
The KLAIM Project: Theory and Practice?

Lorenzo Bettini1, Viviana Bono2, Rocco De Nicola1, Gianluigi Ferrari3, Daniele Gorla1, Michele
Loreti1, Eugenio Moggi4, Rosario Pugliese1, Emilio Tuosto3, and Betti Venneri1

1 Dip. Sistemi e Informatica, Univ. di Firenze, v. Lombroso 6/17, 50134 Firenze, Italy
2 Dip. Informatica, Univ. di Torino, Corso Svizzera 185, 10149 Torino, Italy

3 Dip. Informatica, Univ. di Pisa, v. Buonarroti 2, 56100 Pisa, Italy
4 Dip. Informatica e Scienze dell’Informazione, Univ. di Genova, v. Dodecaneso 35, 16146 Genova, Italy

In Global Computing, LNCS 2874, pages 88–150. c© Springer.

Abstract. Klaim (Kernel Language for Agents Interaction and Mobility) is an experimental
language specifically designed to program distributed systems consisting of several mobile
components that interact through multiple distributed tuple spaces. Klaim primitives allow
programmers to distribute and retrieve data and processes to and from the nodes of a net.
Moreover, localities are first-class citizens that can be dynamically created and communicated
over the network. Components, both stationary and mobile, can explicitly refer and control
the spatial structures of the network.
This paper reports the experiences in the design and development of Klaim. Its main purpose
is to outline the theoretical foundations of the main features of Klaim and its programming
model. We also present a modal logic that permits reasoning about behavioural properties
of systems and various type systems that help in controlling agents movements and actions.
Extensions of the language in the direction of object oriented programming are also discussed
together with the description of the implementation efforts which have lead to the current
prototypes.

Keywords: Process Calculi, Mobile Code, Distributed Applications, Network Awareness, Tuple
Spaces, Type Systems, Temporal Logics, Java.

?This work has been partially supported by EU FET - Global Computing initiative, project AGILE
IST-2001-32747, project DART IST-2001-33477, project MIKADO IST-2001-32222, project PROFUNDIS
IST-2001-33100, and by MIUR project NAPOLI. The funding bodies are not responsible for any use that
might be made of the results presented here.

1 Introduction

The distributed software architecture (model) which underpins most of the wide area network
(WAN) applications typically consists of a large number of heterogeneous computational entities
(sometimes referred to as nodes or sites of the network) where components of applications are
executed. Network sites are generally managed by different authorities with different administra-
tive policies and security requirements. Differently from traditional middlewares for distributed
programming, the structure of the underlying network is made manifest to components of WAN
applications. Indeed, a key design principle of WAN computing is network awareness. This is be-
cause often applications need to be aware of the administrative domains where they are currently
located, and need to know how to cross administrative boundaries and move to other locations.
Components of WAN applications are characterized by a highly dynamic behavior and have to deal
with the unpredictable changes over time of the network environment (due to the unavailability
of connectivity, lack of services, node failures, reconfiguration, and so on). Moreover, nomadic or
mobile components must be designed to support heterogeneity and interoperability because they
may disconnect from a node and reconnect later to a different node. Therefore, a distinguished
feature of WANs and WAN applications is that their overall structure can change dynamically and
unpredictably. We refer the interested reader to [Car99] for a comprehensive analysis of the issues
related to the design and development of WAN applications.

The problems associated with the development of WAN applications have prompted the study of
new paradigms and programming languages with mechanisms for handling code and agent mobility,
for managing security, and for coordinating and monitoring the use of resources. Mobility provides a
suitable abstraction to design and implement WAN applications. The usefulness of mobility emerges
when developing both applications for nomadic devices with intermittent access to the network
(physical mobility), and network services with different access policies (logical mobility). Mobility
has produced new interaction paradigm [FPV98], that significantly differ from the traditional
client-server pattern, and permit exchange of active units of behavior and not just of raw data:

– Remote Evaluation: processes send for execution to remote hosts;
– Code On-Demand : processes download code from remote hosts to execute it locally;
– Mobile Agents: processes can suspend and migrate to new hosts, where they can resume exe-

cution.

Among these design paradigms, Code On-Demand is probably the most widely used (e.g. Java
Applets). The one based on mobile agents is, instead, the most challenging because it has a number
of distinguishing features and poses a number of demands:

– an agent needs an execution environment : a server is needed that supplies resources for execu-
tion;

– an agent is autonomous: it executes independently of the user who created it (goal driven);
– an agent is able to detect changes in its operational environment and to act accordingly (reac-

tivity and adaptivity).

Another interesting feature of mobile agents is the possibility of executing disconnected opera-
tions [PR98]: a software component may be remotely executed even if the user (its owner) is not
connected; if this is the case, the agent may decide to “sleep” and to periodically try to reestablish
the connection with its owner. Conversely, the user, when reconnected, may try to retract the
component back home. In addition to this scenario, ad hoc networks [CMC99] allow connection of
nomadic devices without a fixed network structure and peer-to-peer architectures (e.g. Napster and
Gnutella) introduce a new pattern for Internet interaction by sharing information, that changes
dynamically, among distributed components.

2

There are a few programming languages and systems that provide basic facilities for mobility.
A well-known example is the Java programming language. Another interesting example is provided
by Oracle [Ora99], which supports access to a database from a mobile device by exploiting mobile
agents. However, current technologies provide only limited solutions to the general treatment of
mobility.

At a foundational level, several process calculi have been developed to gain a more precise under-
standing of network awareness and mobility. We mention the Distributed Join-calculus [FGL+96],
the Distributed π-calculus [HR02], the Ambient calculus [CG00], the Seal calculus [CV99], and No-
madic Pict [WS99]. Other foundational models adopt a logical style toward the analysis of mobility.
MobileUnity [MR98] and MobAdtl [FMSS02] are program logics specifically designed to specify and
reason about mobile systems exploiting a Unity-like proof system. The aforementioned approaches
have improved the formal understanding of the complex mechanisms underlying network awareness.

Some of the above mentioned calculi deal also with the key issue of security, namely privacy
and integrity of data, hosts and agents. It is important to prevent malicious agents from accessing
private information or modifying private data. Tools are thus needed that enable sites receiving
mobile agents for execution to set demands and limitations to ensure that the agents will not
violate privacy or jeopardize the integrity of the information. Similarly, mobile agents need tools to
ensure that their execution at other sites will not disrupt them or compromise their security. The
problem of modelling resource access control of highly distributed and autonomous components
has been faced by exploiting suitable notions of type [HR02,BCC01,CGZ01].

1.1 The Klaim approach

Klaim (Kernel Language for Agents Interaction and Mobility, [DFP98]) is an experimental lan-
guage specifically designed to program distributed systems made up of several mobile components
interacting through multiple distributed tuple spaces. Klaim components, both stationary and
mobile, can explicitly refer and control the spatial structures of the network at any point of their
evolution. Klaim primitives allow programmers to distribute and retrieve data and processes to
and from the nodes of a net. Moreover, localities are first-class citizens, they can be dynamically
created and communicated over the network and are handled via sophisticated scoping rules.

Klaim communication model builds over, and extends, Linda’s notion of generative commu-
nication through a single shared tuple space [Gel85]. A tuple space is a multiset of tuples that
are sequences of information items. Tuples are anonymous and are picked up from tuple spaces
by means of a pattern-matching mechanism (associative selection). Interprocess communication is
asynchronous: producer (i.e. sender) and consumer (i.e. receiver) of a tuple do not need to syn-
chronize. The Linda model, was originally proposed for parallel programming on isolated machines.
Multiple, possibly distributed, tuple spaces have been advocated later [Gel89] to improve modular-
ity, scalability and performance. The obtained communication model has a number of properties
that make it appealing for WAN computing (see, e.g., [DWFB97,CCR96,Deu01]). The model per-
mits time uncoupling (data life time is independent of the producer process life time), destination
uncoupling (the producer of a datum does not need to know the future use or the destination of that
datum) and space uncoupling (communicating processes need to know a single interface, i.e. the
operations over the tuple space). The success of the tuple space paradigm is witnessed by the many
tuple space based run-time systems, both from industries (e.g. SUN JavaSpaces [Sun99,AFH99]
and IBM T Spaces [WMLF98]) and from universities (e.g. PageSpace [CTV+98], WCL [Row98],
Lime [PMR99] and TuCSoN [OZ99]).

Klaim programming paradigm emphasizes a clear separation between the computational level
and the net coordinator/administrator level. Intuitively, programmers design computational units
(processes and mobile agents), while coordinators design nets. Hence, coordinators manage the
initial distribution of processes and set the security policies for controlling access to resources and

3

mobility of processes. Coordinators have complete control over changes of configuration of the
network that may be due to addition/deletion of software components and sites, or to transmission
of programs and of sites references.

Thus, differently from other programming notations with explicit mechanisms for distribution
and mobility, in Klaim the network infrastructure is clearly distinguishable from user processes
and explicitly modelled. We argue that this feature permits a more accurate handling of WAN
applications. Indeed, structuring applications in terms of processes and coordinators provides a
clean and a powerful abstraction device for WAN programming. In particular, it is instrumental
to define security policies and their enforcement mechanisms.

Klaim has been implemented [BDP02] by exploiting Java and has proved to be suit-
able for programming a wide range of distributed applications with agents and code mobility
[DFP98,DFP00,BDL03,FMP03].

1.2 This paper

This paper reports our experience in the design and development of Klaim. Its purpose is to outline
the theoretical foundations of the main features of Klaim and of its programming model together
with the description of the implementation efforts which have lead to the current prototype.

The rest of the paper is organized as follows. Section 2 introduces, step by step, the foundations
of Klaim as a process calculus. We start by presenting cKlaim (Core Klaim), that can be seen as
a variant of the π-calculus with process distribution, process mobility, and asynchronous commu-
nication of names through shared located repositories. We then continue by introducing µKlaim
(Micro Klaim), that exploits the full power of Linda coordination primitives (tuples and pattern-
matching), and move to introducing Klaim, that is also equipped with higher-order communication
and with a naming service facility. The section ends with the presentation of OpenKlaim, a Klaim
dialect equipped with constructs for explicitly modelling connectivity between network nodes and
for handling changes of the network topology. Section 3 defines a temporal logics for µKlaim
that permits specification and verification of dynamic properties of networks (e.g., resource al-
location, access to resources and information disclosure). Section 4 introduces two type systems
for controlling processes activities, namely access to resources and mobility, in µKlaim networks.
Section 5 introduces HotKlaim (Higher-Order Typed Klaim), an enrichment of Klaim with the
powerful abstraction mechanisms and types of system F. This permits to conveniently deal with
highly parameterized mobile components and to dynamically enforce host security policies. Sec-
tion 6 presents O’Klaim, a linguistic integration of object-oriented features with Klaim, which is
used as the coordination language for exchanging mobile object-oriented code among processes in a
network. Section 7 presents X-Klaim (eXtended Klaim), an experimental programming language
obtained by extending Klaim with a high level syntax (including variable declarations, assign-
ments, conditionals, sequential and iterative process composition). The pragmatics of the language
is illustrated by means of simple programming examples which demonstrate how well established
programming paradigms for mobile applications can be naturally programmed in Klaim. Finally,
in the last section we draw a few conclusions on our work on Klaim.

2 Klaim as a process calculus

In this section, we present the foundations of Klaim as a process calculus. We shall introduce
the main features of Klaim step by step, by defining appropriate process calculi of increasing
complexity. The main advantage of the approach is that it provides a scalable context where the
semantics of each construct is self-contained and simple. We start by presenting cKlaim (Core
Klaim) a variant of the π-calculus [MPW92] with process distribution, process mobility, and

4

N : : = Nets

l: : P single node�� l: : 〈l′〉 located datum�� N1 ‖ N2 net composition

P : : = Processes

nil null process�� a.P action prefixing�� P1 | P2 parallel composition�� A process invocation

a : : = Actions

out(`′)@` output�� in(T)@` input�� eval(P)@` migration�� newloc(u) creation

T : : = Templates

` name�� ! u formal

Table 1. cKlaim syntax

asynchronous communication of names through shared located repositories instead of channel-
based communication primitives. Then, we introduce µKlaim (Micro Klaim) which is obtained
by enriching cKlaim with the full power of Linda coordination primitives: tuples and pattern-
matching. Klaim is then obtained by extending µKlaim with higher-order communication and
with a naming service facility. Finally, we present OpenKlaim, a Klaim dialect with constructs for
explicitly modeling connectivity between network nodes and for handling changes in the network
topology.

2.1 cKlaim

The syntax of cKlaim [GP03a] is reported in Table 1. We assume existence of two disjoint sets:
the set L, of localities, ranged over by l, l′, l1, . . ., and the set U , of locality variables, ranged over
by u, u′, u1, Localities are the addresses (i.e. network references) of nodes and are the syntactic
ingredient used to express the idea of administrative domain: computations at a given locality are
under the control of a specific authority. Moreover, localities provide the abstract counterpart of
resources and are the cKlaim communicable objects. The set of names N , ranged over by `, `′, . . .,
will denote the union of sets L and U . Finally, we assume a set A, of process identifiers, ranged
over by A,B,

Nets are finite collections of nodes where processes and data can be allocated. Nodes are pairs,
the first component is a locality (l is the address of the node) and the second component is either
a process or a datum.

Processes are the cKlaim active computational units. They may be executed concurrently
either at the same locality or at different localities and can perform four different basic operations,
called actions. Two actions manage data repositories: adding/withdrawing a datum to/from a
repository. One action activates a new thread of execution, viz. a process. The last action permits
creation of new network nodes. The latter action is not indexed with an address because it always
acts locally; all other actions indicate explicitly the (possibly remote) locality where they will take
place. Action in exploits templates as patterns to select data in shared repositories.

Processes are built up from the special process nil, that does not perform any action, and
from the basic operations by means of action prefixing, parallel composition and process definition.
Recursive behaviours are modelled via process definitions. It is assumed that each process identifier
A has a single defining equation A

4= P . Hereafter, we do not explicitly represent equations for
process definitions (and their migration to make migrating processes complete), and assume that
they are available at any locality of a net.

Names occurring in cKlaim processes and nets can be bound. More precisely, action prefixes
in(! u)@`.P and newloc(u).P bind u in P (namely, P is the scope of the bindings made by the

5

(Com) N1 ‖ N2 ≡ N2 ‖ N1 (Assoc) (N1 ‖ N2) ‖ N3 ≡ N1 ‖ (N2 ‖ N3)

(Abs) l: : P ≡ l: : (P |nil) (PrInv) l: : A ≡ l: : P if A
4
= P

(Clone) l: : (P1|P2) ≡ l: : P1 ‖ l: : P2

Table 2. Structural congruence

(Out) l: :out(l′′)@l′.P ‖ l′: : P ′ Â−→ l: : P ‖ l′: : P ′ ‖ l′: : 〈l′′〉
(Eval) l: : eval(Q)@l′.P ‖ l′: : P ′ Â−→ l: : P ‖ l′: : P ′|Q

(In) l: : in(T)@l′.P ‖ l′: : 〈l′′〉 Â−→ l: : Pσ ‖ l′: :nil where σ =

�
[l
′′
/u] if T =! u

ε if T = l′′

(New) L ` l: :newloc(u).P Â−→ L ∪ {l′} ` l: : P [l
′
/u] ‖ l′: :nil if l′ 6∈ L

(Par)
L ` N1 Â−→ L′ ` N ′

1

L ` N1 ‖ N2 Â−→ L′ ` N ′
1 ‖ N2

(Struct)
N ≡ N1 L ` N1 Â−→ L′ ` N2 N2 ≡ N ′

L ` N Â−→ L′ ` N ′

Table 3. cKlaim operational semantics

action). A name that is not bound is called free. The sets fn(·) and bn(·) (respectively, of free and
bound names of a process/net term) are defined accordingly. The set n(·) of names of a term is the
union of its sets of free and bound names. As usual, we say that two terms are α-equivalent, written
≡α, if one can be obtained from the other by renaming bound names. Hereafter, we shall work with
terms whose bound names are all distinct and different from the free ones. Moreover, we will use
σ to range over substitutions, i.e. functions with finite domain from locality variables to localities,
and write ◦ to denote substitutions composition and ε to denote the ‘empty’ substitution.

The operational semantics of cKlaim is given in terms of a structural congruence and of a
reduction relation over nets. The structural congruence,≡, identifies nets which intuitively represent
the same net. It is defined as the smallest congruence relation over nets that satisfies the laws in
Table 2. The structural laws express that ‖ is commutative and associative, that the null process
can always be safely removed/added, that a process identifier can be replaced with the body of
its definition, and that it is always possible to transform a parallel of co-located processes into a
parallel over nodes. Notice that commutativity and associativity of ‘|’ is somehow derived from
rules (Com), (Assoc) and (Clone).

The reduction relation, Â−→, is the least relation induced by the rules in Table 3. Net reductions
are defined over configurations of the form L ` N , where L is a finite set of names such that
fn(N) ⊆ L ⊂ N . Set L keeps track of the names occurring free in N and is needed to ensure global
freshness of new network localities. Whenever a reduction does not generate any fresh addresses
we write N Â−→ N ′ instead of L ` N Â−→ L ` N ′.

We now comment on the rules in Table 3. All rules for (possibly remote) process actions
require existence of the target node. The assumption that all the equations for process definitions
are available everywhere greatly simplifies rule (Eval) because it permits avoiding mechanisms
for code inspection to find the process definitions needed by Q. Rule (In) requires existence of the
chosen datum in the target node. Moreover, the rule says that action in(!u)@l′ looks for any name
l′′ at l′ that is then used to replace the free occurrences of u in the continuation of the process
performing the input, while action in(l′′)@l′ looks exactly for the name l′′ at l′; in both cases,
the matched datum is consumed. With abuse of notation, we use nil to replace data that have

6

N : : = Nets

l: : P single node�� l: : 〈et〉 located tuple�� N1 ‖ N2 net composition

a : : = Actions
out(t)@` output�� in(T)@` input�� read(T)@` read�� eval(P)@` migration�� newloc(u) creation

T : : = F
�� F, T templates

F : : = f
�� ! x

�� ! u template fields

t : : = f
�� f, t tuples

f : : = e
�� `

�� u tuple fields

et : : = ef
�� ef, et evaluated tuples

ef : : = V
�� l evaluated tuple fields

e : : = V
�� x

�� . . . expressions

Table 4. µKlaim syntax

been consumed to avoid disappearance of the hosting node (whenever, in the initial configuration,
it only contains tuples) due to data consumption. In rule (New), the premise exploits the set L
to choose a fresh address l′ for naming the new node. Notice that the address of the new node
is not known to any other node in the net. Hence, it can be used by the creating process as a
private name. Rule (Par) says that if part of a net makes a reduction step, the whole net reduces
accordingly. Finally, rule (Struct), that relates structural congruence and reduction, says that all
structural congruent nets can make the same reduction steps.

