
The Knapsack Hash Function proposed at
Crypto’89 can be broken

Paul Camion Jacques Patarin

INRIA, B.P. 105, Domaine de Voluceau - Rocquencourt, 78153 Le Chesnay Cedex -
France

EUROCRYPT’91, Brighton, England.

Abstract

Ivan Damgkd [4] suggested at Crypto’89 concrete examples of hash functions
among which a knapsack scheme. We will here show that a probabilistic algorithm
can break this scheme with a number in the region of Z3’ computations. That
number of operations is feasible in realistic time with modern computers. Thus the
proposed hash function is not very secure. Among those computations a substantial
number can be performed once for all. A faster result can be obtained since paral-
lelism is easy. Moreover, ways to extend the present algorithm to other knapsacks
than the present (256, 128) suggested by Damgird are investigated.

The proposed knapsack
Let al , . . . , a. be fixed integers of A binary digits, randomly selected. If T is a plaintext

of s binary symbols, T = x1 . . . x,, then b = Eqai will be the proposed hashed value.

The values assigned are 256 for s and 120 for A. Thus 6 has at most 120 + 8 = 128 binary
digits. Thus roughly the probability that a random 256 - bit string be a solution is 2-l”.
We will see that it is somewhat larger. Here a probabilistic algorithm is however designed
which solves the problem.
We nevertheless must emphasize that breaking that primitive (the proposed knapsack)
does not allow us to break the hash function h : (0, l}’ -+ {0,1}‘ whose construction is
described in Theorem 3.1 of [4]. See also [7] for an improvement of that construction. We
only show that the family .F of functions defined by the proposed knapsack for m = 256
and t (n) = 128 is not collision free and hence does not satisfy the hypothesis of Theorem
3.1 of [4].

s

i = l

D.W. Davies (Ed.): Advances in Cryptology - EUROCRYPT ’91, LNCS 547, pp. 39-53, 1991.
0 Springer-Verlag Berlin Heidelberg 199 1

40

1 The general scheme of our algorithm

1.1 Description
256

Aim: Given b, find a binary sequence x1,x2,. . . , x, such that c x i u i = b.
i=l

This is a Knapsack problem, which has an expected high number of solutions, i.e at
2256

first sight N 2128 and we will show a way to find one of those solutions.

Step 0 : We choose integers m, ml , m2, m3, m4 such that

a) m = m1m2m3m4 > 212*

b) The mi are pairwise coprime, and mi N 232, i = 1, 2, 3, 4.

Let b, be the residue of b modulo mi, i = 1,2 , 3, 4. By the Chinese remainder theorem
we have that x = b is the only integer such that

1. x = b, [mi],i = 1,2,3,4.

2. O < x < m .

Here is a diagram of the sequence of operations that is considered. Let us sketch the
meaning of the diagram before going into details.
Each black point represents a step resulting in an estimated 232 binary sequences. The
length of those sequences is 64 for steps 1, 2, 3, 4. It is 128 for steps 5 and 6 and finally
step 7 produces about 232 sequences of length 256 among which test modulo m4 selects a
solution with probability close to 1.

Steps1,2,3,4 1.

Steps 5.6

23.’1 - Modulo ml
232 232 232

232 - 1 -Moddom,
232

We now go through each step in detail.

Step 1 : We find all sequences (xi), 1 5 i 5 64, x; = 0 or 1, such that

We will find about 232 such sequences because there are 264 sequences (xi) of 64 bits,
and ml is close to 232. In fact, we will examine in Section 2 what is the expected number
of solutions to be obtained when the algorithm is brought to completion.

41

64
Important remark.

in the region of p2 operations, if a memory with sufficient size is available.

Finding sequences (x i) such that c x ; a ; = bl [ml] needs a number
i=l

Indeed, we just have to do the following.

32

a) compute and store all values of - EZ;U; modulo ml.
i= l

64

b) compute and store all values of z x i a ; modulo ml.

c) keep all pairs of sequences (x i) which give the same value modulo rnl in a) and b).

i=33

More details. In Section 3 we give more details about operations a), b), c), about the
memory needed and about the number of solutions to be found.

