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Abstract. The kissing number k(3) is the maximal number of equal size nonoverlapping
spheres in three dimensions that can touch another sphere of the same size. This number was
the subject of a famous discussion between Isaac Newton and David Gregory in 1694. The
first proof that k(3) = 12 was given by Schütte and van der Waerden only in 1953. In this
paper we present a new solution of the Newton–Gregory problem that uses our extension
of the Delsarte method. This proof relies on basic calculus and simple spherical geometry.

1. Introduction

The kissing number k(d) is the highest number of equal nonoverlapping spheres in Rd

that can touch another sphere of the same size. In three dimensions the kissing number
problem is asking how many white billiard balls can kiss (touch) a black ball.

The most symmetrical configuration, 12 billiard balls around another, is achieved if
the 12 balls are placed at positions corresponding to the vertices of a regular icosahedron
concentric with the central ball. However, these 12 outer balls do not kiss each other and
may all be moved freely. So perhaps if you moved all of them to one side a 13th ball
would possibly fit in?

This problem was the subject of a famous discussion between Isaac Newton and
David Gregory in 1694 (May 4, 1694; see the interesting article [21] for details of
this discussion). Most reports say that Newton believed the answer was 12 balls, while
Gregory thought that 13 might be possible. However, Casselman [5] found some puzzling
features in this story.

This problem is often called the thirteen spheres problem. Hoppe [9] thought he had
solved the problem in 1874. However, there was a mistake—an analysis of this mistake
was published by Hales in 1994 [8] (see also [20]). Finally, this problem was solved by
Schütte and van der Waerden in 1953 [19]. A subsequent two-page sketch of an elegant
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proof was given by Leech [11] in 1956. Most people agree that Leech’s proof is correct,
but there are gaps in his exposition, many involving sophisticated spherical trigonometry.
(Leech’s proof was presented in the first edition of the well-known book by Aigner and
Ziegler [1], the authors removed this chapter from the second edition because a complete
proof would have had to include so much spherical trigonometry.) The thirteen spheres
problem continues to be of interest, and new proofs have been published in the last few
years by Hsiang [10], Maehara [13], Böröczky [3] and Anstreicher [2].

The main progress in the kissing number problem in high dimensions was at the
end of the 1970s. Levenshtein [12] and, independently, Odlyzko and Sloane [16] (= [6,
Chapter 13]) using Delsarte’s method in 1979 proved that k(8) = 240 and k(24) =
196,560. This proof is surprisingly short, clean, and technically easier than all proofs
in three dimensions. However, d = 8, 24 are the only dimensions in which this method
gives a precise result. For other cases (for instance, d = 3, 4) the upper bounds exceed
the lower.

We found an extension of the Delsarte method in 2003 [14] (see details in [15]) that
allowed us to prove the bound k(4) < 25, i.e. k(4) = 24. This extension also yields a
proof k(3) < 13.

The first version of these proofs was relatively short, but used a numerical solution
of some nonconvex optimization problems. Later [15] these calculations were reduced
to calculations of roots of polynomials in one variable.

In this paper we present a new proof of the Newton–Gregory problem. This proof
needs just basic calculus and simple spherical geometry.

2. k(3) = 12

We recall the definition of Legendre polynomials Pk(t) by the recurrence formula:

P0 = 1, P1 = t, P2 = 3
2 t2 − 1

2 , . . . , Pk = 2k − 1

k
t Pk−1 − k − 1

k
Pk−2

or equivalently

Pk(t) = 1

2k k!

dk

dtk
(t2 − 1)k (Rodrigues’ formula).

Lemma 1. Let X = {x1, x2, . . . , xn} be any finite subset of the unit sphere S2 in R3. By
φi, j = dist(xi , xj ) we denote the spherical (angular) distance between xi and xj . Then

n∑
i=1

n∑
j=1

Pk(cos(φi, j )) ≥ 0.

