes. Hence, 
the analysis in this paper does not cover all possible hyper- 
redundant robot gaits. The gaits considered in this paper 
were chosen for their simplicity, implementability, and wide 
range of applicability. Further, we show how these locomotion 
algorithms can be used to implement a novel scheme for 
planning the manipulation of objects which are grasped in a 
tentacle-like fashion. 

The gait algorithms are based on a “backbone curve” mod- 
eling technique that was introduced in earlier works devoted to 
hyper-redundant manipulator kinematics, trajectory planning, 
and obstacle avoidance [5] ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[8]. With the backbone curve 
abstraction, surprisingly simple ideas and mathematics can 
be used to understand and implement relatively complicated 
hyper-redundant robot locomotion phenomena. Several of the 
gaits and the object manipulation scheme have been im- 
plemented in a 30 degree-of-freedom hyper-redundant robot 
prototype, and experimental results are also presented to show 
that the algorithms are indeed able to be implemented. 

11. RELATION TO PRIOR WORK 

Inchworms, earthworms, snakes, and slugs have mor- 
phologies that can be considered hyper-redundant. Nature 
has evolved a diverse set of ways for these creatures to 
locomote. For example, slugs locomote via locomotory 
pulses, or pedaE waves [17]. Snakes use three primary gait 
categories, termed the lateral undulatory, sidewinding, and 
concertina modes, whose qualitative properties have been 
widely studied [3], [16], [19]. Some varieties of snake also use 
“creeping gaits” during predation. This form of locomotion, 
which depends on a rhythmic expansion and contraction of 
the snake’s muscles, has much in common kinematically 
with the movement of earthworms through soil [22], [25]. 
Many of these forms of undulatory biological locomotion 
can be idealized as traveling or stationary waves of body 
deformation. This observation guides our implementation of 
hyper-redundant robot locomotion gaits. The term “locomotion 
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Fig. 1. Backbone zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcurve. 

wave” or “wave” will often be used to describe the mechanism 
deformations associated with these wave-like gaits. It should 
be stressed that this paper is not an analysis of biological 
locomotion, but is instead a study of how to implement 
hyper-redundant robot locomotion gaits that have biological 
counterparts. 

In contrast to the largely empirical biological literature, 
Keller and Falkovitz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 181 present a detailed mathematical 
analysis of worm locomotion. Their analysis only considers 
locomotion along a straight line which is induced by traveling 
waves of body contraction. Most of their paper is devoted to 
understanding the effects that friction and bounds on internal 
tension have on the maximum locomotion speed. In this paper, 
we consider a broader class of gaits than the one considered in 
[18], as well as locomotion on uneven terrain. Reference [18] 
also focuses on a particular model of mechanism actuation, and 
is thus limited in its applicability. We focus on the macroscopic 
kinematics of a broad class of gaits, and do not dwell on the 
mechanical structures and actuators required to implement the 
mechanism deformation. 

Robotics engineers have investigated “snake-like’’ robots 
over the past quarter century. For a detailed history of hyper- 
redundant robotic mechanisms, see [4]. Here we summarize 
prior activities which are most relevant to this study. The 
earliest hyper-redundant robot designs date to the late 1960’s 
[2]. To our knowledge, the “active cord” mechanism of Hirose 
and Umetani [14] was the first hyper-redundant robotic system 
to successfully demonstrate locomotion. Since then, Hirose 
and co-workers have developed and demonstrated numerous 
mobile hyper-redundant mechanisms and mechanical mor- 
phologies, e.g., E131 (and references therein). While some of 
these hyper-redundant mobile robots are a hybrid between 
a snake-like vehicle and a wheeled vehicle, we consider 
locomotion schemes which do not rely on actuatable wheels, 
tracks, or legs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA conceptual scheme for locomotion of a 
Variable Geometry Truss (VGT) robot is discussed in [24], 
though no explicit analysis or algorithms for locomotion 
are given. The hyper-redundant robot prototype reviewed in 
Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIX is a planar VGT robot. Others have developed 
“inchworming” devices for crawling through pipes [ 121. These 
devices use a locomotion scheme which is a subset of the 
longitudinal wave locomotion scheme presented in Section VI. 

The prior literature on hyper-redundant robotic locomotion 
has focused more on system design than on analysis. This is 
in contrast to the extensive literature on static walking [23], 
dynamically stable walking and hopping [21], and wheeled 

vehicles [ 11. We believe that the framework presented here is a 
step toward a more unified treatment of hyper-redundant robot 
locomotion that is applicable to a wide range of mechanical 
morphologies and situations. 

m. KINEMATICS OF BACKBONE REFERENCE SETS 

Our approach to kinematic modeling of hyper-redundant 
robots is based on a two-step modeling process. In the first 
step, we assume that regardless of mechanical implementation, 
the important macroscopic features of a hyper-redundant robot 
can be captured by a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbackbone curve. The backbone curve can 
be considered as the mechanism centerline or spine (Fig. 1). 
A backbone curve parametrization and an associated set of 
reference frames is collectively called the backbone reference 
set. The geometric aspects of hyper-redundant robot motion 
planning are reduced to the determination of the proper time 
varying behavior of the backbone reference set. We employ 
this engineering approximation and abstraction in order to 
focus on the salient geometric features of hyper-redundant 
locomotion. 

In the second step of the backbone curve modeling ap- 
proach, the continuous backbone curve geometry is used 
to specify the actual mechanism’s joint displacements. The 
continuous backbone reference set specification can be used to 
directly determine the actuator displacements of a continuous 
morphology robot, such as one constructed from pneumatic 
actuator bundles. For discretely segmented morphologies, such 
as the VGT design described in Section Lx, the continuous 
curve solution can be used, via a “fitting” process, to compute 
the actuator displacements which cause the manipulator to 
exactly assume or closely approximate backbone curve shape. 
An explanation of the fitting techniques which are used in 
subsequent examples can be found in [4] and [SI. 

The backbone curve modeling approach is a significant de- 
parture from traditional robot kinematic modeling techniques. 
A more extensive discussion of the advantages and suitability 
of using the backbone curve approach for modeling hyper- 
redundant robots can be found in [4] and [8]. Here we review 
only the essential elements which are required for locomotion 
analysis. 

In this paper we represent the Cartesian position of back- 
bone curve points in the form 

z(s , t )  = Z(a,t) ;ii(a,t)da (1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALS - 

where s E [0,1] is a dimensionless parameter that is a measure 
of distance along the backbone curve at time t. We define s 
to be the normalized arclength of the backbone curve in a 
fixed reference state at time t o .  The normalized arclength at 
t # t o  may differ from s due to elongation or contraction of 
the backbone curve. 

