
SIAM J. COMPUT.

Vol. 18, No. 1, pp. 186-208, February 1989

(C) 1989 Society for Industrial and Applied Mathematics

012

THE KNOWLEDGE COMPLEXITY OF
INTERACTIVE PROOF SYSTEMS*

SHAFI GOLDWASSER, SILVIO MICALI, AND CHARLES RACKOFF$

Abstract. Usually, a proof of a theorem contains more knowledge than the mere fact that the theorem
is true. For instance, to prove that a graph is Hamiltonian it suffices to exhibit a Hamiltonian tour in it;

however, this seems to contain more knowledge than the single bit Hamiltonian/non-Hamiltonian.
In this paper a computational complexity theory of the "knowledge" contained in a proof is developed.

Zero-knowledge proofs are defined as those proofs that convey no additional knowledge other than the

correctness of the proposition in question. Examples of zero-knowledge proof systems are given for the

languages of quadratic residuosity and quadratic nonresiduosity. These are the first examples of zero-

knowledge proofs for languages not known to be efficiently recognizable.

Key words, cryptography, zero knowledge, interactive proofs, quadratic residues

AMS(MOS) subject classifications. 68Q15, 94A60

1. Introduction. It is often regarded that saying a language L is in NP (that is,
acceptable in nondeterministic polynomial time) is equivalent to saying that there is

a polynomial time "proof system" for L. The proof system we have in mind is one

where on input x, a "prover" creates a string a, and the "verifier" then computes on x
and a in time polynomial in the length of the binary representation of x to check that
x is indeed in L. It is reasonable to ask if there is a more general, and perhaps more

natural, notion of a polynomial time proof system. This paper proposes one such notion.

We will still allow the verifier only polynomial time and the prover arbitrary

computing power, but will now allow both parties to flip unbiased coins. The result

is a probabilistic version of NP, where a small probability of error is allowed. However,
to obtain what appears to be the full generality of this idea, we must also allow the

prover and verifier to interact (i.e., to talk back and forth) and to keep secret their coin

tosses. We call these proof systems "interactive proof systems." This notion is formally
defined in 2, where we also define what it means for a language to have an interactive

proof system.
It is far from clear how to use this power of interaction. Languages with non-

deterministic polynomial time algorithms or with probabilistic polynomial time

algorithms have proof systems with little or no interaction. We would therefore like

examples of languages that appear to have neither nondeterministic nor probabilistic
polynomial time algorithms, and. yet have interactive proof systems. Although we do
not present any such examples here, there are now examples in the literature. Using
ideas from an initial version of this paper [GMR] Goldreich, Micali, and Wigderson
[GMW] have shown that the "graph nonisomorphism" language has an interactive

Received by the editors August 26, 1985; accepted for publication (in revised form) April 18, 1988.

A preliminary version of this paper appeared in the Proceedings of the 27th Annual IEEE Symposium on

Foundations of Computer Science, 1986, pp. 174-187.

Editor’s Note. This paper was originally scheduled to appear in the February 1988 Special Issue on

Cryptography (SIAM J. Comput., 17 (1988)).
t Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

02139. The work of these authors was supported by National Science Foundation grants DCR-84-13577

and DCR-85-09905.

Computer Science Department, University of Toronto, Toronto, ONT M5S 1A4 Canada. The work

of this author was supported by the Natural Sciences and Engineering Research Council of Canada under

grant A3611.

186

INTERACTIVE PROOF SYSTEMS 187

proof system. Independently of this paper, Babai and Szemeredi [BS] show that certain

matrix group problems have what they call "Arthur-Merlin" proof systems, which

immediately implies that they have interactive proof systems. In fact, the notion of an

Arthur-Merlin proof system consists of a restricted interactive proof system in which

the prover sees the coin flips of the verifier. Nevertheless, Goldwasser and Sipser [GS]
have shown that a language has an interactive proof system if and only if it has an

Arthur-Merlin proof system.
It appears, however, that our notion of interactive proof systems generalizes in

the right way to attack a novel problem. The main purpose of this current paper, in

fact, is to use interactive proof systems to investigate a natural question; how much

knowledge is transmitted to the verifier in an interactive proof system for L? For
example, consider SAT, the NP-complete language of satisfiable sentences of the

propositional calculus. In the obvious proof system, to prove F e SAT, the prover gives
a satisfying assignment I for the formula F, which the verifier then checks in polynomial
time. This assignment gives the verifier much more knowledge than merely the fact
that F e SAT; it also gives a satisfying assignment. At the other extreme, every language
that can be accepted in probabilistic polynomial time has a proof system in which the

prover does nothing, and hence gives no knowledge to the verifier.

We say an interactive proof system for L is zero-knowledge if for each x e L, the

prover tells the verifier essentially nothing, other than that x e L; this should be the

case even if the verifier chooses not to follow the proof system but instead tries (in
polynomial time) to trick the prover into revealing something. The notion of zero-

knowledge is formally defined in 3. This definition is an important contribution of
this paper.

The main technical contributions of this paper are the proofs in 5 and 6 that

the languages QR and QNR (defined below) both have zero-knowledge interactive

proof systems. These are the first zero-knowledge protocols demonstrated for languages
not known to be recognizable in probabilistic polynomial time. To understand the

languages QR and QNR, it helps to read the (brief) number theory background given
in 4. However, for now, let x, y be integers, 0< y <x, such that gcd (x, y) 1; we say
that y is a quadratic residue mod x if y z2 mod x for some z; if not, we say that y is
a quadratic nonresidue mod x. We define

QR= {(x, Y)IY is a quadratic residue mod x}, and

QNR= {(x, Y)IY is a quadratic nonresidue mod x}.

(Actually, QNR will be defined slightly differently in 4.) Both QR and QNR are in

NP, and thus possess an elementary proof system. For instance, to prove membership
in QNR, the prover just sends x’s factorization. But looking ahead to zero-knowledge
proof systems, let us discuss a more interesting example of a proof system for QNR.

Example 1. Let us call the prover A and the verifier B. Say that the input is (x, y).
Let n Ixl, where]xl is the length of the binary representation of x. We will now

describe (omitting some details) an interactive proof system for QNR. B begins by
flipping coins to obtain random bits bl, b2,’" ", b,. B then flips additional coins to

obtain a string a, from which B computes zl, z2,. , zn such that each zi is a random

z, 0< z < x, gcd (x, z)= 1. B then computes wl, w,..., wn as follows" for each i, if
2

bi=0thenw zimodx;ifb lthenw=(zy) modx. Bthensendsw,w2, .,w,
to A. For each i, A computes (somehow) whether or not wi is a quadratic residue

mod x, and sends B a sequence of bits c, c2," ", cn, where c 0 if and only if wi is

a quadratic residue mod x. B checks if b c for every i, and if so is "convinced" that

(x, y) QNR.

188 S. GOLDWASSER, S. MICALI, AND C. RACKOFF

It is not hard to see that if (x, y) QNR and both parties follow the protocol,
then B will become "convinced." On the other hand, if y is a quadratic residue mod x,
then so is each wi, and every value for wi is equally likely; since A does not see the

sequence {b}, the probability that every c b (and hence that B will be convinced)
is 2-n. So this is an interactive proof system for QNR. Let us now address the question
of how much knowledge A may release.

It is an interesting question how zero-knowledge should be defined. If the prover
is trying to prove to the verifier that y is a quadratic residue mod x, then certainly the
verifier should not be able to trick the prover into revealing a square root of y mod x,
or the factorization of x, or any information which would help the verifier to compute
these things much faster than before. In fact, the prover should not reveal anything
which would help the verifier compute anything much faster than before. The way to

state this formally seems to be that what the verifier sees in the protocol (even if he

cheats) should be something which the verifier could have computed for himself,
merely from the fact that (x, y) QNR. Of course, what the verifier sees in the protocol
is really a probability distribution. Thus, zero-knowledge means that one can compute
in polynomial time, from (x, y) QNR, without a prover, the same (or almost the

same) probability distribution that the verifier would see with the prover. This is defined

formally in 3. Here, let us informally discuss whether the above interactive proof
system for QNR is zero-knowledge.

Consider a pair (x, y) QNR, and say that A follows the protocol. Can B obtain

any additional knowledge? For the moment, assume that B follows the protocol. B
"sees" [{b}, a, {wi}, {c}] distributed according to a particular distribution. Without

any help from a prover, we can quickly generate a random string according to this
distribution: just choose {b} and a randomly, and then compute {w} from them; then
compute c bi for each i.

