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1. Introduction

The search for exact solutions of wave equations, whethernon-relativistic or relativistic, has been an important re-search area since the birth of quantum mechanics. Re-cently the Asymptotic Iteration Method (AIM) has receivedmuch attention as a method for solving the Schrödingerequation [1]-[17], both analytically and approximately. Ithas been applied to a large number of physically inter-
∗E-mail: nsaad@upei.ca
†E-mail: rhall@mathstat.concordia.ca
‡E-mail: hciftci@gazi.edu.tr

esting potentials and has often yielded highly-accurateresults. Very recently, AIM has been used to study thebound states of the Klein-Gordon and Dirac equationsfor a number of special potentials [18]-[29]. In the caseof the Klein-Gordon equation, AIM was used to study thebound-states in the case of equal vector and scalar poten-tial. To our knowledge, the method has never been usedto study the bound-states of the Klein-Gordon equationin the case of unequal vector and scalar potentials. In thepresent paper, we have adapted the method to treat prob-lems where the unequal vector and scalar potentials areof Coulomb or Kratzer type. Our main goal is to inves-tigate the exact solutions, whether the scalar and vectorpotentials, S(r) and V (r), are equal or not. In the case
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The Klein-Gordon equation with the Kratzer potential in d dimensions

of equal vector and scalar potentials, it is known that theKlein-Gordon equation usually reduces to a Schrödinger-type equation, which can be studied, for example, by useof the Nikiforon-Uvarov method [30], or by transformingthe equation into a classical hypergeometric differentialequation with known solution [31]-[32]. It is known [33]-[35] that when S(r) ≥ V (r), bound-state solutions exist.Usually the case when the scalar potential is equal tothe vector potential is considered separately. The advan-tage of AIM is that it allows a unified approach that canbe used to study the bound-state solutions with equal orunequal scalar and vector potentials.
The Klein-Gordon equation has received considerable at-tention in the literature [35]-[45]. The present paper isorganized as follows. Section 2 is devoted to a brief intro-duction to the Klein-Gordon equation in d-dimensions. InSection 3 we summarize the Asymptotic Iteration Method(AIM) [1]. In Section 4 we use AIM to find detailed analyticsolutions to the Klein-Gordon equation with Coulomb po-tentials in d-dimensions. The lowest even-parity solutionfor the Coulomb problem in one dimension is paradoxicaland is still under study [46]-[50]. Our solutions in Sec-tion 4 for d = 1 confirm the exact solutions of the Klein-Gordon equation with mixed vector and scalar Coulombpotentials on the half-line obtained earlier by de Castro[48]. In Section 5, we use AIM to derive exact solutionswith equal and unequal scalar and vector Kratzer-typepotentials. Our conclusions are presented in section 6.
2. The Klein-Gordon equation in d
dimensions
The d-dimensional Klein-Gordon equation for a particleof mass M with radially symmetric Lorentz vector andLorentz scalar potentials, V (r) and S(r), r = ‖r‖, is given(in atomic units h̄ = c = 1) [33, 34] by

{−∆d + [M + S(r)]2}Ψ(r) = [E − V (r)]2Ψ(r), (1)
where E denotes the energy and ∆d is the d-dimensionalLaplacian. Transforming to the d dimensional sphericalcoordinates (r, θ1 . . . θD−1), the variables can be separatedusing Ψ(r) = R(r)Yld−1,...,l1 (θ1 . . . θd−1) (2)
where R(r) is a radial function, and Yld−1,...,l1 (θ1 . . . θd−1)is a normalized hyper-spherical harmonic with eigenvalue
l(l + d − 2), l = 0, 1, 2, . . . . Thus, we obtain the radialequation of Klein-Gordon equation in d dimensions by

substituting Eq.(2) into Eq.(1)
− R ′′(r)− (d − 1

r

)
R ′(r) (3)

+ { l(l+D − 2)
r2 + [M + S(r)]2 − [E − V (r)]2}R(r) = 0.