The backbone curve base is located at s = 0. Z ( s , t )  is a 
vector from the backbone curve base to the backbone curve 
point at s. U ( s ,  t )  is the unit tangent vector to the curve at s. 
Z(s, t )  is the length of the curve tangent and assumes the form 

Z(S, t )  = 1 + E ( S ,  t )  > 0. (2) 
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Fig. 2. Definition of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK ( s ,  t) and T(s ,  t). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E ( S ,  t) is the local extensibility of the backbone curve, which 
describes local expansion or contraction of the backbone 
relative to the fixed reference state at t o .  Depending upon the 
robot’s mechanical implementation, the associated backbone 
curve may be inextensible (E(s, t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 Vs, t) or extensible. In 
the extensible case, the true arclength, L, at time t is related 
to l ( s , t )  via 

L(s,  t )  = I” l(a, t)da (3) 

otherwise, L(s,  t) = s. Any parametrization of the unit sphere 
can be used to parametrize U(s , t )  in (I). In this paper, we 
select zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

U(. )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[sin~(~)cos~(~),cos~(~)cos~(~),sin~(~)]~ (4) 

where K(.)  and T(. )  are Euler angles (Fig. 2). By convention, 
K(0, t) = T(0, t) = 0 is assumed, so that U(0,  t) = [0,1, OIT. 
The classical Frenet-Serret description of curves and this 
parametrization can be related as follows (where ( ’ ) represents 
a derivative with respect to s): 

- 

(5!’)2 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(I?)’ cos2 T 
12 

6 2  = 

r = i [  1 K s i n T  - (TK - T K ) c o s T  - (?‘)21?sinT 
K2 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK and r are the curvature and torsion of the backbone 
curve, respectively [lo]. 

The kinematics of planar curves is a degenerate case of 
(4) with T ( s , t )  = 0 Vs. To distinguish the planar case, 
we use the symbol O ( s , t )  instead of K(s , t ) ,  where e(s , t )  
is the clockwise measured angle which the tangent to the 
planar curve makes with the za-axis at time t. In this case, 
K ( s , ~ )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(l/l(s,t))de(s,t)/as, where n is positive for 
clockwise bending, and E ( s , t )  = [sinB(s,t), c o ~ O ( s , t ) ] ~ .  

The backbone referenceframe at s has its origin coincident 
with ?f(s , t )  (Fig. 1). The reference frame orientation can 
be expressed as: Q(s , t )  = (E,(s, t )  E2(s,t) E3(s , t ) ) ,  where 
e3(s, t) for j = 1 , 2 , 3  are the reference frame basis vectors 
with respect to a frame at s = 0, which is Q(0,t)  = I 

- 

by convention. A given backbone curve parametrization will 
typically have a natural set of frames associated with it, in 
the same way that the Frenet-Serret frame is associated with 
curvature and torsion in the classical parametrization of curves. 
We call these induced reference frames. When the backbone 
curve is parametrized by K(s , t )  and T(s, t ) ,  the matrix 
represents a unique induced reference frame orientation at each 
( s , t )  (see (6) at the bottom of the page). Q ( s , t )  may differ 
from Q I R ( s , ~ )  by an s-dependent twist about the backbone 
curve tangent, which we term the roll distribution, R(s, t). It 
is defined as: Q(s,  t) = Rot@, R(s ,  ~ ) ) Q I R ,  where Rot@, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) 
is a rotation about vector V by angle 4. For consistency with 
previous work, the second column of Q is chosen to be the 
backbone curve tangent vector, U( s, t) = &(s, t). 

In summary, the backbone reference set, which describes 
the important macroscopic geometry of a hyper-redundant 
robot, depends on a set of “shape functions,” which we 
denote as {Si}. In this work, we choose the functions l (s,  t ) ,  
K(s ,  t), T(s ,  t), and R(s, t), though other choices are possible. 
R(s,t) is neglected in this paper because the kinematics of 
the gaits described below can be described without regard to 
the function R(s,t) for robots with axially symmetric cross 
sections. 

IV. TERRAIN MODEL 

the mobile robot is assumed to be a once-differentiable arc- 
length parameterized curve lying in the terrain surface where 
p is the terrain arc-length parameter.’ With these assumptions, 
the path can be parametrized (in the form of (1) and (4)) 
by Zp(s, t) = 1 and functions K p ( p )  and T p ( p ) ,  where the 
subscript P indicates that these functions refer to the path 
curve, and not the backbone curve. A fixed reference frame 
can be defined as follows. Assume the robot is lying at rest 
on the terrain at t = 0. Let the backbone curve base (s = 0) 
be over terrain point H(p0)  (Fig. 3). We choose P(p0)  to be 
the origin of a fixed reference frame, Fo. The basis vectors of 
FO are assigned using the induced frame in (6), with K(s , t )  
and T(s , t )  replaced by K p ( p )  and T p ( p ) .  pT( t )  denotes the 
location of the robot’s rear at time t, where pT(to) = po. 

Hereafter, the physical girth of the robot is ignored. In 
practice, the robot’s thickness displaces the backbone curve 
from the path curve. This effect can be accounted for using 
the theory of “offset curves” [ l l ] .  Because we consider only 
kinematic, and not dynamic, issues in this paper, we further 
assume that when necessary there is sufficient friction between 
the robot and the ground to preclude unwanted lateral sliding. 

Let s b ( t )  and s f ( t )  respectively denote the value of the 
backbone curve parameter at the “back” and “front” of a 

‘For some gaits, only piecewise continuity with a finite number of nondif- 

The path Pb) = [S(P), ~ 2 ( p ) ,  W p ) I T  traversed by 

ferentiable points is required. 

(6) 
cos K (  s, t )  sin K(  s, t) cos T(  s, t) - sin K (  s, t) sin T(  s, t) 

t )  cos K(s,  t) cos T ( s ,  t) - cos K(s,  t) sin T(s ,  t) 
sin T(  s, t )  cosT(s, t )  
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.  Terrain model. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Curve zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ 

locomotion wave (Fig. 3).  Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF(pb( t ) )  and p(p-~f(t)) denote 
the path points coincident with the points sb(t)  and s f ( t )  in 
the backbone. For convenience, let Fr, Fb, and Ff  respectively - 
denote the path frames at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApr,  pb, and pf .  Similarly, let Fr, 
Fb, and Ff denote the backbone reference frames at s = 0, 
sb(t) ,  and s-~f ( t ) .  

