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Abstract

The composition of carotenoids, along with anthocyanins and chlorophyll, accounts for the distinctive range of
colour found in the Actinidia (kiwifruit) species. Lutein and beta-carotene are the most abundant carotenoids found
during fruit development, with beta-carotene concentration increasing rapidly during fruit maturation and ripening.
In addition, the accumulation of beta-carotene and lutein is influenced by the temperature at which harvested fruit
are stored. Expression analysis of carotenoid biosynthetic genes among different genotypes and fruit developmental
stages identified Actinidia lycopene beta-cyclase (LCY-B) as the gene whose expression pattern appeared to be
associated with both total carotenoid and beta-carotene accumulation. Phytoene desaturase (PDS) expression was
the least variable among the different genotypes, while zeta carotene desaturase (ZDS), beta-carotene hydroxylase
(CRH-B), and epsilon carotene hydroxylase (CRH-¢) showed some variation in gene expression. The LCY-3 gene was
functionally tested in bacteria and shown to convert lycopene and delta-carotene to beta-carotene and alpha-
carotene respectively. This indicates that the accumulation of beta-carotene, the major carotenoid in these kiwifruit

species, appears to be controlled by the level of expression of LCY-8 gene.

Key words: Beta-carotene, carotenoid biosynthesis, gene expression, kiwifruit, lycopene beta-cyclase.

Introduction

Plants accumulate a huge variety of secondary metabolites.
Carotenoids are one such group of compounds that are
synthesized in the plastids, mainly the chloroplasts and
chromoplasts, by enzymes that are nuclear-encoded
(Hirschberg, 2001). Carotenoids are 40 carbon isoprenoids
that contain polyene chains containing conjugated double
bonds. These compounds are important in nature as they
are involved in light-harvesting, photoprotection, and
pollinator attraction in plants (Tracewell et al., 2001; Szabo
et al., 2005; Dong et al., 2007). They can accumulate to give
attractive yellow, orange, and red pigmentation to some
flowers and fruit (Suzuki et al., 2007; Tanaka et al., 2008).
They are also precursors of vitamin A, implicated in
reducing the progression of diseases such as age-related
macular degeneration, certain types of cancers, and cardio-
vascular diseases (Al-Babili ez al, 2001; Paine et al., 2005;

DellaPenna and Pogson, 2006; Aluru et al, 2008). Fruits
that accumulate high levels of carotenoids therefore can
potentially provide a rich source of these healthy com-
pounds.

The carotenoid biosynthetic pathway in plants is shown
in Fig. 1 (Cunningham et al, 1994; Hirschberg, 2001). The
first committed step is the condensation of two molecules of
geranyl geranyl pyrophosphate (GGPP) to form phytoene,
catalysed by the enzyme phytoene synthase (PSY). The
colourless phytoene is subsequently desaturated to give
zeta-carotene and lycopene (Norris et al., 1995). In bacteria,
the desaturation of phytoene is by one enzyme, carotene
desaturase (Crtl) but in plants, two enzymes, phytoene
desaturase (PDS) and zeta-carotene desaturase (ZDS) are
required (Bartley et al, 1999). The carotenoid pathway
branches at the cyclization of lycopene, which is acted upon

* To whom correspondence should be addressed: E-mail: cdwamena@hortresearch.co.nz

© 2009 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

220z ¥snbny oz uo jsenb Aq 288625/59.¢/€1/09/2101e/gx[/wod dno-olwepede//:sdpy Wwoly papeojumog



3766 | Ampomah-Dwamena et al.
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Fig. 1. Carotenoid biosynthetic pathway in plants. Enzymatic
conversions are shown by arrows with the enzymes responsible
in bold. PSY, phytoene synthase; PDS, phytoene desaturase;
ZDS, zeta-carotene desaturase; CRTISO, carotene isomerase;
LCY-B, lycopene beta-cyclase; LCY-¢, lycopene epsilon-cyclase;
CRH-B, beta-carotene hydroxylase; CRH-¢, epsilon-carotene
hydroxylase.

by lycopene cyclases to produce alpha-carotene and beta-
carotene. The formation of alpha-carotene requires the
addition of an epsilon ring to one end of the linear lycopene
molecule (yielding delta-carotene) by the enzyme lycopene
epsilon cyclase (LCY-g), followed by the activity of
lycopene beta-cyclase (LCY-B), which adds a beta ring to
the other end of the chain. In contrast, beta -carotene
results from the addition of two beta rings to both ends of
the linear lycopene molecule by the lycopene beta-cyclase
enzyme (LCY-B). The flux through the branches is thus
dependent on the relative activities of the cyclases involved.
In maize, polymorphisms in LCY-¢ were found to account
for the accumulation of beta-carotene and xanthophylls
derived from this carotene (Harjes et al., 2008). Similarly, in
the Arabidopsis lutl and [ut2 mutants, in which lutein
accumulation is reduced or completely absent, there is an
increased accumulation of beta-ring-containing carotenoid
compounds (Pogson et al., 1996; Tian et al., 2003). Over-
expression of beta-carotene hydroxylase in transgenic Ara-
bidopsis increased the concentrations of xanthophylls
without any significant reduction in the amount of other
carotenoids, suggesting genetic manipulation of a single step
can increase flux through the pathway (Davison et al.,
2002).

The introduction of single biosynthetic genes into un-
related plant species influences the flux through the whole
carotenoid pathway, indicating the pathway is conserved
and enzyme activity maintained between species. The in-
troduction of the Narcissus (daffodil) phytoene synthase

(PSY), lycopene cyclase (LCY), and bacteria CRTI genes
into rice produced a beta-carotene-rich variety (Ye et al.,
2000; Beyer et al., 2002). Similarly, the co-expression of the
daffodil PSY and bacteria CRTI genes increased beta-
carotene rather than lycopene in rice endosperm (Ye et al.,
2000; Al-Babili et al, 2006). This suggests that the
carotenoid pathway in rice is limited by the enzyme steps
converting phytoene to lycopene that were complemented
by the introduction of heterologous genes through trans-
formation.