Process interaction in cKlaim is asynchronous: no synchronization takes place between sender
and receiver processes (only existence of target nodes is checked). Moreover, communication is
anonymous and associative because data have no names and are accessed via matching. Intuitively,
data could be understood as services and matching provides a basic service discovery mechanism.

2.2 µKlaim

We now enrich cKlaim with tuples and pattern-matching (and with a primitive for accessing
tuples without consuming them) thus getting µKlaim [GP03c]. Table 4 illustrates the syntactical
categories for µKlaim that differ from the corresponding ones in the syntax of cKlaim. We shall
use x, y, z, . . . as generic value variables, and still use ` to denote a locality l or a locality variable
u.

In µKlaim, communicable objects (the arguments of out) are tuples: sequences of actual fields.
These contain expressions, localities or locality variables. The tuple space (TS, for short) of a
node consists of the tuples located there. The precise syntax of expressions e is deliberately not
specified. We assume that expressions contain, at least, basic values V and variables x. Templates
are sequences of actual and formal fields, and are used as patterns to select tuples in a tuple
space. Formal fields are written !x or ! u and are used to bind variables to values. Notice that,
syntactically, templates include tuples.

Processes can also read tuples without removing them from the tuple space by executing action
read(T)@`. Only evaluated tuples can be added to a TS and templates must be evaluated before
they can be used for retrieving tuples. Template evaluation consists in computing the value of the
expressions occurring in the template. Localities and formal fields are left unchanged by evaluation.
Templates with variables in actual fields cannot be evaluated. We shall write [[T]] to denote the
template resulting from evaluation of T when evaluation succeeds.

To define the operational semantics, we first formalize the pattern-matching mechanism which
is used to select (evaluated) tuples from TSs according to (evaluated) templates. The pattern-
matching function match is defined in Table 5. The meaning of the rules is straightforward: an

7

(M1) match(V, V) = ε (M2) match(! x, V) = [V/x]

(M3) match(l, l) = ε (M4) match(! u, l) = [l/u]

(M5)
match(eF, ef) = σ1 match(eT, et) = σ2

match((eF, eT) , (ef, et)) = σ1 ◦ σ2

Table 5. Matching rules

evaluated template matches against an evaluated tuple if both have the same number of fields and
corresponding fields do match; two values (localities) match only if they are identical, while formal
fields match any value of the same type. A successful matching returns a substitution function
associating the variables contained in the formal fields of the template with the values contained
in the corresponding actual fields of the accessed tuple (of course, in µKlaim, substitutions can
also encompass values and value variables).

While the structural congruence is left unchanged, the reduction relation, Â−→ refines that
given in Table 3 for cKlaim. In the rest of this section, we comment on the different reduction
rules. Rule (Out) becomes

(Out)
[[t]] = et

l: :out(t)@l′.P ‖ l′: : P ′ Â−→ l: : P ‖ l′: : P ′ ‖ l′: : 〈et〉
and expresses that the tuple resulting from the evaluation of the argument t of out is added to
the TS at l′ (therefore, the out can be performed only when t is evaluable). Rule (In) becomes

(In)
match([[T]], et) = σ

l: : in(T)@l′.P ‖ l′: : 〈et〉 Â−→ l: : Pσ ‖ l′: :nil

The rule expresses that the process performing the operation can proceed only if the argument T of
in is evaluable and pattern-matching succeeds. In this case, the tuple is removed from the TS and
the returned substitution is applied to the continuation of the process performing the operation.
A similar rule is introduced to model the semantics of action read, namely

(Read)
match([[T]], et) = σ

l: : read(T)@l′.P ‖ l′: : 〈et〉 Â−→ l: : Pσ ‖ l′: : 〈et〉
that differs from (In) just because the accessed tuple is still left in the TS.

2.3 Klaim

We are now able to introduce all features of Klaim. Table 6 illustrates the syntax of the calculus
that differs from the corresponding part of the syntax of µKlaim; in particular, the productions for
nets replace those in Table 1 and the productions for tuple fields replace those in Table 4. As a mat-
ter of notation, given a grammar such as e: : = p1

∣∣ . . .
∣∣ pm, we write e+= pm+1

∣∣ . . .
∣∣ pm+n

as a shorthand for e: : = p1

∣∣ . . .
∣∣ pm+n.

A network node becomes a term of the form l: :ρ P , where ρ is an allocation environment that
binds the locality variables occurring free in P . Allocation environments provide a name resolution
mechanism by mapping locality variables u into localities l. The distinguished locality variable
self is used by processes to refer to the address of their current hosting node.

Remark 1. This is different from previous presentations of Klaim where, besides (physical) local-
ities and locality variables, we also used the syntactical category of logical localities and defined

8

N : : = Nets

l: :ρ P single node�� l: : 〈et〉 located tuple�� N1 ‖ N2 net composition

P += X process variable

F += ! X

f += P
ef += P

Table 6. Klaim syntax

allocation environments as maps from logical localities to (physical) localities. To simplify the
resulting calculus, in this paper we preferred to incorporate the syntactical category of logical lo-
calities into that of locality variables. ut

One significant design choice underlying Klaim is abstraction of the exact physical allocation of
processes and resources over the net. Indeed, in the initial configuration, localities cannot occur in
templates/tuples argument of process actions because they cannot occur as actual fields anymore.
Therefore, processes have no direct access to nodes and can get knowledge of a locality either
through their (local) naming facilities, viz. allocation environment, or by communicating with
other processes (which, again, exploit other allocation environments). To this aim, the operational
semantics will use localities alike locality variables (i.e. it will be defined over nets generated from
an extended syntax that allows localities to occur wherever we can have locality variables).

We say that a net is well-formed if for each node l: :ρ P we have that ρ(self) = l, and if for any
pair of nodes l: :ρ P and l′: :ρ′ P ′, l = l′ implies ρ = ρ′. Hereafter, we will only consider well-formed
nets.

The second important extension with respect to µKlaim is higher-order communication. This
feature enables processes to exchange pieces of code through the communication actions. We will
explain later how this form of code migration differs from the one provided by eval.

As far as the operational semantics is concerned, the structural congruence is modified in the
obvious way (thus, it is not shown): the most significant law is l: :ρ (P1|P2) ≡ l: :ρ P1 ‖ l: :ρ P2.
Allocation environments affects the evaluation of templates when evaluating locality variables. To
this purpose, the template evaluation function takes as parameter the allocation environment of
the node where evaluation takes place. The function has the form [[·]]ρ and the main clauses of its
definition are given below:

[[u]]ρ =
{

ρ(u) if u ∈ dom(ρ)
undef otherwise [[P]]ρ = P{ρ}

where P{ρ} denotes the process term obtained from P by replacing any free occurrence of a locality
variable u ∈ dom(ρ) that is not within the argument of an eval with ρ(u). Process [[P]]ρ is deemed
to be well-defined only if P{ρ} does not contain free locality variables outside the arguments
of eval. Two examples of process evaluation are [[out(P)@`.Q]]ρ = out([[P]]ρ)@ρ(`).Q{ρ} and
[[eval(P)@`.Q]]ρ = eval(P)@ρ(`).Q{ρ}. We shall write [[t]]ρ = et to denote that evaluation of
tuple t using ρ succeeds and returns the evaluated tuple et.

The most significant rules of the reduction relation are reported in Table 7, where we write
ρ(`) = l to denote that either ` = l or ` is a locality variable that ρ maps to l. In rule (Out), the
local allocation environment is used both to determine the name of the node where the tuple must
be placed and to evaluate the argument tuple. This implies that if the argument tuple contains a
field with a process, the corresponding field of the evaluated tuple contains the process resulting
from the evaluation of its locality variables. Hence, processes in a tuple are transmitted after
the interpretation of their free locality variables through the local allocation environment. This
corresponds to having a static scoping discipline for the (possibly remote) generation of tuples. A
dynamic linking strategy is adopted for the eval operation, rule (Eval). In this case the locality
variables of the spawned process are not interpreted using the local allocation environment: the

9

(Out)
ρ(`) = l′ [[t]]ρ = et

l: :ρ out(t)@`.P ‖ l′: :ρ′ P
′ Â−→ l: :ρ P ‖ l′: :ρ′ P

′ ‖ l′: : 〈et〉

(Eval)
ρ(`) = l′

l: :ρ eval(Q)@`.P ‖ l′: :ρ′ P
′ Â−→ l: :ρ P ‖ l′: :ρ′ P

′|Q

(In)
ρ(`) = l′ match([[T]]ρ, et) = σ

l: :ρ in(T)@`.P ‖ l′: : 〈et〉 Â−→ l: :ρ Pσ ‖ l′: :nil

(Read)
ρ(`) = l′ match([[T]]ρ, et) = σ

l: :ρ read(T)@`.P ‖ l′: : 〈et〉 Â−→ l: :ρ Pσ ‖ l′: : 〈et〉

(New)
l′ 6∈ L

L ` l: :ρ newloc(u).P Â−→ L ∪ {l′} ` l: :ρ P [l
′
/u] ‖ l′: :ρ[l′/self] nil

Table 7. Klaim operational semantics

linking of locality variables is done at the remote node. Finally, in rule (New), the environment of
a new node is derived from that of the creating one with the obvious update for the self variable.
Therefore, the new node inherits all the bindings of the creating node.

We end this section with a simple example that should throw light on the differences between
the two forms of mobility supplied by Klaim. One form is mobility with static scoping: a process
moves along the nodes of a net with a fixed binding of resources. The other form is mobility with
dynamic linking: process movements break the links to local resources. For instance, consider a
net consisting of two localities l1 and l2. A client process C is allocated at locality l1 and a server
process S is allocated at locality l2. The server can accept processes for execution. The client sends
process Q to the server. The code of processes is:

C
4= out(Q)@u.nil

Q
4= in(′′foo′′, !x)@self.out(′′foo′′, x + 1)@self.nil

S
4= in(!X)@self.X

The behaviour of the processes above depends on the meaning of u and self. It is the allocation
environment that establishes the links between locality variables and localities. Here, we assume
that the allocation environment of locality l1, ρ1, maps self into l1 and u into l2, while the
allocation environment of locality l2, ρ2, maps self into l2. Finally, we assume that the tuple spaces
located at l1 and l2 both contain the tuple 〈′′foo′′, 1〉. The following Klaim program represents the
net described above:

l1: :ρ1 C|〈′′foo′′, 1〉 ‖ l2: :ρ2 S|〈′′foo′′, 1〉.
After the execution of out(Q)@u, the tuple space at locality l2 contains a tuple where the code

of process Q is stored. Indeed, it is the process Q′ that is stored in the tuple:

Q′ 4= in(′′foo′′, !x)@l1.out(′′foo′′, x + 1)@l1.nil.

The locality variables occurring in Q are evaluated using the environment at locality l1 where the
action out has been executed. Hence, when executed at the server’s locality the mobile process Q
increases tuple ′′foo′′ at the client’s locality.

In order to move process Q for execution at l2 without keeping the original linkage to resources,
the client code should be eval(Q)@u.nil. When eval(Q)@u is executed, Q is spawned at the remote

10

a : : = Actions

out(t)@` output�� in(T)@` input�� read(T)@` read�� eval(P)@` migration�� bind(u, l) bind

pa : : = Privileged Actions

a (standard) action�� newloc(u,C) creation�� login(`) login�� logout(`) logout�� accept(u) accept

f += Tuple Fields

∗l Dereferentiation

C : : = NodeCoordinators

P (standard) process�� pa.C action prefixing�� C1 | C2 parallel composition�� A node coordinator invocation

N : : = Nets

0 empty net�� l: :Sρ C single node�� l: : 〈et〉 located tuple�� N1 ‖ N2 net composition

Table 8. OpenKlaim syntax

node without evaluating its locality variables according to the allocation environment ρ1. Thus, the
execution of Q will depend only on the allocation environment ρ2 and Q will increase tuple ′′foo′′

at the server’s locality.

2.4 OpenKlaim

In this section, we present an extension of Klaim, called here OpenKlaim, that has been first
presented in [BLP02] and was specifically designed for enabling users to give more realistic accounts
of open systems. Indeed, open systems are dynamically evolving structures: new nodes can get
connected or existing nodes can disconnect. Connections and disconnections can be temporary
and unexpected. Thus, the assumption that the underlying communication network will always
be available is too strong. Moreover, since network routes may be affected by restrictions (such
as temporary failures or firewall policies), naming may not suffice to establish connections or to
perform remote operations. Therefore, to make Klaim suitable for dealing with open systems, the
need arises to extend the language with constructs for explicitly modeling connectivity between
network nodes and for handling changes in the network topology.

OpenKlaim is obtained by equipping Klaim with mechanisms to dynamically update al-
location environments and to handle node connectivity, and with a new category of processes,
called nodecoordinators, that, in addition to standard Klaim operations, can execute privileged
operations that permit establishing new connections, accepting connection requests and removing
connections. The new privileged operations can also be interpreted as movement operations: en-
tering a new administrative domain, accepting incoming nodes and exiting from an administrative
domain. The Klaim extensions that lead to OpenKlaim are reported in Table 8.

OpenKlaim processes can be thought of as user programs and differs from Klaim processes
in the following three respects.

– When tuples are evaluated, locality names resolution does not take place automatically any-
more. Instead, it has to be explicitly required by putting the operator ∗ in front of the locality
that has to be evaluated. For instance, (3, l) and (s,out(s1)@s2.nil) are fully-evaluated while
(3, ∗l) and (∗l,out(l)@self.nil) are not.

11

– Operation newloc cannot be performed by user processes anymore. It is now part of the syntax
of node coordinator processes because, when a new node is created, it is necessary to install
one such process at it and, for security reasons, user processes cannot be allowed to do this.

– Operation bind has been added to enable user processes to enhance local allocation environ-
ments with name bindings. For instance, bind(u, l) enhances the local allocation environment
with the pair (u, l).

NodeCoordinators can be thought of as processes written by node managers, a sort of supe-
rusers. Thus, in addition to the standard Klaim operations, such processes can execute coordi-
nation operations to establish new connections (viz. login(`)), to accept connection requests (viz.
accept(u)), and to remove connections (viz. logout(`)). These operations are not indexed with
a locality, since they always act locally at the node where they are executed. Node coordinators
are stationary processes and cannot be used as tuple fields. They are installed at a node either
when the node is initially configured or when the node is dynamically created, e.g. when a node
coordinator performs newloc(u,C) (where C is a node coordinator).

A network node is now either a located tuple l: : 〈et〉 or a 4-tuple of the form l: :Sρ C, where S
gives the set of nodes connected to l and C is the parallel composition of user and node coordinator
processes. A net can be an empty net 0, a single node or the parallel composition of two nets N1

and N2 with disjoint sets of node addresses (in this setting, we do not use structural congruence,
thus we don’t have an analogous of rule (Clone) of Table 2).

If l: :Sρ C is a node in the net, then we will say that the nodes in S are logged in l and that l is
a gateway for those nodes. A node can have more than one gateway. Moreover, if l1 is logged in l2
and l2 is logged in l3 then l3 is a gateway for l1 too.

Remark 2. Our approach aims at a clean separation between the coordinator level (made up by
node coordinator processes) and the user level (made up by standard processes). This separation
has a considerable impact. From an abstract point of view, the coordinator level may represent
the network operating system running on a specific computer and the user level may represent the
processes running on that computer. The new privileged operations are then system calls supplied
by the network operating system. From a more implementative point of view, the coordinator level
may represent the part of a distributed application that takes care of the connections to a remote
server (if the application is a client) or that manages the connected clients (if the application is
a server). The user level then represents the remaining parts of the application that can interact
with the coordinator by means of specific protocols. ut

To save space, here we do not show the full operational semantics of OpenKlaim (we refer
the interested reader to [BLP02]), rather we show the most significant rules. The semantics of
nets, given by the reduction relation Â−→ (partially) defined in Table 11, exploits two labelled
transitions: λ−−→

l
>, (partially) defined in Table 9, accounts for the execution of standard actions

and for the availability of net resources (tuples and nodes); λ−−→>, (partially) defined in Table 10,
accounts for the execution of privileged actions. Within the transition labels, l indicates the gate-
way that makes an action possible, while λ represents the intended operation and has the form
x(l1, arg, l2), where x is the operation, l1 is the node performing the operation, l2 is the target
node, and arg is the argument of x. For instance, i(l1, [[T]]ρ, l2) represents operation in(T)@l2
performed at l1.

Rule (Tuple) signals the presence of the tuple 〈et〉 in the tuple space of l and, similarly,
rule (Node) signals the presence of node l: :Sρ C in the net. These information are used to enable
execution of standard actions different from bind. Rule (Env) permits changing the gateway
used by an action. This is important for remote interaction because two nodes can interact only
if there exists a node that acts as gateway for both. Moreover, rule (Env) implements a name

12

l: : 〈et〉 〈et〉@l−−−−−→
l

> 0 (Tuple) l: :Sρ C
l::Sρ C−−−−→

l
> 0 (Node)

N1
λ−−→
l1

> N ′
1 N2

l2::
{l1}∪S
ρ C−−−−−−−−→

l2
> N ′

2

N1 ‖ N2
λ{ρ}−−−−→

l2
> N ′

1 ‖ N ′
2 ‖ l2: :

{l1}∪S
ρ C

(Env)

l: :Sρ bind(u, l1).C
b(l,u,l1)−−−−−−→

l
> l: :Sρ[l1/u] C if ρ(u) is undefined (Bind)

l: :Sρ out(t)@`.C
o(l,[[t]]

ρ
,ρ(`))

−−−−−−−−−−→
l

> l: :Sρ C (Out)

l: :Sρ in(T)@`.C
i(l,[[T]]

ρ
,ρ(`))

−−−−−−−−−−−→
l

> l: :Sρ C (In)

Table 9. Process semantics (sample rules)

l2 6∈ L

L ` l1::
S
ρ newloc(u,C).C′ n(l1,C,l2)−−−−−−−−→> L ∪ {l2} ` l1::

S
ρ C′[l2/u]

(Newloc)

l1::
S
ρ login(l2).C

lin(l1,−,l2)−−−−−−−−−→> l1::
S
ρ C (Login)

l1::
S
ρ logout(l2).C

lout(l1,−,l2)−−−−−−−−−−→> l1::
S
ρ C (Logout)

l1::
S
ρ accept(u).C acc(l1,−,l2)−−−−−−−−−→> l1::

S∪{l2}
ρ C[l2/u] (Accept)

Table 10. Node coordinator semantics (sample rules)

resolution mechanism (akin those of DNS servers): node l1, that uses l2 as a gateway, can exploit
l2’s allocation environment for resolving localities that it is not able to resolve by itself (this is
not shown in detail here but this is what notation λ{ρ} means). Rules (Bind) and (NetBind)
enhance the local allocation environment with the new alias u for l1. Rules (Out) and (NetOut)
model tuple output. To this aim, it is checked existence of the target node (by using rule (Node))
and existence of a gateway shared between the source and the target nodes (by using rule (Env)).
Similarly, rules (In) and (NetIn) model communication; in this case, it is checked existence of
a matching tuple at the target node (by using rule (Tuple)) and, again, existence of a shared
gateway.