We can now define a principal problem to be solved in the 
ensuing sections. The segment(s) involved in the locomotion 
wave(s) should assume a shape which does not intersect the 
terrain and which smoothly blends with the terrain at the ends 
of the locomotion Fave segment-i.e., the displacement of 
Ff  with respect to Fb should match the displacement of Ff  
with respect to Fb. However, the relative displacement of Ff  
with respect to Fb varies as the locomotion wave moves over 
the uneven terrain. Our goal is to determine how the backbone 
curve shape should vary with time in order to effect this terrain 
tracking for a variety of gaits. We call this the terrain matching 
problem. The solution to the terrain matching problem is 
sufficient to solve the geometric aspects of hyper-redundant 
locomotion planning. 

With this terrain model in mind, we introduce a definition 
of stride length. 

Definition: The stride length, LSL, which is normally the 
distance traveled by a legged robot over one cycle of foot 
placements, is defined as the path arclength traversed by the 
robot during one cycle of mechanism deformation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 

v. LOCOMOTION GAITS FOR INEXTENSIBLE MECHANISMS 

We divide our study of gaits into those suitable for in- 
extensible and extensible mechanisms. For the inextensible 
case considered in this section, body deformation is restricted 
to bending. We first consider inextensible traveling wave 
gaits, which have counterparts in slug pedal waves, caterpillar 
locomotion, and snake creeping gaits. We then consider inex- 
tensible stationary wave gaits, which are reminiscent of the 
gait used by inchworms. 

A. Inextensible Traveling Wave Locomotion Gaits 

An inextensible traveling wave gait can be implemented by 
transmitting a wave of bending deformation along the back- 
bone curve. We restrict the locomotion wave to a backbone 
curve segment with constant arc-length, denoted by L, << 1. 
Thus, L, = S f ( t ) - S b ( t ) .  similarly, k L p ( t )  = pf( t ) -pb( t )  

be the path arc-length between the points at which the front 
and back of the locomotion wave contact the terrain. The stride 
length is thus: LSL = L, - Lp. In the following algorithm, 
LSL is constant for every gait cycle. 

Let the locomotion wave travel along the backbone curve 
with constant speed w ,  i.e., sf = S b  = w (where (.) now 
represents a derivative with respect to time). If the backbone 
curve properly tracks the terrain, p f ( t )  and pb(t) also move 
along the terrain with speed w.  Terrain tracking for traveling 
wave locomotion can be implemented if the backbone curve 
shape functions take the general form 

where 

(9) 

sb(t)  = at(t), and s f ( t )  = S b ( t )  + L,. I ( t ,b)  = b j t / b j ,  
where L.1 is the greatest integer function. W(s,  SI ,  sa) is a 
termed a “window function.” The first and third terms of the 
shape functions in (7) ensure that the backbone curve segments 
s E [ O , s b ( t ) ]  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs E [ s f ( t ) ,  I] rest on the terrain. The 
second term implements the locomotion wave in the segment 
s E [ s b ,  s f ] .  The function at(t) in (8) linearly increases with 
time and is “reset” after a period (I + L,)/w. This causes the 
locomotion wave to travel at constant speed w from the rear of 
the robot to the front. After the wave “exits” the front of the 
backbone curve, another wave is subsequently generated at the 
rear of the robot, and the cycle repeats. Thus, the average wave 
speed is ( w ) / ( l  + L,), and every cycle causes the robot to 
be displaced by a distance LSL along the path. Alternatively, 
multiple waves can be used to increase the net robot speed 
for a given w. 
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the hyper-redundant robot programmer, and often reflect the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 4. Snapshots of a simulation of inextensible traveling wave locomotion 
gait. One complete cycle is shown. 

For the locomotion wave to smoothly track the terrain, 
Kwave(s, t) and Twave( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, t) must be chosen so that the dis- 
placement of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( t )  relative to i i b  (t) matches the displacement 

of F f ( t )  relative to Fb(t). Let A x  ( t )  denote the dis- 
placement of Ff relative to Fb. Assuming that the robot’s 
cross section is radially symmetric about the backbone curve 
tangent, Ff will be displaced relative to Fb with 5 indepen- 
dent degrees of freedom (DOF). Using the backbone curve 
parametrization resulting from (4), A X  

---des 

-des 
(t) takes the form 

K P ( P f ( 4 )  - K P ( / l b ( t ) )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
TP(Pf(t)) - T P ( P b ( t ) )  

Conceptually, the terrain matching problem is equivalent to 
a hyper-redundant manipulator inverse kinematic, or “hyper- 
redundancy resolution” problem. That is, the locomotion wave 
backbone curve segment can be thought of as the backbone 
curve of a hyper-redundant robot manipulator (with length 
Lw) whose base reference frame is aligned with Fb(t) and 
whose tip frame must align with F f ( t ) .  The authors have 
previously developed schemes for solving this problem, using 
the kinematic modeling scheme of Section III. 

In one approach [9], the calculus of variations is used 
to find the shape functions which cause the manipulator 
(here, the locomotion wave segment) to satisfy necessary 
boundary conditions (the terrain matching problem) while also 
minimizing a user defined criteria, such as the total bending of 
the backbone curve. While this approach is good for selecting 
locomotion wave shapes which minimize some criteria, such as 
mechanism bending or actuator forces, it is less attractive for 
locomotion applications. A conceptually and computationally 
simple approach, based on a “modal” selection of the shape 
functions, is discussed in [SI. We shall use this method here 
for the purposes of illustration. 

In the modal approach, the backbone curve shape functions 
that control the locomotion wave segment are arbitrarily 
restricted to a “modal” form 

N C  

Lw 
Swave,(a,t) = a j ( t )  $. where a = s - at(t). 

i = l  
2 -  

(1 1) 
The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ d j ( . ) }  are termed mode functions, while the { a j ( t ) }  
are termed modal participation factors. In other words, we 
arbitrarily restrict the shape functions to be the sum of a 
specified set of primitive functions. The {$3} are chosen by 

physical characteristics of the problem. The {b3}  must satisfy 
independence and nondegeneracy conditions [SI. N s ,  is the 
number of modes used to define the ith shape function, and 
the total number of modes must equal or exceed the number 
of terrain matching constraints. The set of modal participation 

Let A X ( h ( t ) , t )  denote the displacement of pf( t )  with 
respect to f i b  (t) when the locomotion wave shape functions 
are restricted to a modal form. For terrain matching, the goal 
is to determine E ( t )  so that 

factors is hereafter denoted by h(t) E R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE% N s ,  . 