Actinidia spp. (kiwifruit) show a considerable variation in
fruit colour. The common commercial species are green-
fleshed Actinidia deliciosa and yellow-fleshed Actinidia
chinensis. However, there are other species currently un-
available commercially that accumulate extremes of antho-
cyanin and carotenoid pigments (Fig. 2). As some green-
fleshed Actinidia genotypes ripen, chlorophyll is degraded in
the skin and flesh to reveal different pigmentation contrib-
uted by carotenoids and anthocyanins (Montefiori et al.,
2005). There is little known about the distribution of
carotenoid accumulation in kiwifruit or the alleles responsi-
ble for the inheritance of these potentially desirable
variations in appearance. Such knowledge would be valu-
able to plant breeders, given the challenges of developing
new kiwifruit varieties in a genus that is both dioecious and
exhibits extensive variation in ploidy.

In order to understand the molecular basis of the
diversity of carotenoid accumulation in kiwifruit, the levels
of key carotenoid compounds have been measured across
various genotypes with different pigmentation phenotypes.
In addition, candidate genes that code for key steps in this
biochemical pathway were identified in kiwifruit and
expression patterns analysed. Our results suggest that the
major carotenoids that accumulate in kiwifruit are beta-
carotene and lutein and that the levels of beta-carotene are
controlled by the transcriptional activity of the lycopene
beta-cyclase gene.

Materials and methods
Plant materials

Kiwifruit varieties were selected from mapping and breed-
ing populations available in New Zealand. Genotypes were
chosen based on colour and collected over the fruit
development phase. MP161, MP165, and MP214 were
selected from an Actinidia chinensis mapping population
(Cheng et al., 2004; Fraser et al., 2004) based on the colour
of ripe fruit. MaMel, 2, and 3 were collected from a cross
between A. macrosperma and A. melanandra. Fruits were
harvested at the mature green stage and stored at room
temperature where samples were selected at different
time points as skin colour changed during ripening.
A. macrosperma fruit were harvested at a mature green
stage for ripening at two different temperatures (4 °C and
20 °C). Fruit samples were picked at intervals and analysed
for colour, gene expression, and carotenoid analysis.
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Fig. 2. Fruit of the Actinidia genotypes used in this study. (A) A. chinensis MP161, (B) A. chinensis MP165, (C) A. chinensis MP214,
(D) A. macrosperma mature, (E) A. macrosperma ripe, (F), A. melanandra. Progeny from a cross between A. macrospermaxA. melanandra:

(G) MaMe1, (H) MaMe2, and (l) MaMe3.

Colour measurement

Fruit colour was measured at 2 cm below the skin surface
on 10 individual fruit from each sample, using a Minolta
Chroma Meter (C-100, Minolta Camera Co. Ltd, Osaka,
Japan). The Chroma Meter was calibrated with a white tile
and black card initially and periodically throughout analy-
sis. The Chroma meter allocates colour coordinates to each
sample using the 3-dimensional LXaxb colour space
(Humphries et al., 2004). The readings were calculated as
Lightness (L), Chroma (C), and Hue angles (H) for each
individual fruit and an average was taken for each sample
to enable comparisons.

Nucleic acid isolation

Fruit samples were snap-frozen in liquid nitrogen and were
kept at —-80 °C or used immediately for RNA isolation.
Total RNA was isolated from fruit tissue after homogeni-
zation using CTAB buffer (Chang et al, 1993). Homoge-
nized tissue (1 g) was put into CTAB buffer at 65 °C and
extracted twice with chloroform isoamylalcohol. The RNA
was precipitated with 3 M LiCl overnight at 4 °C. The
nucleic acid pellet was dissolved in SSTE buffer and
extracted once with chloroform followed by precipitation
with 2 volumes of absolute ethanol at —20 °C for 30 min.
The RNA pellet was redissolved and further DNAse treated

to remove DNA contaminants. Genomic DNA was isolated
from tissues using Qiagen plant DNA isolation kit follow-
ing manufacturer’s instructions.

cDNA synthesis

cDNA was synthesized using Superscript III reverse tran-
scriptase (Invitrogen). Total RNA (0.5-1 pg) from each
sample was used in a reaction with 50 uM oligo dT,)
primer, 500 uM dNTPs, 1x reverse transcription buffer, 5
mM MgCl,, 10 mM DTT, 40 units of RNaseOUT™ and
200 units of Superscript III reverse transcriptase all in a total
volume of 20 pl. The reaction was incubated at 50 °C for 50
min and terminated at 85 °C for 5 min.

Degenerate PCR cloning and quantitative PCR

Actinidia PSY was not found in the EST libraries previously
published (Crowhurst et al., 2008). Degenerate PCR primer
pairs: TATGTKGCTGGTACNGTT, and CTTGCATC-
TTCKCCAACN, spanning a moderately conserved region
of aligned PSY sequences, were designed to amplify a 150
bp fragment from kiwifruit cDNA templates. This was
followed by a nested RACE PCR using sequence specific
forward primers F1 CATTTGGGGGCTTTGGGTTGTGT
and F2 TGCAGTTCGGGACCTTAAGAAACTC in com-
bination with GeneRacer (Invitrogen) primers 3’ P
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GCTGTCAACGATACGCTACGTAACG and 3’ NP
CGCTACGTAACGGCATGACAGTG, respectively.

Primers for Actinidia carotenoid biosynthetic genes were
designed across predicted intron positions of each gene with
Tm of ~60 °C. Primer pairs used for amplification were as
follows: Actin (TGCATGAGCGATCAAGTTTCAAG,
TGTCCCATGTCTGGTTGATGACT), PSY (CGA-
GATTGAAGCCAACGACTAC, GTTCTCGAAGGGG-
CAACAATAG) PDS (AGCAGAAGCCCCCTTCTC
AGTG, TCCTCTGCAGGTGCAAAAACCA), ZDS
(TGCATTGTTTGCCACCAAAACAG, TGCATCCC-
CACCTGAGATGAAA), CRTISO (GGACACCAAAGA-
CACACAGGAG, GTTGTGTTGAATGGCATCCCTA),
LCY-B (GTCGTTCCCGATTCGACGTGAT, TGAAA
GTGGCGAGGGATCAACA), LCY-¢ (TCGGGTCTA
CTCTCTCCTCAGC, GGTCGGAAAGTAGATGCCT-
GAT), CRH-Bp (AGAATCGCATGGCGAAGAGGAG,
GGACATGACTGCAGCGACAAGG), CRH-¢ (AGGTC-
CACCACTAAATGGGATG, AGGTCTGGGAGAGAG-
CAGAAGA).