This lemma easily follows from Schoenberg’s theorem [18] for Gegenbauer (ultras-
pherical) polynomials G(d)

k . (Note that Pk = G(3)
k .) For completeness we give a proof of

Lemma 1 in the Appendix.
Let

f (t) = 2431

80
t9 − 1287

20
t7 + 18333

400
t5 + 343

40
t4 − 83

10
t3 − 213

100
t2 + t

10
− 1

200
.
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Remark. This polynomial of degree 9 satisfies the assumptions of the extended Del-
sarte’s method [14], [15]. An algorithm for calculating suitable polynomials is presented
in the Appendix of [15].

Lemma 2. Suppose X = {x1, x2, . . . , xn} ⊂ S2. Then

S(X) =
n∑

i=1

n∑
j=1

f (cos(φi, j )) ≥ n2.

Proof. The expansion of f in terms of Pk is

f =
9∑

k=0

ck Pk = P0 + 8
5 P1 + 87

25 P2 + 33
20 P3 + 49

25 P4 + 1
10 P5 + 8

25 P9.

We have c0 = 1, ck ≥ 0, k = 1, 2, . . . , 9. Using Lemma 1 we get

S(X) =
9∑

k=0

ck

n∑
i=1

n∑
j=1

Pk(cos(φi, j )) ≥
n∑

i=1

n∑
j=1

c0 P0 = n2.

If n unit spheres kiss the unit sphere in R3, then the set of kissing points is an
arrangement on the central sphere such that the (Euclidean) distance between any two
points is at least 1. So the kissing number problem can be stated in another way: How
many points can be placed on the surface of S2 so that the angular separation between
any two points is at least 60◦?

Lemma 3. Suppose X = {x1, x2, . . . , xn} is a subset of S2 such that the angular
separation φi, j between any two distinct points xi , xj is at least 60◦. Then

S(X) =
n∑

i=1

n∑
j=1

f (cos(φi, j )) < 13n.

We give a proof of Lemma 3 in the next section.

Theorem. k(3) = 12.

Proof. Suppose X is a kissing arrangement on S2 with n = k(3). Then X satis-
fies the assumptions in Lemmas 2 and 3. Therefore, n2 ≤ S(X) < 13n. From this
n < 13 follows, i.e. n ≤ 12. From the other side we have k(3) ≥ 12, showing that
n = k(3) = 12.

3. Proof of Lemma 3

We need one fact from spherical trigonometry, namely the law of cosines:

cosφ = cos θ1 cos θ2 + sin θ1 sin θ2 cosϕ,
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for a spherical triangle ABC with sides of angular lengths θ1, θ2, φ and∠B AC = ϕ (Fig.
1). Forϕ = 90◦, this reduces to the spherical Pythagorean theorem: cosφ = cos θ1 cos θ2.

Proof. 1. The polynomial f (t) satisfies the following properties (see Fig. 2):

(i) f (t) is a monotone decreasing function on the interval [−1,−t0];
(ii) f (t) < 0 for t ∈ (−t0,

1
2 ];

where f (−t0) = 0, t0 ≈ 0.5907.
These properties hold because f (t) has only one root −t0 on [−1, 1

2 ], and there are
no zeros of the derivative f ′(t) (eighth degree polynomial) on [−1,−t0].

Let Si (X) :=∑n
j=1 f (cos(φi, j )), then S(X) =∑n

i=1 Si (X). From this it follows that
if Si (X) < 13 for i = 1, 2, . . . , n, then S(X) < 13n.

We obviously have φi,i = 0, so f (cosφi,i ) = f (1). Note that our assumption on X
(φi, j ≥ 60◦, i = j) yields cosφi, j ≤ 1

2 . Therefore, cosφi, j lies in the interval [−1, 1
2 ].

By (ii) we have f (cosφi, j ) ≤ 0 whenever cosφi, j ∈ [−t0,
1
2 ]. Let J (i) := { j : cosφi, j ∈

[−1,−t0)}. We obtain

Si (X) ≤ Ti (X) := f (1)+
∑

j∈J (i)

f (cosφi, j ). (1)

Let θ0 = arccos t0 ≈ 53.794◦. Then j ∈ J (i) iff φi, j > 180◦ − θ0, i.e. θj < θ0, where
θj = 180◦ − φi, j . In other words all xi, j , j ∈ J (i), lie inside the spherical cap of center
e0 and radius θ0, where e0 = −xi is the antipodal point to xi .