(12) 
-des AX(h(t) , t )  = A X  ( t ) .  

Note that the terrain matching problem can also be put in 
this same form when employing the other hyper-redundancy 
resolution schemes considered in [9] if h is interpreted as a set 
of “reduced” curve coordinates. In the optimal shape function 
method, ?i would be the Lagrange multipliers associated with 
isoperimetric end-effector positioning constraints. Thus, (12) 
is a general statement of the terrain matching computational 
problem. While (12) arose from the consideration of the 
traveling wave gait, the terrain matching problem also takes 
this same form for the other gaits described below, where the 
forms of A X  

Let us first consider an example of a straight line path lying 
in the plane. We often consider the straight line locomotion 
case in this paper because of its relevance to the experiments 
in Section IX. The inextensible backbone curve is restricted to 
a plane, and thus its geometry can be captured using the single 
shape function O(s, t ) ,  where O(s, t) is defined so that the 2 2 -  

axis is terrain, while the 21-axis is the outward normal to the 
terrain. Assume that O(s, t )  takes a modal form with single 
mode $t(.) and a single modal participation factor at( t ) .  It 
can be shown that any &(s), at( t )  satisfying the constraints 

-des 
and A x  depend on the chosen gait. 

d ) t ( S b )  = h ( 3 . f )  = 0; 

l;f cos(at$t(a))da = 0; 

will insure proper terrain matching and prevent the locomotion 
wave from penetrating the terrain if the associated modal 
participation factor is within a reasonable range of values. One 
of the infinite number of functions that satisfy (12) and (13) is 

Lwcb 21T 

21T LW 
6‘(s,t) = ---W(s - at(t),  0, L,) sin -(s - at( t ) )  (14) 

where c b  is Ihe maximum backbone curvature in the loco- 
motion wave segment and at(t) takes the form of (8). A 
simulation of this locomotion, employing (14) and (8), is 
shown in Fig. 4, for the case Lw = 1/4. For this example, 
LSL is the difference between the locomotion wave segment 
arc-length and the “footprint” of the wave on the terrain. It 
can be shown that 

where JO is the zeroth order Bessel function. 
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It is easy to find closed form solutions to (12) for straight 
line locomotion. It is generally not possible to solve (12) 
for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ( t )  in closed form when operating on uneven terrain. 
A number of numerical techniques can be employed to solve 
these nonlinear equations. Here we review a simple method 
that is analogous to the popular resolved rate trajectory plan- 
ning scheme (which is essentially Newton iteration). It is 
quite useful in practice. Similar schemes exist for other the 
hyper-redundancy resolution approaches. 

This scheme is based on the time rate-of-change of (12), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. des zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAany@, t )  

at ’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAax = J (Z ) i i +  

where J ( E )  = aAx(3, t ) /% is the modal Jacobian matrix. 
The term dAX(ii, t ) /&  accounts for the explicit dependence 
of Ax(E,t) on time due to the relative motion of the lo- 
comotion wave along the curve. z(Z) can be obtained by 
differentiating (1) when the shape functions are restricted to 
the modal form, (11). Depending upon the choice of modes, 
the elements of J ( E )  may be computed symbolically, or using 
Liebniz’s rule and numerical integration. 

In the context of the terrain matching problem, (16) can 
be used in two ways. First, (16) can be used to numerically 
solve for Z( to )  at a given time, to .  Let &(to) be an estimate 
of %(to), which is assumed to be “near” a(t0). (16) can be 
iterated in a differential form, 

arc+i(to) = ; k ( t o )  + AtZ-’(Gk(to)) 
- 

to find Z( t0 ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ-’(.) is a generalized modal Jacobian inverse 
and & ( t o )  is the estimated value of E at the kth iteration of 
(17). For “small” At, (17) will converge, assuming that J 
is not singular. Conditions under which “modal singularities” 
occur are discussed in [SI. The second way (16) can be used 

is to effect terrain tracking. AX ( t )  is computed from the 
terrain path and a traveling wave speed (AX (t)  will take 
other forms for other gaits). Assume Z( t0 )  is known, and 
perhaps has been found using the technique described above. 
Equation (16) is then solved for $t), which is then numerically 
integrated to determine the values of a(t) which cause terrain 
tracking. 

This numerical method generally requires the computation 
of a 5 x NT modal Jacobian matrix and its inverse. If the 
chosen modes do not have a closed form forward kinematic 
solution, then all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ N T  elements of the modal Jacobian must 
be computed using numerical integration. This may make real 
time computation marginally feasible with limited computa- 
tional power. However, we can use the following “trick” to 
simplify the computational aspects of this problem. Let K,,, 
and T,,, be restricted to the forms 

;des 

4 e s  

Fig. 5. 
lows a helical path over a cylindrical terrain. 

Snapshots of traveling wave locomotion simulation. The robot fol- 

where Spl = Kp, Spz = Tp, and = (s - sb)/Lw. 
g ( [ )  is a monotonically increasing function with g(0) = 0 
and g(1) = 1. The mode functions are restricted to assume 
zero value at [ = 0 , l .  In this way, the backbone curve 
tangency conditions are automatically met at S b  and sf.  Thus, 
in general only three modal participation factors, which control 
the displacement of the origin of Ff  with respect to Fb, are 
required. Hence, the modal Jacobian need at most be a 3 x 3 
matrix, though extra modes can be added. This simplifies 
practical computation. 

Fig. 5 shows an example of locomotion along a heli- 
cal path over a cylindrical terrain. In this case, P(p) = 
[ ~ c o s ( p / r ] ) ,  ~s in (p /q ) ,  Bp/771T, where r is the radius of the 
Cylindrical terrain (1.0 in this example), B is the helix pitch 
(0.4 in this example), and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq = d w .  For this terrain, 
Kp = -p / r  and Tp = Atan2(r/v, B/r]), where Atan2 is 
the four quadrant, or polar, inverse tangent function. In this 
case, KWave(s,t) and T,,,(s,t) take the form of (18). Two 
modes, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$I([) = sin(2.rrt) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& ( E )  = sin(3n[), are assigned 
to K,,,, while one mode, &(t) = sin(7r[), is assigned to 
T,,,. Another related example is shown in the next section. 

Many other mode choices are possible in the above ex- 
amples, and it should be stressed that the method is not 
highly sensitive to the particular choice of mode functions. 
Altematively, one can use other hyper-redundancy resolution 
methods which are not dependent upon the intuitive choice 
of modes. 