Quantitative PCR analysis was performed using the
LightCycler System (Roche LightCycler 1.5; Roche Diag-
nostics). All reactions were performed using the LightCycler
FastStart SYBR Green Master Mix (Roche Diagnostics)
following the procedure described by the manufacturer.
Samples were prepared in three replicates. A negative
control using water as template was included in each
reaction. Data were analysed using the Lightcycler software
version 4 and normalized to kiwifruit actin gene expression
because of its consistency across fruit development. PCR
efficiency was calculated for each gene using a standard
curve of serial dilutions and used in relative expression
analysis. For each group of samples, one was selected as
a calibrator and assigned a nominal value of 1.0. Error bars
indicate standard error of the mean of the technical
replicates. The genes examined in this study were deposited
into the GenBank database with the following accession
numbers: ACTIN (FG454048), PSY (FJ797304), PDS
(FG496959), ZDS (FG486987), CRTISO (FG435001),
LCY-p (FG437038), LCY-¢ (FG527328), CRH-§
(FG482821), and CRH-¢ (FJ797305).

Protein purification and enzyme assays

PCR-amplified cDNA of the lycopene beta-cyclase open
reading frame, without a stop codon, was cloned between
the Ndel and Kpnl cloning sites of the pET30 vector
(Novagen) and sequenced to identify the correct clone. The
cloned vector was transformed into BL21 bacteria compe-
tent cells for protein induction and purification. Freshly
streaked cells were grown overnight in Luria-Bertani (LB)
broth and inoculated into a 500 ml culture of auto-
induction medium (ZYM-5052) and grown at 16 °C for 48—
72 h until an ODgyy of ~10. Cells were harvested by
centrifugation and the pellet frozen at —80 °C overnight.
The pellet was thawed on ice and resuspended in His-Bind
buffer with a protease inhibitor. Resuspended cells were
lysed by two passes through an EmulsiFlex-C15 high-
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Fig. 3. A phylogenetic tree of lycopene beta-cyclase using amino
acid sequences of the species shown. The two non-redundant
kiwifruit sequences were most similar to the tomato chromoplast-
specific sequence. The GenBank accession numbers of the
proteins, or translated products, used in the analysis are as
follows: PmLCYB, Prunus mume (plum) [BAF49055]; CsLCYB,
Citrus sinensis (orange) [ABB72443); DcLCYB, Daucus carota
(carrot) [ABB52071]; SILCYB1, Solanum lycopersicum 1 (tomato)
[Q43503]; SILCYB2, Solanum lycopersicum 2 (tomato; chromo-
plast specific) [AAG21133]; AILCYB, Arabidopsis thaliana (thale
cress) [AT3G10230], ZmLCYB, Zea mays (maize) [AAO18661];
Sal CYB, Sandersonia aurantiaca (Chinese lily/Christmas-bells)
[AAL92175]; AALCYB1, Actinidia deliciosa 1 (kiwifruit) [FJ427508];
AdLCYB2, Actinidia deliciosa 2 (kiwifruit) [FJ427509]; SspLCYB,
Synechococcus sp (cyanobacteria) [YP001226999].

pressure homogenizer (Avestin) with a pressure setting
between 15 000-20 000 psi. Cell debris was removed by
centrifugation at 15 000 rpm for 30 min at 4 °C and the
supernatant was filtered through a 0.45 pm filter. The
sample was loaded onto a precharged and equilibrated 5 ml
His Trap column (Pharmacia). The bound proteins were
washed with 50 ml 1x His Trap binding buffer (15-35 mM
imidazole) and eluted at 2 ml min~! using 1x His Trap
elution buffers providing a 0-500 mM imidazole gradient
on FPLC. Fractions corresponding to eluted protein peaks
(at A280 nm) were identified.

Protein (15-20 pg) was resolved by electrophoresis on
NuPAGE Novex 4-12% BIS-TRIS gel (Invitrogen) fol-
lowed by staining with Coomassie Brilliant Blue or electro-
transferred to a nitrocellulose filter for Western analysis.
His-tagged proteins were bound with mouse anti HISg4
antibody followed by mouse alkaline phosphatase treatment
and colour detection with NBT/BCIP.

Carotenoid and chlorophyll extraction

Freshly streaked carotenoid producing bacteria (Cunningham
and Gantt, 1998) were cultured overnight in LB broth with
antibiotics and inoculated into a 500 ml LB in a 2.0 1 flask
and grown at 28 °C, in the dark with shaking at 225 rpm.
Cells were induced by adding IPTG (1.6 mM) and FeSO;
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after the first 24 h and grown for another 24 h. Cells were
harvested by centrifugation and resuspended in 0.5 ml of
distilled water, and 4.5 ml of 10% KOH and carotenoids
extracted using 1:1 methanol:diethyl ether (v/v) followed by
100% DEE. NaCl (5 ml of 5 M) was added to the DEE
extract and the organic phase removed. This was followed by
two washes with water and the organic phase was recovered
and dried by flushing with N».

Carotenoid and chlorophyll were extracted from fruit
samples using the method described earlier by Montefiori
et al. (2005). Fruit tissue (1-2 g) was freeze-dried and
homogenized in 5 ml acetone with 0.1% butylated hydrox-
ytoluene (BHT) in the presence of 100 mg of Na,CO; and
500 mg of anhydrous Na,SO4. Homogenates were stored at
4 °C, in the dark overnight. The supernatant was extracted
using 2 ml of diethyl ether and 8 ml of 10% (w/v) NaCl with
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Fig. 4. Accumulation of beta-carotene (A) and lutein (B) in
Actinidia chinensis genotypes; MP161 (white bars), MP165
(hatched bars), and MP214 (black bars). Fruits were picked at
developmental stages 20, 50, 90, and 150 d after full bloom and
the pericarp analysed for their carotenoid concentration using
HPLC. Error bars are standard errors of the mean of three
technical samples.
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centrifugation at 3000 g for 10 min. The combined ether
phases were taken to dryness by flushing with N.

