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Abstract—Human action and activity recognition from videos
has attracted an increasing number of researchers in recent
years. However, most of the works aim at multimedia retrieval
and surveillance applications, but rarely at humanoid household
robots, even though the robotic perception of human activities
would allow a more natural human-robot interaction (HRI).
To encourage future studies in this domain, we present in this
work a novel data set specifically designed for the application
in HRI scenarios. This Robo-kitchen data set consists of 14
typical kitchen activities recorded in two different stereo-camera
setups, and each performed by 17 subjects. To establish a baseline
for future work, we extend a state-of-the-art action recognition
method to be applicable on the activity classification problem
and evaluate it on the Robo-kitchen data set showing promising
results.

I. INTRODUCTION

Automatic situation understanding from video is important
for many applications, such as video retrieval and surveillance
and thus, gains an increasing amount of attention in computer-
vision research. Humanoid service robots can also greatly ben-
efit from understanding household situations, since it allows to
establish more natural human robot interfaces. As a possible
application, the robot may take the role of a butler observing
the scene from a point in the background and offering unso-
licited help whenever he assesses that it might be required. In
this paper we present a data set specifically designed for this
scenario since to the best of our knowledge no such data is
publicly available yet. Instead, novel approaches in action and
activity classification are currently only developed to perform
well on benchmarks posing different challenges than those
emerging in the humanoid robots domain.

Both terms, action and activity, are used interchangeably in
the literature. In the following, we will be using the taxonomy
as used by Moeslund et al. [1], where an action describes an
atomic meaningful motion event, such as Pick Up Object or
Jump. However, activities denote complex action sequences
often getting their meaning from interaction with objects or
the overall context. It should be noted, that the distinction
between actions and activities is not always clear. For instance,
the activity Sweep Floor might also be regarded as a periodic
action due to its quite simple nature.

The aim of our paper is to establish a basis for the
comparison of holistic activity recognition approaches for
humanoid robots. We hope that our Robo-kitchen data set will
encourage researchers to focus their work on this challenging

task that is closely related to real-world applications. As a
setting for our recordings we selected a kitchen scenario, since
it provides a vast range of possible activities for which a
robot might offer his help. The setup has been designed to
resemble one of a humanoid robot as closely as possible.
All of this poses many challenges for view-based activity
recognition approaches, such as cluttered background, difficult
lighting conditions, (self-)occlusions, different view-points,
and a limited field of view. Also, because only a limited
amount of space is available on a robotic platform, we only
used cameras with small enough optics that makes them
capable of being integrated on a robotic head, but also induces
noisy video data. Most importantly, we barely restricted the
way how the recorded subjects had to perform the activities
resulting in a collection of natural motions with much variation
as opposed to most currently publicly available data sets.
Imitating humanoid robots in our setup however also results in
the use of stereo cameras, which can be beneficial for activity
recognition, since it allows for person tracking and extraction
of motion trajectories in 3D. We argue that while in motion,
the robot is already occupied with performing a task and thus
it is sufficient for the robot to assess the room situation while
standing still. For this reason, only static cameras were used
for the recordings.

The second contribution of this paper is an extension of a
view-based state-of-the-art action classification algorithm to
make it applicable for activity recognition. The aim is to
provide baseline results for future developments in the area
of activity recognition for humanoid robots with the focus on
a shortest possible response time.

II. RELATED WORK

In recent years, human action and activity recognition
from video has gotten much attention in the computer vision
community. A detailed overview over the current state-of-the-
art can be found in the surveys from Moeslund et al. [1],
Turanga et al. [2], and Poppe [3]. To establish a basis for
the comparison of novel action recognition approaches, many
data sets have been published, which are targeted at different
applications. Two very early data sets that have become the
de-facto standard action recognition benchmarks are the KTH
[4] and the Weizman data sets [5]. Both contain only few
and relatively simple, periodic actions, such as Running or
Boxing that are performed in very constrained environments



and do not contain much intra-class variations. The IXMAS
[6] and the HumanEva [7] data sets are conceptually similar
to the aforementioned ones in the sense of a simplified
setting. However, they were recorded using a multiple camera
setup making the data also suitable to evaluate approaches
aiming at view-independent action recognition, which is still
a very challenging topic. All of these data sets are of limited
relevance to practical applications, since the contained actions
are composed of distinct movements often making them appear
unnatural. Also, the recorded actions have a lack of variability
in body postures when being compared to the same actions
performed in the context of daily living activities. Thus, these
shortcomings prompted the development of datasets containing
more natural and complex actions.