B. Inextensible Stationary Wave Locomotion Gaits 

Inextensible stationary wave gaits rely upon a body- fixed 
backbone curve shape whose amplitude of bending oscillates. 
Roughly speaking, this is analogous to the way an inchworm 
extends and contracts its body so that the “hump” or “loop” 
remains in approximately the same body location. To illustrate 
this gait, let us again consider straight line locomotion over flat 
terrain. Inextensible stationary wave locomotion will result if 
Q(s, t )  takes the form 
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Fig. 6. Inextensible stationary wave locomotion gait: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm = 1. 

Fig. 8. Gait employing a stationary wave cycle and a traveling wave cycle. 

Fig. 7. Inextensible stationary wave locomotion gait: m = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas@) is a periodic function, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{sb, sf} are constant. 
In this way, the locomotion wave, which is restricted to a 
fixed backbone curve segment of length L, in the interval 
s E [sb, sf], oscillates in amplitude while retaining its relative 
position in the robot. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Remark: Because we are using only a kinematic (not a 
dynamic) model, this stationary wave locomotion model im- 
plicitly assumes that the mechanism has less resistance to 
motion in the forward direction than in the reverse direction. 
In nature, this effect is achieved by scales which slide during 
forward motion and exert traction on the ground preventing 
retrograde motion. In Section IX we demonstrate a mechanical 
device which implements this characteristic. 

In the flat terrain case, any function of the form (19) where 
(.) and a, (t)  satisfy constraints of the form (13) is a suitable 

solution to the terrain matching problem. One such choice is 

for some wavelength L,. a0 and a1 in (20) must obey 
amax > a0 > lull > 0, where amax is the maximum 
allowable backbone curvature and a0 > lull > 0 guarantees 
that $,(s) satisfies (13). Fig. 6 illustrates this solution for the 
case L, = 1, i.e., sb = 0 and sf = 1. With the contact friction 
assumption described above, the stride length in this case is 
the difference between the maximum and minimum nominal 
body length over one cycle: 

) - JO ( Lw(ao -k (21) 
a0 - a d  

LSL = Jo(" ( 21r 21r 

Fig. 7 shows this same gait for the case L, = 1/5. A variable 
geometry truss (VGT) has been fit to the backbone curve for 
clarity. In practice, choosing L, << 1 lowers the robot center 
of gravity and increases the stride length. 

The generalization of this gait to curvilinear paths over 
uneven terrain is based on a more general form for A X  . 
In brief, we need to find expressions for pb(t) and ,uf(t), 
which cause those points to alternately slide forward along 
the terrain in a fashion which is analogous to the way that 
the contact points between the robot and the terrain slide in 
the simple straight line standing wave gait above. This can be 
done if pb(t) and pf ( t )  take the forms 

--des 

P f ( 4  =: LSL[I(t, t p )  + P 2 ( t  - I ( t ,  $4) x 

W[t  - I ( t ,  i p ) ,  %, $11 + PO + L, - LSL (22) 

where tp  is the period of the stationary wave oscillation. 
PI( . )  is any function with the property that P l ( 0 )  = 0 and 

,&(t,/2) = 1. For example, p l ( t )  = cos ( T )  is a 
suitable choice. Similarly, ,&(+) is any function such that 

P2( tP /2)  = 0 and Pa@,) = 1. P2(t)  = cos (-) is one 
possible choice. 

In this way, the point pb(t) is moving forward along the 
ground during the first half of the oscillation phase, while 
p f ( t )  is stationary. Similarly, during the second half of the 
oscillation period, pb( t )  is stationary, while p f ( t )  moves for- 

ward. Substituting (22) into (10) results in a suitable A X  (t)  
for use in (12). Since we are assuming inextensibility, the 
shape of the stationary locomotion wave will oscillate in a 
way analogous to (19). The particular choice of the functions 
PI( . )  and ,&(.) determines the actual sliding velocity of ,uf 
and 116 during their respectively active periods. 

The generalized stationary wave gait may be less useful 
in practice than the traveling wave gait as it assumes that 
the portions of the mechanism which are not part of the 
locomotion wave slide along the path. This may be difficult for 
paths with high curvature. However, the generalized stationary 
wave gait can be useful in the following way. Fig. 8 depicts 
snapshots of a computer simulation of a locomotion scheme 

which uses one half of a stationary wave locomotion cycle 
to generate a wave shape at the rear of the robot. This wave 
then traverses the length of the robot using a bending traveling 
wave, and subsequently exits the front of the manipulator using 
the second hdf of the stationary wave cycle. 

4 t p P - t )  

-des 
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Fig. 9. Extensible locomotion over a step. 

VI. LOCOMOTION GAITS FOR EXTENSIBLE MECHANISMS 

In addition to the gaits considered in the last section, 
extensible mechanisms, such as the VGT structure considered 
in Section IX, can employ stationary and traveling locomotion 
waves of mechanism extension, or combinations of extension 
and bending. This section considers the extensible counterparts 
of the gaits described in the previous section. 

Purely extensible locomotion can be implemented by con- 
straining the backbone curve to the form 

(23) 

That is, net motion is generated by sliding portions of the 
mechanism along the ground in a repetitive wave-like manner. 
The choice of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL(s,  t )  (or equivalently, Z(s, t ) )  determines the 
particular locomotion gait. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApLT ( t )  will similarly be determined 
by the chosen gait. 

A longitudinal stationary wave gait results when l ( s ,  t )  
assumes the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

q s ,  t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= P(L(s,  t )  + &(t),  t ) .  

Fig. 10. 
front to the rear of the mechanism as the mechanism moves to the right. 

Extensible traveling wave gait. An expansion wave travels from the 

L,) of mechanism expansion or contraction travels the length 
of the backbone. This pattern of mechanism deformation is 
analogous to the wave-like muscle contractions of peristalsis. 
The distribution of the elongation within the wave is deter- 
mined by &(.). Fig. 10 shows a simulation of this gait over 
a straight line path for the case Q ( s ,  t )  = 0, L, = 1/4, and 
Z(s,t) = 1 + E L $ ~ ( s  - at(t)),  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$i(.) = W(.,O,1/5) 
and El = 1. Note that this is an expansion wave, which must 
travel in the direction opposite to the direction of robot travel. 
If El < 0, the locomotion wave would be a contraction wave, 
which travels in the same direction as the robot’s motion. 