HPLC analysis of pigments

The dried carotenoid samples were dissolved in 700 pl of
0.8% BHT/acetone and the pigment concentrations deter-
mined by reversed-phase high performance liquid chromatog-
raphy (HPLC). A Waters HPLC system comprising an
Alliance Separations Module (W2690), photodiode array
detector (Model 996), and a fluorescence detector (474) was
used. Pigment separation was achieved using a YMC C30
Carotenoid HPLC column (250x4.6 mm) at a flow rate of
1 ml min~" and 5 pl sample injections. Solvent A was HPLC
grade methanol and solvent B was HPLC grade dichloro-
methane. A binary gradient was used with starting conditions
of 95% A and 5% B changing linearly to 10% B at 5 min,
20% B at 15 min, 40% B at 30 min, and finally 60% B at 53
min. The composition was held at 60% B until 42.5 min and
then returned to starting conditions and held for 5 min before
the next injection. Carotenoid composition was monitored at
455 nm, and chlorophylls with fluorescence (ex 440 nm, em
660 nm). All chromatographic data were processed using a
Chromeleon Chromatography Management System (Dionex
Corporation). Chromatographic peaks were identified by
comparison of retention times and UV/Vis spectra with
authentic standards of alpha-carotene, lutein, violaxanthin,
antheraxanthin, zeaxanthin, chlorophyll @, and chlorophyll 5.
Concentrations were calculated by interpolation using a stan-
dard curve prepared from authentic standards for alpha-
carotene, lutein, chlorophyll @, and chlorophyll b; all other
carotenoids were quantified as lutein equivalents.

Sequence analysis

Candidates of the kiwifruit carotenoid biosynthetic genes
were identified from an expressed sequence tags (EST)
database (Crowhurst et al, 2008) using TBLASTN with
known carotenoid genes (cut-off value of e-20). The
candidates were completely sequenced and translated for
alignment and tree reconstruction. Tree reconstruction was
done using the MEGA 3.1 package program (Kumar et al.,
2004) and the reliability of tree reconstruction was

Table 1. Total carotenoid and chlorophyll levels in Actinidia
chinensis (ug g~ fresh weight) by HPLC

Carotenoid and chlorophyll concentrations measured in fruit of three
Actinidia chinensis individuals (MP161, MP165, and MP214) at 50,

90, and 150 d after full bloom (DAFB). Data represent mean from
four replicates.

Fruit genotypes

Mp161 Mp165 Mp214

Fruit stage (DAFB) 50 90 150 50 90 150 50 90 150

2,00 2.35 155 0.63 0.84 0.67 1.94 0.96 0.84
8.07 6.68 0.09 225 298 0.36 3.82 1.26 0.00
429 490 0.00 1.98 2.83 091 3.72 1.79 0.00

Total carotenoids
Chlorophyll a
Chlorophyll b
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Fig. 5. Expression of carotenoid biosynthetic genes in three Actinidia chinensis genotypes MP161, MP165, and MP214. The genes

were phytoene synthase (PSY), phytoene desaturase (PDS), zeta-carotene desaturase (ZDS), carotenoid isomerase (CRTISO), lycopene
beta-cyclase (LCY-f), lycopene epsilon-cyclase (LCY-g), beta-carotene hydroxylase (CRH-f5) and epsilon-carotene hydroxylase (CRH-¢).
Total RNA was isolated from fruit pericarp at same developmental stages as in Fig. 4. Gene expression was determined relative to actin

transcript levels in the samples.

estimated by calculating bootstrap confidence limits based
on 1000 replicates. The GenBank accession numbers of the
proteins, or translated products, used in the analysis are
shown in the legend of Fig. 3.

Results

Bioinformatics and sequence analysis of carotenoid
genes

EST sequences representing the kiwifruit carotenoid bio-
synthetic genes, PDS, ZDS, CRTISO, LCY-B, LCY-¢,
CRH-f3, and CRH-¢ were identified from an Actinidia EST
database (Crowhurst et al, 2008) by TBLASTN analysis
using sequences of known function from other species. No
EST sequence was identified with sufficient homology to the
phytoene synthase gene, suggesting PSY is expressed at
a low level in the tissues used to generate the EST libraries.
A 1.59 kb kiwifruit PSY was therefore isolated, using
degenerate and RACE PCR, from Actinidia chinensis
cDNA templates. Candidate carotenoid biosynthetic genes
were present in Actinidia deliciosa and Actinidia chinensis

fruit and vegetative bud libraries. The kiwifruit PDS protein
sequence has 87% identity to both the Arabidopsis
(AT4G14210) and capsicum (CAA48195) PDS. The ZDS
candidate showed 80% amino acid identity to Arabidopsis
(AT3G04870) and 83% to tomato ZDS (EF650012). Two
non-redundant LCY-f sequences were identified in our EST
databases representing two genes AdLCY-f1 and AdLCY-
2 with 88% similarity. Both sequences could be found in
the same kiwifruit species and the primers designed were
able to detect transcripts from both genes. AdLCY-f1
(FJ427508) showed 56% identity to  Arabidopsis
(AT3G10230), 53% to carrot LCY-B (ABB52071) and was
phylogenetically more closely related to the tomato
chromoplast-specific LCY-f (AAG21133), than the other
LCY-Bs examined (Fig. 3). The kiwifruit CRH-B has 67%
and 63% identity, respectively, to the Arabidopsis genes
AT5G52570 and AT4G25700.

Carotenoid accumulation and gene expression in
Actinidia

Carotenoid accumulation patterns were measured in
a range of Actinidia genotypes and individuals from
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Table 2. Carotenoid contents (ug g~ fresh weight) in fruit of an Actinidia macrospermaxA. melanandra cross by HPLC

Carotenoid concentrations were measured in fruit of three individuals from an Actinidia macrospermaxActinidia melanandra cross (MaMe1,
MaMe2, and MameQ) at matured green-fruit stage (S0) and three different stages of fruit-colour change during ripening (S1-S3). Data shown

are means of four replicates.