128
Step 2 : The same way, we find about 232 binary sequences (x i) such that z x i u ; e

i=65

0 [%I.
192

Step 3 : The same way, we find about 232 binary sequences (x;) such that c x;u; e

0 [m11.

0 b l l .

Step 4 : The same way, we find

64
Step 5 : We denote ‘&a; by s1

i=l

i=129

256

about 232 binary sequences (x i) such that c s;ai =
i=193

128

and c x i a ; by s2.
i=65

From the sequences (x i) found at Steps 1 and 2, and using the procedure a) b) c)
above, we find about 232 sequences (x i) , 1 5 i 5 128 such that s1 + s2 = 62 [mz]. For
there are about 232 x 232 = 264 sequences (xi), 1 5 i 5 128 such that (21,. . . , za) is a
solution in Step 1 and (265,. . . , x l =) is a solution in Step 2 . So if the numbers s1 + 3 2

are about equally distributed modulo m 2 , m2 N 232, we find about - = 232 among those
sequences such that s1 + s2 = 62 [mz]. If we find noticeably less than 232 such solutions,
we will see at the end of this Section 1 what to do.
All sequences (3;) to be found in Step 5 also have the following property:

264
232

s1 + 32 = b2 [mz] and s1 + s2 = [ml] .

This is because s1 E bl [ml] and s2 0 [ml].

Remark Step 5 also uses a number in the region of 232 operations. The computer problem
is the same as for step 1. Details will be given in Section 3. We essentially have two sets
E and F of about 232 elements, and we want to find all possible couples (a ,b) , a E E ,
6 E F , such that a = b E k [mi], where k is a fixed value and mi is close to 232.

42

Step 6 : The same way, from the sequences (xi) found at Steps 3 and 4, we find about
232 sequences (xi), 129 5 i 5 256, such that

if s3 =

Moreover 33 + s4 = 0 [ml], slnce s3 = 0 [ml] and s4 = 0 [nl].

Step 7 : The same way, but now from the sequences (xi) found at the Steps 5 and 6, we
find about 232 sequences (xi), 1 5 i 5 256 such that (s1+ sz) + (s3 + s 4) G b [m3].

192 256

xis; and s4 = q a ; , we have that s3 + s4 = 0 [mz].
i d 2 9 i=1?3

By construction, we also have that

91 + sz + 33 + 94 bi [mi) and SI + 3 2 + 33 + 9 4 E bz [mi].

Modulo m4, we have about Z3’ possible values, indeed m4 N 232. Since we found 232
sequences (xi), there is a high probability that at least one of these sequences is such that
s1 + s2 + s3 + s4 b4 [m4]. We will see in section 2 that we generally find more than one
such sequence. We will see at the end of this section what to do if we don’t find any such
sequence.

Now, suppose that we have such a sequence.
256

51 + ~2 + 33 + 34 = C xjaj-
j=1

That

1.

2.

Thus

sequence (x i) is such that
256

x x j a j = bi [mi], i = 1,2,3,4.
j=1

256

0 5 C ~ j a j 5 256. 212* = 2lZ8
j=1

256

by a) and b) in Step 0, we finally found a sequence (xi) such that c x j u j = b, as
j = 1

desired.
A careful justification of the fact that an average number of 232 solutions are to be found in
step 7 is a consequence of corollary 1 in section 2.3. It essentially relies on the fact that the
sum of two mutually independent uniformly distributed random variables (m.i.u.d.r.v.)
over an abelian group is itself a m.i.u.d.r.v..

Remark What are we going to do if at any a step we have got much less than 232 solutions,
or if at the end we don’t find any solution such that s l + S 2 + s 3 + s 4 = b4 [mi], i = 1 , 2 , 3 , 4 ?

Then it is possible to use the algorithm again, but with new chosen values. For example
we can replace bl by s1 = h - X [ml] at Step 1, and 0 by s2 G X [ml] at Step 2, where X
is any fixed integer in [0, nl - 11.