While l ( s ,  t )  depends on the gait choice, the other backbone 
curve shape functions can be extracted from (23) by using the 
kinematic relationships 

where a,(t) is periodic. 4s controls how the elongation is 
distributed throughout the mechanism. Fig. 9 shows how this 
gait can be used to effect locomotion over a step. The path in 
this case consists of three segments: a horizontal ground line, 
a fictitious “ramp” connecting the ground and the top of the 
step, and line representing the top of the step. In this example, 
1 ( s ,  t )  is defined as in (24) with 

L S L  27rt 
2 t P  

a s ( t )  = 1 -  COS(-) 4 s ( ~ )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzr 1. (25) 

It can be shown that 

1 PT( t )  = L S L  I(t, t p )  + cos2(7ft/t,)W(t - I ( t ,  t p ) ,  $, tp)  [ 
(26) 

where tp is the gait period. For this example, LSL = 0.1 and 
t, = 1. A VGT has again been fit to the backbone curve to 
more clearly illustrate the sequence of mechanism deformation 
during the gait. 

Similarly, a longitudinal traveling wave gait results if 

K(s , t )  = Atan2 

where a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘ ‘ I  ” denotes differentiation with respect to s. 
Remark: Like the inextensible stationary wave gaits of 

Section V-B, these extension gait models also imply that the 
moving portion of the mechanism has less resistance to motion 
in the forward direction than in the reverse direction. 

The rubbing and special friction assumption associated 
with the traveling wave extension gaits can be avoided by 
combining synchronous traveling waves of elongation and 
bending. In this approach, the shape functions that control 
bending assume the form of (7), while Z(s,t) assumes the 
form of (27), with L, the same in both cases. In this way 
the expanding segment is also bent to prevent it from sliding 
along the ground. For example, in the straight line locomotion 
case, shape functions of the form 

where at(t) assumes a form similar to (8). In this gait, a wave 
(confined to a backbone curve segment of referential length 

will implement this combined contraction and bending if 4t(.) 
is chosen so that Q ( s , t )  satisfies (13) and q5l(.) is chosen 
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Fig. 11. 
wave. 

Simulation of a gait using a combined bending zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand contraction 

so that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ(s,t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn example of a locomotion gait 
employing (28) and (29) is shown in Fig. 11. For this case, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
El = -0.5 (i.e., contraction) and Eb = 0.2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ l ( . )  = 1, and 
+t(s - at(t)) = sin[$(s - at(t))] .  It can be shown that 
LSL = LW[1 - (1 - E ~ ~ J o ( J % ) ] .  

VII. CHOOSING AMONG THE GAITS 

The previous sections introduced a variety of gaits for 
implementing hyper-redundant locomotion. How does one 
select a gait for a given situation and a given robot mechanism? 
The answer to this question depends upon a large number of 
factors. These factors include the terrain geometry, the capa- 
bilities of the robot mechanism, the assumptions about friction 
between the robot and terrain, the necessary locomotion speed 
(defined as stride length per gait cycle), and the amount of 
power that can be supplied to the actuators. In this work 
we have focused on the macroscopic kinematics of a broad 
class of gaits, rather than on a particular actuation scheme 
required to implement locomotion. Thus, it is impossible 
to give strict gait choice guidelines for all possible hyper- 
redundant mechanisms, as the guidelines are bound to be 
mechanism dependent. Here, we discuss some of the trade-offs 
which will naturally arise. 

Our experience has shown that the stationary wave gaits 
(both extensible and inextensible) are most useful for paths 
which are nearly straight. The traveling wave gaits are to be 
preferred for paths with shaper bends. 

Recall that the inextensible stationary wave gait and the 
extensible longitudinal traveling or stationary wave gaits all 
require special assumptions about the friction between the 
mechanism and the terrain. The surface of the mechanism 
in contact with the ground must have greater resistance to 
retrograde motion than forward motion. In Section M we 
demonstrate one particular mechanism that implements this 
property. However, it may not be convenient or possible to 
outfit a robot with such devices. In such cases, the inextensible 
traveling wave gait, which does not require any special friction 
assumptions, can be used. While this gait is the most robust 
with respect to friction assumptions, it is one of the slowest 
gaits. 

Many of the gaits could be implemented using a single 
traveling or stationary wave loop, or one could incorporate 
multiple waves. For a constant wave speed (in the case of 
traveling wave gaits) or constant oscillation period (in the case 
of stationary wave gaits), a multiple wave implementation of 

contact , 
Point---., 

x1 

Fig. 12. Geometry of the tentacle-like grasp. 

any of the gaits will typically result in faster forward robot 
speed. However, a multiple wave gait will obviously result 
in a greater actuator duty cycle and hence a greater power 
requirement. One would typically use smaller amplitude waves 
in a multiple wave implementation. This will lower the robot’s 
center of mass, and thus lead to greater stability on highly 
uneven terrain. 

vI[I. APPLICATIONS TO PLANNING THE! 
MANIPULATION OF GRASPED OBJECTS 

These locomotion algorithms can also be used to plan 
the geometric aspects of a novel fine manipulation scheme 
for objects which are grasped in a tentacle-like fashion. A 
“massively redundant” tentacle-like grasp is considered in 
[20]. Here, we consider the novel combination of a hyper- 
redundant grasp with a grasping wave scheme for reorienting 
the grasped object while maintaining a robust grasp. In effect, 
manipulation is accomplished by locomoting over the object 
boundary. This scheme is analogous to “finger gaiting” in 
multifingered robotic hand manipulation [ 151. The fingers in 
this case are the contact points of the tentacle-like mechanism. 
This object manipulation scheme would be particularly useful 
for grabbing and manipulating a free flying satellite with a 
hyper-redundant robot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarm. For simplicity, we only consider 
planar objects with convex boundary. Further, we only discuss 
the kinematic: aspect of this object manipulation scheme, 
and not the important issues of force closure and internal 
mechanism farce distribution in a tentacle-like grasp. That is, 
our goal is to illustrate that kinematic locomotion algorithms 
have other useful applications. 

A. Overview if Grasping Wave Method 

We assume that the robot mechanism’s base is rigidly fixed. 
We further assume that the planar object to be grasped, 0, 
has a smooth convex boundary that can be described by an 
arc-length parametrized closed curve 5(p) = [z l (p) ,  x2(p) lT 
in a coordinate frame, F, attached to 0. The translation and 
rotation of F relative to the robot’s base frame are respectively 
denoted by a(t) E R2 and y ( t )  E S1 (Fig. 12). The object 
manipulation scheme consists of the following phases. 