Genotype Stage Alpha-carotene Lutein Beta-carotene Zeaxanthin Antheraxanthin Violaxanthin Neoxanthin

Total carotenoids

MaMe1 SO 0.30 6.80 4.08 0.11
S 0.05 2.38 1.00 0.00
S2 0.01 1.86 117 0.02
S3 0.08 6.20 7.07 0.52
MaMe2 SO 0.02 2.10 0.40 0.06
S 0.00 2.10 0.60 0.00
S2 0.02 2.46 1.84 0.04
S3 0.31 3.81 3.45 0.37
MaMe3 SO 0.28 7.97 4.93 0.16
S1 0.03 3.34 1.97 0.00
S2 0.04 2.62 2.41 0.00
S3 0.22 1.50 6.11 0.12

0.12 1.83 0.70 16.65
0.00 0.36 0.22 4.57
0.00 0.34 0.11 412
0.00 0.56 0.13 16.34
0.01 0.27 0.19 3.69
0.00 0.11 0.06 3.20
0.00 0.15 0.04 5.65
0.00 0.26 0.12 8.92
0.09 1.80 0.67 19.80
0.00 0.46 0.21 7.25
0.00 0.16 0.14 6.41
0.00 0.10 0.02 8.76

specific crosses (Fig. 2). Fruit at different developmental
stages and exposed to a range of temperature treatments
were also examined. The relationship between carotenoid
levels and gene expression was also studied by examining
the relative expression of carotenoid biosynthetic
genes, PSY, PDS, ZDS, CRTISO, LCY-f, LCY-¢ CRH-
p, and CRH-¢ in the kiwifruit genotypes using real-time
PCR.

Three Actinidia chinensis individuals (MP161, MP165,
and MP214), with different mature fruit colours, were
selected and their carotenoid concentrations measured
during the fruit development period. Fruit colour was
measured as an indicator of pigment accumulation during
fruit development using a Chroma Meter. MP161 (yellow-
fleshed), MP165 (green-fleshed), and MP214 (pale orange-
fleshed) fruit at 150 d after full bloom (DAFB) had average
hue angles of 96°, 108°, and 98°, respectively (Fig. 2A,
B, O).

Carotenoid concentrations in Actinidia chinensis were
measured by HPLC. None of the well-known linear
carotenoids such as phytoene and lycopene was detected
in these varieties; however, the cyclized carotenes and
the xanthophylls were present (Fig. 4). Of the cyclized
carotenes, beta-carotene was present at the highest concen-
trations while only traces of alpha-carotene could be
detected. Similarly, of the common xanthophylls present,
lutein concentration was highest in most of the samples
analysed, while zeaxanthin was detected at low concentra-
tions. These results suggested a reduced efficiency of beta-
carotene conversion to zeaxanthin and an increased hydrox-
ylation of alpha-carotene to lutein.

The beta-carotene concentration in the fruit increased
with developmental stage. A higher concentration of beta-
carotene was measured at 150 DAFB [1.12 pg g~ ' fresh
weight (FW)] in MP161 fruit compared with 0.33 ug g~!
FW at 50 DAFB (Fig. 4A). In contrast, lutein concen-
trations decreased with developmental stage, with higher
concentrations in fruit at 50 DAFB and lower concentra-
tions in mature fruit (Fig. 4B). MP161 accumulated the

highest lutein concentrations among the three genotypes of
A. chinensis, with concentrations of 1.16 pg g~' FW of
lutein at 50 DAFB, which reduced to 0.4 pg g~' FW at 150
DAFB (Fig. 4). The concentrations of chlorophyll ¢ and
b also decreased with developmental stage of these fruit
(Table 1). Overall, beta-carotene and lutein were the
dominant carotenoids in these A4. chinensis individuals but
showed opposing patterns of accumulation during fruit
development.

Gene expression in Actinidia chinensis

In A. chinensis, the relative expression of PDS, measured
by real-time PCR, was highest in 20, 50, and 90 DAFB
fruits of all three genotypes compared with 150 DAFB
fruit (Fig. 5). The expression profile of ZDS was similar to
that observed for PDS, for all three genotypes. In MP165,
Z DS expression was reduced between the 20 DAFB and 50
DAFB fruit stages, but the expression level increased at 90
DAFB before being down-regulated at 150 DAFB. Over-
all, the expression of PDS and ZDS showed similar
patterns for the three genotypes and suggested that the
expression of these two genes may be co-ordinately
regulated.

The levels of LCY-f transcripts increased in all genotypes
until 90 DAFB. Subsequently, in MP161 and MP165, there
was a decrease in transcript expression levels. For MP214,
this increase was maintained until maturity. The relative
expression of CRH-fi among the three genotypes differed
significantly at 20 DAFB, where MP165 showed high
expression compared with the other two individuals. The
expression of PSY was similar to CRH-f, highest at 20
DAFB but decreasing towards fruit maturity for all three
individuals. At later stages, similar levels of expression were
observed for all three cultivars. The expression of the
carotenoid biosynthetic genes in 4. chinensis showed similar
patterns except for LCY-f, LCY-¢, and CRH-¢ expressions,
which differed significantly among the three genotypes
especially at 150 DAFB.
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Fig. 6. Light micrographs of ripe fruit pericarp from individuals of
an Actinidia macrospermaxA. melanandra cross. (A) MaMe1,

(B) MaMe2, and (C) MaMe3 showing orange-coloured chromo-
plasts. Scale bar=10 um.

Carotenoid accumulation in a cross between
A. macrosperma and A. melanandra

To investigate carotenoid biosynthesis in kiwifruit further,
the carotenoid contents of three individuals from a popula-
tion of 4. macrospermaxA. melanandra (MaMel, MaMe?2,
and MaMe3), were measured. In this cross that segregates
for colour and pigment accumulation, 4. macrosperma
which is a high carotenoid-accumulating variety (McGhie

and Ainge, 2002) was the maternal parent, and the male
parent was A. melanandra. The concentrations of individual
carotenoids were determined at 20 DAFB (S0) and also
when fruit were mature green (S1). During fruit ripening,
both the fruit skin and flesh changed colour to lime green
(MaMel), red (MaMe2), and orange (MaMe3) (Fig. 2G, H,
I); therefore, carotenoid concentrations were determined at
two ripening stages, when colour change was obvious (S2),
and when the colour change appeared complete (S3)
(Table 2).