Writing R as R(r) = r−(D−1)/2u(r) gives the radial equation
−u′′(r) + {(k − 1)(k − 3)4r2

+ [[M + S(r)]2 − [E − V (r)]2]}u(r) = 0. (4)
where k = d + 2l and u(r) is the reduced radial wavefunction satisfying u(0) = 0.
3. Brief introduction of the solution
method
The asymptotic iteration method was introduced [1] to ob-tain exact and approximate solutions of eigenvalue equa-tions [2]. The first step in applying this method to solveSchrödinger-type equations is to transform these equa-tions, with the aid of appropriate asymptotic forms, tosecond-order homogeneous linear differential equations ofthe general form

y′′ = λ0(r)y′ + s0(r)y, (5)
for which λ0(r) and s0(r) are functions in C∞. Here primesdenotes the derivatives with respect to r. A key featureof AIM is to note the invariant structure of the right-handside of (5) under further differentiation. Indeed, if we dif-ferentiate (5) with respect to r, we find that

y′′′ = λ1(r)y′ + s1(r)y (6)
where {

λ1 = λ′0 + s0 + λ20
s1 = s′0 + s0λ0.

Meanwhile the second derivative of (5) yields
y(4) = λ2(r)y′ + s2(r)y (7)

for which {
λ2 = λ′1 + s1 + λ0λ1
s2 = s′1 + s0λ1.
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Thus, for the (n − 1)th and (n)th derivatives of (5), n =1, 2, . . . , we have
y(n+1) = λn−1(r)y′ + sn−1(r)y
y(n+2) = λn(r)y′ + sn(r)y (8)

respectively, where{
λn = λ′n−1 + sn−1 + λ0λn−1
sn = s′n−1 + s0λn−1. (9)

In an earlier paper [1] we proved the principal theorem ofthe asymptotic iteration method (AIM), namely
Theorem 1: Given λ0 and s0 in C∞, the differential equa-
tion (5) has the general solution

y(r) = exp− r∫ sn−1
λn−1 dt

 (10)
·
[
C2 + C1

r∫ exp t∫ (λ0 + 2sn−1
λn−1 )dτdt

]
if for some n > 0

δn = λnsn−1 − λn−1sn = 0. (11)
Recently, it has been shown [51] that the terminationcondition (11) is necessary and sufficient for the differ-ential equation (5) to have polynomial-type solutions.In the next section, we shall apply this method to ob-tain the exact solutions for the relativistic d-dimensionalKlein-Gordon equation with Coulomb potentials. The re-sults obtained in the next section are known since theKlein-Gordon equation, in this particular case, reducesinto an hypergeometric-type differential equation whichhas known solutions in terms of confluent hypergeomet-ric function. However, the point is to unify the techniqueof using AIM to obtain analytic solutions, by first study-ing the known Coulomb case, and then going on to themore-general Kratzer case.
4. The Klein-Gordon equation with
Coulomb potentials in d-dimensions
In this section, we use AIM to study the d-dimensionalKlein-Gordon equation with vector V (r) and scalar S(r)Coulomb potentials [52, 53], namely

V (r) = −vr , S(r) = −sr . (12)

In this case, the Klein-Gordon equation (4) reads
− u′′(r) + {(k − 1)(k − 3) + 4(s2 − v2)4r2 − 2(Ms+ Ev)

r

}
· u(r) = (E2 −M2)u(r). (13)

In order to solve this Schrödinger-like differential equa-tion using AIM, as mentioned earlier, the first step is totransform (13) into the standard form (5). We note that thedifferential equation (13) has one regular singular pointat r = 0 and an irregular singular point at r = ∞.The asymptotic solution of (13) as r → ∞ is given by
u(r) ≈ e−√M2−E2r , meanwhile the indicial equation of (13)at the regular singular point r = 0 yields

c2 − c − s2 + v2 − 14 (k − 1)(k − 3) = 0.
Thus the exact solution of (13) may assume the form

u(r) = rcebrf(r) (14)
where b = −√M2 − E2 and

c = 12 +√(k2 − 1)2 + s2 − v2, (15)
because only the negative root yields a regular wave func-tion at r = 0. Substituting (14) in (13), we immediatelyobtain
f ′′(r) = −2 (cr + b