Shape Initialization: The distal end of the mechanism 
wraps around 0 in a tentacle-like fashion. The section 
of the robot in contact with 0 is termed the grasp 
contact segment, G,, and its associated backbone curve 
segment lies in the interval s E [s,, 11. We assume that 
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the length and geometry of G, is sufficient to enable 
force closure. The remainder of the backbone curve 
is termed the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnoncontact segment, Gn,: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs E [O,s,). 
%(se) is termed the contact point. The backbone curve 
is assumed to be tangent to 0 at Z(s,). For simplicity, 
we assume that at the end of shape initialization phase 
:(sc) is located on the xz-axis at a distance h,(t) from 
the robot base and that the tangent to 0 at :(se) points 
in the positive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz2 direction. We further assume that 
the boundary of 0 is parametrized such that increasing 
s corresponds to increasing p .  Let p c  be the object 
boundary - parameter at the grasp point. Thus, Z(sc) = 
d + R(y)Tj(p,), where R(y) represents rotation by angle 
y. The shape initialization phase is completed at time 
t = 0. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 Phase I :  A section of the manipulator in G,, distorts 
to form a wave. This is analogous to stationary wave 
locomotion. This could be a bending, longitudinal, or 
combined wave. For inextensible mechanisms, 0 is nec- 
essarily displaced during this phase by the contraction of 
the backbone curve. This phase, whose duration is tl, is 
shown in Fig. 13(a). 

0 Phase 2: The wave generated in Phase 1 travels along the 
mechanism toward the distal end (Fig. 13(b)). This phase 
is analogous to the traveling wave locomotion - scheme of 
Section V-A. The “grasp terrain path,” PG, consists of 
a fictitious path between the front of the grasp wave and 
:(sc), as well as the boundary of 0 in G,. If we assume 
that G,, is a straight line along the ZZ-axis, then 

Note that PG is time varying, as several of its defining 
parameters will change from cycle to cycle. When the 
wave reaches the distal end of the robot, the arclength of 
G, will be longer by an amount LSL. The period of this 
phase is t z  - t l . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

e Phase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3: By straightening the mechanism in the interval 
s E [s,,s, + S L ] ,  the robot “unwraps” part of G, 
from 0 by an amount LSL. S L  is defined such that 
LSL = L(s,  + S L , ~ )  - L(s,,t)  (in the inextensible case 
S L  = LsL). This results in a displacement of 0, and 
restores the length of G, to its original value. The duration 
of this phase is t 3  - t 2 .  

When Phase 3 is complete, the cycle repeats, starting with 
Phase 1. This scheme results in repeated object rotations, 
whose magnitude depends on LSL and the shape of 0. One 
can compensate for the net translations of 0 which may occur 
from cycle to cycle by using the hyper-redundant robot end- 
effector placement methods in [SI and [9]. The cycle shown 
in Fig. 13 causes counter-clockwise rotations. The cycle can 
be reversed to yield clockwise rotations. 

The grasping wave paradigm is easily illustrated for a disk. 
Following the assumptions above, the disc is initially grasped 
so that coordinates of its center are (~,,y,(t~)), where T, is 
the disc radius. Because of the disc’s shape, h,(t) = yc ( t ) .  

(c) 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13. The grasping wave object manipulation scheme. 

PG consists of a fictitious straight line segment between the 
robot’s base and :(sc) = (0, h,(t)) and a circular arc along 
the object boundary 

For this example, the grasping wave is an inextensible travel- 
ing wave whose shape consists of three circular arc segments 
with respective arclengths L,/4, Lw/2, and Lw/4. The ge- 
ometry of a planar inextensible backbone is strictly a function 
of O(s, t ) ,  or equivalently, ~ ( s , t ) .  Here we choose to work 
with K ( S ,  t )  because of its simple expression for this object. 

During the grasping wave cycle K ( S ,  t )  takes the form 

That is, 6 1 ,  K Z ,  and ~3 denote the backbone curve shape 
functions in the three different phases, and window functions 
are used to “section-off” these phases in time. During Phases 
1 and 2, the backbone curvature function takes the form 

for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 1,2, where 
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is the grasp wave curvature, which consists of circular arcs. 
To form the grasping wave during Phase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, al( t ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaz(t) ,  and 
a3 ( t )  take the monotonically increasing form 

2T 

LWtl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -[t - I ( t ,  t ~ ) ] W ( t  - I ( t ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh),  0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAti) t E [o, ti] 
(34) 

for i = 1,2,3. This is analogous to part of a stationary wave 
gait cycle. Since the backbone is inextensible, the center of 
the disc is moved by a distance LSL = (1 - 2/r)L, in the 
negative 22 direction during Phase 1. In Phase 2, a l ( t ) ,  a2(t), 

and a3(t) are computed using the numerical modal Jacobian 
approach of Section V 

(35) 

where A X  (t) is computed from PG. In this way, the 
grasping wave tracks the grasp terrain, like a traveling wave 
locomotion gait. 

-des 

In Phase 3 the curvature function assumes the form 

63@, t )  = W(s, hm(t), l ) / rc ,  (36) 

to implement the “unwrapping” of the object. hm(t) is a 
function that monotonically increases from the value hm(t2) = 

Note that this example was used in the computer simula- 
tion which generated Fig. 13, with the addition of a fitting 
process to adapt the discretely segmented variable geometry 
truss structure to the continuous backbone curve solution. 
Additional examples using other wave shapes and wave types 
can be found in [4]. 

Yc(0) - LW(1 - 2/T) to hm(t3) = YC(0). 

Ix. EXPERIMENTAL DEMONSTFLUION OF 

HYPER-REDUNDANT LOCOMOTION AND GRASPING 

To check our modeling assumptions, verify the correctness 
of these algorithms and validate their usefulness, several of 
the locomotion gaits and the object manipulation scheme have 
been implemented in an actual 30 degree-of-freedom hyper- 
redundant robot system. A more detailed description of this 
system can be found in [6]. Briefly, this system (Fig. 14) is 
a planar VGT structure consisting of IO identical modules, 
where each module is a planar 3 DOF parallel manipulator. 
The prismatic actuators are implemented with dc servo motors 
and lead screw drives. The actuators can vary in length from 
a minimum of 12 in to a maximum of 18 in. The robot system 
is controlled by a multiprocessing computer, which consists 
of Heurikon 68030 processing boards in a VME bus, which 
is in turn connected to a Sun Microsystems 41260 computer. 