Or we can even just permute the ai’s.
At each try, we will have a high probability of success, so the probability of success

after a few tries can be as close to 1 as desired.

43

2 Proof

2.1 The collision free functions family
In this section the given sequence element from [0, 212'[n, is denoted by a* = {a:, a;, . . . ,a;}
and the value for which a collision is searched is denoted by b'.
Let us recall what we need form the definition in [5] of a collision free function family
F. Such a family is given by an infinite family of finite sets {Fn}T=l, and a function
t : N + N, such that t (n) < n for all n E N.

Now a member of Fn here is a function

defined by

where a = (a l , . . . ,a,) belongs to the product A = [0,2'[n of n intervals of integers, for

xis; is considered a binary sequence which is its writing in the radix two. Func-

c = t - logn.
n

Integer

tion f a is called an instance of F of size n.
We here consider the set Fn for which n = 256 and t(n) = 128. However the argument
here does not generally depend on specifie values of n or other parameters but if so we
will point it out.

i= l

2.2
The particular function fa that will be analyzed is given by an a randomly selected from
A.
The set A is thus made a sample space.
For this specific application it has the equally likely =--obability measure but our
argument can be exploited in more general situations.
To clarify, let us state one of the problems we will be faced with. Let q be an integer (q
is large but small compared to 2').
Given b in [0,2*[, the following expectation will be estimated

Some questions to be replied

44

where the support .(I) of I is defined as

.(I) = { i l q = 1).

We will in particular observe that those expectations don't depend on a particular choice
of a non zero b, for a non zero j.

2.3 Random variables
The boolean function d(statement) takes the value 1 if "statement" is true and 0 otherwise.
We here introduce random variables (briefly r.v.) defined on A and with values in
a n abelian group.
Let q be an integer relatively small compared to 2'. The additive group (Z / q Z , +) of
integers modulo q is the abelian group denoted by G,. Let I = [0,2'[be a sample space
with the equally likely probability measure.
Then the mapping

defines a r.v. which may be considered uniformly distributed since q is negligeable
2c

compared to -.
Moreover we will consider sums of mutually independent (briefly m.i.) r.v. identical to 0
and it is not difficult to prove that for whatever probability distribution, (briefly p.d.) at
the only condition that the considered random variable with values in an abelian group
has a positive probability on each element of a set of generators of that group, then the
p.d. of the sum of a large number of m.i.r.v. identical to the given one approaches a
uniform distribution.
To every subset J of [I, 921 corresponds a random variable 85 : A + G, defined by

O : I - + G , (2)

Q

va E A : e J (a) = Caj E G,
j € J

and we thus have
P,{eJ = b) = P(a) .

aEA,Bj(a)=b

For convenience we also define 00 by

Va E A : 44~) = 0 E G,

Clearly dJ is a sum of IJI m.i.r.v. identical to e and eJ, = eJ2 for lJll = IJzl.
We thus denote by 8 j the common r.v. 6J with IJI = j and 80 is denoted by O0.

45

Proof
The L.H.S. is worth

which is nothing but the R.H.S.

Corollary 1 If 8 is a uniformly distributed random variable (briefly u.d.r.v.) then the
ezpectation considered in Theorem 1 is worth

(2" - l) / q + 4 (b = 0).

is worth

I f 8 is a u.d.r.v., then this is (~) / q f o r j > O a n d Q (b = O) f o r j = O .

2.4

2.4.1

Let ml, m2, m3, m4 be the integers given in section 1 and take q = m1m2m3.

Since q N 2% < b' then the set

The expected weight distribution in the sample to be scanned
The expected number of collisions

R = {z E (0, l}", fa. (z) b' [q]}

contains the set M of all 2 in {0,1} such that .fan (z) = b* from which we have to exhibit
a member, among other 0 - 1 sequences. By Theorem 1 we can assess that the expected
size e(b*) of R is 2"/q = 2I6O.
By Corollary 2, the weight ratio distribution in R is the same as is {0,1}" i.e.