Rules (Newloc) and (NetNew) say that newloc(u,C) creates a new node in the net, binds
its address to u in the local allocation environment and installs the node coordinator C at the
new node. Differently from Klaim, the new node does not inherit the binders of the creating node
(inheritance could be programmed by appropriately using bind in C). We have also that a newloc
does not automatically log the new node in the generating one. This can be done by installing in
the new node a node coordinator that performs a login. Rule (Login) says that login(l2) logs
the executing node l1 in l2. Rules (Accept) and (NetLogin) say that, for a login(l2) executed
at l1 to succeed, there must be at l2 a node coordinator process of the form accept(l1).C′. As a
consequence of this synchronization, l1 is added to the set S of nodes logged in l2. Rules (Logout)
and (NetLogout) say that logout(l2) disconnects the executing node l1 from l2; as a consequence,
l1 is removed from the set S of nodes logged in l2 and any alias for l1 is removed from the allocation
environment ρ of l2 (notation ρ \ l1). The second premise of rule (NetLogout) checks existence

13

N1
b(l2,u,l1)−−−−−−−→

l
> N2

N1 Â−→ N2

(NetBind)

N1
o(l1,et,l2)−−−−−−−→

l
> N ′

1 N ′
1

l2::Sρ P−−−−−→
l

> N2

N1 Â−→ N2 ‖ l2: :
S
ρ 〈et〉|P

(NetOut)

N1
〈et〉@l2−−−−−−→

l
> N ′

1 N ′
1

i(l1,[[T]]
ρ

,l2)

−−−−−−−−−−→
l

> N2 match([[T]]ρ, et) = σ

N1 Â−→ N2σ

(NetIn)

N1
n(l1,C,l2)−−−−−−−−→> N2

N1 Â−→ N2 ‖ l2::
∅
[l2/self] C

(NetNew)

N1
lin(l1,−,l2)−−−−−−−−−→> N ′

1 N ′
1

acc(l2,−,l1)−−−−−−−−−→> N2

N1 Â−→ N2

(NetLogin)

N1
lout(l1,−,l2)−−−−−−−−−−→> N ′

1 N ′
1

l2::
{l1}∪S
ρ C−−−−−−−−→

l2
> N2 ρ′ = ρ \ l1

N1 Â−→ N2 ‖ l2::
S
ρ′ C

(NetLogout)

Table 11. OpenKlaim operational semantics (sample rules)

of a node of the form l2::
{l1}∪S
ρ C in N ′

1 and returns the net N2 obtained by removing that node
from N ′

1.

Remark 3. OpenKlaim can be viewed as a core calculus to describe net infrastructures. The cal-
culus can be easily extended with powerful constructs definable atop the basic primitives. For
example, a few such constructs have been introduced in [BLP02]. In X-Klaim such derived oper-
ations are provided as primitives for efficiency reasons (see Section 7.1). ut

The design principles underlying OpenKlaim have been exploited in [DFM+03] to define
Kaos, a calculus that can be considered as an extension of µKlaim with OpenKlaim node
coordinators. The main peculiarity of Kaos is that connections among nodes are labelled by costs,
namely special values that abstract connection features. Costs are the formal tool for programming
Quality of Service (QoS) attributes at the level of WAN applications. Indeed, Kaos costs measure
non-functional properties (e.g., timely response and security) that programmers can specify and
that depend on the application. The underlying algebraic structure of costs is a constraint semi-
ring [BMR97] and this permits performing operations over costs, such as addition and comparison.
Hence, it is possible to take into account costs when paths between nodes must be determined.

3 A modal logic for µKlaim

For agent-based calculi, as well as for other formalisms, it is crucial to have tools for establishing
deadlock freeness, liveness and correctness with respect to given specifications. However for pro-
grams involving different actors and authorities it is also important to establish other properties
such as resources allocation, access to resources and information disclosure. In [DL02,Lor02] a tem-
poral logics has been proposed for specifying and verifying dynamic properties of mobile agents

14

(Out)
[[t]] = et

l: :out(t)@l′.P ‖ l: : P ′ Â o(l,et,l′)−−−−−−→ l: : P ‖ l: : P ′ ‖ l′: : 〈et〉

(Eval) l: : eval(Q)@l′.P ‖ l′: : P ′ Â e(l,Q,l′)−−−−−−→ l: : P ‖ l′: : P ′|Q

(In)
match([[T]], et) = σ

l: : in(T)@l′.P ‖ l′: : 〈et〉 Â i(l,et,l′)−−−−−−→ l: : Pσ ‖ l′: :nil

(Read)
match([[T]], et) = σ

l: : read(T)@l′.P ‖ l′: : 〈et〉 Â r(l,et,l′)−−−−−−→ l: : Pσ ‖ l′: : 〈et〉

(New)
l′ 6∈ L

L ` l: :newloc(u).P Â n(l,−,l′)−−−−−−→ L ∪ {l′} ` l: : P [l
′
/u] ‖ l′: :nil

(Par)
L ` N1 Â a−−→ L′ ` N ′

1

L ` N1 ‖ N2 Â a−−→ L′ ` N ′
1 ‖ N2

(Struct)
N ≡ N1 L ` N1 Â a−−→ L′ ` N2 N2 ≡ N ′

L ` N Â a−−→ L′ ` N ′

Table 12. µKlaim labelled operational semantics

specified in Klaim. The inspiration for the proposal was Hennessy-Milner Logics [HM85] but it
needed significant adaptations due to the richer operating context. In this section, we re-work on
the logics of [DL02] and propose a simplified variant of the logic for µKlaim.

In order to do this, we need to reconsider the operational semantics of µKlaim that was given
as a set of rewriting rules in Section 2. We need here a labelled operational semantics that makes
evident the involved localities and the information transmitted over the net. Our labels carry
information about the action performed, the localities involved in the action and the transmitted
information. Transition labels have the following structure:

x(l1, arg, l2),

where x denotes the action performed. The set Lab of transition labels a is defined by the following
grammar:

a: : = o(l1, et, l2) | i(l1, et, l2) | r(l1, et, l2) | e(l1, P, l2) | n(l1,−, l2)

Locality l1 denotes the node where the action is executed, while l2 is the node where the action
takes effect. Finally, arg is the argument of the action and can be either a tuple or a process.
For instance, if a process running at l1 inserts [[t]] in the tuple space located at l2, by executing
out(t)@l2, then the net evolves with a transition whose label is o(l1, [[t]], l2). The rules of the
labelled operational semantics are presented in Table 12. Notice that, the proposed semantics is
completely in accordance with the one presented in Table 3. In fact, the rules are the same apart
for the labels.

Temporal properties of nets are expressed by means of the diamond operator (〈A〉φ) indexed
with a predicate over transition labels. A net N satisfies a formula 〈A〉φ if there exists a label a

and a net N ′ such that we have: N Â a−−→ N ′, a satisfies A and N ′ satisfies φ.
Specific process predicates are introduced to describe static properties of processes that are

spawned to be evaluated remotely. These predicates permit specifying accesses to resources (data
and nodes) by processes and the causal dependencies of their actions.

15

Φ : : = true | 〈t〉@` | 〈A〉φ | κ | νκ.φ | φ ∨ φ | ¬φ

A : : = ◦ | α | A1 ∩ A2 | A1 ∪ A2 | A1 −A2 | ∀u.A

α : : = O(`1, `, `2) | I(`1, `, `2) | R(`1, `, `2) | E(`1, pp, `2) | N(`1,−, `2)

pp : : = 1P | ap→ pp | pp ∧ pp

ap : : = o(`)@lp | i(T)@lp | r(T)@lp | e(pp)@lp | n(u)

Table 13. The logic for µKlaim

The logic provides also state formulae for specifying the distribution of resources (i.e. data
stored in nodes) in the system.

Below, we introduce syntax and semantics of the logic. We let Φ be the set of logic formulae
defined by the grammar of Table 3, where:

– φ is used to denote logical formulae that characterize properties of µKlaim systems;
– κ belongs to the set of logical variables V Log;
– A denotes a label predicate, i.e. a predicate that finitely specifies an infinite set of transition

labels;
– pp denotes a process predicate that express static properties of processes.

In the rest of this section, we explain first syntax and semantics of formulae, then introduce
label predicates and their interpretation. We conclude the section with the definition of process
predicates.

3.1 Logical formulae

A formula φ can be either true, that is satisfied by any net, or a composed formula; a net N
satisfies φ1∨φ2 if N satisfies either φ1 or φ2, while N satisfies ¬φ if N does not satisfies φ. Specific
state formulae (〈t〉@`) are introduced for specifying properties related to the data placement over
the nodes. N satisfies 〈t〉@` if and only if N contains node ` and tuple 〈[[t]]〉 is stored in the
tuple space located at `. Dynamic properties of µKlaim systems are specified using the operator
diamond (〈A〉φ) that is indexed with predicates specifying properties of transition labels. We will
rely on the interpretation function A[[·]] that will be formally defined later. It interprets each label
predicate A as a set of pairs 〈a, σ〉 where a is a transition label and σ is a substitution.

The intuitive interpretation of 〈A〉φ will be:

– a net N satisfies 〈A〉φ if there exist 〈a, σ〉 ∈ A[[A]] and N ′ such that N Â a−−→ N ′ and N ′ satisfies
φσ;

Recursive formulae νκ.φ are used to specify infinite properties of systems. To guarantee well
that the interpretation function of formulae be well-defined, we shall assume that no variable κ
occurs negatively (i.e. under the scope of an odd number of ¬ operators) in φ.

Other formulae like [A]φ, φ1 ∧ φ2 or µκ.φ can be expressed in φ. Indeed [A]φ = ¬〈A〉¬φ,
φ1 ∧ φ2 = ¬(φ1 ∨ φ2) and µκ.φ = ¬νκ.¬φ[¬κ/κ]. We shall use these derivable formulae as macros
in φ.

The interpretation function of formulae makes use of logical environments. A logical environ-
ment is a function that, given a logical variable and a substitution, yields a set of nets.

Definition 1. Let V Log be the set of logical variables, Subst be the set of substitutions and Net
be the set of µKlaim nets, we define the logical environment Env as

Env ⊆ [V Log → Subst → 2Net]

16

M[[true]]εσ = Net

M[[κ]]εσ = ε(κ)σ

M[[〈t〉@l]]εσ = {N |N ≡ N1 ‖ l: : 〈[[tσ]]〉}
M[[〈A〉φ]]εσ = {N |∃a, σ′, N ′. N Â a−−→ N ′, (a, σ′) ∈ A[[A{σ}]], N ′ ∈ M[[φ]]εσ′ · σ}
M[[φ1 ∨ φ2]]εσ = M[[φ1]]εσ ∪M[[φ2]]εσ

M[[¬φ]]εσ = Net−M[[φ]]εσ

M[[νκ.φ]]εσ =
S{g|g ⊆ f φ

κ,ε(g)} where f φ
κ,ε(g) = M[[φ]]ε · [κ 7→ g]

Table 14. Interpretation function of formulae

We will use ε, sometime with indexes, to denote elements of Env.

The interpretation function M[[·]]: Φ → Env → Subst → 2Net that, using a substitution en-
vironment and a logical environment, for each φ ∈ Φ, yields the set of nets that satisfy φ or,
equivalently, the set of nets that are models for φ with respect to given substitution and logical
environment. Function M[[·]] is formally defined in Table 14.

3.2 Label predicates

A label predicate A is built from abstract actions and ◦, that denotes the set of all transition labels,
by using disjunction (· ∪ ·), conjunction (· ∩ ·) and difference (· − ·).

Abstract actions denote set of labels by singling out the kind of action performed (out, in, . . .),
the localities involved in the transition and the information transmitted. Abstract actions have the
same structure of transition labels; but have process predicates instead of processes.

Finally, predicates ∀u.A is used to quantify over localities, where 〈a, σ ·[l/u]〉 belongs to A[[∀u.A]]
if and only if 〈a, σ〉 belongs to A[[A[l/u]]].

Formal interpretation of labels predicates is defined by means of interpretation function A[[·]].
This function takes a label predicate A and yields a set of pairs <transition label-substitution>.
Intuitively, (a, σ) ∈ A[[A]] if transition label a satisfies A with respect to the substitution σ.
Function A[[·]] is defined in Table 15.

Notice that, ∀u plays the role of existential quantification if it is used inside a 〈·〉, while it
works like an universal quantification when used inside [·]. Moreover, in 〈A〉φ, A acts as binder for
quantified variables in A that appear in φ.

Process predicates are used for characterizing properties processes involved in the transition.
For instance:

– A1 = I(l1, l, l2) is satisfied by a transition label if a process, located at l1, retrieves locality l
from the tuple space at l2;

– A2 = ∀u1I(u1, l, l2) is satisfied by a transition label if a process, located at a generic locality,
retrieves locality l from the tuple space at l2;

– A2−A1 is satisfied by a transition label if a process, that is not located at l1, retrieves locality
l from the tuple space at l2.

3.3 Process predicates

Process predicates shall be used to specify the kind of accesses to the resources of the net (data and
nodes) that a process might perform in a computation. These accesses are composed for specifying
their causal dependencies. The causal properties we intend to express for processes are of the form
“first read something and then use the acquired information in some way”.

17

A[[◦]] = Lab

A[[O(`1, t, `2)]] = {(o(l1, t, l2); ∅)}

A[[I(`1, T, `2)]] = {(i(l1, T, l2); ∅)}

A[[R(`1, T, `2)]] = {(i(l1, T, l2); ∅)}

A[[E(`1, pp, `2)]] = {(e(l1, P, l2); ∅)|P ∈ P[[pp]]}

A[[N(`1,−, `2)]] = {(n(l1,−, l2); ∅)}

A[[A1 ∪ A1]] = A[[A1]] ∪ A[[A2]]

A[[A1 ∩ A1]] = {(a; σ1 · σ2)|(a; σ1) ∈ A[[A1]], (a; σ2)A[[A2]]}

A[[A1 −A2]] = {(a; σ)|(a; σ) ∈ A[[A1]],∀σ′ (a; σ′) 6∈ A[[A2]]}

A[[∀u.A]] =
S

l∈L{(a; σ · [u/l])|(a; σ) ∈ A[[A[l/u]]]}
Table 15. Label predicates interpretation

We use 1P for a generic process and pp1 ∧ pp2 for the set of processes that satisfy pp1 and pp2.
A process satisfies ap → pp if it may perform an access (i.e. an action) that satisfies ap and use
the acquired information as specified by pp. The satisfaction relation between actions (act) and
access predicates (ap) is quite intuitive and can be defined inductively as follows:

out(t)@`2 satisfies o(t)@`2
in(T)@` satisfies i(T)@`
read(T)@` satisfies r(T)@`
eval(P)@` satisfies e(pp)@` ⇔ P satisfies pp
newloc(u) satisfies n(u)

Process predicates can be thought of as types that reflect the possible accesses a process might
perform along its computation; they also carry information about the possible use of the acquired
resources.

To formally define functions P[[·]] that yields the set of process satisfying a given process predi-
cates, we need to introduce a transition relation for describing possible computations of processes.
The operational semantics proposed in Table 12, is not adequate, because it describes the actual
computation of nets and processes. The relation we need, instead, has to describe, using a sort
of abstract interpretation, the structured sequences of actions a process might perform during its
computation.

Let V be a set of variables, we will write V ` P ===
act⇒ Q whenever:

– the process P , at some point of its computation, might perform the action act;
– all the actions that syntactically precede act in P , that are execute before act, do not bind

variables in V.

Let P →V Q be the relation defined in Table 16, V ` P ====
act⇒ Q is inductively defined as

follows:

– for every V,

V ` act.P ===
act⇒ P

18

act.P →V P (1) A →V P (2)
P |Q →V P P |Q →V Q
P + Q →V P P + Q →V Q

(1) act does not bind variables in V
(2) A

def
= P

Table 16. Abstract interpretation of processes

P[[1P]] = Proc

P[[ap→ pp]] = {P |∃act, Q1, Q2:

P ≡α Q1, fv(ap→ pp) ` Q1 ===
act⇒ Q2, act ∈ AC[[ap]], Q2 ∈ P[[pp]]}

P[[pp1 ∧ pp2]] = P[[pp1]] ∩ P[[pp2]]

AC[[o(t)@`]] = {out(t)@`} AC[[i(T)@`]] = {in(T)@`}

AC[[r(T)@`]] = {read(T)@`}
AC[[e(pp)@`]] = {eval(Q)@`|Q ∈ P[[pp]]σ}

AC[[n(u)]] = {newloc(u′)}
Table 17. Process predicates interpretation functions

– if P →V P ′ and V ` P ′ ===
act⇒ Q then

V ` P ===
act⇒ Q

The process predicates interpretation function P[[·]] is inductively defined in Table 17. We will
write P : pp to denote that P ∈ P[[pp]]. Conversely, we will write ¬(P : pp) whenever P 6∈ P[[pp]].
Furthermore, we assume that process predicates are equal up to contraction (i.e. pp ∧ pp = pp),
commutative and associative properties; for instance pp1 ∧ (pp2 ∧ pp1) = pp1 ∧ pp2.

We would like to remark that process predicates represent set of causal dependent sequences of
accesses that a single process might perform and not actual computational sequences.

That follows is a typical properties that one can prove using the logic. Let us consider the set
of processes that, after reading the name of a locality from l1, spawn a process to the read locality:

i(!u)@l1 → e(1P)@u → 1P

This predicate is by

in(!u1)@l1.in(!x)@u1.eval(P)@u1.Q

but it is not satisfied by

in(!u2)@l1.read(!u2)@l2.eval(P)@u2.nil

since no process is evaluated at the locality retrieved from l1. Indeed a locality from l1 is retrieved,
but the one used to evaluate P is the locality read from l2.

The process predicate above could be used for specifying a security policies. For instance, one
could ask that never a process that, after reading the name of a locality from l1, spawns a process
to the read locality, is evaluated at site l2. This property can be formalized using the following
formula:

νκ.[∀u.E(u, i(!u)@l1 → e(1P)@u → 1P, l2)]false ∧ [◦]κ

19

3.4 An automatic tool for supporting analysis

To simplify the analysis of µKlaim programs, we use the framework KlaiML [Lor02] that permits
simulating an µKlaim program and generating its reachability graph. Moreover, using KlaiML,
it is possible to verify whether a program satisfies a formula.

The core of the system, which is implemented in OCaml [LRVD99], consists of two compo-
nents: klaimlgraph and klaimlprover. The first one permits analyzing the execution of µKlaim
programs and generating their reachability graphs. The second one, after loading a net N and a
formula φ, tests the satisfaction of φ by N . If the analyzed program has a finite reachability graph,
klaimlprover exhibits the actual tree structure of the proof either for φ or for ¬φ.

The results produced by klaimlgraph and klaimlprover are stored in XML format. These files
can be visualized using the front-end components of the system: jgraphviewer and jproofviewer.