The carotenoid concentrations of these individuals were
generally higher than those of the A. chinensis population
(Table 1). Fruit at SO had the highest carotenoid concen-
trations, which reduced at fruit maturity and increased
again during ripening. The concentrations of beta-carotene
were always higher than those of alpha-carotene in these
Actinidia species at all the stages examined, while lutein was
present in higher concentrations than zeaxanthin (Table 2).
Beta-carotene concentration was 24% of total carotenoids
in MaMel fruit at SO, and increased during ripening to 40%
at the S3 stage. A similar trend was observed for MaMe2
and MaMe3 fruit, with beta-carotene in MaMe3 accumu-
lating to approximately 70% of total carotenoids in S3
ripened fruit (Table 2). Lutein concentrations increased to
approximately 40% of total carotenoids in MaMel and
MaMe? fruit at the S3 stage whereas zeaxanthin was barely
detectable in these fruit. By contrast, in MaMe3 fruit, the
proportion of lutein was reduced to 17% by the S3 stage.
The beta-ring xanthophylls antheraxanthin, violaxanthin,
and neoxanthin were detected at very low concentrations
in all three A. macrospermaxA. melanandra individuals
(Table 2).

The subcellular localization of carotenoid accumulation
was examined using light microscopy. An abundance of
orange-coloured chromoplasts was observed in the ripe fruit
of MaMe3 and MaMe2 compared with MaMel fruit
(Fig. 6).

Gene expression in individuals from
A. macrospermaxA. melanandra cross

In A. macrospermax A. melanandra, PSY, PDS, and LCY-¢
expressions were highest at 20 DAFB (S0) in all three
individuals but was significantly reduced over the three fruit
ripening stages (S1-S3) (Fig. 7). ZDS expression was
reduced between SO and S1 and did not increase during
ripening in both MaMel and MaMe2. By contrast, MaMe3
showed a high ZDS expression both at SO and an increase
in expression during fruit ripening (Fig. 7). CRTISO
expression showed no increase during fruit ripening while
LCY-p expression was low at SO for all three genotypes but
was elevated at S1, S2, and S3 for MaMel and MaMe3,
although not for MaMe2. MaMe2, compared to the other
two genotypes, was a low carotenoid variety. The expres-
sion of beta-carotene hydroxylase (CRH-f) was down-
regulated between SO and the S1-S3 stages for all three
genotypes while CRH-¢ was up-regulated in MaMe2 at the
S3 stage. Overall, beta-carotene concentrations appeared to
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Fig. 7. Expression of carotenoid biosynthetic genes in individuals of an Actinidia macrospermaxA. melanandra cross: MaMe1, MaMe2,
and MaMe3. Fruit stages were 20 DAFB (S0), matured green (S1), 50% ripe stage (S2), and fully ripe (S3). Gene expression was analysed

at the same stage as the carotenoid measurements in Table 2.

be controlled by the combined gene expression levels of
ZDS and LCY-f in these kiwifruit genotypes.

Carotenoid accumulation during ripening of Actinidia
macrosperma

Post-harvest accumulation of carotenoids in 4. macrosperma
was examined at two different temperatures (20 °C and 4
°C). Fruit ripening at 20 °C was associated with an increased
accumulation of carotenoids, resulting in an orange-coloured
fruit within 27 d. The ripening process was delayed in fruit
kept at 4 °C until they were transferred to 20 °C (Fig. 8). The
total carotenoids in the stored fruit increased from an
average of 6.90+1.30 pg g~' FW at T,, to 46.99+15.12
ng g FW at Ts (27 d of storage) when fruit were stored
at 20 °C. However, if the fruit were stored at 4 °C, total
carotenoids only reached 8.30+1.12 pg g~' FW at T, after
38 d of storage. This result suggested that carotenoid
accumulation was inhibited by low temperature during
storage. This was confirmed when fruits initially stored at
4 °C for 20 d increased their carotenoid content by about
6-fold (5.86+0.38 to 30.64+14.29 ug g~' FW) when trans-
ferred to 20 °C for 18 d of storage.

Beta-carotene was the major compound accumulating in
these fruit, during ripening and accounted for most of the

increase in total carotenoids (Fig. 9). At T,, beta-carotene
was 37.2% (2.57+0.9 ug g~' FW) of all measured carote-
noids but the proportion of beta-carotene increased to
about 90% (42.82+15.49 ug g~ ! FW) when fruit were stored
at 20 °C. Beta-carotene peaked at 40% of total carotenoids
when fruit were stored at 4 °C. The levels of alpha-carotene
were barely detectable and did not show any variation in
fruit stored at either 4 °C or 20 °C. Lutein levels increased
from 1.89+0.5 to 2.56=0.21 pg g~' FW in fruit stored at
20 °C, while at 4 °C lutein increased to 3.42+0.61 pg g~
FW, indicating that temperature does not significantly
influence the accumulation of this compound.

Gene expression in A. macrosperma stored at different
temperatures

Gene expression of PSY, PDS, ZDS, CRTISO, LCY-f,
LCY-¢, CRH-f, and CRH-¢ was examined in A. macro-
sperma fruit at different temperatures. In general, the
relative expression of these genes was reduced in fruit stored
at 4 °C compared with 20 °C (Fig. 10). However, there were
only slight changes in expression of PDS, CRTISO, and
CRH-¢, when the fruit were stored or transferred between
the different temperature treatments (Fig. 10). PSY, ZDS,
and CRH-p expression increased steadily in the fruit stored

220z 1snbny oz uo 1senb Aq 288625/59.€/€ 1/09/8191e/qxl/woo dno olwepeoe//:sdyy woly papeojumoq



3774 | Ampomah-Dwamena et al.