)
f ′(r) + (−2(Ms+ Ev)− 2cb

r

)
f(r).(16)This is a confluent hypergeometric differential equationwhich has a regular singular point at r = 0 and an irreg-ular singularity at r =∞. The application of AIM is nowinitiated with λ0 = −2( cr + b) and s0 = −2(Ms+Ev)−2cb

r , andthen terminated with the condition (11). We find
δn = 0 ⇐⇒

n∏
k=0(Ms+ Ev + cb+ kb) = 0 (17)

which in turn yields
Ms+ Ev + cb = −nb, n = 0, 1, 2, . . . (18)

Further, use of (15) yields the eigenvalue equation
Ms+ Ev√
M2 − E2 = n+ 12 +√(k2 − 1)2 + s2 − v2. (19)
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Upon solving (19) for E , we obtain
E = M

(
− sv
β2 + v2 ± β

β2 + v2√β2 + v2 − s2), (20)
where β = n+ 12 +√( k2 − 1)2 + s2 − v2. The un-normalized wave function can be found using (10), namely

fn(r) = exp(− ∫ r sn−1(τ)
λn−1(τ)dτ

)
,

which, after some algebraic computation, yields
fn(r) = (−1)n(c + n)n(2c)n1F1 (−n; 2c; 2r√M2 − E2) ,

n = 0, 1, 2, . . . (21)
up to a multiplicative constant. Here 1F1 denotes a con-fluent hypergeometric function [55]
1F1(a;b; x) = 1 + a

bx + a(a+ 1)
b(b+ 1) x22! + · · ·+ (a)n(b)n xnn! + . . .

= ∞∑
k=0

(a)k(b)k xkk! , (22)

and (a)k = Γ(a+ k)/Γ(a). Using equations (14) and (21),we find that the exact solutions of Klein-Gordon equationwith Coulomb potential in arbitrary dimension d is givenby
un(r) = Cnr

12 +√( k2−1)2+s2−v2e−√M2−E2r (23)
· 1F1 (−n; 1 +√(k − 2)2 + 4(s2 − v2); 2r√M2 − E2)

The normalization constant Cn can be computed by meansof ∫∞0 |R(r)|2rD−1dr = 1, where R(r) = r−(D−1)/2u(r),which, in turn, requires the computation of the definiteintegral

Inm(α) = ∞∫
0
ραe−ρ1F1(−n; α;ρ)1F1(−m; α;ρ)dρ (24)

when n = m. Since there is some confusion in the no-tation used in Refs. [52, 53] for the computation of thenormalization constant Cn in (22), we shall present here adetailed computation of the definite integral (24).
Lemma 1: For α > −1, we have

∞∫
0

ραe−ρ1F1(−n; α;ρ)1F1(−m; α;ρ)dρ =


− [Γ(α)]2Γ(α+n−1)n! if m = n − 1
(α + 2n) n!Γ(α)(α)n if m = n

− [Γ(α)]2Γ(α+n) (n+ 1)! if m = n+ 1
0 otherwise.

(25)

Proof: Using the series representation of the Confluent hypergeometric function (24) and observing that (−n)k = 0 if
k > n, we can write (24)