Now what if B were to cheat? B could begin by setting wl 42, and then behave

correctly. Consider now the induced distribution on [{bi}, c, {wi}, {c}]; in order to

compute a random member of it (without help from a prover), we must compute
whether or not 42 is a quadratic residue x, given x and a quadratic nonresidue y. At
this time it is not known how to compute this in polynomial time, so this proof system
may not be zero-knowledge.

A zero-knowledge proof system for QNR is given in 6. The ideas of this proof
system partially come from the secret exchanging protocol of Luby, Micali, and Rackoff

[LMR] and are useful there as well. They have also proved useful in the oblivious

transfer protocol of Fischer, Micali, Rackoff, and Witenberg [FMRW] and for the
identification scheme of Feige, Fiat, and Shamir [FFS]. These ideas have also helped
Goldreich, Micali, and Wigderson [GMW] to show that the languages of "graph
isomorphism" and "graph nonisomorphism" have zero-knowledge interactive proof
systems.

Although we find the idea of a zero-knowledge interactive proof system fascinating
in itself, the main motivation for it and the main applications of it are in the area of

cryptographic protocols. For example, in the secret exchanging protocol in [LMR],
one person wishes to exchange a secret with another without giving away any additional

knowledge. Ideas similar to those here must be used to even define this concept.
More generally, however, it often arises at some point in a protocol that A wishes

to convince B of some fact. Say that we know that the protocol would be secure if at

this point an angel or someone B trusted were to tell B (truthfully) if A is telling the
truth. We want the notion of zero-knowledge to be such that an appropriate zero-

knowledge interactive proof system could be inserted at this point instead of the trusted

INTERACTIVE PROOF SYSTEMS 189

party, and the whole protocol would remain secure. (Of course, A would have to

possess some additional information enabling her to implement the part of the prover
efficiently.) In particular instances, we can prove that such substitution works, but a

general framework for discussing protocols must exist before the general theorem can

even be stated. However, based on intuition and experience, the authors (and many
others who have studied these ideas since their initial appearance) believe that the

definition of zero-knowledge proposed here has the required properties.
The most important development since these results first appeared is the proof

by Goldreich, Micali, and Wigderson [GMW] that, subject to a common complexity
theory assumption, every language in NP has a zero-knowledge interactive proof
system. These proof systems for NP languages appear to have applications in just
about every protocol problem. It is almost certain that these results will vastly simplify
distributed cryptographic protocol design in the future, as demonstrated by the powerful
results of [GMW2].

2. Interactive proof systems. Intuitively, what should we require from an efficient

theorem-proving procedure ?

(1) That it should be possible to "prove" a true theorem.

(2) That it should not be possible to "prove" a false theorem.

(3) That communicating the "proof" should be efficient. Namely, regardless of

how much time it takes to come up with the proof, its correctness should be

efficiently verified.

The NP formalization of the concept of an efficient proof system captures one way of

communicating a proof. In this section, we will generalize the NP proof system to

capture a more general way ofcommunicating a proof. The verifier will be a probabilistic
polynomial time (in the length of the common input) machine that is able to exchange
messages (strings) with the prover.

At the same time that we introduce probability into the proof system, we relax

the classical notion of a "proof." Our verifier may erroneously be convinced of the

truth of a proposition with a very small probability of error (less than n
-k for each

positive constant k and all sufficiently large input-sizes n).
We proceed to formally define the new system.

2.1. Interactive Turing machines and protocols.
DEFINITION. An interactive Turing machine (ITM) is a Turing machine equipped

with a read-only input tape, a work tape, a random tape, one read-only communication

tape, and one write-only communication tape. The random tape contains an infinite

sequence of random bits, and can be scanned only from left to right. We say that an

interactive machine flips a coin, meaning that it reads the next bit in its own random tape.

[RANDO,M TAPE [INPUT[[RANDOM TAPE

R ..R R R

FIG. 1. An interactive protocol. denotes a read write head, R a read-only head, W a write-only head.

190 S. GOLDWASSER, S. MICALI, AND C. RACKOFF

DEFINITION. An interactive protocol is an ordered pair of ITM’s A and B such

that A and B share the same input tape, B’s write-only communication tape is A’s
read-only communication tape and vice versa. Machine A is not computationally

bounded, while machine B’s computation time is bounded by a polynomial in the

length of the common input. The two machines take turns in being active, with B being
active first. During an active stage machine A(B) first performs some internal computa-

tion using its input tape, work tapes, communication tape and random tape; and,
second, it writes a string (for B(A)) on its write-only communication tape. The ith

message of A(B) is the entire string that A(B) writes on its communication tape during
its ith active stage. As soon as machine A(B) writes its message, it is deactivated and

machine B(A) becomes active, unless the protocol has been terminated. Either machine

can terminate the computation of the protocol by not sending any message in an active

stage. Machine B accepts (or rejects) the input by outputting accept (or reject) and

terminating the protocol. The computation time of machine B is the sum of the B’s
computation time during its active stages, and it is this time that is bounded by a

polynomial in the length of the input, denoted Ix I.
2.2. Interactive proof systems.
DEFINITION. Let L be a language over {0, 1)*. Let (A, B) be an interactive protocol.

We say that (A, B) is an interactive proof system for L if we have the following:
(1) For each k, for sufficiently large x in L given as input to (A, B), B halts and

accepts with probability at least 1-Ix[-k. (The probabilities here are taken over the
coin tosses of A and B.)

(2) For each k, for sufficiently large x not in L, for any ITM A’, on input x to

(A’, B), B accepts with probability at most Ix] -k. (The probabilities here are taken over

the coin tosses of A’ and B.)
Remark 1. The above probability of error can be decreased, say to smaller than

2-Ixl, by the standard technique of repeating the protocol many times and choosing to

accept by majority vote.

We now argue that this definition captures what we intuitively want from an

efficient proof system. Condition (1) essentially says that, if x L, B will accept with

overwhelming probability. Condition (2) says that, if x is not in L, there exists no

strategy that succeeds with nonnegligible probability for convincing B to accept. In
fact, B needs not to trust (or know the program of) the machine with which it is

interacting. It is enough for B to trust the randomness of its own coin tosses.

Similar to the NP proof system, note that the definition of an interactive proof
system for a language emphasizes the "yes-instances": when a string is in the language,
B must be led to acceptance with high probability, but when a string is not in the

language A is not required to convince B of the contrary.
A more general version of the above definition is where A is not a Turing machine,

but an infinite state machine. However it has been shown by Feldman in IF] that this

adds no extra power to the model. In fact, he shows that with respect to language
recognition it is sufficient for A to be a deterministic PSPACE machine. The fact that

A is probabilistic is of importance to the more subtle definition of zero-knowledge,
which is given in the next section.

We define IP, Interactive Polynomial time, to be the class of languages for which

there exists interactive proof systems.
The first examples of a language in IP but not known to be in NP have been

exhibited by Babai and Szemeredi [BS]. Their examples are "matrix group
nonmembership" and "matrix group order," where the matrix groups over finite fields

are represented by a list of generator matrices. The other, more well-known example

INTERACTIVE PROOF SYSTEMS 191

of "graph nonisomorphism" is due to Goldreich, Micali, and Wigderson [GMW].
They have shown that the language of pairs of graphs that are nonisomorphic to each

other is in IP.

2.3. Arthur-Merlin games. Babai independently conceived the notion of an

"Arthur-Merlin Game," an interactive proof system in which Merlin plays the role of
A and Arthur that of B. The interaction, though, is less "liberal" than in our model

since Merlin sees all the coin tosses of Arthur. A message from Arthur to Merlin can

only consist of a randomly selected string. In an interactive proof system, instead, the

verifier is allowed, given a polynomial time computable function f, to secretly select

a random string R and transmit only f(R) to the prover (as in the interactive proof
system for QNR of Example 1).

This restriction immediately implies that the languages recognized by an Arthur-
Merlin game are a subset of those having an interactive proof system. Interestingly,
Goldwasser and Sipser [GS] show that they are not a proper subset. However, there
is value in having both definitions around. It is easier to design protocols using the
interactive proof systems definition, and it is easier to prove complexity results using
the Arthur-Merlin definition.

Though the ability to make secret random choices does not help us to recognize
more languages, we believe that it is crucial for recognizing languages in zero-knowl-

edge. We make precise this belief in the conjecture of 3.7.

An Arthur-Merlin type of interactive proof system was already implicitly used in

a paper by Blum [B1]. He showed an interactive protocol for recognizing the language
of the Blum integers:

BL {n IP divides n andp+ does not, where p 3 mod 4 is prime and a is odd}.