46

The size of M may be in its turn assessed.
The set { 0, l}n being assumed to have the equally likely probability measure we have that

n

Pr{np-t 5 c2i 5 n p + t } = c (;) p'qn-'.
i=l np-t<ilnp+t

1
2

For n = 256,p = q = - and t = 20, this is worth 0.9897. This means that in most cases, b
will lie in the interval [108.211', 148.211'], so that there are about 41.211' 2124.35 possible
values for b. Thus when a value b' is assigned to b in that range then the size of M is in

Now M is contained in R.
This means that the probability to obtain a collision when drawing an element from R at

If we could operate such drawings about 232 times, then the expected number of collisions
obtained would be 2-28.35 x 232 = 23.64 > 12.
Actually our algorithm consists in constructing a subset S of R the expected size of which
is 232 in which the expected number of collisions is still 23.64.

the region of 2256-124.35 = 2131.64

random is 2131.64-160 = 2-28.35

2.4.2

Given a partition El U EZ U E3 U E4 of [1,n] with IE;I = n/4,i = 1,. . . , 4 we define
a partition {X,},€r of R, where I' = G,, x G,, x G,, x G,,,7 being a quadruple

The set S, is defined as

A suitable partition of the set R

(c1, c2, C3,dl).

where FI = El U Ez. Also FZ = E3 U E4.

Notice that for z in S,, since S, c R, we necessarily have that
n

C z;a;'
i€& ;€Fa i= l

b' - ~1 - ~2 - ~3 [ml], C Z ~ U ~ E b' - d1 [mz] and C X ~ U ~ b'[m3].

Clearly by the general property of 8 defined in (2.3) the conditional probability

Pr{z E S,lz E R}

is very close to l/rn;mz and thus Theorem 1 entails that the expected size of S, is
IRl/m:m2 which in the example dealt with is 232.
Notice that in the description of the algorithm, c1 was chosen to be equal to b'mod m,
and c2 E c3 G 0 [m], also dl = b' [mz]. We next give evidence that the expected
size of S, n M does not depend on a particular choice of 7.
We will need a corollary to corollary 2 of Theorem 1.

47

Corollary 3 For any 7 E I?, the weight ratio distribution in S, is very close to

Indeed for every J for which J n E ; # 0, i = 1,2,3,4, we have that

P,(zE S, and s(z) = J)

= l/m:rnim3, where 7 = (~ 1 , ~ 2 , ~ 3 , d l) and c4 b - d [mz].
Moreover the contribution of the sets J , such that J n Ei = 8 for some i , to the expectation

b - c1 - c2 - c3 [ml], d 2

Cp(a)li+ E s,, I.(z)l = A1
aEA

being negligeable for the relevant sizes of j , then a similar argument as the one used for
proving corollary 2 proves the thesis.

2.5 Sums of random variables with integer values
The expected size of M , given b, is

n b J I E P (a) l 212 E (0, I } ~ , C X i a i =
aEA { i=l

A random variable W J : a -A x u ; mapping A into [0 ,2 t [corresponds to each subset J of -
i € J

[l,n]. Notice that P,{WJ = b} here depends on b and J when A has the equally likely . .

probability measure. But by symmetry, for any b, P,{wJ = b} only depends on the size
of J.
By the same argument as for Theorem 1 we have that the expected size of M is

c P T { U J = b) -
J C [1 ,nl

We now consider any partition Hl U Hz = [l, n]. To obtain the evidence claimed in section
2.4.2, we need to show that given q small and any J C [l, n] such that J Hl # 0, we
have that

1 C ziai = c [q] 12 E M
pT { iiiHifl.7

very slightly depend on the choice of c. Thus the expected size of Mn S, will only slightly
depend on the choice of 7 .
We have that

48

and for W J (U) = b, then if J n H l is not empty, c a; takes all integer values from 0 to b,

as a runs over A. We will observe on some numerical values that over q successive values
w1,. . . , v1 + q - 1 taken by w in [0, b] then the variation of P , { w J ~ H , = w} is negligeable.
Now in view of ujrollary 3, for a given partition HI U HZ = [l, n] where the smallest size
of Hi is 64, i = 1,2 then the contribution to

iCJnH1

of 2's such that 3(z) f l H1 = 0 is negligeable since most of the weights of z's inS, are in
the interval [118,148], by corollary 3, and

(";i6') / (i;:) = 8.65 lo-".