Harvest

4°C

20°C

4°Cto20°C

Fig. 8. Photograph of Actinidia macrosperma fruit colour development. (A) At harvest, (B) following 38 d storage at 4 °C, (C) following

storage of 27 d at 20 °C, and (D) 20 d at 4 °C then 18 d at 20 °C.

at 20 °C, but in fruit at 4 °C there was a reduction in gene
expression that appeared to be reversed when fruit were
transferred to 20 °C. The effect of these treatments on the
relative expression of LCY-f was more pronounced than on
PSY, ZDS, and CRH-f. There was a 20-fold increase in the
expression of LCY-f# when fruit were stored at 20 °C over
the course of the experiment. At 4 °C, an initial increase in
relative gene expression was followed by a significant re-
duction in gene expression. When fruit were moved from 4
°C to 20 °C, the LCY-f expression level increased by ~13
fold (Fig. 10).

Actinidia LCY-f8 encodes a functional biosynthetic
enzyme

While sequence similarity can give an indication of the
enzymatic function of the encoded protein, this cannot be
assumed. To confirm the enzyme activity of Actinidia LCY-
p in carotenoid biosynthesis, lycopene-producing bacteria
(Cunningham and Gantt, 1998) were transformed with
a vector carrying the AdLCY-fi1 cDNA and grown at 28
°C for 2 d. The colour of the transformed bacteria culture
changed from red to orange, suggesting the conversion of
lycopene to beta-carotene (Fig. 11A).

The substrates for LCY-B enzyme are lycopene, which is
converted to beta-carotene, and delta-carotene which is
converted to alpha-carotene. To confirm the activity of the
purified recombinant LCY-B, the full-length open reading

frame (813 bp) of kiwifruit LCY-f, was cloned in a trans-
lational fusion into pET30b expression vector with a c-
terminal HIS¢ tag (Novagen). The purified recombinant
protein from Escherichia coli was analysed by SDS-PAGE
(data not shown) and showed the presence of a protein of
molecular mass 57 kDa, which was consistent with the
predicted mass based on its sequence. The recombinant
enzyme was used in in vitro assays with lycopene and delta-
carotene as substrates (Schnurr et al., 1996). The presence
of beta-carotene and alpha-carotene, when lycopene and
delta-carotene were used as substrates respectively (Fig. 11B),
was confirmed by HPLC. These results demonstrate that
this Actinidia LCY-p is able to catalyse the biosynthetic
reaction predicted by its sequence similarity.

Discussion
The dominant carotenoid in kiwifruit is beta-carotene

Beta-carotene was detected in all the kiwifruit genotypes
studied and was the dominant carotenoid accumulating in
fruit. In contrast, alpha-carotene was at very low levels.
Among the xanthophylls accumulating in kiwifruit, lutein
was present at relatively high levels, while the beta-
xanthophylls such as zeaxanthin and antheraxanthin were
present at very low levels. The high levels of beta-carotene
and lutein are similar to those described in other fruit crops
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Fig. 9. The accumulation of carotenoids in Actinidia macrosperma ripe and stored fruit. Concentrations of p-carotene (A-C) and lutein
(D-F) levels in fruit: error bars are standard errors of the mean from three independent measurements. Fruit were stored at 20 °C (A, D),
4 °C (B, E) or at 4 °C later transferred to 20 °C (C, F). Whole fruits (skin+pericarp) were sampled at mature green stage (To) and thereafter
at various intervals (T4, T, Tg) for the three comparable timepoints during the ripening stages. The T4, T, T3 time points at 20 °C were
10, 15, and 27 d storage; at 4 °C were 20, 29, and 38 d. For the transfer of fruit between 4 °C and 20 °C, 20 d at 4 °C (T,) followed by 9

d (Ty), 18 d (Ty) at 20 °C, respectively.

such as capsicum, mango, and papaya (Gouado et al., 2007,
Ha et al., 2007; Veda et al., 2007).

In all the kiwifruit selections studied, the linear carotenes
such as phytoene, zeta-carotene, and lycopene were not
detected. These linear carotenes are, however, found to
accumulate to higher concentrations in other fruits (Yano
et al., 2005; Zhou et al., 2007). It is not clear what specifies
the types of compounds that accumulate in different species.
However, low concentrations of linear carotenoids could be
due to efficiency of enzymatic conversion of these molecules
or an indication of an upstream limiting factor. In kiwifruit,
the cDNA of phytoene synthase was not found in an EST
database of more than 100 000 sequences, so a degenerate
PCR approach was required to clone this gene (Crowhurst
et al., 2008). This enzyme, committed to the condensation
of geranyl geranyl pyrophosphate to form phytoene is
thought to be a rate-limiting factor in carotenoid bio-
synthesis (Giuliano et al, 1993; Fraser et al, 2002).
However, downstream carotenoid compounds were found
to accumulate to high levels in kiwifruit, suggesting that the
first enzyme step is active in this species.

The accumulation of downstream compounds such as
beta-carotene and lutein in kiwifruit, combined with the
undetectable levels of phytoene, zeta-carotene, and lyco-
pene, suggest efficient enzyme activities at those intermedi-
ate steps. In tomato, the early enzyme steps have
a significant influence over the flux. The activities of the
desaturation enzymes in the pathway leading to lycopene
seem to increase while the cyclization steps, downstream of
lycopene, are reduced resulting in lycopene accumulation
(Fraser et al., 1994, 2002). Similarly, when transgenes of
PSY and CRTI (Erwinia uredovora) were introduced into
rice, there was accumulation of beta-carotene instead of the
expected lycopene, indicating the presence of an efficient
endogenous cyclase activity in rice (Al-Babili er al, 2001;
Paine et al., 2005; Schaub et al., 2005).

Although the mechanisms that influence the level and
distribution of carotenoid or the relative distribution of
carotenoid compounds are not well known, it can be
hypothesized that the relative activities of LCY-f and
LCY-¢ might serve to apportion the flux into the two
branches of the pathway (Cunningham et al, 1996; Pecker
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Fig. 10. Expression of PSY, PDS, ZDS, CRTISO, LCY-f, LCY-¢, CRH-, and CRH-¢ in Actinidia macrosperma fruit ripening at different
temperatures. RNA was isolated from whole fruit (skin+pericarp) at To, T4, To, and Ty timepoints. The T4, T», T3 time points at 20 °C were
10, 15, and 27 d storage; at 4 °C were 20, 29, and 38 d. For the transfer of fruit between 4 °C and 20 °C, 20 d at 4 °C (T) followed by

9d (Ty), 18 d (Ta) at 20 °C, respectively.

et al, 1996). In this study, it was found that the
concentrations of beta-carotene in kiwifruit correlated with
the gene expression levels of LCY-fS. This suggests that
LCY-B plays a significant role in apportioning metabolites
to the B, B ring branch of the carotenoid pathway.