�1 �0:5 0 0:5 0:8

0

Fig. 2. The graph of the function f (t).
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2. Let us consider on S2 points e0, y1, . . . , ym such that

φi, j = dist(yi , yj ) ≥ 60◦, ∀ i = j,

θi := dist(e0, yi ) < θ0 for 1 ≤ i ≤ m.
(2)

Denote by µ the highest value of m such that the constraints in (2) allow a nonempty
set of points y1, . . . , ym .

Suppose that 0 ≤ m ≤ µ and Y = {y1, . . . , ym} satisfies (2). Let

H(Y ) = H(y1, . . . , ym) := f (1)+ f (− cos θ1)+ · · · + f (− cos θm),

hm := sup
Y
{H(Y )}, hmax := max {h0, h1, . . . , hµ}.

It is clear that Ti (X) ≤ hm , where m = |J (i)|. From (1) it follows that Si (X) ≤ hm .

Thus, if we prove that hmax < 13, then we prove Lemma 3.
3. Now we prove that µ ≤ 4.
Suppose Y = {y1, . . . , ym} ⊂ S2 satisfies (2). By symmetry we may assume that e0

is the North pole and yi has polar coordinates (θi , ϕi ). Then from the law of cosines we
have

cosφi, j = cos θi cos θj + sin θi sin θj cos(ϕi − ϕj ).

Note that θi > 0 for m ≥ 2. Conversely, yi = e0, θj = φi, j ≥ 60◦ > θ0, a contradiction.
From (2) we have cosφi, j ≤ 1

2 , then

cos(ϕi − ϕj ) ≤
1
2 − cos θi cos θj

sin θi sin θj
. (3)

Let

Q(α, β) =
1
2 − cosα cosβ

sinα sinβ
,

then

Q′α(α, β) =
∂Q(α, β)

∂α
= 2 cosβ − cosα

2 sin2 α sinβ
.

From this it follows that if 0 < α, β ≤ θ0, then cosβ > 1
2 (because θ0 < 60◦); so then

Q′α(α, β) > 0, and Q(α, β) ≤ Q(θ0, β) ≤ Q(θ0, θ0). Therefore,

1
2 − cos θi cos θj

sin θi sin θj
≤

1
2 − cos2 θ0

sin2 θ0
=

1
2 − t2

0

1− t2
0

.

Combining this inequality and (3), we get

cos(ϕi − ϕj ) ≤
1
2 − t2

0

1− t2
0

.

Note that arccos(( 1
2 − t2

0 )/(1− t2
0 )) ≈ 76.582◦ > 72◦. This implies that m ≤ 4 because

no more than four points can lie in a circle with the minimum angular separation between
any two points greater than 72◦.
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4. Now we have to prove that hmax = max {h0, h1, h2, h3, h4} < 13. We obviously
have h0 = f (1) = 10.11 < 13.

From (i) follows that f (− cos θ) is a monotone decreasing function in θ on [0, θ0].
Then, for m = 1, H(y1) = f (1)+ f (− cos θ1) attains its maximum at θ1 = 0,

h1 = f (1)+ f (−1) = 12.88 < 13.

5. Let us consider for m = 2, 3, 4 an arrangement {e0, y1, . . . , ym} in S2 that gives
H(Y ) = hm . Here yi = e0 (see 3). Note that in this arrangement, points yk cannot be
shifted towards e0 because in this case H(Y ) increases.

For m = 2 this yields e0 ∈ y1 y2, and dist(y1, y2) = 60◦. If e0 /∈ y1 y2, then the whole
arc y1 y2 can be shifted towards e0. If dist(y1, y2) > 60◦, then y1 (and y2) can be shifted
towards e0.

For m = 3 we prove that�3 = y1 y2 y3 is a spherical regular triangle with edge length
60◦. As above, e0 ∈ �3, otherwise the whole triangle can be shifted towards e0. Suppose
dist(y1, yi ) > 60◦, i = 2, 3, then dist(y1, e0) can be decreased. From this, it follows that
for any yi at least one of the distances {dist(yi , yj )} is equal to 60◦. Therefore, at least
two sides of�3 (say y1 y2 and y1 y3) have length 60◦. Also dist(y2, y3) = 60◦, conversely
y3 (or y2 if e0 ∈ y1 y3) can be rotated about y1 by a small angle towards e0 (Fig. 3).