We use the following result on the probability distribution of the sum of j m.i.u.d.r.v.
with values in the interval of integers [0, h[.

Let c be in [O, jh[. As c and h grow indefinitely, their ratio - approaching E which is a
real number in [O, j [, then the probability distribution

C
~ 4 1 page 52).

h

U j & = P,{X1 + x, + . . . + xj < c }

tends to

232
We compute F(<) and F(< + E) for E = - = - = 2-= and for a few values of j and I.

h 2'"
Since F(<) is increasing we only have to notice that F (t + E) is very close to F(<) to be
convinced of the claim in 2.4.2. We also compute some values for E = 2-'O to show that
for q in the region of 2*'O we would move away from our assumption.

49

3 More details about the algorithm
3.1 About 232 operations and 64 Gigabytes of memory
At several steps of the algorithm, we are faced with the following problem. We have to

find all binary sequences (z i) , 1 5 i 5 64, such that c z ; u ; = bl [rnl], where rnl N 232,

and where b is a fixed value. We here show in detail how to do this in about 232 operations
and we estimate the needed size of memory.

64

i= l

Implementation 1 Let R be a file that can contain 232 words of 32 bits, and let S be
a file that can contain 232 words of 64 bits. We store in the file R intermediate results
and S will be the file of solutions (q).

Step a : For each (5 1 , . . . ,232) we compute k = 9 - x z ; a i modulo rnl and store

(2 1 , . . . ,532) in file R at address k. If a solution (21,. .. ,z&) was already intro-
duced at that address, then (2 1 , . . . , 5 3 2) is dropped. In implementation 2 however
all intermediate results will be stored. This step a needs about 232 operations since
there are 232 sequences (2 1 , . . . ,532) .

Step b : For each (233,. . . , 5 6 4) then k’ =

32

i= l

64
z i a i modulo r n l is computed.

i=33

First case:

(21,. . . , 2 3 2 , 5 3 3 , . . .xM) is stored in S because then k’ E zqa; [ml]

The register at address k’ in file R contains a sequence (5 1 , . . . 232) . Then

6, - x z i a i [ml],
61 32

i=33 i= l
64

Second case:
is considered. This step b also needs about 232 operations.

The register at address k’ in file R is empty. Here the following (~33,. . . , 564)

Hence after a and b we will have a solution (q) for each value k‘ such that &Q; E
64

i= l
64

61 [ml] and C z i a i = k’.
i=33

Implementation 2 It is possible to improve implementation 1 in order to obtain all
solutions (zl, . . . , zM) still in about 232 operations and with about 4 . Z3’ . 32 bits of
memory. Let X be a new file for 232 words of 32 bits.

Step a If the register with address k computed from (2 1 , . . . ,232) already contains the
intermediate result (zi,. . . ,zS,), then shift (zi,. . . , x i 2) to the address (5 1 , . . . ,232) of X,
and introduce ($1,. . . , 5 3 2) in the register with address k of file R.

50

Step b We only have to consider the first case. Sequence ($1, . . . ,232) is found at ad-
dress k’ in file R. Then (zi,. . . , &,) if any is found at address (51,. . . , $32) of X. Next
(z:, . . . , zi2) if any is found at address (xi,. . . , zg,) of X and so on untill an empty register
appears. In file S are stored successively (11, . . . , 232, 233, . . . , zm),(zi,. . . ,132,133, . . . , zw),
(z;,. . . , z!,, z ~ , . . . , za) That way all solutions are exhibited and stored in S in about

operations.