The prover’s goal was to demonstrate membership in BL without having to send n’s
prime factorization. In this proof system, the verifier talks only once and his message
consists of sending the sequence of his coin tosses. Protocols of this type were also

found by Goldwasser and Micali [GM1] to prove, without releasing the prime
factorization membership in the languages:

GM1 {n In has exactly two distinct prime divisors} and

GM2= {(x, n)[gcd (x, 4(n))= 1} where 4(n) is the number of positive
integers smaller and relatively prime to n.

3. Zero-knowledge. Rather than giving the definition of zero-knowledge only for

interactive proof systems, we will give a more general definition. We will define what

it means for any interactive protocol (A, B) to be zero-knowledge for a language L,
whether or not (A, B) is a proof system for L. Actually the definition will not depend
on B at all; as we shall see, it says that for every polynomial time B’, the distribution

that B’ "sees" on all its tapes, when interacting with A on input x L, is "indistinguish-
able" from a distribution that can be computed from x in polynomial time. We thus

first focus on the notion of indistinguishability for random variables.

3.1. Indistinguishability of random variables. Throughout this paper, we will only
consider families of random variables U { U(x)} where the parameter x is from a

language L, a particular subset of {0, 1}*, and all random variables take values in

{0, 1}*. LetU= { U(x)} and V= {V(x)} be two families of random variables. We want

to express the fact that, when the length of x increases, U(x) essentially becomes

"replaceable" by V(x). To do this, we consider the following framework.
A random sample is selected either from U(x) or from V(x) and it is handed to

a "judge." After studying the sample, the judge will proclaim his verdict: 0 or 1. (We

192 S. GOLDWASSER, S. MICALI, AND C. RACKOFF

may interpret 0 as the judge’s decision that the sample came from U(x); 1 as the
decision that the sample came from V(x).) It is then natural to say that U(x) becomes

"replaceable" by V(x) for x long enough if, when x increases, the verdict of any judge
becomes "meaningless," that is, essentially uncorrelated to the distribution from which

the sample came.

There are two relevant parameters in this framework: the size of the sample and

the amount of time the judge is given to produce his verdict. By bounding these two

parameters in different ways we obtain different notions of indistinguishability for
random variables. We focus on the three notions we believe to be the most important:
equality, statistical indistinguishability, and computational indistinguishability.
Roughly speaking, these notions correspond to the following restrictions on the relevant
parameters. If the two families of random variables { U(x)} and { V(x)} are equal, then
the judge’s verdict will be meaningless even if he is given samples of arbitrary size
and he can study them for an arbitrary amount of time. We will define the two families
to be statistically indistinguishable if the judge’s verdict becomes meaningless when
he is given an infinite amount of time but only random, polynomial (in Ixl) size samples
to work on. We will define the two families to be computationally indistinguishable
if the judge’s verdict becomes meaningless when he is only given polynomial (Ixl)-size
samples and polynomial (Ixl) time. Let us now proceed to formalize these notions.

DEFINITION (Statistical indistinguishability). Let Lc {0, 1}* be a language. Two
families of random variables { U(x)} and { V(x)} are statistically indistinguishable on

L if

Z [prob (U(x) a) prob (V(x) a)l < Ixl
tee{0,1}*

for all constants c > 0 and all sufficiently long x L.
Notice that, for U and V as above, if a "judge" is handed a polynomial (in [xl)

size sample, having infinite computing power will not help him to decide whether it

came from U(x) or V(x). His answer will be essentially useless, as he will say "1"
with essentially the same probability in both cases.

Example 2. Let U(x) assign equal probability to all strings of length Ixl, and let

V(x) assign probability 2 -Ixl to all strings of length Ixl, except for 0Ixl, which is given
probability 0 and for 1 -I’l, which is given probability 2-I’l+. Then { U(x)} and { V(x)}
are two families of random variables statistically indistinguishable on {0, 1}*.

To formalize the notion of computational indistinguishability we make use of

nonuniformity (the reasons for this choice can be found in 3.4). Thus, our "judge,"
rather than being a polynomial time Turing machine, will be a poly-size family of
circuits. That is a family C {C} of Boolean circuits C with one Boolean output
such that, for some constant e > 0, all Cx C have at most Ixl gates. In order to feed

samples from our probability distributions to such circuits, we will consider only
poly-bounded families of random variables, that is, families U { U(x)} such that, for
some constant d > 0, all random variable U(x) U assigns positive probability only
to strings whose lengths are exactly Ixl d. If U { U(x)} is a poly-bounded family of
random variables and C { Cx} a poly-size family of circuits, we denote by P(U, C, x)
the probability that C outputs on input a random string distributed according to

U(x). (Here we assume that strings assigned positive probability by U(x) have lengths
equal to the number of Boolean inputs of C.)

DEFINI’rION (Computational indistinguishability). Let Lc {0, 1}* be a language.
Two poly-bounded families of random variables U and V are computationally indistin-

guishable on L if for all poly-size family of circuits C, for all constants e > 0 and all

INTERACTIVE PROOF SYSTEMS 193

sufficiently long strings x L,

IP(U, C, x)- P(V, C, x) < Ixl -c.

This notion of computational indistinguishability was already used by Goldwasser

and Micali [GM] in the context of encryption and by Yao [Y] in the context of

pseudorandom generation. It is trivial that if U and V are identical, then they are

statistically indistinguishable. It is also not hard to see that if U and V are statistically

indistinguishable, then they are computationally indistinguishable, as follows. Let Cx
be a circuit and let S be the set of inputs on which Cx outputs 1. Since U and V are

statistically indistinguishable, the value of U(x) will be in S with almost exactly the

same probability that the value of V(x) will be. Hence P(U, C, x) will be very close

to P(V, C,x).
Example 3. Consider a probabilistic encryption algorithm that is secure in the

sense of Goldwasser and Micali [GM]; for n integer, let U(1 n) and V(I") be the

random variables taking as values the possible encryptions of 0 and 1, respectively,
on security parameter n. Then U and V are computationally indistinguishable on

L={I}*.
We believe that the notion of computational indistinguishability for random

variables achieves the right level of generality. Thus we will call indistinguishable any
two families of random variables that are computationally indistinguishable.

Remark 2. Let us point out the robustness of the last definition. In this definition,
we are handing our computationally bounded "judge" only samples of size 1. This,

however, is not restrictive. We note that two families of random variables { U,} and

{ V,} are computationally indistinguishable (with respect to samples of size 1) if and

only ifwhen C, is given a polynomial in Ixl number of input strings, each independently
generated according to the distribution Ux, then the probability of accepting is close

to the probability of accepting when V, is used.

3.2. Approximability of random variables. We now formalize the notion that a

random variable U is essentially easy to generate. That is, there exists an efficient

algorithm that randomly outputs strings in a way that is indistinguishable from U.
DEFINITION. Let M be a probabilistic Turing machine that on input x halts with

probability 1. We denote by M(x) the random variable that, for each string c, takes

on c with exactly the same probability that M on input x outputs c.

DEFINITION. Let Lc {0, 1}* be a language and U={U(x)} a family of random
variables. We say that U is perfectly approximable on L if there exists a probabilistic
Turing machine M, running in expected polynomial time, such that for all x L, M(x)
is equal to U(x). We say that U is statistically (computationally) approximable on L
if there exists a probabilistic Turing machine M, running in expected polynomial time,
such that the families of random variables {M(x)} and { U(x)} are statistically (compu-
tationally) indistinguishable on L.

In what follows, we will use approximability to mean computational approximabil-
ity. We are now ready to define the notion of zero-knowledge.

3.3. Zero-knowledge protocols and proof systems. We first address the issue of a

"cheating verifier," B’, who is allowed not to follow the protocol.
DEFINITION. Let (A, B) be an interactive protocol. Let B’ be an interactive Turing

machine that has as input x and on an extra input tape H, where the length of H is

bounded above by a polynomial in the length of x. (Figure 1 must be emended to

allow B’ this extra tape.) When B’ interacts with A, A sees only x on its input tape,
whereas B’ sees (x, H). A good way to think of H is as some knowledge about x that

194 S. GOLDWASSER, S. MICALI, AND C. RACKOFF

the cheating B’ already possesses. Alternatively, H can be considered as the history
of previous interactions that the cheating B’ is trying to use to get knowledge from A;
this is .discussed in more detail in the next section. We assume that the total computation
time of B’ when interacting with A will be bounded above by a polynomial in the

length of x.