Inm = n∑
i=0

m∑
k=0

(−n)i(−m)k(α)i(α)k i! k!
∞∫

0
ρα+i+ke−ρdρ = n∑

i=0
m∑
k=0

(−n)i(−m)k(α)i(α)k i! k!Γ(α + i+ k + 1)
= n∑

i=0
(−n)iΓ(α + i+ 1)(α)i i! 2F1(−m, α + i+ 1; α; 1) = Γ(α + 1) n∑

i=0
(−n)i(α + 1)i(α)i i! (−i − 1)m(α)m ,

as a consequence [56] of Vandermonde’s Theorem 2F1(−n, b; c; 1) = (c − b)n/(c)n. The last sum survives for m =
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n − 1, n, n+ 1. Since we are concerned with the case m = n, we consider
Inn = Γ(α + 1)(α)n

n∑
i=0

(−n)i(α + 1)i(−i − 1)m(α)i i!
= Γ(α + 1)(α)n

{(−n)n−1(α + 1)n−1(−n)n(α)n−1(n − 1)! + (−n)n(α + 1)n(−n − 1)n(α)nn!
} = (α + 2n)n!Γ(α)(α)n

as required. The other cases follow similarly.
Consequently, we have

∞∫
0
ραe−ρ

[1F1(−n; α;ρ)]2dρ = (α + 2n)n!Γ(α)(α)n (26)
The normalization constant in (22) is then provided by:

C−2
n = ( 12√M2 − E2

)2c+1(2c + 2n)n!Γ(2c)(2c)n .

Consequently, the full normalized wave function (23) reads
un(r) = √ (2√M2−E2)2c+1(2c)n2(c+n)n!Γ(2c) rce−

√
M2−E2r

·1F1(−n; 2c; 2r√M2 − E2), (27)
where c = 12 + √( k2 − 1)2 + s2 − v2. Depending on thevalues of s and v , we may now consider the followingthree cases:

• If v = 0, in this case s and M must have the samesign as a result of (20), i.e. s > 0 (since the right-hand side of (19) is greater than 0). Thus we have
E = ±M1− s2(

n+ 12 +√( k2 − 1)2 + s2)2
1/2

. (28)

• If s = 0, then, again using (19), E and v must havethe same sign for ( k2 − 1)2 > v2. For attractiveCoulomb potentials 0 < v < D2 + l − 1, we have theso-called π-mesonic atom [54]
E = M

1 + v2(
n+ 12 +√( k2 − 1)2 − v2)2

−1/2
. (29)

where n and l are the radial and angular quantumnumbers.
• If s = v > 0, since |E| < M, we have

E = M
(1− 2v2(

n+ k2 − 12)2 + v2
)
. (30)

5. The Klein-Gordon equation with
Kratzer potentials in d-dimensions
In this section, we consider the scalar and vector poten-tials with the forms

S(r) = −s1
r + s2

r2 , V (r) = −v1r + v2
r2 . (31)

The Klein-Gordon equation (4) then reads

−u′′+{−2(Ms1 + Ev1)
r + 2Ms2 + s21 + 2Ev2 − v21 + 14 (k − 1)(k − 3)

r2 + 2(v1v2 − s1s2)
r3 + s22 − v22

r4
}
u = (E2−M2)u. (32)

This differential equation has two irregular singular pointsat r = 0 and r = ∞. As r → ∞, the differen-tial equation u′′ ≈ (M2 − E2)u has a solution given by
u ≈ exp(−√M2 − E2 r). As r → 0, it is clear that the

differential equation, after replacing z = 1/r and letting
z → ∞, has a solution u ≈ exp(−√s22 − v22 r−1). Thus we
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may assume the exact solution of (32) takes the form
u(r) = exp [−√M2 − E2r −

√
s22 − v22
r

]
g(r). (33)

Substituting this expression in (32), we obtain

g′′(r) = −2(− a
r2 + b

)
g′(r) + (−2(Ms1 + Ev1)

r + 2(Ms2 + Ev2) + s21 − v21 + 14 (k − 1)(k − 3) + 2ab
r2

+ 2(v1v2 − s1s2)− 2a
r3

)
g(r), (34)

where we denote a = −√s22 − v22 and b = −√M2 − E2.
5.1. Equal scalar and vector potentials
In order to solve (34), we consider first the case of equalscalar and vector potentials. i.e. v1 = s1 = B and v2 =
s2 = A. Then, equation (34) reduces to
g′′(r) = −2bg′(r) (35)
+ (−2B(M + E)

r + 2A(M + E) + 14 (k − 1)(k − 3)
r2

)
g(r).