Because it is difficult for people to act naturally when
participating in an artificially set data collection, Laptev et
al. began with creating data sets based on actions performed
in movies [8]–[10]. A similar approach was taken by Liu et al.,
who collected a set of realistic and very diverse videos from
YouTube [11]. This new generation of action data sets contains
interaction events between humans, actions involving object
manipulation and much variability with respect to viewing
angles, lighting, background and actors. Yet, even though the
setting got much more challenging, the data sets still contain
only very simple, atomic actions and are mostly aimed at video
retrieval applications.
Recently, many data sets for the evaluation of more complex
action sequences, i.e., activities, have been published [12]–
[15], all of them set in a kitchen scenario. Besides of video
recordings, these data sets also contain motion capture infor-
mation and data captured with different other sensors (e.g.,
RFID, microphones, accelerometers). Thus, their primary aim
is mainly the development of multimodal model-based activity
recogntion approaches. However, their visual sensor setup
restricts them mostly to the domain of smart room. The CMU
kitchen data set [12] contains videos of 43 actors preparing
five different recipes, which were recorded from different
camera views. Since the actors are wearing many invasive
sensors during the recordings, their motions are influenced by
the equipment which reduces the realism of the performed
activities and also may disturb holistic activity recognition
approaches. Because all of the five action sequence types
can be actually tagged with one single activity Cooking, the
data set has only a limited applicability for the evaluation of
algorithms aiming at a household robot scenario, where many
other activities are to be classified. In a similar fashion, the
TUM Kitchen Data Set [13] also contains only one activity
class, Set Table, which is performed by three subjects recorded
in overhead views from four different angles. The POETICON
and the OPPORTUNITY data sets consist of recordings of
natural activities for which the actors were barely restricted
in the way how to perform the activities. The focus of the
rather small (6 activity classes, each performed three times)
POETICON corpus lies on collaborative two person activities,
while main feature of the OPPORTUNITY data set is its size,
since it is to date the largest publicly available multimodal

(a) countertop:fridge (b) countertop:sink

(c) countertop:corner (d) room:door

(e) room:window

Fig. 1. Sample images from the different camera views used in both setups.

activity recognition data set. It consists of two types of
recordings - an activities of daily living (ADL) run and a
drill run - each performed by 12 different subjects. During
one ADL run, nine long lasting activities are performed in a
sequential way. The goal of the drill run is to generate many
instances of simple actions and thus each subject repeats 20
times a sequence of such actions (eg., open a door, drink).

As with the Robo-kitchen data set, the main application
domain of the MINTA data set [16] are humanoid household
robots. It contains recordings of six activitiy classes that are
performed by each of the ten subjects ten times and also
includes annotations of 60 temporally fine grained action
primitives. However, its major drawback is, that it is set in
a very simplified and thus unrealistic scenario. The University
of Rochester Activities of Daily Living data set, published by
Messing et al. [17], mostly resembles our Robo-kitchen data
set. It consists of ten activity classes shot at a high resolution
with a frame rate of 30 fps. Each activity is performed three
times by each of the five different subjects in front of a non-
uniform background and includes object interactions, as well
as some variability with respect to the way the activities are
performed and the subjects’s appearance, i.e., age, gender, and
ethnicity. Still, the performed activities are relatively short,
simple and appear in some cases to be performed in an
unnatural fashion. Also, in contrast to our work the data
set contains neither stereo camera recordings nor multiple
viewpoints.



Regarding action and activity recognition algorithms, re-
searchers recently drew much motivation from approaches suc-
cessfully applied to object detection and recognition problems.
Especially, holistic approaches based on Space-Time Interest
Points (STIP), which are a temporal extension of the popular
local feature detectors, e.g., SIFT [18], gained a significant
amount of attentionin the research community, e.g., [19]–[22].
In a similar fashion, many spatial local feature descriptors are
extended to the temporal dimension, e.g., temporal versions
of histograms of oriented gradients (HOG) [9], [23], SIFT
[24], and SURF [21]. In order to capture motion information,
many descriptors have been proposed based on optical flow,
e.g., [8], [17], [25]. Usually, feature types encoding motion
and appearance are used in a combined fashion, which is in
fact, according to recent studies in neuro-science, in line with
the way humans perceive motion patterns [26]. A comparative
evaluation of different combinations of STIP detectors and
descriptors can be found in [27] and [28]. The low-level
features are either mapped directly to the appropriate action
class, e.g., [8], [29], or first combined, e.g., with a bag-of-
features model [30] and then classified with an SVM, as shown
in, e.g., [9], [25].