4 Types for access and mobility control in µKlaim

In the design of programming languages for mobile agents, the integration of security mechanisms
is a major challenge; indeed, a great effort has been recently devoted to embed security issues
within standard programming features. Several sensible language-based security techniques have
been proposed in literature, including type systems, control and data flow analysis, in-lined refer-
ence monitoring and proof-carrying code; some of these techniques are analyzed and compared in
[SMH00].

An important topic deeply investigated for Klaim is the use of type systems for security
[DFP97,DFP99,DFPV00,DFP00,GP03c,GP03b], namely for controlling accesses to tuple spaces
and mobility of processes. To better clarify the problems we were faced with, let us consider
a simple scenario. Imagine that a publisher P has an on-line repository (implemented by a node
whose address is lR) containing all its available papers. It is then reasonable to want enforcing some
minimal security requirements, like, e.g., that only authorized users can read P papers (secrecy
of P ’s data) and no user other than P can put/remove papers in lR (integrity of P ’s data). The
only (unsatisfactory) mechanism available in Klaim for protecting P publications is to make lR a
reserved address; in this way, P can communicate it only to trusted entities. However, the behaviour
of this “trusted” entities is out of P ’s control: they could (maliciously or incidentally) make lR
public and, from then onwards, no security property on P ’s data can be ensured.

The idea of statically controlling the execution of a program via types dates back in time.
The traditional property enforced by types, i.e. type safety, implies that every data will be used
consistently with its declaration during the computation (e.g., an integer variable will always be
assigned integer values). However, to better deal with global computing problems, we generalized
traditional types to behavioural types. Intuitively, behavioural types are abstractions of process
behaviours and provide information about the capabilities of processes, namely the operations
processes can perform at a specific locality (downloading/consuming a tuple, producing a tuple,
activating a process, and creating a new node). By using behavioural types, each Klaim node comes
equipped with a security policy, specified by a net coordinator in terms of execution privileges: the
policy of node l describes the actions processes located at l are allowed to execute. Type checking
will guarantee that only processes whose intentions match the rights granted by coordinators are
allowed to proceed.

In this section we shall summarize the type theory developed for Klaim and illustrate how
to use type systems to enforce the policies mentioned above. For the sake of presentation, we
concentrate on µKlaim and leave aside the treatment of equations for process definitions (we refer
the interested reader to the original papers for a full account of the theories presented).

20

4.1 A capability-based type system

In this section, we illustrate the basic ideas underlying various type systems, increasingly more
powerful, developed for µKlaim. The development of µKlaim applications proceed in two phases.
In the first phase, node administrators assign policies to the nodes of the net, and processes are
programmed while ignoring the access rights of the hosting nodes. In the second phase, processes
are allocated over the nodes of the net, while type checking their intentions against the policy of
the hosting node. Finally, through a mix of both static and dynamic typing, µKlaim type system
guarantees that only processes with intentions that match the access rights as granted by the net
coordinators are allowed to proceed.

We start by presenting a basic framework for our type theory; further developments are given
is Sections 4.2 and 4.3. As we already said, µKlaim types provide information about the legality of
process actions: downloading/consuming tuples, producing tuples, activating processes and creating
new nodes. We use r, i, o, e and n to indicate capabilities, where each symbol stands for the
operation whose name begins with it; e.g., r denotes the capability of executing a read action.
We let π to range over subsets of {r, i, o, e, n}. Types, ranged over by δ, are functions mapping
localities (and locality variables) into subsets of capabilities. For the sake of readability, types will
be written according to the following notation [`1 7→ π1, . . . , `n 7→ πn]. By taking advantage of the
fact that types are functions, we express subtyping in terms of the standard pointwise inclusion of
functions. Hence, we write δ1 ¹ δ2 if δ1(`) ⊆ δ2(`) for every ` ∈ L ∪ U .

Each node can be decorated with a type, set by the node administrator, that determines the
access policy of the node in terms of access rights on the other nodes of the net. For example, the
capability e is used to control process mobility; thus, the privilege [l′ 7→ {e}] in the type of locality l
will enable processes running at l to perform eval actions over l′. From this perspective, subtyping
formalizes degrees of restrictions, i.e. if δ1 ¹ δ2, then δ1 expresses a less permissive policy than δ2.
Hence, the syntax of µKlaim nets becomes

N : : = l: :δ P
∣∣ l: : 〈et〉

∣∣ N1 ‖ N2

Nodes of the form l: : 〈et〉 represent located resources. We assume that the located resources in
the initial configuration have been produced by the net coordinator and, then, are reliable (i.e. no
checks are needed).

A static type checker verifies whether the processes in the net do comply with the security
policies of the nodes where they are allocated. To this aim, two syntactic constructs are now
explicitly typed. Firstly, the newloc construct becomes newloc(u: δ), where δ specifies the security
policy of the new node. Moreover, template formal parameters are now of the shape ! u: π, where
π specifies the access rights corresponding to the operations that the receiving process wants to
perform at u. In both cases, the type information is not strictly necessary: it increases the flexibility
of the newloc action (otherwise, some kind of ‘default policy’ should be assigned to the newly
created node) and enables a simpler static type checking.

Thus, for each node of a net, say l: :δ P , the static type checker procedure can determine if
the actions that P intends to perform when running at l are enabled by the access policy δ or
not. Moreover, the type checker verifies that in a. the continuation process behaves consistently
with the declarations made for locality variables bound by a. This fact is expressed by the type
judgment δ| l P . A net is deemed well-typed if for each node l: :δ P it holds that δ| l P .

21

To give the flavour of our typing inference system, we show and comment on three significant
typing rules concerning eval, in and newloc actions. The rules are

e ∈ δ(`) δ| l P

δ| l eval(Q)@`.P

i ∈ δ(`) δ[ũ 7→ π]!u:π∈T | l P

δ| l in(T)@`.P

n ∈ δ(l) δ′ ¹ δ[u 7→ δ(l)] δ[u 7→ δ(l)]| l P

δ| l newloc(u: δ′).P

In δ| l P , the δ is called typing environment; it records the privileges granted to P and provides
information about P ’s free variables. In all rules, the static checker must verify the existence of
the privilege for executing the checked action in the current typing environment. When typing
eval(Q)@`.P , notice that in general nothing can be statically said about the legacy of Q at `.
Indeed, ` can be a locality variable and, thus, the locality name replacing it (and hence its associated
policy) will be known only at run-time. When typing in(T)@`.P , the continuation process P can
intend to perform actions on the locality variables bound by T . Thus, P must be typed in the
environment obtained from δ by adding information about such variables, as stated by T ; this is
written δ[ũ 7→ π]!u:π∈T , where δ1[δ2] denotes the pointwise union of functions δ1 and δ2. Thus, the
static checking of P in this extended environment will verify that the declarations contained in T
for its bound variables will be respected by P . When typing newloc(u: δ′).P , we assume that the
creating node owns over the created one all the privileges it owns on itself (thus, the continuation
process P will be typed in the environment δ extended with the association [u 7→ δ(l)]). Moreover,
the check δ′ ¹ δ[u 7→ δ(l)] verifies that the access policy δ′ for the new node is in agreement with
the policy δ of the node executing the operation.1

Type information contained in processes play a crucial role in the operational semantics, thus
enabling/disabling process migrations and data communications. This fact is expressed by modi-
fying the new operational rules for actions eval and in/read as follows. The new reduction rule
for eval is

δ′| l′ Q

l: :δ eval(Q)@l′.P ‖ l′: :δ
′
P ′ Â−→ l: :δ P ‖ l′: :δ

′
P ′|Q

Notice that the process Q must be dynamically typechecked against the policy of node l′, now
that the target of the migration (and hence its security policy) is known. The reduction rule for
creation of new nodes is

l′ 6∈ L

L ` l: :δ newloc(u: δ′).P Â−→ L ∪ {l′} ` l: :δ[l
′ 7→δ(l)] P [l′/u] ‖ l′: :δ

′[l′/u] nil

Notice that in this case all checks have been made statically, but the point here is that a new
node with its policy is added and that the policy of the creating of node change accordingly. The
reduction rule for action in (the corresponding rule for read is omitted) becomes:

matchδ([[T]], et) = σ

l: :δ in(T)@l′.P ‖ l′: : 〈et〉 Â−→ l: :δ Pσ ‖ l′: :nil

The new pattern matching function matchδ is defined like match but it also verifies that process
Pσ does not perform illegal actions w.r.t. δ. Because of the static inference, the definition of matchδ

1This check prevents a malicious node l from forging capabilities by creating a new node with more
powerful privileges (where, e.g., sending a malicious process that takes advantage of capabilities not owned
by l).

22

simply relies on the following variant of rule (M4) in Table 5:

π ⊆ δ(l′)

matchδ(! u: π, l′) = [l′/u]

Indeed, the static inference verifies that P performs over u at most the operations declared by π;
hence, if δ enables the actions identified by π over l′, then Pσ will never violate policy δ due to
operations over l′.

By relying on static and dynamic typechecking, we can prove that the type system is sound,
namely that well-typedness is an invariant of the operational semantics (subject reduction) and
that well-typed nets are free from run-time errors, caused by misuse of access rights (type safety).

Let’s now see the impact of type soundness in practice. The protection of P on-line publications
can now be programmed very easily: to preserve data secrecy it suffices to assign the privilege
[lR 7→ {r}] only to the authorized nodes, and to preserve data integrity it suffices to assign the
privilege [lR 7→ {i, o}] only to the node associated to P (say a node with address lP). Indeed, type
soundness ensures that P ’s papers will be read only by processes running in authorized nodes, and
that only processes running at lP will be allowed to modify the repository lR.

4.2 Dynamic privileges management

The above modeling of the publisher scenario satisfies the requirements that motivated our ap-
proach to type discipline µKlaim. However, it is far from being realistic and usable, especially
in e-commerce applications, because of its static nature. In this section, we show some simple
modifications that enable programming dynamic privileges acquisition; this will allow us to deal
with more flexible and sensitive applications of our theory. We conclude by sketching how privilege
loss could be added to the picture; the interested reader is referred to [GP03c] for full details and
additional examples.

The main characteristic of the revised theory is the possibility of programming privileges ex-
change; to this aim, we shall decorate localities in output actions with a capability specification, µ,
expressing the conveyed privileges. Hence, tuple fields take now the form

f : : = e
∣∣ `: µ

Formally, µ is a partial function with finite domain from localities (and locality variables) to subsets
of capabilities. Intuitively, action out(l: [l1 7→ π1, . . . , lm 7→ πm])@l′ creates a tuple containing
locality l that can be accessed only from localities l1, . . . , lm; moreover, when the tuple will be
retrieved from li, li’s access policy will acquire the privilege [l 7→ πi]. To rule out simple capability
forging, we must ensure that the privilege [l 7→ π1∪ . . .∪πm] is really owned by the node executing
the out. This can be done through a revised tuple evaluation function [[·]]δ, whose most significant
definition rule is

µ = [l1 7→ π1, . . . , lm 7→ πm] µ′ = [l1 7→ π1 ∩ δ(l), . . . , lm 7→ πm ∩ δ(l)]

[[l:µ]]δ = l: µ′

The operational rule for out now becomes

[[t]]δ = et

l: :δ out(t)@l′.P ‖ l′: :δ
′
P ′ Â−→ l: :δ P ‖ l′: :δ

′
P ′ ‖ l′: : 〈et〉

In this new setting, the execution of actions in and read has two effects: replacing free occur-
rences of variables with localities/values (like before) and enriching the type of the node performing

23

the action with the privileges granted along with the tuple. The new rule for in (the rule for read
is similar) is:

matchδ
l ([[T]]δ, et) = 〈δ′′, σ〉

l: :δ in(T)@l′.P ‖ l′: : 〈et〉 Â−→ l: :δ[δ
′′] Pσ ‖ l′: :nil

Function matchδ
l differs from matchδ in two aspects: it returns the substitution σ to be applied to

the continuation process together with the privileges passed by (the producer of) the tuple to node
l, and it typechecks Pσ by also considering such privileges. Its definition relies on the following
variants of rules (M3), (M4) and (M5) of Table 5:

matchδ
l (l

′: µ, l′: µ′) = 〈[], ε〉 π ⊆ δ(l′) ∪ µ(l)

matchδ
l (! u: π, l′: µ) = 〈[l′ 7→ π], [l′/u]〉

matchδ
l (F, f) = 〈δ1, σ1〉 matchδ

l (T, t) = 〈δ2, σ2〉
matchδ

l ((F, T) , (f, t)) = 〈δ1[δ2], σ1 ◦ σ2〉
Since node l: :δ P can dynamically acquire privileges when P performs in/read actions, it is

possible that statically illegal actions can become permissible at run-time. For this reason, if P
intends to perform an action not allowed by δ, the static inference system cannot now reject the
process, since the capability necessary to perform the action could in principle be dynamically
acquired by l. In such cases, the inference system simply marks the action to require its dynamic
checking. Hence, in the new setting the node l: :[l

′ 7→{r}] read(!u: {o})@l′.out(t)@l′ turns out to be
legal. Action out(t)@l′ can be marked and checked at run-time since, if u would be dynamically
replaced with l′, l will acquire the privilege [l′ 7→ {o}] and the process running at l could proceed;
otherwise, the process will be suspended. In this type system, the dynamic acquisition of privileges
is exploited exactly for relaxing the static type checking and admitting nodes like l while requiring
on (part of) them a dynamic checking.

The static semantics now is built up over the judgement δ| l P . P ′, where process P ′ is
obtained from P by possibly marking some actions. Intuitively, it means that all the variables
in P ′ are used according to their definition and, when P ′ is located at l, its unmarked actions
are allowed by δ. Since the new static checker cannot reject anymore those processes intending
to perform statically illegal actions, the rules for typing processes shown before must be slightly
modified. Thus, e.g., the rule for typing eval actions becomes

δ| l P . P ′

δ| l eval(Q)@`.P . markδ(eval(Q)@`).P ′

where markδ(eval(Q)@`) is eval(Q)@` if e 6∈ δ(`) and is eval(Q)@` otherwise.
Once the syntax of processes has been extended to allow processes to contain marked actions,

a net can be deemed executable if for each node l: :δ P it holds that δ| l P . P (i.e. if the net
already contains all the necessary marks).

As far as the operational semantics is concerned, the rule for eval must be modified so that the
process that is actually sent for execution is that resulting (if any) from the typechecking of the
original incoming process, thus such a process contains all necessary marks. Moreover, for taking
into account execution of marked actions, the following rules must be added to the previous ones

l′ = tgt(a) cap(a) ∈ δ(l′) l: :δ a.P ‖ l′: :δ
′
Q Â−→ N

l: :δ a.P ‖ l′: :δ
′
Q Â−→ N

l′ = tgt(a) cap(a) ∈ δ(l′) l: :δ a.P ‖ l′: : 〈et〉 Â−→ N

l: :δ a.P ‖ l′: : 〈et〉 Â−→ N

24

where tgt(a) and cap(a) denote, resp., the target locality and the capability associated to action
a. In substance, these rules say that the marking mechanism acts as an in-lined security monitor
by stopping the execution of marked actions whenever the privilege for executing them is missing.
Type soundness still holds, but is now formulated in terms of executable nets.

By exploiting this more sophisticated type theory, the publisher example can be formulated by
using the following net, that models both user and publisher behaviour:

lU : :[lU 7→{i}, lP 7→{o}] out(“Subsc”, lU : [lP 7→ {o}])@lP .in(“Access”, u: {r})@lU .C ‖
lP : :[lP 7→{i},lR 7→{i,o}] ∗ in(“Subsc”, !u′: {o})@lP .out(“Access”, lR: [u′ 7→ {r}])@u′ ‖
lR : :[] 〈paper1〉 | 〈paper2〉 | . . .

Process ∗P stands for P |P | . . . (i.e. the π-calculus replication operator) and can be easily encoded
via process definitions. C represents the user usage of the on-line publications, thus it may contain
operations like read(. . .)@lR that would be marked by the static inference. This setting is more
realistic because the only privileges statically assigned are [lR 7→ {i, o}] to lP (to implement data
integrity) and [lP 7→ {o}] to allow the user lU to require (by possibly paying a certain fee) the
subscription to P ’s publications. It is then lP that gives lU the possibility of accessing lR. Upon
completion of the protocol, the net will be

lU : :[lU 7→{i},lP 7→{o},lR 7→{r}] C ‖ lR: :[] 〈paper1〉 | 〈paper2〉 | . . . ‖
lP : :[lP 7→{i},lC 7→{i,o},lU 7→{o}] ∗ in(“Subscr”, !u′: {o})@lP .out(“Access”, lR: [u′ 7→ {r}])@u′

Notice that all processes eventually spawned at lU are then enabled to use the privilege [lR 7→ {r}].
We now comment on possible variations of the type theory. In real situations, a (mobile) process

could dynamically acquire some privileges and, from time to time, decide whether it wants to keep
them for itself or to share them with other processes running in the same environment, viz. at
the same node. In our example, the user might just buy an ‘individual licence’. Our framework
can smoothly accommodate this feature, by associating privileges also to processes and letting
them decide whether an acquisition must enrich their hosting node or themselves. Moreover, the
subscription could have an expiration date, e.g., it could be an annual subscription. Timing in-
formation can easily be accommodated in the framework presented by simply assigning privileges
a validity duration and by updating these information for taking into account time passing. Fur-
thermore, ‘acquisition of privileges’ can be thought of as ‘purchase of services/goods’; hence it
would be reasonable that a process lose the acquired privilege once it uses the service or passes
the good to another process. In our running example, this corresponds to purchasing the right of
accessing P ’s publications a given number of times. A simple modification of our framework, for
taking into account multiplicities of privileges and their consumption (due, e.g., to execution of
the corresponding action or to cession of the privilege to another process), can permit to deal with
this new scenario. Finally, the granter of a privilege could decide to revoke the privilege previously
granted. In our example, P could prohibit lU from accessing its publications because of, e.g., a
misbehaviour or expiry of the subscription time (in fact, this could be a way of managing expiration
dates without assigning privileges a validity duration). To manage privileges revocation we could
annotate privileges dynamically acquired with the granter identity and enable processes to use a
new ‘revoke’ operation.

4.3 Other uses of types

We conclude this short overview on Klaim types for security by mentioning two variants. The
first one enables a more efficient static checking (but is less realistic and heavier to deal with);
the second one allows for a finer control of processes activities (but is more complicated). In both

25

cases, a static type checker is exploited to minimize the number of run-time checks; type soundness
is then formulated in terms of the corresponding notion of well-typedness.

The types for Klaim originally proposed in [DFP99,DFPV00,DFP00] were functions mapping
localities (and locality variables) into functions from sets of capabilities to types. A type of the form
[` 7→ π 7→ δ] describes the intention of performing the actions corresponding to π at `; moreover,
it imposes constraint δ on the processes that could possibly be spawned at `.