This equation has a regular singular point at r = 0 withindicial equation given by c2 − c − 2A(M + E) − 14 (k −1)(k − 3) = 0, which implies
c = 12 +√(k2 − 1)2 + 2A(M + E), (36)

where we assume c > 0 (because only the negative rootyields a bounded solution at r = 0.) With g(r) = rcf(r),equation (35) now reads
f ′′(r) = −2 (cr + b

)
f ′(r) + (−2B(M + E)− 2cb

r

)
f(r).(37)

By a direct application of AIM with λ0 = c
r + b and s0 =

−2B(M+E)−2cb
r , the termination condition (11) implies δn =0, n = 0, 1, 2, 3, . . . if and only if

n∏
k=0
(
B(M + E) + cb+ kb

) = 0,⇒ c + n = B(M + E)√
M2 − E2 .(38)Combining (36) and (38), we obtain the eigenvalue equa-tion

2B(M + E)√
M2 − E2 = 2n+ 1 +√(k − 2)2 + 8A(M + E), (39)

which generalizes the results of [32] for the 3-dimensioncase. Although we can solve Eq. (39) exactly for E , theexpression for E is rather complicated. We therefore writeEq. (39) as
2B√2M − β2 (40)
− β

(2n+ 1 +√(k − 2)2 + 8A(2M − β2)) = 0
and expand it as a power series in β = √M − E . Thuswe have
2B√2M (41)
+ (−2n − 1−√(k − 2)2 + 16AM)β − B√2Mβ2 + · · · = 0.
As an approximation, if we take only the term in β, andsolve the energy equation, we obtain the non-relativisticenergy [57]
E ′ = E −M = −β2 = − 8MB2(2n+ 1 +√(k − 2)2 + 16AM)2 .(42)The exact solutions fn(r) of (37) can be obtained using (10)to yield
fn(r) = (−1)n(c + n)n(2c)n1F1(−n; 2c; 2√M2 − E2r) (43)

up to a constant. Consequently, the exact solutions (33)of (32), in the case equal scalar and vector potentials, aregiven by
un(r) = Nnrce−

√
M2−E2r1F1(−n; 2c; 2r√M2 − E2),

n = 0, 1, 2, . . . (44)
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where the normalization constant (implied by Lemma 1)now becomes
Nn = √(2√M2 − E2)2c+1(2c)n2(c + n)n!Γ(2c) , (45)

where c is given by (36). We note that in the case A = 0,equation (39) yields
E = M

(1− 2B2(
n+ k2 − 12)2 + B2

)
, (46)

which is in complete agreement with our results for theCoulomb potential.

5.2. Unequal scalar and vector potentials

In the case of different scalar and vector potentials, wehave a 6= 0 and therefore we have to approach equa-tion (34) directly. The equation, however, has two ir-regular singular points, at r = 0 and r = ∞, and thestandard techniques of solving differential equations can-not be applied. AIM, however, has the advantage thatit can be applied directly to obtain exact solutions un-der certain conditions on the potential parameters of(34). Indeed, with λ0(r) = −2( − a
r2 + b

) and s0(r) =
−2(Ms1+Ev1)

r + 2(Ms2+Ev2)+s21−v21 + 14 (k−1)(k−3)+2ab
r2 + 2(v1v2−s1s2)−2a

r3 ,the termination relation (11) yields, for δn = 0, where
n = 1, 2, . . . is the iteration number, the following condi-tions


2nb = −2(Ms1 + Ev1),
n(n − 1) = 2(Ms2 + Ev2) + s21 − v21 + 14 (k − 1)(k − 3) + 2ab
−2na = 2(v1v2 − s1s2)− 2a.