Approaches dealing with the more complex task of classi-
fying simple activities and person interactions can be found in
e.g., [31], [32]. Wojek et al. investigated a multilayer HMM-
based approach for the recognition of more complex office
room activities, such as Meeting or Paperwork in [33]. Re-
cently, Ryoo and Aggarwal [34] proposed a method to recog-
nize multiple multi-person high-level activities by augmenting
a bag-of-features model with spatial and temporal relations.
In this paper, we also follow a bag-of-features paradigm as
presented by Laptev et al. [9] but extend it for the recognition
of complex activities. The extension is motivated by the work
of Schindler et al. [35] in the field of action recognition, as
well as our focus on recognizing kitchen activities consisting
of a quasi-periodic repetition of atomic actions.

III. THE KIT ROBO-KITCHEN DATA SET

In order to best capture the challenges that occur in the
humanoid household robot domain, the Robo-kitchen data
set1 was specifically designed to match the setup of the
robot ARMAR III [36]. As opposed to most current publicly
available data for the evaluation of holistic human motion
understanding approaches, the focus of the presented data
set is to capture complex, long-lasting, quasi-periodic, and
realistic kitchen activities. The recordings were conducted with
multiple stereo cameras at a resolution of 640 × 480 pixels
and a frame rate of 15 fps. The cameras were positioned
at different locations in the room that are easily accessible
by a robot platform. The use of multiple view-points allows
for the evaluation of activity recognition approaches aiming
at achieving robustness to view changes which we hope to
achieve by exploiting depth from stereo. It is also expected
that the depth information will improve activity recognition,

1http://cvhci.anthropomatik.kit.edu/projects/act/kitchen

TABLE I
OVERVIEW OF THE ROBO-KITCHEN DATA SET.

Camera resolution 640× 480 pixels
Frame rate 15 fps

Number of activities 14
Activities with 2 viewpoints 9
Activities with 3 viewpoints 5

Number of actors per activity 17

since it allows to infer the 3D position of persons in the room,
which is a strong prior on the likelihood of specific activities.
Table I summarizes the technical details about the recorded
data.

One of our main goals was that the activities were per-
formed as natural as possible and thus, the subjects only
got brief information about what to do, such as where to
find the required objects, for how many people to set the
table or to perform the activity at a location of their choice
at the table. Each activity has been performed once by 17
different subjects of different age, gender, cultural background,
and household skills in order to capture a hight amount of
variation, as opposed to having only few actors repeating the
activities several times. The duration of a video sequence
varies between 10 s and 4 min, depending on the complexity
of the activity and the thoroughness of the subject. For the
recordings, two different camera setups have been used, one
focussing on activities performed in the countertop area of the
kitchen and the other for the whole room area. The reasoning
for using two setups is that persons working at the countertop
occlude the area where the activity takes place with their body
when viewed from the room setup. In such cases, the robot
should recognize that his position is not optimal for activity
recognition and then move to a more suitable one.

Using the countertop setup, we recorded seven different
activities, which are described including their canonical names
in Tab. II. All of the activities have been recorded from three
different view-points at the same time, with the exception
of Wash and Dry because the camera in front of the sink
had to be removed in order to allow access. It should be
noted, that one of the cameras cannot be reached by a robot
platform. However, since achieving robustness to view changes
in activity recognition is an important, but still open topic, it
has been added to the setup. Samples from the resulting views
are given in Fig. 1 (a)-(c).

The recordings using the room setup are meant to model
one of the primary applications of activity recognition for
humanoid household robots. The key idea is that the robot
takes the role of a servant observing the scene from a place
where he has a good view over the room and his help if
he assesses it might be required. Situation understanding is
also important for the robot when entering a room in search
for a new task to be performed. Note that only two camera
views were used for the room recordings, but the positions of
both are easily reachable by a robot platform. Figure 1 (d)-(e)
contains examples of the field of view of the cameras used in
this setup and Tab. III a list of the recorded activities. Many



TABLE II
DESCRIPTION OF ACTIVITIES RECORDED USING THE “COUNTERTOP”

SETUP.