For a run of the protocol on common input x and extra input H, we define the
view of B’ to be everything that B’ sees. Namely, let tr (and p) be the strings contained

in the random tapes of A (and B’). Say the computation of A and B’, with these
random choices, consist of n turns with B’ going first, where ai (and hi) are the ith

messages of A (and B’), respectively. Then, we say that (p, bl, al," ", bn, an) is the
view of B’ on inputs x and H, and let ViewA.B, (X, H) be the random variable whose
value is this view. (Note that it would make no difference if we included in the view

the material written by B’ on its private tape, or excluded the strings that B’ sends to

A, since these bits can be efficiently computed from the other bits of the view.) For
convenience, we consider each view to be a string from {0, 1}* of length exactly [x]
for some fixed c > 0.

DEFINITION. Let Lc {0, 1}* be a language and (A, B) a protocol. Let B’ be as

above. We say that (A, B) is perfectly (statistically) (computationally) zero-knowledge
on L for B’ if the family of random variables Viewa, B, is perfectly (statistically)
(computationally) approximable on

L’= ((x, H) lx L and Igl-

We say that (A, B) is perfectly (statistically) (computationally) zero-knowledge on L if
it is perfectly (statistically) (computationally) zero-knowledge on L for all probabilistic
polynomial time ITM B’.

Note that the definition of (A, B) being zero-knowledge (in some manner) for B’
only depends on A and not at all on B. It might be less misleading to think of A as

being zero-knowledge for B’. A similar issue arises in the definition of an interactive
proof system in 2.2. Part (2) of this definition depends only on B, and not at all
on A.

Computational zero-knowledge is certainly the most general of the above notions,
and we will refer to it simply as zero-knowledge. Zero-knowledge really captures any
information, which could not have been obtained efficiently in polynomial time, about
members of L. That is, if (A, B) is zero-knowledge, it is not possible, in probabilistic
polynomial time, to extract any information about members of L by interacting with

A, not even by "cheating."
DEFINITION. Let Lc {0, 1}* be a language. We say that (A, B) is a perfectly

(statistically) (computationally) zero-knowledge proof system for L if it is an interactive
proof system for L and a perfectly (statistically) (computationally) zero-knowledge
protocol on L.

We will refer to computationally zero-knowledge proof systems (the most general
notion of the three) simply as zero-knowledge proof systems. This notion is totally
adequate in the real world. That is, if (A, B) is a zero-knowledge proof system for L,
it is not possible in polynomial time (not even for a "cheating" B’) to interact with A
and extract anything else besides proofs of membership in L.

3.4. Some remarks about the above definitions. First, let us stress that the coin

tosses of B are an essential part of the notion of a view in the definition of zero-

knowledge for B. Consider the language L of all composite integers and the following

INTERACTIVE PROOF SYSTEMS 195

protocol (A, B). On input an integer n, B randomly selects an integer x between 1 and

n and relatively prime with n. It then sends A the number a x2 mod n. A responds
by sending y, a randomly chosen square root of a mod n. Should the view consist only
of the text of the interaction between A and B, then the above-mentioned protocol
would be perfectly zero-knowledge on L. However, we define the view so as to contain

also the coin tosses of B. Thus, if (x, a, y) is randomly selected in VieW(A.B) (n), then

gcd (x 4-y, n) is not 1 or n with probability at least 1/2. Thus, if factoring is not in
probabilistic polynomial time, the above protocol is not zero-knowledge for B. (It
should be noted, however, that in the definition of zero-knowledge (for all B’), it is

not necessary to include the random bits of B’ in the view; this is because we have
included in the view the messages sent by B’, and for every B’ there is a B", which is

like B’ except that it sends its random bits as part of its last message.)
Second, it should be explained why B’ sees an additional string H. (The need for

this was independently discovered by the authors of this paper, by Oren [O], and by

Tompa and Woll [TW].) H may be thought about in a number of different ways; H
may be some extra information that the verifier (cheating or not) happens to know.

For example, a zero-knowledge protocol for graph isomorphism should remain zero-

knowledge even if the verifier happens to know colorings for the graphs. It is also

possible that the protocol will be inserted in the middle of another protocol, where

the verifier has seen some history H. There is the fear that this H was generated perhaps
by interacting with a machine of unlimited power; we want to rule out the possibility
of the verifier then obtaining knowledge by using H when interacting with A. It is for

a similar reason that the distinguishing circuits in the definition of" computational

indistinguishability are allowed to be nonuniform. We want to say that two families

of random variables can be computationally distinguished if there are circuits that tell

them apart, where the circuits may have wired in some information about x or some

information obtained from the history of some protocol in which the protocol of

interest is immersed. In other words, the view B’ obtains on inputs (x, H) should look

like the simulated distribution M(x, H).
One test of a definition is that we should be able to prove those facts that intuition

dictates must be true. One such fact is that the repetition of a zero-knowledge protocol
a polynomial number of times is still zero-knowledge. We can prove this with our

current definitions, but we cannot prove it if, for example, we do not give B’ the extra

string H. We can also prove that if B’ wants to decide a special predicate P(x) for
x L, it does not help B’ to engage in a zero-knowledge proof system for L. We can

prove all the intuitively obvious "facts" we have tried to prove, but only time will tell
if these definitions are the right ones, or if they need some further modifications. We
feel (and hope) that these definitions capture exactly the intuitive ideas we have tried

to capture.
Last, there is the peculiar fact that the machine M simulating the view is allowed

to operate in expected polynomial time. This appears to be necessary for the zero-

knowledge proof system for QNR given in 6. To see why this is necessary in general,
consider a pair (A, B), where B (on input of length n) sends n random bits a to A;
if the predicate P(a) holds, then A sends a random fl of length n such that P(fl)
holds. Imagine that the predicate P is easily computable, but the number of strings
of length n for which P holds is small--maybe a fraction n-1 or maybe n-2--but
we do not know exactly which; imagine that the only way we know to find a string
for which P holds is to select random strings until one satisfying P is found. The only
way we know how to simulate the view ofB statistically closely (or even computationally
indistinguishably) is to choose a random a ;.if P(t) holds, look through random n-bit

196 S. GOLDWASSER, S. MICALI, AND C. RACKOFF

strings until a/3 is found such that P(fl) holds. This process is only expected polynomial
time.

3.5. Examples of zero-knowledge languages. Trivially, all languages in BPP have

perfect zero-knowledge proof systems. (A language is in BPP if there is a probabilistic,
polynomial time machine which on each input computes membership in the language
with small probability of error.)

The first nontrivial zero-knowledge proof systems (i.e., for recognizing languages
not known to be in BPP) are the perfect zero-knowledge proof systems for the quadratic

residuosity language QR given in 5, and the statistically zero-knowledge proof system
for QNR given in 6.

Recently, Goldreich, Micali, and Wigderson have shown in [GMW] that the

graph isomorphism language has a perfect zero-knowledge proof system, that

the graph nonisomorphism language (though not known to belong to NP) has a

statistically zero-knowledge proof system, and that all languages in NP possess

computationally zero-knowledge proof systems if secure encryption schemes exist. In
[BGGHKMR] it is proved that all languages in IP possess zero-knowledge proof
systems.

Results by Boppana, Hastad, and Zachos [BHZ] and Fortnow [Fo] show that if

an NP-complete language had a perfect or statistically zero-knowledge proof system,

the polynomial time hierarchy would collapse. Thus it may not be surprising that the

interactive proof systems in [GMW] for graph coloring were zero-knowledge only in

a computational sense. A more immediate reason for their being computationally

zero-knowledge is that they make use of probabilistic encryption [GM] (see Example

3). This may tempt us to interpret Fortnow’s result as saying that encryption is crucial

in any zero-knowledge proof system for NP-complete languages. (Further discussion

on Fortnow’s result can be found in 7.)

3.6. A study of earlier proposals. Having reached the notion of a zero-knowledge
proof system, let us now have a second look at the earlier, Arthur-Merlin type, proof
systems of Blum [B1] and Goldwasser and Micali [GM1] that we have already
mentioned in 2.3.