Thus, if [l 7→ {e} 7→ δ] is in the policy of node l′, then processes running at l′ can spawn over
l code that typechecks with δ. This is required in order to enable the static inference to decide
whether the spawned process can legally run at l or not. However, to make this possible, it must
hold that δ is a subtype of l’s type; hence, a global knowledge of node types is required. This can
be reasonable for LANs while is hardly implementable in WANs, where usually nodes are under
the control of different authorities. The type system presented in Section 4.1 is more realistic in
that the static checker only need local information; however, it is less efficient because it requires
a larger amount of dynamic checks.

Moreover, types can be recursive. Recursive types are used for typing migrating recursive pro-
cesses like, e.g., P

4= in(! x)@l.out(x)@l′.eval(P)@l′′. P can be typed by solving the recursive
type equation δ = [l 7→ {i} 7→ ⊥, l′ 7→ {o} 7→ ⊥, l′′ 7→ {e} 7→ δ], where ⊥ denotes the empty
type. However, notice that recursive processes do not necessarily have recursive types: e.g. process
Q

4= in(!x)@l.out(x)@l′.Q has type [l 7→ {i} 7→ ⊥, l′ 7→ {o} 7→ ⊥].

In [GP03b] the type system of Section 4.1 has been refined to incorporate other real systems
security features, i.e. granting different privileges to processes coming from different nodes and
constraining the operations allowed over different tuples. Thus, for example, if l trusts l′, then l
security policy could accept processes coming from l′ and let them accessing any tuple in its TS.
If l′ is not totally trusted, then l’s security policy could grant processes coming from l′, e.g., the
capabilities for executing in/read only over tuples that do not contain classified data. To this aim,
we let types to be functions from localities (and locality variables) into functions from localities
(and locality variables) into sets of capabilities. Intuitively, the association [l 7→ l′ 7→ π] in the policy
of node l′′ enables processes spawned over l′′ by (a process running at) node l to perform over l′

the operations enabled by π. Capabilities are still used to specify the allowed process operations,
but now they also specify the shape (i.e. number of fields, kind of each field, . . .) of in/out/read
arguments. For example, the capability <i , 〈“public”,−〉> (where ‘−’ is used to denote a generic
template field) states that action in(T) is enabled only if T is made up of two fields and the first one
is the string “public”. Thus, it enables the operations in(“public”, !x)@... and in(“public”, 3)@...,
while disables operations in(“private”, !x)@... and in(!x, !y)@....

5 HotKlaim

This section introduces Higher-Order Typed Klaim (HotKlaim), and extension of system F
[Gir72,Rey74] with primitives from Klaim. The purpose of HotKlaim is to enhance Klaim with
general purpose features, namely the powerful abstraction mechanisms and types of system F,
which are orthogonal to network-aware programming. These features allow to deal with highly pa-
rameterized mobile components and to dynamically enforce host security policies: types are meta-
data extracted at run-time and used to express trustiness guarantees. A further extension, called
MetaKlaim, is described in [FMP03]. MetaKlaim supports the interleaving of computational ac-
tivities with meta-programming activities, like dynamic linking and assembling and customization
of components, through the use of MetaML-style staging annotations [TS00,MHP00].

HotKlaim borrows the computational paradigm from µKlaim: a net is a collection of nodes,
and each node is addressed by a locality and consists of a multi-set of active processes and passive

26

Types t ∈ T: : = X | L | t1 → t2 | (ti|i ∈ m) | ∀X.t | U⇒t
Contexts Γ ∈ Ctx: : = ∅ | Γ, X | Γ, x: t
Terms e ∈ E: : = x | l | λx: t.e | e1 e2 | fix x: t.e | (ei|i ∈ m) | πj e | op e | ΛX.e | e{t} | p⇒e
Patterns p ∈ P: : = x!t | = e | (pi|i ∈ m)

Table 18. Syntax of types and terms

tuples. In HotKlaim terms include localities, processes and tuples, while types include the types
L and (ti|i ∈ m) of localities and tuples. There is no type for processes2, because process actions
can be performed by terms of any type. The primitives of HotKlaim take the following form:

– spawn(e) activates a process (obtained from e) in a parallel thread. Thus P |Q of µKlaim
corresponds to spawn(λ : ().P); Q.

– new(e) creates a new locality l, activates a process (obtained from e) at l, and returns l. Thus
new(λu: L.P) corresponds to the sequence of actions newloc(u).eval(P)@u of µKlaim.

– output(l, e) adds the value of e to the tuple space (TS) at l (output is non-blocking). Thus
out(t)@`.P of µKlaim corresponds to output(`, t); P

– input(l, p⇒e) accesses the TS located at l to fetch a value v matching p. If such a v exists,
it is removed from the TS, and the variables x!t declared in p are replaced within e by the
corresponding values in v. Otherwise, the operation is suspended until one becomes available.
Thus in(T)@`.P of µKlaim correspods to input(`, T⇒P).

Remark 4. In Klaim the variables declared in a template pattern have no type annotation, because
there are only three types of variables (values !x, localities !u, and processes !X). In HotKlaim
variables can have any type, thus the input primitive performs dynamic type-checking, to ensure
that a matching v is consistent with the types of variables declared in the pattern. In Klaim
there is a primitive eval(l, e) for activating a process at a remote locality l. This primitive for
asynchronous process mobility has not been included in HotKlaim for the following reasons:

– eval relies on dynamic scoping (a potentially dangerous mechanism), which is not available in
HotKlaim, since in a functional setting one can use (the safer mechanism of) parametrization.

– with eval a node may activate a process on another node, but the target node has no control
over the incoming process. This can be a source of security problems. In particular, Local Type
Safety (see below) fails, if eval is added.

In HotKlaim process mobility occurs only by “mutual agreement”, i.e. a node can output a process
abstraction in any TS, but the abstraction becomes an active process (at l) only if a process (at l)
inputs it. Higher-order remote communication is essential to implement this form of mobility. ut

In the rest of this section, we will use the following notations and conventions.

– m,n range over the set N of natural numbers. Furthermore, m ∈ N is identified with the set
{i ∈ N|i < m} of its predecessors.

– FV(e) is the set of free variables in e. If E is a set of syntactic entities, then E0 indicates the
set of entities in E without free variables.

– e ranges over finite sequences of e. e: t is a shorthand for ei: t for each ei in the sequence e.
– µ(A) is the set of multisets with elements in A, and] is multiset union.

Table 18 summarizes the syntax of HotKlaim, which uses the following primitive categories

– a numerable set XT of type variables, ranged over by X, . . .;
2One could identify processes with terms of type ().

27

– a numerable set X of term variables, ranged over by x, . . .;
– a numerable set L of localities, ranged over by l, . . .;
– a finite set Op = {spawn, new, output, input} of local operations, ranged over by op.

The syntax of HotKlaim can be explained in terms of system F and Klaim (in the following we
assume that t, Γ , e, p respectively range over T, Ctx, E and P).

– From system F we borrow functional types t1 → t2, abstraction λx: t.e and application e1 e2,
and polymorphic types ∀X.t, type abstraction ΛX.e and instantiation e{t}.

– From Klaim we borrow localities l of type L, tuples (ei|i ∈ m) of type (ti|i ∈ m), and the
construct p⇒e of type U⇒t, which performs pattern matching and dynamic type-checking
on untrusted values deposited in a TS (in Klaim this construct is bundled with the input
primitive); the primitives spawn, new, output and input are among the local operations Op.

– Finally, we have recursive definitions fix x: t.e and projections πj e.

In HotKlaim, we perform a dynamic type check, when we input an untrusted value from a
TS, in order to ensure some trustiness guarantees. The type system of HotKlaim is relatively
simple, and the guarantees we can express are limited. For instance, we cannot express constraints
on the computational effects of a term, such as the ability to spawn new threads or to perform
input/output. We circumvent this limitation by allowing only input of global values.

A term e ∈ E0 is global ∆⇐⇒ it has no occurrences of local operations op ∈ Op. (1)

Thus the only way we can turn a global value v into a process (interacting with its environment)
is by passing some local operations (possibly in customized form), in other words v must be a
higher-order abstraction representing processes parameterized w.r.t. customized local operations.

Remark 5. The use of dynamic type dispatching in a distributed polymorphic programming lan-
guage has been strongly advocated in [Dug99]. For simplicity, we have chosen not to include
dynamic type dispatching in HotKlaim, but it would be a very appropriate extension. One might
wonder whether input(x!t⇒e) of HotKlaim is semantically equivalent to typecase of (x: t)e of
[ACPP91,ACPR95]. In fact, they are different! To simplify the comparison we consider a type U
of untrusted values, and replace the input primitive with a construct check against (x!t)e.

– The type U of untrusted values has the following introduction and elimination rules
Γ `

Γ ` 〈e〉: U
Γ ` v:U Γ, x: t ` e: t′

Γ ` check v against (x: t)e: t′

the reduction semantics is check 〈v〉 against (x: t)e > e[v/x] provided ∅ ` v: t, thus at run-
time we have to check that v has type t (in the empty context).

– In [ACPP91,ACPR95] the type D of dynamics has similar introduction and elimination rules
Γ ` e: t

Γ ` d(e: t): D
Γ ` v: D Γ, x: t ` e: t′

Γ ` typecase v of (x: t)e: t′

the reduction semantics is typecase d(v: t′′) of (x: t)e > e[v/x] provided t′′ ≡ t, thus at run-
time we only need to check equality of types.

Therefore, the two mechanisms accomplish different useful tasks. For instance, if we have an un-
trusted dynamic value 〈d(v: t)〉, we must first check that d(v: t): D (or equivalently that v: t), and
only then we can compare t with other types to decide how to use v safely. ut

28

∅ `
Γ `

Γ, X ` X fresh
Γ ` t

Γ, x: t ` x fresh X
Γ `

Γ ` X
X ∈ Γ L

Γ `
Γ ` L

→ Γ ` t1 Γ ` t2

Γ ` t1 → t2
()

Γ ` ti i ∈ m

Γ ` (ti|i ∈ m)
∀ Γ, X ` t

Γ ` ∀X.t
U⇒ Γ ` t

Γ ` U⇒t

var
Γ `

Γ ` x: t
x: t ∈ Γ loc

Γ `
Γ ` l: L

fun
Γ, x: t1 ` e: t2

Γ ` λx: t1.e: t1 → t2
app

Γ ` e1: t1 → t2 Γ ` e2: t1

Γ ` e1 e2: t2

fix
Γ, x: t ` e: t

Γ ` fix x: t.e: t
tuple

Γ ` {Γ ` ei: ti | i ∈ m}
Γ ` (ei|i ∈ m): (ti|i ∈ m)

proj
Γ ` e: (ti|i ∈ m)

Γ ` πj e: tj

j < m

spawn
Γ ` e: () → t

Γ ` spawn e: ()
new

Γ ` e: L → t

Γ ` new e: L
input

Γ ` e: (L, U⇒t)

Γ ` input e: t
output

Γ ` e: (L, t)

Γ ` output e: ()

poly
Γ, X ` e: t

Γ ` ΛX.e: ∀X.t
spec

Γ ` e:∀X.t2 Γ ` t1

Γ ` e{t1}: t2[t1/X]
case

Γ ` e(p): L Γ, Γ (p) ` e: t

Γ ` p⇒e: U⇒t

Table 19. Type system

5.1 A type system

The type system derives judgments of the following forms

– Γ ` , i.e. Γ is a well-formed context
– Γ ` t, i.e. t is a well-formed type
– Γ ` e: t, i.e. e is a well-formed term of type t

The declarations in a context Γ have the following meaning: X means that the type variable X
ranges over types t, while x: t means that the term variable x ranges over values of type t.

Table 19 gives the typing rules. They are standard, except rule (case), which uses some auxiliary
notation, namely a context Γ (p) and a sequence e(p) of terms, defined by induction on p ∈ P

p ∈ P Γ (p) ∈ Ctx e(p) ∈ E∗

x!t x: t ∅
= e x: L e
(pi|i ∈ m) Γ (p0), . . . , Γ (pm−1) e(p0), . . . , e(pm−1)

5.2 Operational semantics

A net N ∈ Net
∆= µ(L× (E0 +V0 +{err})) is a multi-set of pairs consisting of a locality l and either

a process term e, or a value 〈v〉 in the TS, or err indicating that a process at l has crashed. The
dynamics of a net is given by a relation N Â−→ N ′ defined in terms of two transition relations
e

a
> e′ and e > err for terms: err means that a process has crashed, this is different from

node failure (that we do not model), and from a deadlocked process (e.g. a process that is waiting
to input a tuple that never arrives). The transitions relations are defined in terms of evaluation
contexts (see [WF94]) and reductions r

a
> e′ (and r > err).

Table 20 summarizes the syntactic categories for the operational semantics. Redexes are the
subterms where rewriting takes place. Evaluation contexts identify which of the redexes in a term
should be evaluated first, namely the hole [] gives the position of such a redex.

In the following we let v, vp, r, E, a range over V, VP, R, EC and A, respectively.
Table 21 defines the reduction > and uses an auxiliary function match(p, v), which returns

a closed substitution σ: X
fin→ V0 or fail. Its definition is by induction on p ∈ P. The base cases

29

Values V: : = l | λx: t.e | (vi|i ∈ m) | ΛX.e | vp⇒e
Evaluated Patterns VP: : = x!t | = v | (vpi|i ∈ m)
Redexes R: : = v1v2 | fix x: t.e | πj v | op v | v{t}
Evaluation Contexts EC: : = [] | Ee | v E | (v, E, e) | πj E | op E | E{t} | Ep⇒e
Evaluation Contexts for patterns Ep: : = (vp, Ep, p) | = E
Actions A: : = τ | l: e | s(e) | i(v)@l | o(v)@l with e ∈ E0 and v ∈ V0

Table 20. Values, redexes and evaluation contexts

(λx: t.e) v2
τ
> e[v2/x] v1 v2 > err if v1 6≡ λx: t.e

πj (vi|i ∈ m)
τ
> vj if j < m πj v > err if v 6≡ (vi|i ∈ m) with j < m

fix x: t.e
τ
> e[fix x: t.e/x] −

spawn v
s(v())

> () −
new v

l:(vl)
> l −

output (l, v)
o(v)@l

> () output v > err if v 6≡ (l, v1)

input (l, vp⇒e)
i(v)@l

> eσ if match(vp, v) = σ input v > err if v 6≡ (l, vp⇒e)

(ΛX.e){t} τ
> e[t/X] v{t} > err if v 6≡ ΛX.e

Table 21. Reductions for actions and symbolic evaluation

are:
p match(p, v)

x!t [v/x] if ∅ ` v: t and v global, otherwise fail
= e ∅ if v ≡ e ∈ L, otherwise fail

match is used by input for dynamic type checking of global values (see (1), page 28).
We just comment on some of the reduction rules in Table 21 (the others are standard):

– The rules for spawn, new, output and input come from Klaim.
– input requires pattern matching and dynamic type-checking of global values. Moreover, input

may get stuck, e.g. input(l, x!X⇒e) is stuck because there are no closed values of type X.
– All reductions to err correspond to type-errors.

The transition relation > is defined (in terms of >) by the following standard rules

r
a
> e′

E[r]
a
> E[e′]

r > err

E[r] > err

The relation Â−→ is defined (in terms of >) by the following rules

e > err

N] (l: : e) Â−→ N] (l: : err)

e
τ
> e′

N] (l: : e) Â−→ N] (l: : e′)

e
i(v)@l2

> e′

N] (l1: : e)] (l2: : 〈v〉) Â−→ N] (l1: : e
′)] (l2: : ())

e
o(v)@l2

> e′

N] (l1: : e) Â−→ N] (l1: : e
′)] (l2: : 〈v〉)

e
s(e2)

> e1

N] (l: : e) Â−→ N] (l: : e1)] (l: : e2)

e
l2::e2

> e1

N] (l1: : e) Â−→ N] (l1: : e1)] (l2: : e2)
l2 6∈ L(N) ∪ {l1}

where L(N) ∆= {l | (l: :) ∈ N} ⊆fin L is the set of localities in the net N . The rules have an
obvious meaning, we just remark that the side condition in the last rule ensures freshness of l2.

30

5.3 Type safety

In order to express the type safety results we introduce two notions of well-formed net: one is
global, the other is relative to a subset L of nodes.

Global: A net N is well-formed ∆⇐⇒ (l: : err) 6∈ N , and for every (l: : e) ∈ N exists t s.t. ∅ ` e: t.
Local: A net N is well-formed w.r.t. L ⊆ L(N) ∆⇐⇒ (l: : err) 6∈ N when l ∈ L, and for every

(l: : e) ∈ N with l ∈ L exists t s.t. ∅ ` e: t.

In the definition of well-formed net nothing is said about values 〈v〉 in a TS, since they are con-
sidered untrusted. In fact, processes can fetch such values only through the input primitive, which
performs dynamic type-checking. Indeed, we have the following theorem about type safety:

If N Â−→ N ′, then
Global: N well-formed implies N ′ well-formed
Local: N well-formed w.r.t. L implies N ′ well-formed w.r.t. L

The type safety theorem then guarantees that a well-formed net will never give rise to type
errors. Together with dynamic type checking performed with input operations, these imply that
our type system can be used for protecting hosts from imported code, thus ensuring various kinds
of host security properties (as in [YH99]).

Remark 6. The local type safety property is enforced by two features of HotKlaim: the dynamic
type-checking performed by the input operation (namely match), which prevents ill-typed values
in a TS to pollute well-typed processes; the absence of Klaim’s eval primitive, which would allow
processes external to L to spawn ill-typed processes at a locality in L. For instance, with an eval
primitive similar to a ‘remote’ spawn the following net transition would become possible

lbad: : eval(lgood, vbad), lgood: : 〈v〉 Â−→ lbad: : (), lgood: : vbad(), lgood: : 〈v〉

where vbad is any closed value such that vbad() > err. ut

5.4 An example: nomadic data collector

We address the issue of protecting host machines from malicious mobile code. Consider a scenario
where a user wants to assemble information about a specific item (e.g. the price of certain devices).
Part of the behaviour of the user’s application strictly depends on this information. However,
there are some activities which are independent of it. The user’s application exploits the mobility
paradigm: a mobile component travels among hosts of the net looking for the required information.
For simplicity, we assume that each node of the distributed database contain tuples either of the
form (i,d), where i is the search key and d is the associated data, or of the form (i,l), where l
is a locality where more data associated to i can be searched. We freely use ML-like notations for
functions and sequential composition, and write fn x:t.e instead of λx: t.e and V X.t instead of
∀X.t.

L (* localities *)

type Key = ... (* authorization keys *)

type Data = ...