(47)
Furthermore, the exact solutions under the constraints (47), using the AIM expression (10), are given by

gn(r) = rn ⇒ u(r) = Cnrne−
√
M2−E2r−

√
s22−v22
r , n = 1, 2, . . . . (48)

The normalization constants Cn of (48) can be computed by the standard identity [58] (in which Kν is the modified Besselfunction of second kind of order ν)
∞∫

0
rC exp[−Br − Ar ]dr = 2(AB

) C+12
K−C−1(2√AB ), A > 0, B > 0. (49)

which implies that
C−2
n = 2( s22 − v22

M2 − E2
) 1+n4

K−n−1(2(s22 − v22 ) 14 (M2 − E2) 14 ). (50)
That is to say, the exact solutions for the differential equation (34) under the constraints (47) are given by

un(r) = (2( s22 − v22
M2 − E2

) 1+n4
K−n−1(2(s22 − v22 ) 14 (M2 − E2) 14 ))− 12

rne−
√
M2−E2r−

√
s22−v22
r . (51)

Further, we note that the first and the third equations of (47) yield

n = Ms1+Ev1√

M2−E2
n = v1v2−s1s2√

s22−v22 + 1, (52)
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This, in turn, inplies √
s22 − v22√M2 − E2 = (Ms1 + Ev1)√s22 − v22 − (v1v2 − s1s2)√M2 − E2. (53)

Thus, by mean of the second equation of (47), the eigenvalue equation is
Ms1 + Ev1√
M2 − E2 = 12 +√(k2 − 1)2 + 2(Ms1 + Ev1)√s22 − v22 − 2(v1v2 − s1s2)√M2 − E2 + 2(Ms2 + Ev2) + s21 − v21 . (54)

Some important remarks are in order:
• The exact solutions un(r), n = 1, 2, . . . are node-less for all n. Here, n represents the AIM iterationnumber. Thus, for all the values of the potential pa-rameters that satisfy (51)-(52), the correspondingsolution represents a ground-state wave function.Note that each operator now acts on a differentparameter space.
• We notice for n = 1, the second equation of (51)implies v1v2 = s1s2 and since s2 > v2, we musthave v1 > s1 which in turn implies −s1 > −v1.Thus, the requirement for bound states S(r) > V (r)is satisfied. It is also clear that, this is the case forall n ≥ 1.
• If s2 = v2 = 0, we obtain u0(r) =
C0r 12 +√( k2−1)2+s21−v21 e−√M2−E2r and
Ms1 + Ev1√
M2 − E2 = 12 +√(k2 − 1)2 + s21 − v21 ,

which reduces to the ground state solution de-scribed for Coulomb potential as mentioned earlier.
• In the case of a pure scalar potential, i.e. V (r) = 0,we have v1 = v2 = 0, S(r) = − s1

r + s2
r2 > 0,

u0(r) = C0r 12 +√( k2−1)2+2Ms1s2+2s1s2√M2−E2+2Ms2+s21
· exp [−√M2 − E2r − s2

r

]
,

and
Ms1√
M2 − E2 = 12 + ((k2 − 1)2

+ 2Ms1s2 + s1s2√M2 − E2 + 2Ms2 + s21
)1/2

.

If we further assume that s2 = 0, we obtain
Ms1√
M2 − E2 = 12 + ((k2 − 1)2 + s21

)1/2
,

which again agrees with the result for the Coulombpotential for this particular case.
In order to move beyond the ground state solutions, equa-tion (51) suggests that the exact solutions u(r) of (34) takethe form

u(r) = rc exp [−√M2 − E2r −
√
s22 − v22
r

]
f(r). (55)

Substituting this expression in (33), we obtain

f ′′(r) = −2(cr − a
r2 + b

)
f ′(r) + (−2(Ms1 + Ev1)− 2cb

r + 2(Ms2 + Ev2) + s21 − v21 + 14 (k − 1)(k − 3)− c2 + c + 2ab
r2

+ 2(v1v2 − s1s2)− 2a+ 2ca
r3

)
f(r). (56)
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where again a = −√s22 − v22 and b = −√M2 − E2. Wemay now choose c such that
v1v2 − s1s2 − a+ ca = 0⇒ c = v1v2 − s1s2√

s22 − v22 + 1. (57)
which in turn reduces Eq. (56) to

f ′′(r) = −2 (cr − a
r2 + b

)
f ′(r) (58)

+ (
−2(Ms1 + Ev1)− 2cb

r + G
r2
)
f(r),

where we denote
G = 2(Ms2 + Ev2) + s21 − v21 (59)

+ 14 (k − 1)(k − 3)− c2 + c + 2ab.