For m = 4 we first prove that �4 := conv Y (the spherical convex hull of Y ) is a
convex quadrilateral. Conversely, we may assume that y4 ∈ y1 y2 y3.

The great circle through y4 that is orthogonal to the arc e0 y4 divides S2 into two
hemispheres: H1 and H2. Suppose e0 ∈ H1, then at least one yi (say y3) belongs to
H2 (Fig. 4). So the angle ∠e0 y4 y3 is greater than 90◦, then (again from the law of
cosines) dist(y3, e0) > dist(y3, y4). Thus, θ3 = dist(y3, e0) > dist(y3, y4) ≥ 60◦ > θ0,
a contradiction.

Arguing as for m = 3 it is easy to prove that for any vertex yi there are at least two
vertices yj at a distance 60◦ from yi . Note that the diagonals of �4 cannot both be of
length 60◦. Conversely, at least one side of �4 is of length less than 60◦. Thus, �4 is a
spherical equilateral quadrangle (rhomb) with edge length 60◦.
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6. Now we introduce the function F1(ψ),
1 where ψ ∈ [60◦, 2θ0]:

F1(ψ) := max
ψ/2≤θ≤θ0

{F̃1(θ, ψ)}, F̃1(θ, ψ) = f (− cos θ)+ f (− cos(ψ − θ)).

So if dist(yi , yj ) = ψ , then

f (− cos θi )+ f (− cos θj ) ≤ F1(ψ). (4)

Therefore,

H(y1, y2) ≤ h2 = f (1)+ F1(60◦) ≈ 12.8749 < 13.

7. Let m = 4, d1 = dist(y1, y3) and d2 = dist(y2, y4). Since �4 = y1 y2 y3 y4 is a
spherical rhomb, we have cos(d1/2) cos(d2/2) = 1

2 (Pythagorean theorem, the diagonals
y1 y3, y2 y4 of �4 are orthogonal). So if

ρ(s) := 2 arccos
1

2 cos(s/2)
,

then

ρ(d1) = d2, ρ(d2) = d1, ρ(90◦) = 90◦, ρ(ρ(s)) = s.

Suppose d1 ≤ d2. The inequalities θi ≤ θ0 yield d2 ≤ 2θ0. Then

ρ(2θ0) ≤ d1 ≤ 90◦ ≤ d2 ≤ 2θ0.

Now we consider two cases:

(1) ρ(2θ0) ≤ d1 < 77◦, and
(2) 77◦ ≤ d1 ≤ 90◦.

(1) Clearly, F1(ψ) is a monotone decreasing function in ψ. Then (4) implies

f (− cos θ1)+ f (− cos θ3) ≤ F1(d1) ≤ F1(ρ(2θ0)),

f (− cos θ2)+ f (− cos θ4) ≤ F1(d2) = F1(ρ(d1)) < F1(ρ(77◦)),

so then

H(Y ) < f (1)+ F1(ρ(2θ0))+ F1(ρ(77◦)) ≈ 12.9171 < 13.

(2) In this case we have

H(Y ) ≤ f (1)+ F1(77◦)+ F1(90◦) ≈ 12.9182 < 13.

Thus, h4 < 13.

1 For given ψ , the value F1(ψ) can be found as the maximum of the ninth degree polynomial �(s) =
F̃1(θ, ψ), s = cos (θ − ψ/2), on the interval [cos(θ0 − ψ/2), 1].
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8. Our last step is to show that h3 < 13.2

Since�3 is a regular triangle, H(Y )= f (1)+ f (− cos θ1)+ f (− cos θ2)+ f (− cos θ3)

is a symmetric function in the θi , so it is sufficient to consider the case θ1 ≤ θ2 ≤ θ3 ≤ θ0.

In this case R0 ≤ θ3 ≤ θ0, where R0 = arccos
√

2/3 ≈ 35.2644◦ is the (spherical)
circumradius of �3.