(* polymorphic types of local operations input, output, spawn *)

type I = V X. (L,U=>X) -> X

type O = V X. (L,X) -> ()

type S = V X. (() -> X) -> ()

(* polymorphic types of customized operations for input, output *)

type KI = Key -> I

31

type KO = Key -> O

(* process abstractions with security checks *)

type EnvK = (L,KI,KO,S)

type CAK = EnvK -> ()

The type CAK of (mobile) process abstractions is parameterized with respect to the locality where
the process will be executed and the customized operations. In other words, the type EnvK can
be interpreted as the network environment of the process. This environment must be fed with the
information about the current location and its local operations. We want to emphasize that the
customized operations for communication require an authorization key. In such a way, depending on
the value of the key k (that below is checked by a function safe), the customized operation in’ k
could generate an actual input or () when the key does not allow to read anything. Customization
of the output operation is done similarly.

fun in’ (k:Key):I = if safe k then input else ()

We now discuss the main module of our mobile application: the nomadic data collector. Process
abstraction pca(k,i,u) is the mobile process which retrieves the required information on the
distributed database. The parameter k is an authorization key, i is a search key, and u is the
locality where all data associated to i should be collected. The behavior of pca(k,i,u) is rather
intuitive. After being activated, pca(k,i,u) spawns a process that perform a local query (which
removes from the local database data associated to the search key i). Then the mobile process
forwards the result of the query to the TS located at u, and sends copies of itself (i.e. of pca(k,i,u))
to localities that may contain data associated to i.

fun pca(k:Key, i:Data, u:L):CAK =

fix ca:CAK. fn (self’, in’, out’, spawn’):EnvK .

spawn’ {()} (() => fix p:().

(in’ k) {()} (self’, (_=i, x!Data) => (out’ k) {Data} (u,x)) ; p);

fix q:(). (in’ k) {()} (self’, (_=i, l!L) => (out’ k) {CAK} (l,ca)) ; q

The process abstraction pca(k,i,u) is instantiated and activated by process execute, which
fetches values of type CAK, and activates them by providing a customized environment env

fun execute (self:L, env:EnvK):() =

fix exec:(). input (self, X!CAK => spawn (() => X env) ; exec)

6 O’Klaim: an object-oriented Klaim

O’Klaim is a linguistic integration of Klaim with object-oriented features. The coordination
part and the object-oriented part are orthogonal, so that, in principle, such an integration would
work for any extension/restriction of Klaim, from cKlaim onward, and also for other calculi for
mobility and distribution, such as DJoin [FGL+96]. O’Klaim is built following the design of the
core calculus MoMi (Mobile Mixins).

6.1 MoMi and O’Klaim

MoMi was introduced in [BBV02] and extended in [BBV03b]. The underlying motivating idea is
that standard class-based inheritance mechanisms, which are often used to implement distributed
systems, do not scale well to distributed contexts with mobility. MoMi’s approach consists in
structuring mobile object-oriented code by using mixin-based inheritance (a mixin is an incom-
plete class parameterized over a superclass, see [BC90,FKF98,ALZ03]); this fits the dynamic and
open nature of a mobile code scenario. For example, a downloaded mixin, describing a mobile
agent that must access some files, can be completed with a base class in order to provide access

32

methods specific of the local file system. Conversely, critical operations of a mobile agent, enclosed
in a downloaded class, can be redefined by applying a local mixin to it (e.g., in order to restrict
access to sensible resources, as in a sand-box)3. Therefore, MoMi is a combination of a core coor-
dination calculus and an object-oriented mixin-based calculus equipped with types. The key rôle
in MoMi’s typing is played by a subtyping relation that guarantees safe, yet flexible and scalable,
code communication, and lifts type soundness of local code to a global type safety property. In
fact, we assume that the code that is sent around has been successfully compiled and annotated
with its static type. When the code is received on a site (under the hypothesis that the local code
has been successfully compiled, too), it is accepted only if its type is subtyping-compliant with the
expected one. If the code is accepted, it can be integrated with the local code under the guarantee
of no run-time errors, and without requiring any further type checking of the whole code. MoMi’s
subtyping relation involves not only object subtyping, but also a form of class subtyping and mixin
subtyping: therefore, subtyping hierarchies are provided along with the inheritance hierarchies. It is
important to notice that we are not violating the design rule of keeping inheritance and subtyping
separated, since mixin and class subtyping plays a pivotal role only during the communication,
when classes and mixins become genuine run-time polymorphic values.

In synthesis, MoMi consists of:

1. the definition of an object-oriented “surface calculus” with types called Sool (Surface Object-
Oriented Language), that describes the essential features that an object-oriented language must
have to write mixin-based code;

2. the definition of a subtyping relation on the class and mixin types of the above calculus, to be
exploited dynamically at communication time;

3. a very primitive coordination language based on a synchronous send/receive mechanism, to
put in practice the communication of the mixin-based code among different site.

O’Klaim is the integration of Sool and its subtyping (both described in the next section),
within Klaim, which offers a much more sophisticated, complete, and effective coordination mech-
anism than the toy one of MoMi.

6.2 Sool: syntax, types, and subtyping

In this section we present the object-oriented part of O’Klaim, called Sool. Sool is defined as a
standard class-based object-oriented language supporting mixin-based class hierarchies via mixin
definition and mixin application. It is important to notice that specific incarnations of most object-
oriented notions (such as, e.g., functional or imperative nature of method bodies, object references,
cloning, etc.) are irrelevant in this context, where the emphasis is on the structure of the object-
oriented mobile code. Hence, we work here with a basic syntax of the kernel calculus Sool (shown
in Table 22), including the essential features a language must support to be O’Klaim’s object-
oriented component.

Sool expressions offer object instantiation, method call and mixin application; ¦ denotes the
mixin application operator. A Sool value, to which an expression reduces, is either an object,
which is a (recursive) record {mi = fi

i∈I}, or a class definition, or a mixin definition, where
[mi = fi

i∈I] denotes a sequence of method definitions, [mk: τmk
with fk

k∈K] denotes a sequence
of method re-definitions, and I, J and K are sets of indexes. Method bodies, denoted here with
f (possibly with subscripts), are closed terms/programs and we ignore their actual structure. A
mixin can be seen as an abstract class that is parameterized over a (super)class. Let us describe
informally the mixin use through a tutorial example:

3A more complete example of use of mixins can be found in Section 7.2, implemented in the object-
oriented version of X-Klaim.

33

exp ::= v (value)
| new exp (object creation)
| exp ⇐ m (method call)
| exp1 ¦ exp2 (mixin appl.)

v ::= {mi = fi
i∈I} (record)

| x (variable)
| class [mi = fi

i∈I] end (class def)

|

mixin
expect[mi: τmi

i∈I]

redef[mk: τmk with fk
k∈K]

def[mj = fj
j∈J]

end

(mixin def)

Table 22. Syntax of Sool.

τ ::= Σ
| class〈Σ〉
| mixin〈Σnew , Σred , Σexp〉

Σ ::= {mi: τmi
i∈I}

Table 23. Syntax of types.

M = mixin
expect [n: τ]
redef [m2: τ2 with . . . next . . .]
def [m1 = . . . n() . . .]

end

C = class
[n = . . .
m2 = . . .]

end

(new (M ¦ C))⇐ m1()

Each mixin consists of three parts:

1. methods defined in the mixins, like m1;
2. expected methods, like n, that must be provided by the superclass;
3. redefined methods, like m2, where next can be used to access the implementation of m2 in the

superclass.

The application M ¦ C constructs a class, which is a subclass of C.
The set T of types is defined in Table 23. Σ (possibly with a subscript) denotes a record type

of the form {mi: τmi
i∈I}. As we left method bodies unspecified (see above), we must assume that

there is a type system for the underlying part of Sool to type method bodies and records. We will
denote this type derivability with °. Rules for ° are obviously not specified, but °-statements are
used as assumptions in other typing rules. The typing rules for Sool values are in Table 24.

Mixin types, in particular, encode the following information:

1. record types Σnew and Σred contain the types of the mixin methods (new and redefined,
respectively);

2. record type Σexp contains the expected types, i.e., the types of the methods expected to be
supported by the superclass;

3. well typed mixins are well formed, in the sense that name clashes among the different families
of methods are absent (the last three clauses of the (mixin) rule).

The typing rules for Sool expressions are in Table 25.
Rule (mixin app) relies strongly on a subtyping relation <: . The subtyping relation rules

depend obviously on the nature of the Sool calculus we choose, but an essential constraint is that
it must contain the subtyping-in-width rule for record types: Σ2 ⊆ Σ1 ⇒ Σ1 <: Σ2.

34

(proj)
Γ, x: τ ` x: τ

Γ {mi = fi
i∈I}: {mi: τmi

i∈I}
(rec)

Γ ` {mi = fi
i∈I}: {mi: τmi

i∈I}

Γ ` {mi = fi
i∈I}: {mi: τmi

i∈I}
(class)

Γ ` class [mi = fi
i∈I] end: class〈{mi: τmi

i∈I}〉

Γ,
S

i∈I mi: τmi ,
S

k∈K mk: τmk ` {mj = fj
j∈J}: {mj : τmj

j∈J}
Γ,
S

i∈I mi: τmi ,
S

k∈K mk: τmk ,
S

j∈J mj : τmj , next: τmr fr: τ
′
mr

τ ′mr
<: τmr ∀r ∈ K

Subj (Σnew) ∩ Subj (Σexp) = ∅ Subj (Σnew) ∩ Subj (Σred) = ∅
Subj (Σred) ∩ Subj (Σexp) = ∅

(mixin)

Γ `

mixin
expect[mi: τmi

i∈I]

redef[mk: τmk with fk
k∈K]

def[mj = fj
j∈J]

end

: mixin〈Σnew , Σred , Σexp〉

where Σnew = {mj : τmj
j∈J}, Σred = {mk: τmk

k∈K}, Σexp = {mi: τmi
i∈I}

Table 24. Typing rules for Sool values

Γ ` exp: {mi: τmi

i∈I} j ∈ I
(lookup)

Γ ` exp ⇐ mj : τmj

Γ ` exp: class〈{mi: τmi

i∈I}〉
(new)

Γ ` new exp: {mi: τmi

i∈I}

Γ ` exp1:mixin〈Σnew , Σred , Σexp〉
Γ ` exp2: class〈Σb〉
Σb <: (Σexp ∪Σred)
Subj (Σb) ∩ Subj (Σnew) = ∅

(mixin app)
Γ ` exp1 ¦ exp2: class〈Σb ∪Σnew 〉
Table 25. Typing rules for Sool expressions.

An extension of Sool with subtyping-in-depth can be found in a preliminary form in [BBV03b].
Subtyping-in-depth offers a much more flexible communication pattern, but it complicates the
object-oriented code exchange for problems similar to the “subtyping-in-depth versus override”
matter of the object-based languages (see [AC96,BBV03b] for examples).

We consider m: τ1 and m: τ2 as distinct elements, and Σ1 ∪ Σ2 is the standard record union.
Σ1 and Σ2 are considered equivalent, denoted by Σ1 = Σ2, if they differ only for the order of their
pairs mi: τmi .

In the rule (mixin app), Σb contains the type signatures of all methods supported by the
superclass to which the mixin is applied. The premises of the rule (mixin app) are as follows:

i) Σb <: (Σexp∪Σred) requires that the superclass provides all the methods that the mixin expects
and redefines.

ii) Subj (Σb) ∩ Subj (Σnew) = ∅ guarantees that no name clash will take place during the mixin
application.

Notice that the superclass may have more methods than those required by the mixin constraints.
Thus, the type of the mixin application expression is a class type containing both the signatures
of all the methods supplied by the superclass (Σb) and those of the new methods defined by the
mixin (Σnew).

35

Σ′<: Σ
(v class)

class〈Σ′〉 v class〈Σ〉

Σ′
new <: Σnew Σexp <: Σ′

exp Σ′
red = Σred

(v mixin)
mixin〈Σ′

new , Σ′
red , Σ′

exp〉 v mixin〈Σnew , Σred , Σexp〉
Table 26. Subtype on class and mixin types.

P : : = nil (null process)
�� act.P (action prefixing)�� P1 | P2 (parallel composition)�� X (process variable)�� A〈arg1, . . . , argn〉 (process invocation)�� defA(id1: τ1, . . . , idn: τn) = P in P ′ (process definition)�� def x = exp in P (object-oriented expression)

act : : = out(t)@`
�� in(t)@`

�� read(t)@`
�� eval(P)@`

t : : = f
�� f, t

f : : = arg
�� ! id: τ

id : : = x
�� X

arg : : = e
�� P

�� `
�� v

Table 27. O’Klaim process syntax (see Table 22 for the syntax of exp and v; types τ are defined in
Table 23). newloc is not relevant in this context as it is the same of Section 2.3, so it is omitted.

The key idea of Sool’s typing is the introduction of a novel subtyping relation, denoted by
v, defined on class and mixin types. This subtyping relation is used to match dynamically the
actual parameter’s types against the formal parameter’s types during communication. The part of
the operational semantics of O’Klaim, which describes communication formally, is presented in
Section 6.5. The subtyping relation v is defined in Table 26; rule (v class) is naturally induced by
the (width) subtyping on record types, while rule (v mixin): permits the subtype to define more
‘new’ methods; prohibits to override more methods; and enables a subtype to require less expected
methods.

6.3 O’Klaim: syntax

O’Klaim processes are defined formally in Table 27. The reader may note that the operations
of in (and read) and out, retrieving from and inserting into a tuple space, are relevant for our
purpose (so they need to be modified accordingly), while net composition and the newloc operation
are not (and therefore they are not discussed here, because they are the same as the ones of
Klaim). In order to obtain O’Klaim, we extend the Klaim syntax of tuples t (presented in
Section 2.3) to include any object-oriented value v (defined in Table 22). In particular, formal
fields are now explicitly typed (typing rules for typing O’Klaim are in Section 6.4). Indeed, since
types are crucial in O’Klaim, the scope of process definitions is now made explicit by means of the
construct defA(id1: τ1, . . . , idn: τn) = P in P ′, where also process formal parameters are explicitly
typed. Actions in(t)@` (and read(t)@`) and out(t)@` can be used to move object-oriented code
(together with the other Klaim items) from/to a locality `, respectively. Moreover, we add to
Klaim processes the construct def x = exp in P in order to pass to the sub-process P the result
of computing exp (for exp syntax see Table 22).

36

(proj)
Γ, X: proc ` X: proc

(nil)
Γ ` nil: proc

a ≡ in, read,out

Γ ` `: loc
Γ ` ti: τi i = 1, . . . , n
Γ ∪ ftypes(t1, . . . , tn) ` P : proc

(receive)
Γ ` a(t1, . . . , tn)@`.P : proc

ftypes(f, t) =

� {id: τ} ∪ ftypes(t) if f ≡!id: τ
ftypes(t) otherwise

Γ ` Q: proc Γ ` `: loc
(Eval)

Γ ` eval(Q)@`.P : proc

Γ ` P1: proc Γ ` P2: proc
(comp)

Γ ` (P1 | P2): proc

Γ ` exp: τ Γ, x: τ ` P : proc
(let)

Γ ` def x = exp in P : proc

Γ, id1: τ1, . . . , idn: τn ` P : proc Γ, A(id1: τ1, . . . , idn: τn): proc ` P ′: proc
(defproc)

Γ ` defA(id1: τ1, . . . , idn: τn) = P in P ′: proc

Γ ` A(id1: τ1, . . . , idn: τn): proc Γ ` argi: τ
′
i τ ′i <: τi i = 1, . . . , n

(proccall)
Γ ` A〈arg1, . . . , argn〉: proc

Table 28. Typing rules for processes

6.4 Typing for O’Klaim

Typing rules for processes are defined in Table 28. O’Klaim type system is not concerned with
access rights and capabilities, as it is instead the type system for Klaim presented in Section 4.
In the O’Klaim setting, types serve the purpose of avoiding the “message-not-understood” error
when merging local and foreign object-oriented code in a site. Thus, we are not interested in typing
actions inside processes: from our perspective, an O’Klaim process is well typed when it has type
proc, which only means that the object-oriented code that the process may contain is well typed.
O’Klaim requires that every process is statically type-checked separately on its site and annotated
with its type. In particular, every tuple item ti that takes part in the information exchange (which
may be an object-oriented value) must be decorated with type information, denoted by ti

τi (see
Table 30). The types of the tuples are built statically by the compiler: notice that only the types
of formal arguments in the process definition defA(id1: τ1, . . . , idn: τn) = P in P ′ must be given
explicitly by the programmer. In a process of the form in(! id: τ)@`.P , the type τ is used to statically
type check the continuation P , where id is possibly used.

6.5 Operational semantics for O’Klaim

The operational semantics of O’Klaim involves two sets of rules. The first set of rules describes
how Sool object-oriented expressions reduce to values and is denoted by →→. We omit here most
of the rules because they are quite standard; they can be found in [BBV03a]. However, we want
to describe the rule concerning mixin application, that produces a new class containing all the
methods which are added and redefined by the mixin and those defined by the superclass. The
rule (mixinapp) is presented in Table 29. The function override, defined below and used by rule

37

exp1 →→

0
BBBB@

mixin
expect[mi: τmi

i∈I]

redef[mk: τmk with fk
k∈K]

def[mj = fj
j∈J]

end

1
CCCCA

exp2 →→ class [ml = fl
l∈L] end

exp1 ¦ exp2 →→

0
BB@

class
[mj = fj

j∈J] ∪
override([mk = fk

k∈K], [ml = fl
l∈L])

end

1
CCA

Table 29. The (mixinapp) operational rule

match(τ, τi)

match(!id: τ, ti
τi)

match(τ1, τ2) =

�
τ1 v τ2 if τ1 and τ2 are mixin or class types
τ1 <: τ2 otherwise

Table 30. Additional matching rules (with proc <: proc)

(mixinapp), takes care of introducing in the new class the overridden methods, and of binding the
special variable next to the implementations provided by the super class in the mixin’s redefined
method bodies: these “old” method implementations are given a fresh name, denoted by mi′ .
Dynamic binding is then implemented for redefined methods, and old implementations from the
super class are basically hidden in the derived class, since they are given a fresh name (this is
reflected in the X-Klaim implementation, presented in Section 7.2).

Definition 2. Given two method sets, %1 and %2, the result of override(%1, %2) is the method set
%3 defined as follows:

– for all mi = fi ∈ %2 such that mi 6= mj for all mj = fj ∈ %1, then mi = fi ∈ %3;
– for all mi = fi ∈ %1 such that mi = f ′i ∈ %2, let mi′ be a fresh method name: then mi′ = f ′i ∈ %3

and mi = fi[mi′/next] ∈ %3.

Notice that name clashes among methods during the application will never take place, since they
have already been solved during the typing of mixin application.

The second set of rules for O’Klaim concerns processes and it is a simple extension of the
operational semantics of Klaim, presented in Section 2.3. Notice that the O’Klaim’s operational
semantics must be defined on typed (compiled) processes, because the crucial point is the dynamic
matching of types. Indeed, an out operation adds a tuple decorated with a (static) type to a
tuple space. Conversely, a process can perform an in action by synchronizing with a process which
represents a matching typed tuple. To this aim, the standard matching predicate for tuples, match
(Table 5), is extended with an additional rule presented in Table 30.