Sire of memory We need about 4 * 232.32 bits = 64 Gigabytes and 1.4 Gigabytes Disks
are available today. The size of memory needed is thus high but not unrealistic.

3.2 Some steps can be done once for all
In our algorithm, Steps 2, 3, 4, and 6 do not depend on the value of b. The numbers a;
being publicly disclosed, computations in those steps can be performed once for all.

4 Generalizations of our algorithm to other sizes of
Knapsacks

The problem. Let a l , . . . , a,, be fixed integers of A binary digits. If T is a plaintext of

s binary symbols, i.e. T = z1 . . . z,, then b = x z ; a ; is the proposed hashed value. The

integer b has B binary digits i.e. B N A + log, s.

a

i= 1

We have seen in Section 1 that it is possible to find a sequence (2;) such that CZ;~; =

operations, when s = 256 and B = 128. We will now
i=l

b, when b is given, in about
consider some other values for s and B.

Case s = 512 and B = 160. It is still possible to find a sequence (2;) when s = 512
and b = 160 in about 232 operations: we will just have to add a stage in our algorithm.
Schematically we will then have the following. Notice that 232 is the evaluation of the
number of solutions.

Steps1.23.4 1.

Steps 5.6

step 7

232 2’1
0 1 - Mdulom, 232 2%

232 -1 -Modulo%
232

z2 - Modulom3

I
Test Modulo m,

Explanation of the scheme:
that mi N 232, a = 1, 2, 3, 4, or 5, and mlm2m3m4m5 > 2160.

ml, m2, m3, m4, m5 are pairwise coprime integers such

Let b; be the residue of b modulo mi.

51

Upper bound for # binary digits t of b

96

61
At Stage (l), we find about 232 solutions (x;) such that zziai f [ml], about

i=l

Lower bound for # binary symbols s
of plaintext T.

128 I

128

232 solution (xi) such that z x i a ; G 0 [ml], . . . , about 232 solutions (xi) such that

512 C xiai 3 o [ml].
i=449

At Stage (2), we regroup in pairs the solutions found at Stage (1) to find about

232 solutions (xi) such that &ai & [mz] , . . . , about 232 solutions (xi) such

that z;a; e 0 [mz]. Notice that these sequences (xi) also verify xziai 3

bl + 0 [ml], . . . , and C x;a; = 0 + 0 [rnl].

At Stage (3), we regroup in pairs the solutions of Stage (2) to find about Z3' solutions

(xi) such that Xzia; G & [m3] and 232 solutions (zi) such that z x;a; E 0 [m3].

Then at Stage (4) we regroup these solutions to finally find a solution (xi) at Stage

(5) such that &a; e b; [mi], i = 1, 2, 3 , 4 or 5.

128

i= 1
512 128

k 3 8 5 i=l
512

i=3l?5

256 512

i= 1 i=257

512

i=l

512

By the chinese remainder theorem, we then found a sequence (z;) such that cz ;a ; = b,
i=l

as wanted.

Other Generalizations. With the same technique, by using one, two, etc. more stages,
and still with about 232 operations, we can solve the cases where b = 192 and s = 1024,
or b = 224 and s = 2048 etc.

So, our algorithm can solve these cases in about 232 operations:

128
160
192
224
etc.

256
512
1024
2048

If b = 64 and s = 128, using the same process, a sequence (zi) will be found in about 216
operations. Schematically:

52

5 Optimality

5.1 A slight improvement
In section 2.4.1, we have seen that the expected number of collisions obtained is at least
12. If the expected size of S, defined in 2.4.2 would be 230 instead of 232, we would have
an expected number of at least 216 > 3 collisions which is a satisfactory prospect.
Let ml = 2', m2 = 2", m3 = 2" and m4 = 2". Setting t to 32, u to 31 and v to 32, then
by corollary 1, the expected size of S, becomes 2256-4t-2u-u = 230.