Activity Description Seq. Length (s)
µ σ

peel Peeling some vegetables (carrots,
cucumbers, potatoes) with a peeler.

137 66

cut Slicing the peeled vegetables with
a knife.

116 59

fry Frying the sliced vegetables in a
pan.

75 17

stir Stirring of soup in a pot on the
stove.

69 18

wipe Wiping the countertop with a cloth. 34 24
wash Washing the dishes in the sink. 133 64
dry Drying and storing the washed

dishes.
86 44

TABLE III
DESCRIPTION OF ACTIVITIES RECORDED USING THE “ROOM” SETUP.

Activity Description Seq. Length (s)
µ σ

peel Peeling some vegetables (carrots,
potatoes) with a peeler.

118 70

cut Slicing the peeled vegetables with
a knife.

93 45

wipe Wiping the table with a cloth. 90 19
set table Setting the table for three people. 110 19
clear table Moving dishes from the table to the

dishwasher.
99 19

empty
dishwasher

Emptying the dishwasher and stor-
ing the dishes and silverware in
cupboards and drawers.

67 13

sweep Sweeping the floor with a broom. 90 21
coffee Reading a newspaper at the table

and occasionaly sipping a cup of
coffee.

149 47

pizza Eating pizza with fork and knife. 70 61
soup Eating soup with a spoon. 128 51

of the ten room activities involve walking around the whole
kitchen area and perform different tasks at different locations.
For example, the activity Set Table consists of opening/closing
cupboards and drawers and several repetitions of picking up
objects, transporting them to the table, and placing them at the
proper place.

IV. ACTIVITY RECOGNITION

Motivated by the success of bag-of-features (BoF) repre-
sentations of interest points for object classification, recently
many researchers extended such approaches to the temporal
domain with the outcome of state-of-the-art action recognition
approaches. Following the same idea, our activity recognition
system that is meant as a baseline for future research is
based on a spatio-temporal extension of the Harris interest
point detector [9]. Each such Space-Time Interest point (STIP)
defines a three-dimensional volume within a video sequence
whose extension depends on the size of the detected structure.
To encode the local structure, we subdivide the volume in
a grid of (nx = 3, ny = 3, nt = 2) cuboids, which are
each described with a single normalized histogram of oriented
gradients (HOG) and a histogram of optical flow (HOF). We
calculate the HOG descriptors by applying a Sobel filter to

the image data and then discretizing the gradient orientation
to four equal sized classes. In a similar fashion, HOF features
are calculated by binning the optical flow vectors within
each sub-cuboid to a five-dimensional histogram with four
bins representing motion direction and one bin when no
motion is present. For the optical flow calculation, we use
an implementation of the KLT tracker.

Before being mapped to an activity class, all low-level
features calculated within a time interval are combined as
a BoF for each feature type, i.e., HOG and HOF. We
learn the codebook using k-means clustering with a random
initialization of the cluster centers within the training data
boundaries. To be less dependent on the initial cluster position,
codebook learning is performed 30 times and the outcome
of the training episode yielding the most compact clusters is
taken. As suggested in [9], we subsample an equal amount
of STIP descriptors from each training video in order to
speed up the codebook building process. To build the BoF
model, we calculate a histogram where each low-level feature
contributes to the bin associated with the most similar (i.e.,
nearest) codebook word. The resulting HOG and HOF BoF
representations are normalized and concatenated to form the
feature vector for SVM classification. These vectors form the
input for an SVM classifier using a χ2-kernel and following
a one-vs-all strategy to cope with multiple activity classes.

When used for action recognition, each video sequence is
fully encoded with one BoF representation which is used
for classification. However, this procedure is not feasible
for a humanoid household robot, since it should obtain an
estimate of the current situation online to ensure a very short
response time. Motivated by the work of Kläser et al. [23]
demonstrating that only few frames suffice to recognize simple
actions, we base our system on short activity snippets. This is
possible because we focus on recognising household activities
that consist of a quasi-periodic repetition of simple action
sequences. Thus, snippets of a length capturing at least one
period should be meaningful enough for activity recognition.
Since in the household robot scenario it is important to assess
the current situation at any time, we use activity snippets
located at each possible location within a video sequence for
the experimental evaluation.