The Proof System for BL (defined in 2.3). In his beautiful paper, assuming that

integer factorization is computationally hard, Blum proposes a protocol for flipping a

coin over the telephone. For "fairly" flipping a coin, Alice and Bob need an integer
n whose prime factorization is known to Alice but not to Bob, and has a special

property, namely, n BL. Alice is sure that the coin flip is fair because she computes
n by multiplying two randomly selected primes both congruent to 3 mod 4, and because
she trusts that factoring is hard. Bob, after the coin has come up Head or Tail, checks

that the flipping was fair by requesting n’s factorization from Alice. Thus a different

n should be selected for each coin flip. To make coin flipping more efficient, Blum

proposed to test that n BL, by means of a protocol that does not give away n’s
factorization in any obvious way. After slightly modifying it, Blum’s protocol can be

proved to be perfect zero-knowledge on BL. However, without this modification, it is

not clear how much knowledge about n’s factorization it releases.
The Proof Systems for GM1 and GM2 (defined in 2.3). The cryptographic

protocols of Goldwasser and Micali use the inefficient version of Blum’s coin-flipping
protocols, and thus assume that factoring integers is computationally difficult. Based
on this assumption, they showed that their proof systems do not give away the prime
factorization of an input n. That is, no cheating polynomial time verifier can, after

participating in the protocol, compute n’s factorization much faster than it could before.

INTERACTIVE PROOF SYSTEMS 197

More generally, their same protocols can actually be proved to be computationally

zero-knowledge on, respectively, the languages GM1 and GM2. Thus, in particular,
their protocols do not even give away whether or not, say, 3 is a quadratic residue mod n.

3.7. Interactive proof systems versus Arthur-Merlin games for zero-knowledge. We
are now ready to formally express our belief that interactive proof systems are more

appropriate than Arthur-Merlin games for recognizing languages in zero-knowledge.
CONJECTtRE. There exist languages L that have perfect or statistical zero-knowl-

edge proof systems, but do not have any Arthur-Merlin proof system that is perfect
or zero-knowledge on L.

4. The quadratic residuosity problem. In this section we describe the necessary
number-theoretic background and notation needed for the proofs in 5 and 6.

Let N denote the natural numbers, x N and Z* {yl 1 -< y <x, gcd(x, y) 1}. We
can determine in time polynomial in [xl and lyl whether or not y Z*.

We say that y in Z* is a quadratic residue rood x if there exists a w in Z* such
that w2=-y mod x. Otherwise, we call y in Z* a quadratic nonresidue mod x.

FACT 1. Let x 6 N and y 6 Z*. Then, y is a quadratic residue rood x if and only
if it is a quadratic residue mod all of the prime factors of x.

Define the quadratic residuosity predicate to be

Qx(Y) { 01 if y is a quadratic residue mod x,

otherwise.

Then we have the following fact.
FACT 2. Let x N and y Z*. Given y and the prime factorization of x, Qx(y)

can be computed in time polynomial in Ix].
Let y Z* and the prime factorization of x be 1-I

k

i=1 pTi. Then, the Jacobi symbol
of y mod x is defined as

k

(y/x): II (y/p)%
i=1

where (Y/Pi): if y is a quadratic residue mod Pi, and -1 otherwise.
FACT 3. Given x N and y Z*, (y/x) can be computed in time polynomial in

The Jacobi symbol ofy mod x gives some information about whether y is quadratic
residue mod x or not. If (y/x)=-1, then y is a quadratic nonresidue mod x and

Qx(y) 1. However, when (y/x)= 1, no efficient (probabilistic or deterministic poly-
nomial time) solution is known for computing Q(y) correctly with probability sig-

nificantly better than 1/2. This leads to the formulation of the quadratic residuosity
problem.

DEFINITION. We define the quadratic residuosity problem as that of computing
Q(y) on inputs x and y, where y in Z* and (y/x)= 1,

The current best algorithm for computing Q(y), is to first factor x and then

compute Q(y). In fact, factoring integers and computing Qx have been conjectured
to be of the same time complexity. The difficulty of the quadratic residuosity problem
has been used as a basis for. the design of several cryptographic protocols [GM],
[LMR], [B1].

Define the following two languages:

QR: {(x, y)lx 6 N, y Z*, and Qx(y) 0},

QNR= {(x, y)lx N, y c: Z*, (y/x): 1, and Qx(y) 1},

where x and y are presented in binary.

198 S. GOLDWASSER, S. MICALI, AND C. RACKOFF

Clearly, by Facts 1 and 2, both QR and QNR are in the intersection of CO-NP
and NP. However, no probabilistic polynomial time algorithm is known that accepts
these languages, and thus they are not trivially zero-knowledge. In 5 we show a

perfectly zero-knowledge proof system for QR, and in 6 we show a statistically
zero-knowledge proof system for QNR. The following facts will be useful in the

zero-knowledge proofs of 5 and 6.

FACT 4. Let x e N. Then, for all y such that Qx(y)= 0, the number of solutions
w e Z x* to w2=y mod x is the same (independent of y).

FACT 5. Let x e N, y, z e Zx*. Then we have the following:
(a) If Qx(y) Qx(Z)=0, then Qx(yz)=O.
(b) If Qx(y) Qx(z), then Qx(yz)= 1.

Fhc-r 6. Given x, y, the Euclidean gcd algorithm allows us to compute in poly-
nomial time whether or not y e Z x*.

5. Zero-knowledge proofs of quadratic residuosity. Recall that QR {(x, y)[y is a

quadratic residue mod x}, where x and y are presented in binary.
We will first informally describe our zero-knowledge interactive proof system for

QR, and then describe it with more rigor. Say that A and B are given (x, y),]x] m;
then the following is done m times:

A sends B a random quadratic residue mod x, u.

B sends A a random bit, bit.

If bit 0 then A sends B a random square root of u mod x, w; if bit 1 then
A sends B a random square root of (uy)mod x, w.

B checks that either [bit =0 and w2 mod x= u] or [bit 1 and w2 mod x=
(uy) mod x].

More formally, we assume, for convenience, that A starts the protocol.

A’s PROTOCOL ON INPUT (x, y) 6 QR.
FOR to m

Use random bits to generate u, a random quadratic residue mod x.

SEND u to B
GET a string/3 from B; let bit the first bit of/3 (or 0 if/3 is empty). If

bit- 0, use random bits and generate w, a random square root of u mod x;
if bit=l, use random bits and generate w, a random square root of
(uy) mod x.

SEND w to B
GET a string from B (this will merely indicate that B wishes to continue the
protocol).

END FOR
SEND "terminate" (just a string to finish off the protocol) to B.

B’s PROTOCOL ON INPUT (x, y).
See if x >- 1 and y Z*; if not, halt.
FOR i-1 to m

GET u from A. See if u Z*; if not, halt.
Generate a random bit.
SEND bit to A.

2GET w from A. See if w Z* and either [bit =0 and w mod x ui] or
2[bit- and w mod x (uy) mod x]; if not, halt.

SEND "okay" (just a string to continue the protocol) to A,
END FOR
GET any string from A, and halt accepting.

INTERACTIVE PROOF SYSTEMS 199

This is clearly an interactive protocol.
CLAIM 1. The above (A, B) protocol is an interactive proof system for QR.
Proof Say that B is interacting with an arbitrary A’. Say that x => 1, y Z*, and

y is not a quadratic residue mod x. For each ui that B receives from A’ it cannot be
the case that both ui and (uy) have square roots mod x. Since A’ does not see any biti
in advance, there is at most a 1/2 probability that B will "okay" the ith pass. Hence, the
probability that B will say "convinced" is at most 1/2".

We will now show that the protocol is zero-knowledge for QR.
THEOREM 1. The above (A, B) protocol is a perfectly zero-knowledge proof system

for QR.
Proof Let B’ be an arbitrary polynomial time ITM that interacts with A. Let

(x, y) QR be the common input to the pair (A, B’), Ix[- m, and let H be the extra
input to B’. For convenience we consider the view VieWA., ((X, y), H) to consist of
the random variables

R, U1, BIT1, W1, U2, BIT2, W2,’’’, U,,, BITm,

where R is the string of random bits generated by B’, Ui takes on the value ui, BIT
takes on the ith message of B’, etc.

One way to describe the distribution of the view is as follows: R is assigned a

random bit string r (of the appropriate length). Say that R, U1, BIT1, W1, ’’’, U,
BIT/, W/ is the random variable V. Assume that for some i, 1 =<i< m, V has been
given the value v; we will describe the experiment for giving values to

Ui+, BIT+, W/+.

EXPERIMENT
Choose for Ui+ a random quadratic residue mod x, Ui+ If B’ were B, we would
choose BIT+ to be the (i+ 1)st bit of r. However, all we can say is that BITi+I
is assigned the value bit+l=f(x,y, H, v, U+l), where f is some (0, 1}-valued
function computable in deterministic, polynomial time. If bit+ =0, then W+
gets the value wi+, a random square root of u+ mod x; if bit+ 1, then W+I
gets the value W+l, a random square root mod x of (u+y)mod x.