The additional matching rule uses the static type information, delivered together with the tuple
items, in order to dynamically check that the received item is correct with respect to the type of
the formal field, say τ . Therefore, an item is accepted if and only if is subtyping-compliant with the
expected type of the formal field. Informally speaking, one can accept any class containing more
resources than expected. Conversely, any mixin with weaker requests about methods expected
from the superclass can be accepted. Note that the subtyping checking is analogous to the one we
would perform in a sequential language where mixins and classes could be passed as parameters to

38

exp →→ v
(def)

` : :ρ def x = exp in P Â−→ ` : :ρ P [v/x]

Table 31. The (def) operational rule

Fig. 1. The framework for X-Klaim.

methods. In a sequential setting, this dynamic checking might look as a burden, but in a distributed
mobile setting the burden seems well-compensated by the added flexibility in communications.
Finally, in order to obtain the full O’Klaim’s operational semantics, we must add a rule for
def x = exp in P to Klaim’s operational semantics. The additional rule is presented in Table 31.
This rule relies on the reduction relation for object-oriented expressions→→. No further modification
to the semantics of Klaim is required.

Type safety of the communication results from the (static) type soundness of local and foreign
code; there is no need of additional type-checking after a communication takes place. Therefore,
we can reuse most of the meta-theory of MoMi (presented in [BBV03a]) to prove O’Klaim’s
soundness. This shows the modularity of our approach. A complete proof of a “global soundness
property” for O’Klaim in the spirit of the one proved for MoMi is in progress.

In Section 7.2, an implementation of O’Klaim in X-Klaim is sketched. The reader should have
noticed that O’Klaim was left parametric with respect to the object-oriented language underly-
ing Sool, but a working implementation of O’Klaim necessitates of: a coordination language;
and a language underneath Sool. Therefore, it is important to notice that X-Klaim enriched
with object-oriented features (following Sool’s design) plays the double role of the coordination
language, and of the object-oriented language underneath Sool (i.e., this means essentially that
method bodies are expressed in X-Klaim).

7 The programming language X-Klaim

X-Klaim (eXtended Klaim) is an experimental programming language that extends Klaim with a
high level syntax for processes: it provides variable declarations, enriched operations, assignments,
conditionals, sequential and iterative process composition.

The implementation of X-Klaim is based on Klava, a Java package that provides the run-
time system for X-Klaim operations, and on a compiler, which translates X-Klaim programs into
Java programs that use Klava. The structure of the Klaim framework is outlined in Figure 1.
X-Klaim can be used to write the higher layer of distributed applications while Klava can be
seen both as a middleware for X-Klaim programs and as a Java framework for programming
according to the Klaim paradigm. With this respect, by using Klava directly, the programmer is
able to exchange, through tuples, any kind of Java object, and implement a more fine-grained kind
of mobility. X-Klaim and Klava are available on line at http://music.dsi.unifi.it. Klava
is briefly described in [BDFP98] and presented in detail in [BDP02,Bet03].

39

RecProcDefs ::= rec id formalparams procbody
| rec id formalparams extern
| RecProcDefs ; RecProcDefs

formalParams ::= [paramlist]
paramlist ::= ε | id : type | ref id : type | paramlist , paramlist
procbody ::= declpart begin proc end
declpart ::= ε | declare decl
decl ::= const id := expression

| locname id
| var idlist : type
| decl ; decl

idlist ::= id | idlist , idlist
proc ::= KAction | nil

| id := expression | var id : type | proc ; proc
| if boolexp then proc else proc endif
| while boolexp do proc enddo
| forall Retrieve do proc enddo
| procCall | call id | (proc) | print exp

KAction ::= out(tuple)@id | eval(proc)@id | Retrieve
| go@id | newloc(id)

Retrieve ::= Block | NonBlock
Block ::= in(tuple)@id | read(tuple)@id
NonBlock ::= inp(tuple)@id | readp(tuple)@id | Block within numexp
boolexp ::= NonBlock | standard bool exp
tuple ::= expression | proc | ! id | tuple , tuple
procCall ::= id (actuallist)
actuallist ::= ε | expression | proc | id | actuallist , actuallist
expression ::= ∗ expression | standard exp
id ::= string
type ::= int | str | loc | logloc | phyloc | process | ts | bool

Table 32. X-Klaim process syntax. Syntax for other standard terms is omitted.

Remark 7. In [Tuo99] a similar approach has been adopted for Klada that is an Ada95 implemen-
tation of a Klaim-based prototype language. The main peculiarity of Klada regards the treatment
of dynamic evolving nets. In particular, implementing the newloc primitive requires the use of
remote access type objects of Ada95 and the introduction of a unique globally shared name man-
ager. ut

X-Klaim syntax is shown in Table 32. We just describe the more relevant features. Local
variables of processes are declared in the declare section of the process definition. Standard base
types are available (str, int, etc...) as well as X-Klaim typical types, such as loc for locality
variables, process for process variables and ts, i.e., tuple space, for implementing data structures
by means of tuple spaces, e.g. lists, that can be accessed through standard tuple space operations.
Finally, comments start with the symbol #.

A locality variable can be initialized with a string that will correspond to its actual value. We
distinguish between two kinds of localities (see the remark 1 in Section 2.3): logical localities are
symbolic names for nodes (the distinct logical locality, self, can be used by processes to refer
to their execution node); physical localities are identifiers through which nodes can be uniquely
identified within a net and must have the form <IP address>:<port>. Thus, a physical locality
variable has to be initialized with a string corresponding to an Internet address. The type loc
represents a generic locality, without specifying whether it is logical or physical, while logloc

40

(resp. phyloc) represents a logical (resp. physical) locality. A simple form of subtyping is supplied
for locality variables in that logloc <: loc and phyloc <: loc. Logical localities that are used
as “destination” are evaluated automatically, i.e., if the locality used after the @ is a logical one,
it is first translated to a physical locality. Conversely, when tuples are evaluated, locality names
resolution does not take place automatically: it has to be explicitly invoked by putting the operator
∗ in front of the locality that has to be evaluated:

l := ∗output; # retrieve the physical locality associated to output
out(∗output)@self; # insert the physical locality associated to output

Apart from standard Klaim operations, X-Klaim also provides non-blocking version of the
retrieval operations, namely readp and inp; these act like read and in, but, in case no matching
tuple is found, the executing process does not block but false is returned. Indeed, readp and inp
can be used where a boolean expression is expected. These variants, used also in some versions of
Linda [CG89], are useful whenever one wants to search for a matching tuple in a tuple space with
no risk of blocking. For instance, readp can be used to test whether a tuple is present in a tuple
space.

Furthermore, a timeout (expressed in milliseconds) can be specified for in and read, through
the keyword within; the operation is then a boolean expression that can be tested to determine
whether the operation succeeded:

if in(!x, !y)@l within 2000 then ... else ... endif

Time-outs can be used when retrieving information for avoiding that processes block due to network
latency bandwidth or to absence of matching tuples.

It is often useful to iterate over all elements of a tuple space matching a specific template.
However, due to the inherent nondeterministic selection mechanism of pattern matching a sub-
sequent read (or readp) operation may repeatedly return the same tuple, even if several other
tuples match. For this reason X-Klaim provides the construct forall that can be used for iterating
actions through a tuple space by means of a specific template. Its syntax is:

forall Retrieve do proc enddo

The informal semantics of this operation is that the loop body “proc” is executed each time a
matching tuple is available. Even duplicate tuples are repeatedly retrieved by the forall primitive;
it is however guaranteed that each tuple is retrieved only once. Notice however that the tuple space
is not blocked when the execution of the forall is started, thus this operation is not atomic: the
set of tuples matching the template can change before the command completes. A locked access to
such tuples can be explicitly programmed. Our version of forall is different from the one proposed
in [BWA94] and is similar to the all variations of retrieval operations in PLinda [AS92].

Data structures can be implemented by means of the data type ts; a variable declared with
such type can be considered as a tuple space and can be accessed through standard tuple space
operations, apart from eval that would not make sense when applied to variables of type ts.
Furthermore newloc has a different semantics when applied to a variable of type ts: it empties
the tuple space. Then, forall can be used to iterate through such data structures.

eval(P)@l starts the process P on the node at locality l; P can be either a process name (and
its arguments):

eval(P("foo", 10))@l

or the code (i.e., the actions) of the process to be executed:

eval(in(!i)@self; out(i)@l2)@l

Processes can also be used as tuple fields, such as in the following code:

41

NodeDefs ::= ε | nodes nodedefs endnodes
ProcDefs ::= ε | RecProcDefs
nodedefs ::= id :: f environment g nodeoptions nodeprocdefs

| nodedefs ; nodedefs
environment ::= ε | id ∼ id | environment , environment
nodeprocdefs ::= procbody | nodeprocdefs || nodeprocdefs
nodeoptions ::= class id | port num

Table 33. X-Klaim node syntax.

out(P("foo", 10), in(!i)@self; out(i)@l2)@l

However, in this case, these processes are not started automatically at l: they are simply inserted
in its tuple space. They can be retrieved (e.g., by another process executing at l) and explicitly
evaluated:

in(!P1, !P2)@self;
eval(P1)@self;
eval(P2)@self

Thus, basically, eval provides remote evaluation functionalities, while out can be used to imple-
ment the code on-demand paradigm.

X-Klaim also provides strong mobility by means of the action go@l [BD01] that makes an
agent migrate to l and resume its execution at l from the instruction following the migration
action. Thus in the following piece of code an agent retrieves a tuple from the local tuple space,
then it migrates to the locality l and inserts the retrieved tuple into the tuple space at locality l:

in(!i, !j)@self;
go@l;
out(i, j)@self

Also I/O operations in X-Klaim are implemented as tuple space operations. For instance
the logical locality screen can be attached (mapped) to the output device. Hence, operation
out("foo\n")@screen corresponds to printing the string "foo\n" on the screen. Similarly, the
locality keyboard can be attached to the input device, so that a process can read what the user
typed with a in(!s)@keyboard. Further I/O devices, such as files, printers, etc., can also be handled
through the locality abstraction.

A process can execute only on a Klava node since in Klaim nodes are the execution engines.
The syntax for defining a node in X-Klaim is in Table 33. A node is defined by specifying its name
(id), its allocation environment, some options (described later) and a set of processes running on
it. An allocation environment contains the mapping from logical localities to physical localities of
the form

logical locality variable ∼ physical locality constant

thus it also implicitly declares the logical locality variables for all the processes defined in the node.
Processes defined in a node have the same syntax of Table 32 but they do not have a name, since
these processes are visible and accessible only from within the node where they were defined and
not in the whole program. Basically the processes defined in a node correspond to the main entry
point in languages such as Java and C.

With the option class it is possible to specify the actual Java class that has to be used for this
node, and the option port can be used to specify the Internet port where the node is listening.
Remember that, together with the IP address of the computer where the node will run, the port
number defines the physical locality of the node.

42

rec NewsGatherer[item : str, retLoc : loc]
declare
var itemVal : str ;
var nextLoc : loc ;
var again : bool

begin
again := true;
while again do
if read(item, !itemVal)@self within 10000 then
go@retLoc;
print "found " + itemVal;
again := false;

else
if readp(item, !nextLoc)@self then
go@nextLoc

else
go@retLoc;
print "search failed";
again := false

endif
endif

enddo
end

Listing 1: X-Klaim implementation of a news gatherer using strong mobility.

Now we show a programming example dealing with mobility, implemented in X-Klaim, namely,
a news gatherer, that relies on mobile agents for retrieving information on remote sites. We assume
that some data are distributed over the nodes of an X-Klaim net and that each node either
contains the information we are searching for, or, possibly, the locality of the next node to visit in
the net. This example is inspired by the one of [DFP98].

The agent NewsGatherer first tries to read a tuple containing the information we are looking
for, if such a tuple is found, the agent returns the result back home; if no matching tuple is found
within 10 seconds, the agent tests whether a link to the next node to visit is present at the current
node; if such a link is found the agent migrates there and continues the search, otherwise it reports
the failure back home. The implementation of this agent exploiting strong mobility (by means of
the migration operation go) is reported in Listing 1.

7.1 Connectivity actions

X-Klaim relies on the hierarchical model of OpenKlaim, presented in Section 2.4. Thus, it also
provides all the primitives for explicitly dealing with node connectivity. Consistently with the
hierarchical model of Klaim such actions can be performed only by node coordinators.

The syntax of node coordinators is shown in Table 34, and is basically the same of standard
X-Klaim processes (Table 32) apart from the new privileged actions. We briefly comment these
actions:

– login(loc) logs the node where the node coordinator is executing at the node at locality loc;
logout(loc) logs the node out from the net managed by the node at locality loc. login returns
true if the login succeeds and false otherwise.

– accept(l) is the complementary action of login and indeed, the two actions have to synchronize
in order to succeed; thus a node coordinator on the server node (the one at which other nodes

43

NodeCoordinator ::= rec NodeCoordDef
NodeCoordDef ::= nodecoord id formalparams declpart nodecoordbody

| nodecoord id formalparams extern
nodecoordbody ::= begin nodecoordactions end
nodecoordaction ::= standard process action | login(id) | logout(id)

| accept(id) | disconnected(id) | disconnected(id , id)
| subscribe(id , id) | unsubscribe(id , id)
| register(id , id) | unregister(id)
| newloc(id) | newloc(id , nodecoordactions)
| newloc(id , nodecoordactions , num , classname)
| bind(id , id) | unbind(id)
| dirconnect(id) | acceptconn(id)

Table 34. X-Klaim node coordinator syntax. This syntax relies on standard process syntax shown in
Table 32

want to log) has to execute accept. This action initializes the variable l to the physical locality
of the node that is logging. disconnected(l) notifies that a node has disconnected from the
current node; the physical locality of such node is stored in the variable l. disconnected also
catches connection failures. Notice that both accept and disconnected are blocking in that
they block the running process until the event takes place. Instead, logout does not have to
synchronize with disconnected.

– subscribe(loc, logloc) is similar to login, but it also permits specifying the logical locality
(logloc is an expression of type logloc) with which a node wants to become part of the net
coordinated by the node at locality loc; this request can fail also because another node has
already subscribed with the same logical locality at the same server. unsubscribe(loc, logloc)
performs the opposite operation. Notice that, in OpenKlaim (Section 2.4), these operations
are not part of the syntax of the dialect, but they are derived operations; in the implementation
we preferred to supply them as primitives.

– register(pl, ll), where pl is a physical locality variable and ll is a logical locality variable, is the
complementary action of subscribe that has to be performed on the server; if the subscription
succeeds pl and ll will respectively contain the physical and the logical locality of the subscribed
node. The association pl ∼ ll is automatically added to the allocation environment of the server.
unregister(pl, ll) records the unsubscriptions.

bind(logloc, phyloc) allows to dynamically modify the allocation environment of the current
node: it adds the mapping logloc ∼ phyloc. On the contrary, unbind(logloc) removes the mapping
associated to the logical locality logloc. newloc is a privileged action and is supplied in three forms
in order to make programming easier: apart from the standard form that only takes a locality
variable, where the physical locality of the new created node is stored, also the form newloc(l,
nodecoordinator) is provided. Since newloc does not automatically logs the new created node in
the net of the creating node, this second form allows to install a node coordinator in the new
node that can perform this action (or other privileged actions). Notice that this is the only way of
installing a node coordinator on another node: due to security reasons, node coordinators cannot
migrate, and cannot be part of a tuple. In order to provide better programmability, this rule is
slightly relaxed: a node coordinator can perform the eval of a node coordinator, provided that the
destination is self. Finally the third form of newloc takes two additional arguments: the port
number where the new node is going to be listening and the (Java) class of the new node.

44

rec nodecoord SimpleLogin[server : loc]
begin
if login(server) then
print "login successful";
out("logged", true)@self

else
print "login failed!"

endif
end

rec nodecoord SimpleLogout[server : loc]
begin
in("logged", true)@self;
logout(server);
print "logged off."

end

rec nodecoord SimpleAccept[]
declare
var client : phyloc

begin
waiting for clients...
accept(client);

end

rec nodecoord SimpleDisconnected[]
declare
var client : phyloc

begin
waiting for disconnections...
disconnected(client);

end

Listing 2: An example showing login and logout (left) and the corresponding accept and dis-
connected.

class ::= class id { declare fields } methods end
mixin ::= mixin id { declare fields } mixinmethods end
field ::= const id := expression

| locname id
| var idlist : type

type ::= xklaimtype | object id | class id | mixin id
method ::= id (parameters) { : type } { localvars }begin methodactions end

mixinmethod ::= (def | redef | expect) method
methodaction ::= processaction | return exp

exp ::= xklaimexp | new exp | exp <> exp | methodcall
processaction ::= xklaimaction | methodcall

methodcall ::= exp . id (arguments) | next (arguments)

Table 35. X-Klaim syntax for MoMi features. Symbols of the shape xxxs, such as “parameters” and
“arguments”, are intended as (possibly empty) lists of xxx, separated by the appropriate separator.

7.2 Object-oriented features

The object-oriented part of X-Klaim, based on O’Klaim (described in Section 6.3), is shown in
Table 35 and it is to be considered complementary to the one shown in Table 32. So, the syntax
of X-Klaim processes is extended with object-oriented operations, and basically the syntax of
method bodies is the same of the one of an X-Klaim process (apart from the return statement).
The syntax of X-Klaim is extended in order to include mixins, classes, the mixin application
operation <>, objects, the object instantiation operation new, and the method call, and, by
consequence, the Java code generated by the compiler will interact, apart from Klava, also with
momi (a Java package implementing the virtual machine for MoMi). It is important to remark
that the package momi is independent from the specific mobile code framework (e.g., Klava, in
our case). Class and mixin fields are always considered private and this is used to refer to the host
object.

Class and mixin names, that are used for specifying a type (e.g., object id, class id, mixin
id) in a variable or parameter declaration, are only a shortcut for their actual interface. Thus,
when performing type checking and structural subtyping, internally, the compiler replaces a class
(resp. mixin) name with the corresponding class (resp. mixin) type. This enables a remote site, for
instance, to ask for a class providing specific methods with specific types, without any requirements

45

on the name of such a class. The same obviously holds for mixins. Obviously there must be some
types on which all nodes that want to exchange object-oriented code have to agree upon, and by
default these are the basic types.

An object can be declared as follows:

var my obj : object C

that declares my_obj as an object of a class with the interface of C. Thus it can be assigned also
an object of a class whose interface is a subtype of the one of C, as hinted above.

Class and mixins names can be used as expressions for creating objects, for specifying a type
(as in the above declaration) and for delivering code to a remote site. Higher-order variables of
kind class and mixin can be declared similarly:

var my class : class C;
var my mixin : mixin M

The above declarations state that my_class (my_mixin) represents a class (mixin) with the same
interface of C (M). Once initialized, these variables can be used where class and mixin names are
expected:

my class := C;
my obj := new my class; # same as new C
my obj := new (my class <> M); # provided that the application is well−typed
my mixin := M;
my obj := new (my class <> my mixin); # same as above

An object declaration such as

var my obj : object M

is correct even when M refers to a mixin definition. This does not mean that an object can be
instantiated from a mixin directly; however, such a declared object can be instantiated with a class
created via the application of M to a (correct) superclass:

my obj = new (M <> C) # OK, provided the application is well typed

Indeed, the declared object will be considered as having the same interface of the mixin M, that is
the interface of a class having all the defined, redefined and expected methods of M.