Although (58) still has an irregular singular point at r = 0,the direct application of AIM with λ0 = −2( cr − a
r2 + b)and s0 = −2(Ms1+Ev1)−2cb

r + G
r2 , implies, by means of thetermination condition (11), that

Ms1 + Ev1 + cb = −nb ⇒ c + n = Ms1 + Ev1√
M2 − E2 ,

n = 0, 1, 2, . . . , (60)

where for n = 0, 1, 2, . . . the following constraints on Gmust hold

G0 ≡ G = 0
G1 ≡ G2 − 2cG − 4ab = 0
G2 ≡ G3 − 2(3c + 1)G2 + 4(2c2 + c − 4ba)G + 16ab(2c + 1) = 0
G3 ≡ G4 − 4(3c + 2)G3 + 4(11c2 + 3 + 13c − 10ab)G2 + (192ab − 72c2 + 240cab − 24c − 48c3)G
− 144ba+ 144a2b2 − 432cab − 288c2ab = 0

. . .

and so on, for higher iteration numbers.
5.3. The case G0 = 0
In the case G = 0, we have

c = 12 +√(k2 − 1)2 + 2√s22 − v22√M2 − E2 + 2(Ms2 + Ev2) + s21 − v21 (61)
as a root of (59) and, again, c > 0 because only the negative root yields a regular wave function at r = 0. On the otherhand, equation (60) implies

c = Ms1 + Ev1√
M2 − E2 , (62)

where now (57) gives √
s22 − v22√M2 − E2 = (Ms1 + Ev1)√s22 − v22 − (v1v2 − s1s2)√M2 − E2. (63)

Therefore, the ground-state energy equation in d-dimensions is given by
Ms1 + Ev1√
M2 − E2 = 12 +√(k2 − 1)2 + 2(Ms1 + Ev1)√s22 − v22 − 2(v1v2 − s1s2)√M2 − E2 + 2(Ms2 + Ev2) + s21 − v21 , (64)
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which in complete agreement with equation (54).
5.4. The case G1 = 0
In this case, the constraint G1 ≡ G2 − 2cG − 4ab = 0implies G = c ±

√
c2 + 4ab, which implies by (59) for

G > 0, that
√
c2 + 4ab (65)

= 2(Ms2 + Ev2) + s21 − v21 + 14 (k − 1)(k − 3)− c2 + 2ab.
In order to simplify the notation, we denote
µ = 2(Ms2 +Ev2) + s21−v21 + 14 (k − 1)(k − 3)+ 2ab (66)

and solve (65) for c > 0 to obtain
c = 12√2 + 4µ + 2√4µ + 1 + 16ab. (67)

Meanwhile, (57) and (60) imply, for ab =√
M2 − E2√s22 − v22 , that

ab = 12 (Ms1 + Ev1)√s22 − v22 − 12 (v1v2 − s1s2)√M2 − E2.(68)

The eigenenergy is then given, from (67), by the equation
Ms1 + Ev1√
M2 − E2 = 12√2 + 4µ + 2√4µ + 1 + 16ab − 1, (69)

where µ and ab are given by (66) and (68), respectively.Further, the exact solution of (56) and G = c+√c2 + 4abbecomes
f1(r) = r − 2a