V. EXPERIMENTAL EVALUATION

For the experimental evaluation of the activity recognition
system, we split the data in a development set, consisting
of seven subject and used the sequences from the remaining
ten subjects for testing purposes. Since the humanoid robot
application of activity recognition requires that an estimation
can be done at each time step, all possible activity snippets
have been calculated as described in Sec. IV and used for
classification. As proposed by Laptev et al. [9], we randomly
sampled 100, 000 features to build the BoF codebooks and
initialized the clustering algorithm with 4, 000 means. In order
to speed up classifier training, we sampled 50 activity snippets
from each training video. A set of suitable SVM kernel



parameters has been determined with 10-fold cross-validation
using the development data.
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Fig. 2. Classification accuracy on the test set using different long activity
snippets.

The most important question concerns a suitable length of
the activity snippets, since the choice comes with a trade-
off between classification accuracy and response-time for the
robot. On the one hand, it is desired to get an estimate after
a very short recording time, but on the other hand, longer
snippets capture more information about the activity and thus
lead to a higher classification rate. To investigate the impact of
the snippet length on the classification accuracy, we evaluated
the system starting with a length of 75 frames and increasing
the length by 25 frames up to a total snippet size of 300
frames. As can be observed Fig. 2, in most views using more
than 150 frames snippets does not improve the results enough
to be worth the additional temporal overhead and thus we use
this snippet length for further experiments. For future work,
it is however important to lower the necessary snippet size
while maintaining a high classification accuracy, in order to
minimize the robot’s response time.

Since, the codebook learning process also influences the
system’s performance, we further investigated the impact of
the sample rate and codebook size on the classification accu-
racy. In Fig. 3 exemplary results from the room:door view with
varying codebook parameters can be found. From this experi-
ment, it can be inferred, that to a certain degree it is sufficient
to either increase codebook size or the number of training
samples, depending on the application. This is important when
looking into achieving real-time activity recognition, since
smaller codebooks also mean shortening feature calculation
and classification time and thus improve runtime.

The final experimental results for each view, using 150
frame sized activity snippets and a 4000 words codebook
can be seen in Tab. IV. It is not surprising, that the average
classification accuracy for the room setup is lower than for the
countertop setup, since it consists of more activity classes that
are similar to each other in some cases. Exemplary confusion
matrixes for one view each from the room and the countertop
setup are to be found in Fig. 4 and Fig. 5 respectively. In
both setups, the cut and peel activities are often confused,
which is most likely due to the similarity of the motions
they consist of. However, most of the remaining activities
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Fig. 3. Resulting accuracies for different combinations of sample and
codebook size (10 times run average, room:door view, 150 frames long
snippets).

TABLE IV
CLASSIFICATION ACCURACIES ON THE TEST SET FOR EACH SETUP USING

150 FRAMES LONG SNIPPETS.

setup countertop room
camera corner fridge sink door window

accuracy 96.3 % 88.2 % 95.9 % 84.9 % 80.7 %
activities 7 7 5 10 10

are recognized with an accuracy greater than 90%. It should
be also noted, that the activities cleartable and settable are
rarely confused, even though they mainly consist of the same
actions, which are only performed in a slightly different order.
All of these results support our hypothesis that the use of
short activity snippets is sufficient for classification of complex
quasi-periodic household activities.
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VI. CONCLUSION AND FUTURE WORK

This paper has introduced a novel data set consisting of re-
alistic, complex kitchen activities recorded in a setting closely
resembling a humanoid household robot scenario. We hope
that the presented Robo-kitchen data set will provide a basis
for the development and comparison of activity recognition
approaches aiming at applications in the household robotics
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domain. And we believe this topic to be an important com-
ponent in enhancing a natural HRI, which however has not
attracted much attention in the research community yet.

We further extended a state-of-the-art action recognition
approach for activity classification based on the idea that
typical kitchen activities consist of a quasi-periodic repetition
of atomic actions. The system is evaluated using the presented
Robo-kitchen data set with the focus on future developments,
such as lowering the response time of the robot and achieving
a real-time capability for the recognition system.

In our future work, we intend to address the problems of
robustness against view-point changes. We will also investigate
how depth from stereo can be exploited to improve the activity
recognition accuracy. Since stereo-cameras have been used for
the recordings, it is a logical step to use the depth information
in order to enhance activity recognition by context estimation
through 3D person tracking.
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