One of the most interesting feature of MoMi is the ability of sending classes and mixins as
mobile code as shown in the following example. We assume that a site provides printing facilities
for local and mobile agents. The access to the printer requires a driver that the site itself has to
provide to those that want to print, since it highly depends on the system and on the printer. Thus,
the agent that wants to print is designed as a mixin, that expects a method for actually printing,
print_doc, and defines a method start_agent through which the execution engine can start
its execution. The actual instance of the printing agent is instantiated from a class dynamically
generated by applying such mixin to a local superclass that provides the method print_doc acting
as a wrapper for the printer driver.

However the system is willing to accept any agent that has a compatible interface, thus any
mixin that is a subtype to the one used for describing the printing agent. Thus any client wishing
to print on this site can send a mixin that is subtyping compliant to the one expected. In particular
such a mixin can implement finer printing formatting capabilities.

Listing 3 presents a possible implementation of the printing client node (on the left) and of the
printer server node (on the right). The printer client sends to the server a mixin MyPrinterAgent
that respects (it is a subtype of) the mixin that the server expects to receive, PrinterAgent (not
shown here). In particular this mixin will print a document on the printer of the server after
preprocessing it. On the server, once the mixin is received, it is applied to the local (super)class

46

this is the mixin actually sent to the remote site
MyPrinterAgent <: PrinterAgent
mixin MyPrinterAgent
expect print doc(doc : str) : str;
def start agent() : str
begin
return
this.print doc(this.preprocess("my document"))

end;
def preprocess(doc : str) : str
begin
return "preprocessed(" + doc +")"

end
end

rec SendPrinterAgent[server : loc]
declare
var response : str;
var sent mixin : mixin MyPrinterAgent

begin
print "sending printer agent to " + server;
sent mixin := MyPrinterAgent;
out(sent mixin)@server;
in(!response)@server;
print "response is " + response

end

the following class provides print doc, so a PrinterAgent can be
applied to it. Notice that it also provides another method, init()
that is ignored by the mixin
class LocalPrinter

print doc(doc : str) : str
begin
real printing code omitted :−)
return "printed " + doc

end;
init()
begin
nil # foo init

end
end

rec ReceivePrinterAgent[]
declare
var rec mixin : mixin PrinterAgent;
var result : str

begin
print "waiting for a PrinterAgent mixin...";
in(!rec mixin)@self;
print "received " + rec mixin;
result := (new rec mixin <> LocalPrinter).start agent();
print "result is " + result;
out(result)@self

end

Listing 3: The printer agent example (above: the sender site - the printer client, below: the receiver
site - the printer server).

47

LocalPrinter, and an object (the agent) is instantiated from the resulting class, and started so
that it can actually print its document. The result of the printing task is then retrieved and sent
back to the client.

We observe that the sender does not actually know the mixin name PrinterAgent: it only
has to be aware of the mixin type expected by the server (remember that in X-Klaim class and
mixin definition names are only shortcut for their actual types). Furthermore, the sent mixin can
also define more methods than those specified in the receiving site, thanks to the mixin subtyping
relation (Table 26). This adds a great flexibility to such a system, while hiding these additional
methods to the receiving site (since they are not specified in the receiving interface they are actually
unknown statically to the compiler), and also avoiding dynamic name clashes.

8 Conclusions

The work on Klaim began in 1995 with the aim of combining the work on process algebras with
localities and the one based on asynchronous generative communication mechanisms. The idea was
that of building on the clean modelling of concurrency achieved with process algebras and on the
success of the Linda coordination model [DP96]. Moreover, it was prompted by the intuition that
network aware programming was calling for new languages and paradigms that would consider
localities as first-class citizens, that should be dynamically created and handled via appropriate
scoping rules [DFP97]. Since then, a lot of work has been done, also by other groups, by trying to
enrich the model and the linguistic primitives to face the new challenges posed by the continuously
evolving scenario of global computing.

In this paper we have tried to give a brief account on the work on Klaim, by privileging
the foundational aspects. We have thus presented a series of variants of the languages aiming, on
one hand, at finding the appropriate tool for understanding and modelling processes behaviour
over evolving wide area networks and, on the other hand, at finding the appropriate linguistic
constructs to actually design and develop applications for such a challenging environment. We
have also described programming logics for proving properties of widely distributed programs and
prototype implementations of the proposed abstractions.

We want to conclude by saying that we do not see this as the end of our work on this topics,
convinced as we are, that much work remains to be done and that the model and the language
for network aware programming is still far to come, and that for sure will not be Klaim. But, we
hope that some of the ideas outlined here will help the search.

References

[AC96] M. Abadi and L. Cardelli. A Theory of Objects. Springer, 1996.
[ACPP91] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically typed language.

ACM Transactions on Programming Languages and Systems, 13(2):237–268, April 1991.
[ACPR95] M. Abadi, L. Cardelli, B. Pierce, and D. Remy. Dynamic typing in polymorphic languages.

Journal of Functional Programming, 5(1):111–130, January 1995.
[AFH99] K. Arnold, E. Freeman, and S. Hupfer. JavaSpaces Principles, Patterns and Practice. Addison-

Wesley, 1999.
[ALZ03] D. Ancona, G. Lagorio, and E. Zucca. Jam - designing a java extension with mixins. ACM

Transaction on Programming Languages and Systems, 2003. To appear.
[AS92] B. G. Anderson and D. Shasha. Persistent Linda: Linda + Transactions + Query Processing. In

J. P. Banatre and D. Le Metayer, editors, Proc. of Research Directions in High–Level Parallel
Programming Languages, volume 574 of LNCS, pages 93–109. Springer, 1992.

[BBV02] L. Bettini, V. Bono, and B. Venneri. Coordinating Mobile Object-Oriented Code. In F. Arbarb
and C. Talcott, editors, Proc. of Coordination Models and Languages, number 2315 in LNCS,
pages 56–71. Springer, 2002.

48

[BBV03a] L. Bettini, V. Bono, and B. Venneri. MoMi - A Calculus for Mobile Mixins. Manuscript, 2003.
[BBV03b] L. Bettini, V. Bono, and B. Venneri. Subtyping Mobile Clasees and Mixins. In Proc. of

Foundation of Object Oriented Languages (FOOL10), 2003.
[BC90] G. Bracha and W. Cook. Mixin-based inheritance. In Proc. OOPSLA ’90, pages 303–311, 1990.
[BCC01] M. Bugliesi, G. Castagna, and S. Crafa. Reasoning about security in mobile ambients. In

Concur 2001, number 2154 in LNCS, pages 102–120. Springer, 2001.
[BD01] L. Bettini and R. De Nicola. Translating Strong Mobility into Weak Mobility. In G. P. Picco,

editor, Mobile Agents, number 2240 in LNCS, pages 182–197. Springer, 2001.
[BDFP98] L. Bettini, R. De Nicola, G. Ferrari, and R. Pugliese. Interactive Mobile Agents in X-Klaim.

In P. Ciancarini and R. Tolksdorf, editors, Proc. of the 7th Int. IEEE Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE), pages 110–115, Stanford,
1998. IEEE Computer Society Press.

[BDL03] L. Bettini, R. De Nicola, and M. Loreti. Formulae meet programs over the net: a frame-
work for correct network aware programming. submitted for pubblication, available at
http://music.dsi.unifi.it/, 2003.

[BDP02] L. Bettini, R. De Nicola, and R. Pugliese. Klava: a Java Package for Distributed and Mobile
Applications. Software — Practice and Experience, 32:1365–1394, 2002.

[Bet03] L. Bettini. Linguistic Constructs for Object-Oriented Mobile Code Programming & their Im-
plementations. PhD thesis, Dip. di Matematica, Università di Siena, 2003. Available at
http://music.dsi.unifi.it.

[BLP02] L. Bettini, M. Loreti, and R. Pugliese. An Infrastructure Language for Open Nets. In Proc.
of ACM SAC 2002, Special Track on Coordination Models, Languages and Applications, pages
373–377. ACM, 2002.

[BMR97] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfaction and optimiza-
tion. Journal of the ACM, 44(2):201–236, March 1997.

[BWA94] P. Butcher, A. Wood, and M. Atkins. Global Synchronisation in Linda. Concurrency: Practice
and Experience, 6(6):505–516, 1994.

[Car99] L. Cardelli. Abstractions for Mobile Computation. In Vitek and Jensen [VJ99], pages 51–94.
[CCR96] S. Castellani, P. Ciancarini, and D. Rossi. The ShaPE of ShaDE: a coordination system.

Technical Report UBLCS 96-5, Dip. di Scienze dell’Informazione, Univ. di Bologna, Italy, 1996.
[CG89] N. Carriero and D. Gelernter. How to Write Parallel Programs: A Guide to the Perplexed.

ACM Computing Surveys, 21(3):323–357, 1989.
[CG00] L. Cardelli and A.D. Gordon. Mobile ambients. Theoretical Computer Science, 240(1):177–213,

2000. An extended abstract appeared in Proceedings of FoSSaCS ’98, number 1378 of LNCS,
pages 140-155, Springer, 1998.

[CGZ01] G. Castagna, G. Ghelli, and F. Zappa Nardelli. Typing mobility in the seal calculus. In Concur
2001, number 2154 in LNCS, pages 82–101. Springer, 2001.

[CMC99] M. Scott Corson, Joseph P. Macker, and Gregory H. Cirincione. Internet-based mobile ad hoc
networking. Internet Computing, 3(4), 1999.

[CTV+98] P. Ciancarini, R. Tolksdorf, F. Vitali, D. Rossi, and A. Knoche. Coordinating multiagent appli-
cations on the WWW: A reference architecture. IEEE Transactions on Software Engineering,
24(5):362–366, 1998.

[CV99] G. Castagna and J. Vitek. Seal: A framework for secure mobile computations. In H. Bal,
B. Belkhouche, and L. Cardelli, editors, Internet Programming Languages, number 1686 in
LNCS, pages 47–77. Springer, 1999.

[Deu01] D. Deugo. Choosing a Mobile Agent Messaging Model. In Proc. of ISADS 2001, pages 278–286.
IEEE, 2001.

[DFM+03] R. De Nicola, G. Ferrari, U. Montanari, R. Pugliese, and E. Tuosto. A formal basis for reasoning
on programmable qos. In International Symposium on Verification – Theory and Practice –
Honoring Zohar Manna’s 64th Birthday, LNCS. Springer-Verlag, 2003.

[DFP97] R. De Nicola, G. Ferrari, and R. Pugliese. Locality based Linda: Programming with explicit
localities. In Michel Bidoit and Max Dauchet, editors, TAPSOFT ’97: Theory and Practice of
Software Development, volume 1214 of LNCS, pages 712–726. Springer-Verlag, 1997.

[DFP98] R. De Nicola, G. Ferrari, and R. Pugliese. Klaim: a Kernel Language for Agents Interaction
and Mobility. IEEE Transactions on Software Engineering, 24(5):315–330, 1998.

49

[DFP99] R. De Nicola, G. Ferrari, and R. Pugliese. Types as Specifications of Access Policies. In Vitek
and Jensen [VJ99], pages 117–146.

[DFP00] R. De Nicola, G. Ferrari, and R. Pugliese. Programming Access Control: The Klaim Experience.
In C. Palamidessi, editor, Proc. of the 11th International Conference on Concurrency Theory
(CONCUR’00), volume 1877 of LNCS, pages 48–65. Springer-Verlag, 2000.

[DFPV00] R. De Nicola, G. Ferrari, R. Pugliese, and B. Venneri. Types for Access Control. Theoretical
Computer Science special issue on Coordination, 240(1):215–254, 2000.

[DL02] R. De Nicola and M. Loreti. A Modal Logic for Mobile Agents. ACM Transactions on Com-
putational Logic, 2002. To appear. Available at http://music.dsi.unifi.it/.

[DP96] R. De Nicola and R. Pugliese. A process algebra based on linda. In P. Ciancarini and C. Han-
kin, editors, Proceedings of the First International Conference on Coordination Models and
Languages (COORDINATION’96), volume 1061 of Lecture Notes in Computer Science, pages
160–178. Springer, 1996.

[Dug99] D. Duggan. Dynamic typing for distributed programming in polymorphic languages. ACM
Transactions on Programming Languages and Systems, 21(1):11–45, 1999.

[DWFB97] N. Davies, S. Wade, A. Friday, and G. Blair. Limbo: a tuple space based platform for adaptive
mobile applications. In Int. Conference on Open Distributed Processing/Distributed Platforms
(ICODP/ICDP’97), 1997.

[FGL+96] C. Fournet, G. Gonthier, J. J. Levy, L. Maranget, and D. Remy. A Calculus of Mobile Agents.
In U. Montanari and V. Sassone, editors, Proc. of 7th Int. Conf. on Concurrency Theory
(CONCUR’96), volume 1119 of LNCS, pages 406–421. Springer-Verlag, 1996.

[FKF98] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In Proc. POPL ’98, pages
171–183, 1998.

[FMP03] G. Ferrari, E. Moggi, and R. Pugliese. MetaKlaim: A type safe multi-stage language for global
computing. Mathematical Structures in Computer Science, 2003.

[FMSS02] G. Ferrari, C. Montangero, L. Semini, and S. Semprini. Mark, a reasoning kit for mobility.
Automated Software Engineering, 9:137–150, 2002.

[FPV98] A. Fuggetta, G. Picco, and G. Vigna. Understanging code mobility. IEEE Transactions on
Software Engineering, 24(5):342–361, 1998.

[Gel85] D. Gelernter. Generative Communication in Linda. ACM Transactions on Programming Lan-
guages and Systems, 7(1):80–112, 1985.

[Gel89] D. Gelernter. Multiple Tuple Spaces in Linda. In J.Hartmanis G. Goos, editor, Proceedings,
PARLE ’89, volume 365 of LNCS, pages 20–27, 1989.

[Gir72] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans l’arithmétique d’ordre
supérieur. Thèse de doctorat d’etat, University of Paris VII, 1972.

[GP03a] D. Gorla and R. Pugliese. Behavioural equivalences for distributed and mobile systems. Re-
search report, Dipartimento di Sistemi e Informatica, Università di Firenze, 2003. Available at
http://rap.dsi.unifi.it/~pugliese/DOWNLOAD/bis4klaim.pdf.

[GP03b] D. Gorla and R. Pugliese. Enforcing Security Policies via Types. In Proc. of the 1st International
Conference on Security in Pervasive Computing (SPC’03), LNCS. Springer-Verlag, 2003.

[GP03c] D. Gorla and R. Pugliese. Resource access and mobility control with dynamic privileges
acquisition. Research report, Dipartimento di Sistemi e Informatica, Università di Firenze,
2003. Available at http://rap.dsi.unifi.it/~pugliese/DOWNLOAD/muklaim-full.pdf. An
extended abstract appeared in Proceedings of ICALP’03, LNCS, Springer, 2003.

[HM85] M. Hennessy and R. Milner. Algebraic Laws for Nondeterminism and Concurrency. Journal
of the ACM, 32(1):137–161, January 1985.

[HR02] M. Hennessy and J. Riely. Resource access control in systems of mobile agents. Information
and Computation, 173(1):82–120, 2002.

[Lor02] M. Loreti. Languages and Logics for Network Aware Programming. PhD thesis, Università di
Siena, 2002. Available at http://music.dsi.unifi.it.

[LRVD99] X. Leroy, D. Rémy, J. Vouillon, and D. Doligez. The Objective Caml system, documentation
and user’s guide. http://caml.inria.fr/ocaml/htmlman/, 1999.

[MHP00] The MetaML Home Page, 2000. Provides source code and documentation online at
http://www.cse.ogi.edu/PacSoft/projects/metaml/index.html.

50

[MPW92] R. Milner, J. Parrow, and J. Walker. A Calculus of Mobile Processes, I and II. Information
and Computation, 100(1):1–40, 41–77, 1992.

[MR98] P.J. McCann and G-C. Roman. Compositional programming abstraction for mobile computing.
IEEE Transactions on Software Engineering, 24(2):97–110, 1998.

[Ora99] Oracle. Oracle 9iAS application server lite web page. In http://www.oracle.com/, 1999.
[OZ99] A. Omicini and F. Zambonelli. Coordination for internet application development. Autonomous

Agents and Multi-agent Systems, 2(3):251–269, 1999. Special Issue on Coordination Mechanisms
and Patterns for Web Agents.

[PMR99] G.P. Picco, A.L. Murphy, and G.-C. Roman. Lime: Linda Meets Mobility. In D. Garlan,
editor, Proc. of the 21st Int. Conference on Software Engineering (ICSE’99), pages 368–377.
ACM Press, 1999.

[PR98] A.S. Park and P. Reichl. Personal Disconnected Operations with Mobile Agents. In Proc. of
3rd Workshop on Personal Wireless Communications, PWC’98, Tokyo, 1998.

[Rey74] J.C. Reynolds. Towards a theory of type structure. In Proceedings Colloque sur la Program-
mation, Paris, volume 19 of Lecture Notes in Computer Science, pages 408–425, New York,
NY, june 1974. Springer-Verlag. Extension of typed lambda calculus to user-defined types and
polymorphic functions.

[Row98] A. Rowstron. WCL: A web co-ordination language. World Wide Web Journal, 1(3):167–179,
1998.

[SMH00] F.B. Schneider, G. Morrisett, and R. Harper. A language-based approach to security. In
Informatics: 10 Years Ahead, 10 Years Back. Conference on the Occasion of Dagstuhl’s 10th
Anniversary, number 2000 in Lecture Notes in Computer Science, pages 86–101. Springer-
Verlag, 2000.

[Sun99] Sun Microsystems. Javaspace specification. available at: http://java.sun.com/, 1999.
[TS00] W. Taha and T. Sheard. MetaML: Multi-stage programming with explicit annotations. Theo-

retical Computer Science, 248(1-2), 2000.
[Tuo99] E. Tuosto. An ada95 implementation of a network coordination language with code mobility.

In M. G. Harbour and J. A. de la Puente, editors, Intl. Conference on Reliable Software Tech-
nologies - Ada-Europe’99, volume 1622 of LNCS, pages 199–210, Santander, Spain, June 1999.
Springer-Verlag.

[VJ99] J. Vitek and C. Jensen, editors. Secure Internet Programming: Security Issues for Mobile and
Distributed Objects, number 1603 in LNCS. Springer-Verlag, 1999.

[WF94] A.K. Wright and M. Felleisen. A syntactic approach to type soundness. Information and
Computation, 115(1):38–94, 1994.

[WMLF98] P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford. TSpaces. IBM Systems Journal,
37(3):454–474, 1998.

[WS99] M. Wand and I. Siveroni. Constraint systems for useless variable elimination. In In proceedings
of the ACM Symposium on Principles of Programming Languages (POPL), pages 291–302,
1999.

[YH99] N. Yoshida and M. Hennessy. Assigning types to processes. CogSci Report 99.02, School of
Cognitive and Computing Sciences, University of Sussex, UK, 1999.

51