Let yc be the center of �3. We have γ := ∠y1 y3 yc = ∠y2 y3 yc. Using the law of
cosines for the triangle y1 y3 yc, we get γ = arccos

√
2/3, i.e. γ = R0.

Denote the angle ∠e0 y3 yc by u. Then (see Fig. 5)

cos θ1 = cos 60◦ cos θ3 + sin 60◦ sin θ3 cos (R0 − u),

cos θ2 = cos 60◦ cos θ3 + sin 60◦ sin θ3 cos (R0 + u),

where 0 ≤ u ≤ u0 := arccos(cot θ3/
√

3)− R0. Note that if u = u0, then θ2 = θ3; u = 0
yields θ1 = θ2; and if 0 < u < u0, then θ1 < θ2 < θ3.

For fixed θ3 = ψ , H(y1, y2) is a polynomial of degree 9 in s = cos u. Denote by
F2(ψ) the maximum of this polynomial on the interval [cos u0, 1].

Let

{ψ1, . . . , ψ6} = {R0, 38◦, 41◦, 44◦, 48◦, θ0}.
It is clear that F2(ψ) is a monotone increasing function in ψ on [R0, θ0]. From the other
side, f (− cosψ) is a monotone decreasing function in ψ . Therefore for θ3 ∈ [ψi , ψi+1]
we have

H(Y ) = H(y1, y2)+ f (− cos θ3) < wi := F2(ψi+1)+ f (− cosψi ).

Since,

{w1, . . . , w5} ≈ {12.9425, 12.9648, 12.9508, 12.9606, 12.9519},
we get h3 < max{wi } < 13.

Thus, hm < 13 for all m as required.

Appendix. Proof of Lemma 1.

In this proof we use Schoenberg’s original proof [18] which is based on the addition
theorem for Gegenbauer polynomials.3 The addition theorem for Legendre polynomials

2 A more detailed analysis shows h3 ≈ 12.8721, h4 ≈ 12.4849.
3 Pfender and Ziegler [17] give a proof as a simple consequence of the addition theorem for spherical

harmonics. This theorem is not so elementary. The addition theorem for Legendre polynomials can be proven
by elementary algebraic calculations.
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was discovered by Laplace and Legendre in 1782–1785:

Pk(cos θ1 cos θ2 + sin θ1 sin θ2 cosϕ)

= Pk(cos θ1)Pk(cos θ2)+ 2
k∑

m=1

(k − m)!

(k + m)!
Pm

k (cos θ1)P
m
k (cos θ2) cos mϕ

=
k∑

m=0

cm,k Pm
k (cos θ1)P

m
k (cos θ2) cos mϕ,

where

Pm
k (t) = (1− t2)m/2

dm

dtm
Pk(t).

(See the details in [4] and [7].)

Proof. Let X = {x1, . . . , xn} ⊂ S2 and let xi have spherical (polar) coordinates (θi , ϕi ).
Then from the law of cosines we have

cosφi, j = cos θi cos θj + sin θi sin θj cosϕi, j , ϕi, j := ϕi − ϕj ,

which yields

∑
i, j

Pk(cosφi, j ) =
∑
i, j

k∑
m=0

cm,k Pm
k (cos θi )P

m
k (cos θj ) cos mϕi, j

=
∑

m

cm,k

∑
i, j

um,i um, j cos mϕi, j , um,i = Pm
k (cos θi ).

We prove that for any real u1, . . . , un ,
∑
i, j

ui u j cos mϕi, j ≥ 0.

Pick n vectors v1, . . . , vn in R2 with coordinates vi = (cos mϕi , sin mϕi ). If v = u1v1+
· · · + unvn, then

0 ≤ ||v||2 = 〈v, v〉 =
∑
i, j

ui u j cos mϕi, j .

This inequality and the inequalities cm,k > 0 complete our proof.

References

1. M. Aigner and G.M. Ziegler, Proofs from THE BOOK, Springer, New York, 1998 (first edn.), 2002 (second
edn.)

2. K. Anstreicher, The thirteen spheres: a new proof, Discrete Comput. Geom., 31 (2004), 613–625.
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