Having characterized the view with the above experiment, we will now describe
a probabilistic Turing machine M that, given (x,y)QR and a string H, runs in
expected polynomial time, and such that its output distribution M((x, y), H) is exactly
the same as V, above; that is, M((x, y), H) is the same as VieWA, B, ((X, y), H). M
begins by choosing r equals a random bit string (of the appropriate length). Assume
that vi has been chosen for some i, 1-<_ < rn; M outputs U+l, bit+, wi+ according
to the following program:

DO FOREVER

biti+ := a random member of {0, 1}
w+l := a random member of Z*
IF biti+ 0 THEN

2
ui+ := Wi+l mod x

ELSE

Ui+l
_.. 2

wi+ly- mod x
IF bit+ f(x, y, H, v, U+l) THEN

OUTPUT ui+, biti+l, wi+ and HALT
END DO

200 S. GOLDWASSER, S. MICALI, AND C. RACKOFF

Two things about M’s program must be clarified. First, the way M chooses a random
member of Z* is by choosing random m-bit strings until one is found that is in Z*;
this halts in expected polynomial time. Secondly, by ,,y-l,, we mean that unique
member of Z* which when multiplied by y mod x yields 1.

We now show that M halts in expected time polynomial in m, with exactly the

right output distribution.

Let R’, U’i, BIT’i, W’} be the random variables corresponding to the output of

M, and let V be defined similarly to V. Certainly R’ has exactly the same distribution
as R. Let 1 =< < m and assume that VI has exactly the same distribution as V, and
assume that M gives a value to V’ in expected time polynomial in m. Say that both

V and VI have been given the value v; we wish to show that the above piece of

program code halts in expected time polynomial in m, with the same output distribution

as the above experiment, given that V
Consider the body of the DO loop up to but not including the last test. If bit+ 0

at this point, then since every quadratic residue in Z* has the same number of square
roots (mod x), ui+ is equally likely to be any quadratic residue, and w+ will be a

random square root of ui+; if bit+ 1 at this point, then u+ will also be a random

quadratic residue in this case (since y is a quadratic residue), and wi+ will be a random

square root of (u+y)mod x. Therefore, the body of the DO loop has the following

effect (even though the following code may not be efficiently executable):

EQUIVALENT DO BODY

u+l := a random quadratic residue mod x.

bit+:= a random bit

IF biti+ f(x, y, H, Vi, Ui+I) THEN
IF biti+--0 THEN wi+ := a random square root mod x of u+ FI
IF bit/ 1 THEN W/l := a random square root mod x of (u/y) FI
HALT and output (ui/, biti/, w/)

FI

It is clear that the equivalent body halts (and outputs) with probability , and therefore
that the actual DO loop halts in expected polynomial time. Since for each value of

u+l the equivalent body is equally likely to halt, U+ gets assigned (by the DO loop)
a random quadratic residue. BITI/ will be assigned f(x, y, H, v, u/). Lastly, we can

see from the equivalent body that in the case where the DO loop halts, WI+I gets
assigned a random square root of ui/ or of (u/ly), depending on bit,/t, as required.

6. Zero-knowledge proofs of quadratic nonresiduousity. We define QNR=
{(x,y)lyZ*,, (y/x)= 1, Q,(y)= 1}, where x and y are presented in binary.

Let (A, B) be an interactive protocol given as input (x, y) such that]xl m.
The basic idea of the protocol is that B generates at random elements w of two

types: w-= r
2 mod x (type 1) and w r2y mod x (type 2), and sends these elements to

A. If (x, y) QNR then A can tell of which type w is by computing whether w is a

quadratic residue (type 1) or not (type 2). If (x, y) is not a member of QNR, w is

always a quadratic residue mod x and A cannot guess its type better than guessing at

random. Thus, A will not be able to tell the types of the w’s and B will not be convinced

that (x, y) QNR.
This idea is sufficient as a proof system but not as a zero-knowledge proof system.

The danger is that B may not have followed the protocol and generated elements w

in a manner differently than specified in the protocol. We get over this difficulty by
complicating the protocol to force B to convince A that indeed B knows whether w

INTERACTIVE PROOF SYSTEMS 201

is of type or type 2. He does this by convincing A that he knows either a square root

of w or a square root of wy -1 mod x, without giving A any information (in the
information-theoretic sense) of which one he really knows.

Our original protocol, which appeared in [GMR], was more complex to prove
than the one presented here. The simplified protocol presented here was suggested by
Cohen [Co].

As was done for the QR language, we will first informally describe an interactive

protocol, which we claim is a statistical zero-knowledge interactive proof system for
QNR, and then describe it with more rigor.

The following (A, B) protocol on input (x, y) should be repeated m times.

B picks at random r Z* and bit {0, 1}. If bit 0, B sets w r2 mod x; other-
wise B sets w rZy mod x. B sends w to A.
For 1 <=j<-_m, B picks random rl, rj2Z* and a random bib{O, 1}. B sets

a r}l mod x, and bj=yr}2 mod x. If bib 1, B sends A the ordered pair,

pair (a., b); else if bit O, B sends to A pair (b, a).
A sends B an m-long random bit vector ili2’’" ira.
B sends A the sequence v vl, v2,. , v,,; if !j =0 then v (rl, r2); if i 1

then v. rr mod x (a square root of wa mod x) if bit 0, and v yrr2 mod x

(a square root of wb mod x) if bit 1.

(The intuition behind this step is as follows: if i 0, then B is convincing A
that pair was chosen correctly; if i 1, then B is convincing that if pair was

chosen correctly, then w was chosen correctly.)
A verifies that the sequence v was properly constructed. If not, A sends terminate

to B and halts. Otherwise, A sets answer 0 if w is a quadratic residue mod x
and 1 otherwise. A sends answer to B.
B checks whether answer bit. If so B continues the protocol, otherwise B
rejects and halts.

After m repetitions of this protocol, if B did not reject thus far, B accepts and halts.

More formally, we proceed to describe first the protocol for B and then the
protocol for A. The protocol consists of B going through its first stage, followed by
A’s first stage, followed by B’s second stage, followed by A’s second stage, etc., until

either A or B chooses to terminate the protocol.
Denote by v {v; v} the result of extending sequence v with element v.

B’s PROTOCOL ON INPUT (x, y).
Check that x _-> 1 and that y Z* and that (y/x)= 1.
Set m Ixl.
Repeat Stages 1-3 m times.
Stage 1.1

use random bits to pick r Z* and bit {0, 1}.
IF bit 0 set w r mod x, else set w rZy mod x FI
FORj=I,2,. .,m

choose random rl, r2 Z* and random bit {0, 1}.
set a-- rl mod x and bg r}:y mod x.

1The careful reader may observe that picking Z "exactly at random" can be done in expected
polynomial time, while our B must by definition run in a fixed polynomial number of steps. Fortunately,
B can pick Z* "almost at random" in a fixed polynomial time. This will have a negligible effect on the
result and we omit any further details on this point.

202 S. GOLDWASSER, S. MICALI, AND C. RACKOFF

IF bit 0 set pair (a, b) else set pairj (bj, aj) FI
END FOR
SEND (w, pair for j 1, ., m) to A.

Stage 2.

GET from A and m-long bit vector i= i1"" ira, where i {0, 1}.
Initialize the sequence v to the empty sequence.
FORj=I,...,m

IF/=0 then set vg (rjl, j2) and set v {v; v.} FI
IF ig 1 do one of the following:

IF bit =0 then set vg rrl mod x v/wag mod x and set v {v; v}
otherwise set vg yr)2 mod x j mod x and set v { v; vg} FI

FI
END FOR
SEND v to A.

Stage 3.
GET answer {0, 1} from A.
IF answer bit then reject and halt

otherwise go to stage 1 FI.

After m iterations of Stages 1-3, if the protocol has not halted by now, accept and halt.

A’s PROTOCOL ON INPUT (x, y) c QNR.
Stage 1.

GET (w, pairj for j 1,. ., m) from B.
Pick at random il im where i {0, 1}.
SEND to B.

Stage 2.

GET sequence v from B
for every j=l,..., m check that, if i=0, then v is a pair (s, t) such that

(s mod x, t2y mod x) equals pairg, possibly with the elements interchanged; and

if/ 1, then (v})w- mod x is a member of pairg. If not, SEND terminate to B
and halt.