For grasping and object manipulation experiments, the robot 

operates in the plane of the laboratory floor (where casters 
allow low friction rolling over the floor). For locomotion 
experiments, the manipulator is detached from its base, and 
turned on its side so that it can locomote in a vertical plane. 
Each module is equipped with rubber faced ratchet wheels 

Fig. 14. Picture of VGT hyper-redundant system grasping a disc (mock 
“satellite”). 

spring 

Fig. 15. Schematic of ratchet wheel that implements special friction prop- 
erties. Left view is schematic of ratchet mechanism, which has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 teeth in the 
real device, not 4 as shown. Right View is cross section of wheel and ratchet. 

(Fig. 15) which permit rolling in one direction only. These 
wheels perform the same function as scales on a snake-they 
prevent retrograde motion while easily permitting forward 
motion. As discussed in Sections V-B and VI, these devices 
are required for some gaits. For traveling wave locomotion, the 
wheels are locked in place, and the wheels’ rubber surfaces 
are used as passive feet. While the devices are currently 
constructed to have a fixed preferred direction of motion, an 
electronic brake could easily be added so that the preferred 
direction of motion can be changed under computer control. 
Because of its modularity, the robot can be separated into two 
15 DOF robots for implementing locomotion with a smaller 
(e.g., fewer degrees of freedom) robot. 

Most of the locomotion gaits presented in this paper have 
been implemented and verified with this device. For example, 
Fig. 16 shows a sequence of snapshots during an experiment 
in which the robot uses a stationary bending wave locomotion 

is extensible, in this experiment we arbitrarily restrict it to 
use an inextensible gait. This experiment exactly implements 
the shape function of (20), for the case m = 2, with the 
fitting algorithms in [8]. Recall from Section V-B. that this 
gait requires the unique properties of the ratchet wheels. 

gait to navigate a straight line on flat ground. While this robot 



192 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEEE TRANSACTIONS ON ROBOTICS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND AUTOMATION, VOL. 11, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, DECEMBER 1995 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA16. Inextensible stationary wave locomotion experiment. Top: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbegin- 
ning of cycle. Middle: midpoint of gait cycle. Bottom: end of cycle. The 
robot moves to the left. 

Fig. 17. Longitudinal stationary wave locomotion. Top: beginning of cycle 
with robot in contracted state. Middle: approximate midpoint of cycle, with 
robot extended. Bottom: end of cycle. The robot moves to the left. 

Similarly, Fig. 17 shows snapshots of a longitudinal station- 
ary wave locomotion experiment which employs the methods 
of Section VI. In this case, the backbone curve shape functions 
assume the form of (24) with 4s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 and a s ( t )  having 
the form of (20). Fig. 18 depicts a longitudinal traveling 
wave locomotion experiment that uses a contraction wave, 
as opposed to expansion wave of the simulation in Fig. 10. 
Here again, these gaits also require the special properties of 
the ratchet wheels. 

ficiency of the algorithms presented in this paper, only a 
singfe Motorola 68 030 processor was required to compute the 
locomotion and motor servo algorithms for all 30 actuators. 
Thus, our experimental work verifies the fact that hyper- 
redundant locomotion can be implemented with relatively little 
computational power when using the formulation presented in 
this paper. Further, the schemes are quite robust, as the me- 
chanical ratchet wheels enforce the desired friction constraints 
between the robot and the ground over a broad range of the 

coefficient of friction between the robot and the ground. That 
is, no special properties of the laboratory floor were required 
to effect locomotion, and locomotion was successful over the 
entire range of speeds which are achievable by the mechanism. 

X. CONCLUSION 

This paper has shown that a large number and variety of 
hyper-redundant robot locomotion gaits can be understood and 
implemented using simple stationary and/or traveling wave 
pattems of mechanism bending and extension. Further, we 
showed how these locomotion gaits can be used to implement 
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a novel scheme for manipulating obiects which are masped in 1131 S. Hirose and A. Morishima, “Design and control of a mobile robot with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- -  - “  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw *  

an articulated body,” Int. J. Robot. Res., vol. 9, no. 2, pp. 99-114, 1990. 
[141 s, Hirose and y. umetani, “Kinematic control of active cord mechanism 

with tactile sensors,” in Proc. 2nd Int. CISM-IFT Symu. Theory and 

a tentacle-like fashion. w e  modeled the kinCx-”ics of hyper- 

redundant locomotion via a continuous backbone curve model. 

This abstraction allowed us to clearly focus on the important 
macroscopic g e o m e ~ c  of mechanism displacement 

out having to focus on a particular hyper-redundant robot 

often be relegated to a “fitting” procedure. The analysis of 
dynamics and friction effects on locomotion behavior require 

more explicit and complicated models than the ones presented 

here. However, these models are bound to depend upon the 

characteristics Of a mechanism and gait’ In this 
paper, we chose instead to focus on the macroscopic kinematic 

Practice of Robots and Manipulators, 1976, pp. 241-25i. 
[15] J. Hong et al., “Fine manipulation with multifinger hands,” in Proc. 

IEEE Int. Con$ Robotics and Automation, Cincinatti, OH, 1990, pp. 

1161 B. C. Jayne, "Kinematics of terrestrial snake locomotion,” Copeia, no. 
which are the key to hyper-redundant robot locomotion, with- 1568-1573. 

4, pp. 915-927, 1986. 
imp1ementation* The imp1ementation [17] H. D, Jones, ‘ m e  mechanism of locomotion of Agriolimm reticulaas 

(Mollusca: Gastropoda),” J. Zoology London, vol. 171, pp. 489-498, 
1973. 

[18] J. B. Keller and M. S. Falkovitz, “Crawling of worms,” .I. Theor. Biol., 
vol. 104, no. 3, pp. 41742, 1983. 

[19] H. W. Lissmann, “Rectilinear locomotion in a snake (Boa occidentalis),” 
J. Exp. Biology, vol. 26, pp. 368-379, 1950. 

[20] J. S. Pethnato and H. E. Stephanou, “ Manipulability and stability of 
a tentacle based robot manirmlator.” in Proc. IEEE Int. Conf Robotics 

behavior of a large class of gaits, rather than a detailed analysis 
of one particular gait or mechanism. 

Our experimental implementation of these algorithms indi- 
cates that they are practical and implementable with a very 
reasonable amount of computing power. Our experiments 

also verified that our assumptions on friction between the 

robot and the terrain could easily be achieved using simple 

mechanical devices and that these assumptions were realistic in 

practice. We thus conclude that the algorithms and experiments 
described in this paper are a step toward making hyper- 

redundant robot systems more widely used. 
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