G (70)
up to a constant. Thus
u1(r) = C1

(
r − 2a

G

)
rc exp [−√M2 − E2r −

√
s22 − v22
r

]
,

(71)where the normalization constant C1 can be computed bymeans of (49).
5.5. The case G2 = 0
In this case, we have for Ms1 +Ev1 +cb = −2b that G2 ≡
G3− 2(3c+1)G2 +4(2c2 + c− 4ba)G+16ab(2c+1) = 0,where G is given by (59). The eigenvalue equation is thengiven by the root of this equation along with G given by(59) and

ab = 13 (Ms1 + Ev1)√s22 − v22 − 13 (v1v2 − s1s2)√M2 − E2, (72)
in a similar fashion to the previous case. After some algebraic computations, we obtain for the exact solution that

f2(r) = (r − G − 4c − 24b + 14b√16ab+ 8c + 4 + 4cG − G2)(r − G − 4c − 24b − 14b√16ab+ 8c + 4 + 4cG − G2). (73)
5.6. The general case Gn ≡ 0
The structure of the wave functions for the cases G0 = 0, G1 = 0, and G2 = 0, etc., allows us to formulate a possiblegeneral solution of the Klein-Gordon equation in the case of unequal scalar and vector Kratzer potentials for arbitrary
n and d. For this purpose, we assume that the general form of the exact solution of the differential equation (59) takesthe form of a monic polynomial

fn(r) = n∏
k=1(r − σk ) = n∑

k=0 akr
k (74)
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whose coefficients {ak}nk=0 are the elementary symmetric polynomials [59]


an = 1,
an−1 = − ∑

1≤k≤n σk ,
an−2 = ∑

1≤i<j≤n σiσj ,

an−3 = − ∑
1≤i<j<k≤n σiσjσk ,

. . . = . . .
ak = ∑

1≤j1<j2<···<jk≤n σj1 . . . σjk
. . . = . . .

a0 = (−1)n n∏
k=1 σk

(75)

On substituting (74) into the differential equation (58), we find that the coefficients {ak}nk=0 must satisfy the followingset of linear equations:


Ga0 + 2aa1 = 0,
4aa2 + (G − 2c)a1 + 2nba0 = 0,
[n(n − 1) + 2cn − G] an = 2ban−1,
2a(k + 3)ak+3 + (G − 2c(k + 2)− (k + 1)(k + 2))ak+2 + (F − 2b(k + 1))ak+1 = 0 , for 0 ≤ k ≤ n − 3.

(76)

In order to understand the application of these formulae, we consider the case of n = 3: equation (76) implies

a2 = − 14a (G − 2c − 12ab

G )a1,
a3 = 2b6+6c−Ga2,
6aa3 + (G − 4c − 2)a2 + 4ba1 = 0 , since k = 0.

(77)

The solution of this system, for a1 6= 0, gives the condition G3 on G that reads
G4 − 4(3c + 2)G3 + 4(11c2 + 3 + 13c − 10ab)G2 + (192ab − 72c2 + 240cab − 24c − 48c3)G
− 144ba+ 144a2b2 − 432cab − 288c2ab = 0.

That is to say, the same condition that we obtain if weapply AIM to (58) with three iterations, i.e n = 3. Equa-tions (76) are the full set of restrictions on the parametersof the Kratzer potentials (31) in the case of unequal scalarand vector parts.

6. Conclusion

In this paper, the Klein-Gordon equation in arbitrary di-mension has been solved exactly for the bound states cor-responding to Coulomb or Kratzer scalar S(r) and vec-tor V (r) potentials. When both potentials are Coulombic,equal or not, we find all the analytic solutions. When both
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potentials are of Kratzer type, we find the exact solutionswhen S(r) = V (r); when the potentials are unequal andthe scalar potential dominates, we generate exact solu-tions under certain specific conditions on the potentialparameters. Furthermore, a general solution is found interms of a monic polynomial whose coefficients form aset of elementary symmetric polynomials. Our methodof solution is based on the recently-introduced Asymp-totic Iteration Method. This approach has the advantageof simplicity in the exact cases, and flexibility, leading toapproximations, when exact solutions are not attainable.
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