(Assume that the above checks have succeeded.)
If w is a quadratic residue mod x, set answer 0 and if w is a quadratic nonresidue

mod x, set answer 1.

SEND answer to B.
Go to Stage 1.

We first prove that (A, B) is an interactive proof system for QNR.
CLAIM 2. (A, B) is an interactive proof system for QNR.
Proof. Clearly (A, B) is an interactive protocol. If (x, y) QNR and A and B

follow the specification of the protocol, then for every execution of Stages 1-2 by B,
w is a quadratic nonresidue mod x if and only if bit 1. Thus, in A’s Stage 2, A can

always decide whether w is a quadratic residue mod x or not and send answer to B
such that answer bit and B will always accept.

Suppose that (x, y) not in QNR (i.e., y is a quadratic residue mod x) and that B
is interacting with an arbitrary prover A’, in the kth iteration of Stages 1-3. Then we

claim that even an A’ with infinite computation power cannot distinguish an interaction

with B where bit 0 from an interaction with B where bit 1. This is argued as follows.
At Stage 1, A’ gets the list (w, pair for j 1,..., m), where w is a random quadratic
residue, and where pair simply consists of a pair of random quadratic residues. This

gives absolutely no information about the value of bit.

INTERACTIVE PROOF SYSTEMS 203

Now consider Stage 2, where 0. A gets (rl, rz). Note that rl. is just a random
square root of a and rz is a random square root of b/y mod x. So all that A sees is

the result of randomly choosing (or not) to reorder pair, and then taking a random
square root of the first element and a random square root of the result of dividing the
second element by y (all mod x, of course). This gives no information about bit.

Now consider the case where 1. If bit 0 then A gets rr mod x, which is a
random square root of wa mod x. If bit 1 then A gets yr)z mod x, which is a random
square root of wb mod x. Since pair is a random reordering of (a, b), v is equally
likely to be a random square root of w times the first element of pair as it is to be a
random square root of w times the second element of pair, no matter what bit is.

Thus, from the information that A’ receives in Stages 1 and 2, the value of bit is

as likely to be 0 as it is to be 1 and the chance that A’ predicts bit correctly is no

greater than 1/2. In rn iterations through Stages 1-3, the probability that A’ computed
answer such that answer bit is at most 1/2m. 13

Proving that the (A, B) proof system is statistically zero-knowledge for QNR is
much more complex.

THEOREM 2. The aboveprotocol (A, B) is a statistically zero-knowledgeproofsystem
for QNR.

Proof. Let B’ be an arbitrary probabilistic polynomial time interactive Turing
machine interacting with A. Let (x, y) QNR be input to (A, B’), let m [xl, and let
H be the extra input to B’.

For convenience, consider the random variable ViewA, B, ((X, y), H) (B"s view of
an iteration of the protocol) to consist of the random variables"

RAN, and

{Wk, {PAIR: 1 <=j -<_ m}, (I: 1 <=j <= m}, Vk, ANSWERk 1 -<_ k -<_ m}.

RAN is the string of random bits generated by B’; Wk takes on the value of w in the
kth iteration of the protocol; PAIR takes on the value of pair in the kth iteration of
the protocol; I takes on the value of in the kth iteration of the protocol; Vk { V}
takes on the value of the sequence v in the kth iteration of the protocol; and ANSWERk

takes on the value of answer in the kth iteration of the protocol.
For simplicity (notational and otherwise) we concentrate on showing that a single

iteration of the protocol is zero-knowledge. Doing the general case implies carrying
along the view of the protocol so far as was done in the proof of Theorem 1. Thus,
from here on we drop all superscripts and work with the random variables: RAN, W,
{PAIR}, {/}, V= {V}, and ANSWER.

Note that in a good execution of the protocol (namely, if B’s protocol is followed),
we expect that W r mod x or W rZy mod x, where r is a substring of RAN; and
that PAIR (r} mod x, r}zy mod x) or (r}zy mod x, r} mod x), where rl and r2 are

substrings of RAN; and that for all _-<j =< m, if/ 0 then V will equal (r, r/z); and
if/ 1 then V rr mod x or yrrjz mod x.

However, since B’ may not follow the protocol, all we can say about these random
variables is that RAN is a random binary string; W (and PAIR) are assigned values
w (and pairj) computed by B’ on inputs x, y, H and RAN; I is a random binary string
of length m; and V is a value computed by B’ on inputs x, y, H, RAN, L

We will now describe a probabilistic Turing machine M that, given (x, y) QNR
and H, runs in expected polynomial time, and whose output distribution is statistically
indistinguishable from ViewA, B,((X, y), H).

204 S. GOLDWASSER, S. MICALI, AND C. RACKOFF

M starts by outputting a random string ran of the appropriate length and running B’
on inputs (x, y, H), and random tape ran on it. B’ goes through Stage 1 outputting
w, pairj, for -<j -< m.

Next, M chooses i,. ., i,, at random in {0, 1}, sets i= i ira, and writes on B"s
communication tape, activating B"s Stage 2.

B’ goes into Stage 2, writing on its communication tapes a sequence v { v.}. M outputs

w{pair}, i, v.

Next M does the checking that A does in Stage 2.

If the check fails M outputs "terminate" and halts.

Let us assume that the check succeeds. Think of x, y, H, ran as being fixed, so

that w and {pairj} are also fixed. The fact that the check succeeds means that A sending
to B’ causes B’ to send a v to A, which causes A to send a one-bit answer to B’

(rather than terminate); let us call any such i’ special M has just computed that is

special, and now wants to compute the value of answer that A would send. This value

is 0 if w is a quadratic residue mod x, and otherwise. Since B’ may not have computed
w the way B would have, it is not obvious how to compute the quadratic residuosity

of w, i.e., answer.

It turns out that finding one other special string i’ will allow M to determine

if w is a quadratic residue, as follows:

Say that i 0 and t and i, are special. Let v, v be the sequences sent by B’
after receiving or i’ (respectively); these can be computed in polynomial time

by running B’. Since /=0, vj=(s, t), where (s2 modx, t2y modx) equals pair,
"--1 (vj) 2possibly with the elements reversed. Since t w-modxpair. If

(vj)Zw-modx=s2modx, then w is a quadratic residue modx; if

(vj)2w- mod x t-y mod x then w is a quadratic nonresidue mod x.

It therefore remains to find a special i’ mod x. M uses the following algorithm.

ALGORITHM TO FIND A SPECIAL i’ i.

Test 2" random i’ of length m (with replacement), halting when either a special
i’ is found, or when 2" strings have been tried. If no special i’ has been

found, then test all m-bit strings (in order), looking for a special i’ i.

if a special i’ is found, then M calculates answer as explained above and outputs
answer. If no such i’ exists, then M outputs "?"; note that this will happen when is

the only special string.
In order to show that M operates in expected polynomial time, it is sufficient to

show thatM operates in expected polynomial time for each fixed value of (x, y, H, ran).
Say that x, y, H, ran are fixed, and so w, pair are also fixed. Let k be the number of

strings that are special. If k =0, then the ALGORITHM TO FIND A SPECIAL i’

will not be invoked, and the running time is clearly polynomial in m. If k 1, then

with probability (1/2")M will choose a special i; in that case the ALGORITHM will

run for time 2ram (for some c), so the expected running time is

polynomial in m.

Assume that k > 1. M will choose a special with probability k/2". To calculate
an upper bound on the expected running time of the ALGORITHM, imagine that it

was changed so that it tested random i’, including and with replacement, halting if

and when a special i’ is found; the expected running time would be at least half

that of the ALGORITHM. In effect, a coin is being tossed until "heads" comes up,
where the probability of"heads" is exactly (k- 1)/2". It is well known that the expected
number of coin tosses is exactly 2"/(k-1). Hence the expected time for the

INTERACTIVE PROOF SYSTEMS 205

ALGORITHM is -<(2"/(k- 1))m (for some c). The total expected time is <-(k/2")-
(2"/(k- 1))me+ a polynomial in m, which is polynomial in m.