5.2 The designed sizes are best possible. Needlessness of an
extra stage

We first point out that if separating step 7 in section 1.1 from the final scanning of
S, modulo m4 helps assessing the expectations in section 2, however the result of all
computations is the same if we directly compute modulo m3 m4 in step 4. Disregarding
the refinement above and considering that 2" = m3 m4, we have that at the end of the
process the expected number of solutions is 2' with r = 256 - 4t - 2u - v.
The first constraints are thus t 2 0, u 2 0, 2 0 and

(1) 256 - 4t - 2~ - v 2 0

But we need that rnlrn2m3rn4 2 b for relations 1 and 2 of section 1.1 :

(2) t + u + v 2 128.

Now the expected sizes of the sets we have to deal with are

2644 and 2128-21-U

The maximum of these numbers is to be as small as possible and we thus have that

(3) 64 - t = 128 - 2t - U.

Adding (1) and (2) we get
128 - t - u 2 2t,

53

and since by (3) we have that t + u = 64, we obtain 0 5 t 5 32. We thus minimize 264-t
by setting t = 32 and thus u = 32,v = 64 which were the selected values. With one
more stage, the sizes of the sets to be recorder would be 232-t, 261-2t-u, 2128-4t-2u-v where
ml =
We here have the constraints t + u + v + w 2 128 and 256 - 8t - 4u - 2v - w >_ 0, from
which 128 - 4t - 2u - II 2 3t + u. If we attempt to obtain a smaller size than previously,
we need that 3t + u 5 128 - 4t - 2u - v 5 32 and 64 - 2t - u 5 32, which implies t 5 0.
Since 2' = ml we must have t = 0. This means that the considered extra stage is useless.

m2 = 2", rn3 = Y,rn4 = 2".

6 Conclusion
The technique is very efficient for a lot of values of s and t . With the values sugested by I.
DamgLd, we can find a sequence (xi) using a number in the region of 232 operations and
about 60 Gigabytes of memory, This is high, but not impracticable. Still, if t = 256 and
s = 512 for example, finding a sequence (z;) in a number in the region of 232 operations
remains an open problem.

References
[l] P. Camion, Can a Fast signature Scheme Without Secret K e y be Secure?, in AAECC-2,

Lecture Notes in Computer Science no 228, Springer-Verlag.

[2] P. Camion and Ph. Godlewski, MunipuZation and E m r s , Localization and Detection,
Proceedings of EuroCrypt'88, Lecture Notes in Computer Science no 330, Springer-
Verlag.

[3] M. Campana and M. Girault, How to Use Compressed Encoding Mechanisms in Data
Protection, Securicom 88, March 15-17, pp. 91-110.

[4] D. Dacunha-Castelle and D. Revuz, Recueil de probldmes de calcd des probabilit&,
Masson et Cie, Paris, 1970.

[5] I. Damgird, Design Principles for Hush Functions, Proceedings of Crypto'89,
Springer-Verlag.

[6] D.W. Davis and W.L. Price, Security for computer Networks, John Wiley and Sons,
Chichester 1984.

[7] M. Girault, Hash Functions Using Modulo-n Operations, Proceedings of EuroCrypt'87,
Springer-Verlag.

[8] J.K. Gibson, Some comments on Damgard's hashing principle, Electronic letters 19th
July 1990, Vol. 26 no 15.

	The Knapsack Hash Function proposed atCrypto’89 can be broken
	1 The general scheme of our algorithm
	1.1 Description

	2 Proof
	2.1 The collision free functions family
	2.2 Some questions to be replied
	2.3 Random variables
	2.4 The expected weight distribution in the sample to be scanned
	2.4.1 The expected number of collisions
	2.4.2 A suitable partition of the set set

	2.5 Sums of random variables with integer values

	3 More details about the algorithm
	3.1 About 232 operations and 64 Gigabytes of memory
	3.2 Some steps can be done once for all

	4 Generalizations of our algorithm to other sizes of Knapsacks
	5 Optimality
	5.1 A slight improvement
	5.2 The designed sizes are best possible. Needlessness of anextra stage

	6 Conclusion
	References