Carotenoid accumulation varies with genotype and
developmental stage

Substantial genotypic differences in carotenoid accumula-
tion were observed between the kiwifruit genotypes in this
study. Total carotenoids, measured by HPLC, showed that
the A. chinensis genotypes analysed had low concentrations
of carotenoids. By contrast, A. macrosperma and the three
individuals of the A. macrospermax A. melanandra popula-
tion accumulated higher concentrations of carotenoids in
the fruit (Montefiori et al, 2005). Beta-carotene accumu-

lated to ~46 pg g~ FW in A. macrosperma, which is more
than 90-fold greater than in the A. chinensis individuals used
in this study. To help understand the differences among
these genotypes, the expression levels of kiwifruit cDNAs
with similarity to the known carotenoid biosynthetic genes
were examined. Of these, the lycopene beta-cyclase gene
(LCY-B) appeared to show alterations in expression
patterns that correlated with the diverse range of distribu-
tion of beta-carotene within the various kiwifruit genotypes.

Differences in carotenoid content, attributed to the LCY-f
genes in Actinidia species may be due either to different
enzymatic activities or to altered levels of LCY-f expression.
The cDNA sequences of LCY-f genes from A. macrosperma,
A. melanandra, A. deliciosa, and A. chinensis were further
examined and within the open reading frames there were
slight differences. All had similar sequence lengths, with the
exception of A. chinensis which had an extra 21 base pairs.
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Fig. 11. In vitro activity of recombinant kiwifruit lycopene B-cyclase (LCY-p). (A) Lycopene-producing bacteria transformed with AdLCY-
1 cDNA showed colour change from red (left) to orange (right) after growing at 28 °C for 2 d, suggesting the conversion of lycopene to
beta-carotene. (B) Conversion of lycopene and delta-carotene by kiwifruit AALCY-B1 in the enzyme assay. Top chart, chromatogram
showing lycopene substrate (peak 1) and with beta-carotene (peak 2) after assay; lower chart, delta-carotene (peak 1) and with alpha-

carotene (peak 2) after assay.

The similarity among predicted amino acid sequences were
94% or more. However, a more detailed kinetic analysis of
the various LCY-P enzymes is required to determine if these
differences are responsible for the accumulation pattern of
beta-carotene in the kiwifruit genotypes.

The concentration of beta-carotene generally increased with
developmental stage. Carotenoids accumulated to a greater
concentration during fruit ripening. This is consistent with the
pattern observed in other plants such as mango, pepper, and
papaya in which carotenoid accumulation is developmentally
regulated (Fabi et al., 2007; Ha et al., 2007). Kiwifruit stored
at room temperature ripened quickly and accumulated
carotenoids to high concentrations while cold storage
inhibited carotenoid accumulation. Apparently, the condi-
tions that inhibit the fruit-ripening process also inhibit
carotenoid accumulation, as observed in other fruit types
(Neta-Sharir et al., 2005; Gil et al., 2006; Perkins-Veazie and
Collins, 2006). However, little is known about the molecular
mechanism regulating these events. In this study, it was
found that expression of key biosynthetic genes were
temperature sensitive and account for these carotenoid
accumulation patterns. This has significance for the post-
harvest storage of fruit and its effect on market quality.

Carotenoid accumulation in kiwifruit is controlled by
gene expression

The expression of the carotenoid biosynthetic genes explains
the different carotenoid accumulation patterns seen in the

kiwifruit genotypes. Expression of ZDS and LCY-f tran-
scripts increased in kiwifruit genotypes and at developmental
stages where carotenoid concentrations were high. LCY-§
gene expression in the MaMe genotypes increased from
the early fruit stage through to ripening and clearly differed
between the high and low carotenoid individuals. In
contrast, PSY, PDS, CRTISO, and CRH-f expression
levels were not responsive and had similar profiles among
all three genotypes, suggesting that they are not key
determinants of carotenoid accumulation in kiwifruit.
Similarly, in A. macrosperma fruit, PDS, CRTISO, LCY-¢,
and CRH-¢ appeared to be non-responsive or were down-
regulated by the temperature treatment that resulted in
increased fruit carotenoids, while PSY, ZDS, LCY-f, and
CRH-p expression increased in response to the conditions
that consequently increased carotenoid accumulation. The
relationship between carotenoid accumulation and gene
expression has been investigated in various crop species. In
citrus (orange), beta-carotene accumulation was found to be
directly related to expression of PDS rather than LCY-f
(Fanciullino et al, 2008). In addition, in pepper, high
concentrations of carotenoids were associated with high
expression of PSY and PDS, although only a limited
number of carotenoid biosynthetic genes were tested (Ha
et al., 2007). In potato, high transcript levels of PSY were
observed in the high carotenoid accession compared with
the low carotenoid accession, while the expression level of
LCY-p was similar in all the genotypes (Morris et al., 2004).
These results combine to suggest that carotenoid
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biosynthesis may be controlled differently in different
species of plants. Although, changes in transcript abun-
dance can be due either to increased transcription or altered
mRNA stability, our data suggest that, in Actinidia species,
carotenoid accumulation may depend largely on transcrip-
tional regulation of different alleles of the carotenoid
biosynthetic genes.

In conclusion, our study of carotenoids in kiwifruit found
significant differences in carotenoid accumulation patterns
among kiwifruit genotypes. The major carotenoid was
found to be beta-carotene and its accumulation was
controlled by the increased expression of the ZDS and
LCY-f genes and the down-regulation of LCY-¢, and CRH-
f genes, suggesting these are important regulatory steps in
the kiwifruit carotenoid biosynthetic pathway. The differ-
ences in gene expression observed among the genotypes may
be due to differential regulation of these genes, which
requires further investigation to help us understand fruit
carotenoid accumulation in kiwifruit.
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