Recall that M((x, y), H) is the random variable denoting the distribution of M’s
output given x, y, H. It remains to show that M is statistically close to ViewA, B,. Fix

x, y, H. If ran is such that the number of special strings is not exactly 1, then any
output string a beginning with ran is taken on by VieWA, B,((X, y), H) with exactly the
same probability as by M((x, y), H). Let S be the set of a ran, w, {pairj}, i, v, answer,
where is the unique special string determined by ran. The probability that

ViewA,,((X, y), H) takes on a value in S is <-1/2", since for each ran there is at most
one i, which will be the unique special string. Similarly, the probability that M((x, y), H)
takes on a value in S is <- 1/2". Thus,

[prob (M((x, y), H)= a)-prob (VieWA.,((X, y), H)= a)[

Y [prob (M((x, y), H)= a)-prob (ViewA, n,((x, y), H)= a)[
ac!S

+ 2 [prob (M((x, y), H)= a)-prob (Viewa,,((x, y), H)= a)[

1 1 2
<- 0+ .-’;+ 2" -2"

And for m iterations of the protocol, the difference is

2m
E IPrOb (M((x, y), H) a)-prob (VieWA,B,((X, y), H) ce)l <- ---.

This completes our proof, l-I

Remarks. In fact, the above protocol can be shown to be perfect zero-knowledge.
We just have to change M so that when it discovers that is the unique special string
it factors x in time roughly 2", and then determines if w is a quadratic residue mod x
in polynomial time. This does not change the expected running time by more than a

polynomial factor, since when M decides to do this extra work, it has already spent
time 2".

7. Related work.

7.1. Work related to interactive proof systems. In studying his Arthur-Merlin

games, Babai [Ba] has focused on the number of rounds, i.e., the number of times the

prover and the verifier alternate in sending messages. Babai denotes the set of all

languages accepted by rounds in an Arthur-Merlin proof system by AM[i], and

AM[f(n)] denotes the set of languages accepted by an Arthur-Merlin proof system
with f(n) rounds. Here f is a nondecreasing function from natural numbers to natural

numbers, and n the length of the input.
The elegant simplicity of Babai’s definition allowed him to show that for every

constant k, AM[k] collapses to AM[2]. This in turn is a subset of both II and

nonuniform NP.
We define IP[f(n)] as the class of languages having an interactive proof system

with f(n) rounds.

Goldwasser and Sipser [GS] show that, for all f, AM[f(n)]- IP[f(n)].
On the other hand, Aiello, Goldwasser, and Hastad [AGH] have shown that for

any two nonconstant functions g(n) and f(n) such that g(n) o(f(n)), there exists

an oracle X such that (if we modify the definitions so that one is computing using the
oracle X) IP[g(n)] is strictly contained in IP[f(n)]. This result is tight as Babai and

Moran [BM] have shown that for all constants c>0, IP[f(n)] IP[cf(n)]. Namely,
IP[O(f(n))] is well defined.

206 S. GOLDWASSER, S. MICALI, AND C. RACKOFF

An interesting question is the following. Where does IP stand with respect to the

polynomial time heirarchy? Boppana, Hastad, and Zachos [BHZ] have shown that if

CO-NP has a constant-round interactive proof system, then the polynomial time

hierarchy collapses. Thus, from the results of [GMW], [GS], and [BHZ], it follows
that graph isomorphism is not NP-complete unless the polynomial time hierarchy

collapses.
Other works related to the study of randomized and nondeterministic complexity

classes appear in [P] and [ZF]. In Papadimitriou’s Games Against Nature, the verifier

is also a probabilistic polynomial time machine that flips coins and presents them to

a prover capable of optimal moves. This is different from our model in that L is said

to be accepted by a game against nature if x L implies that the probability of the

prover to win the game is greater than a rather than bounded away from a 1/2.
Zachos and Furer [ZF], in a work investigating the robustness of probabilistic

complexity classes, introduce a framework of probabilistic existential and universal

quantifiers and prove several combinatorial lemmas about them. The AM and thus IP
complexity classes can be formulated in terms of these special quantifiers.

7.2. Work related to knowledge complexity. Prior to our work, the theory of

knowledge had received much attention in a model-theoretic framework (see [FHV]
and [HM] for discussion). There are several essential differences between this

framework and ours. In the latter, knowledge is defined with respect to a specific

computational model with specific computational resources. In the former framework,
there are no limitations on the computational power of the participants, i.e., they
"know" all logical consequences of the information they possess. (For discussion of

this aspect see, Belief Awareness, and Limited Reasoning [FH].) As for another
difference, in our model knowledge is defined with respect to an available public input
and is gained by computing on this input. In their model-theoretic framework knowl-

edge is gained by being told (or witnessing) that a certain event is true (e.g., the

outcome of a coin flip is heads), rather than by computing.
Galil, Haber, and Yung [GHY] proposed the following extension of the concept

of a zero-knowledge interactive proof systems. A language L is said to have a result-

indistinguishable zero-knowledge proof system if there exists an interactive protocol
(A, B) such that for every string x {0, 1}*, A can convince B that x L or x is not

in L (whichever is the case) with high probability, such that no passive observer C
can get any information of which is the case. They give a result-indistinguishable proof
system for QR.

As previously mentioned, Goldreich, Micali, and Wigderson [GMW] have shown,
subject to the existence of secure encryption schemes, that all languages in NP have

computationally zero-knowledge proof systems. Subsequently, related notions of

proof systems and zero knowledge were given by Brassard and Crepeau [BC] and

Chaum [Ch]. They found that for any language L in NP, there is an interactive

protocol that
(1) is zero-knowledge, and

(2) proves membership in L correctly (i.e., with probability approaching 1) only
if factoring is computationally difficult and the prover is polynomial time.

Let us explicitly contrast their protocols with the ones in [GMW]. The latter ones

(1) correctly prove membership in L, and

(2) are zero-knowledge only if secure encryption schemes exist (which is true if

factoring is difficult).
Finally, let us mention the recent result of Fortnow.

INTERACTIVE PROOF SYSTEMS 207

THEOREM [Fo]. Assume a language L has an interactive proof system (A, B) that
is statistically zero-knowledge with respect to B. Then L’s complement has a constant-round
interactive proof systein.

As a corollary, if SAT had statistically zero-knowledge proof systems, the poly-
nomial time hierarchy would collapse.

Note that the hypothesis of Fortnow’s theorem is much weaker than saying that

(A, B) is a statistically zero-knowledge proof system on L, which would mean that,
for all verifiers B’, A is zero-knowledge on L for B’. Usually, it is defeating this latter

quantifier "for all" that makes it hard to find a perfect or statistically zero-knowledge
proof system. Thus Fortnow’s result has the potential to be widely applicable.

Acknowledgments. We thank Mike Sipser, Steve Cook, and Mike Fischer who

helped us focus on this research from its beginning. Without their enthusiastic

encouragement we might not have completed this work.
Oded Goldreich and Ron Rivest, as usual, have been generous with comments

and ideas. Thanks also go to Leonid Levin, Zvi Galil, and Dan Simon for having
helped us in various ways.

Special thanks to Josh Cohen for simplifying our original zero-knowledge protocol
for proving quadratic nonresiduosity. Thanks are also due to Manuel Blum for sharing
with us so many beautiful ideas about cryptographic protocols.

Finally, we thank the anonymous referees, whose comments greatly improved this

paper.

[AGH]

[AH]

[BGGHKRM]

[BI]
[BHZ]

[Ba]

IBM]

[BS]

[BC]

[Ch]

[Co]
[CKS]

[c]

[CR]

REFERENCES

B. AIELLO, S. GOLDWASSER, AND J. HASTAD, On the power of interaction, in Proc. 27th

Annual IEEE Symposium on Foundations of Computer Science, 1986, pp. 368-379.

B. AIELLO AND J. HASTAD, Perfect zero-knowledge languages can be recognized in two

rounds, in Proc. 28th Annual IEEE Symposium on Foundations of Computer Science,

1987, pp. 439-448.

M. BEN-OR, O. GOLDREICH, S. GOLDWASSER, J. HASTAD, J. KILIAN, P. ROGAWAY,
AND S. MICALI, Everything provable is provable in zero-knowledge, in Proc. Crypto88,
to appear.

M. BLUM, Coin flipping by telephone, IEEE COMPCON 1982, pp. 133-137.

R. BOPPANA, J. HASTAD, AND S. ZACHOS, Does co-NP have short interactive proofs?,
Inform. Process. Lett., 25 (1987) pp. 127-132.

L. BABAI, Trading group theory for randomness, in Proc. 17th ACM Annual Symposium
on Theory of Computation, 1975, pp. 421-429.

L. BABAI AND S. MORAN, Arthur-Merlin games: A randomized proof system, and a

hierarchy ofcomplexity classes, J. Comput. Sci. Systems; a previous version was entitled

Trading group theoryfor randomness, in Proc. 17th Annual ACM Symposium on Theory
of Computing, 1985, pp. 421-429.

L. BABAI AND E. SZEMEREDI, On the complexity of matrix group problems, in Proc. 25th
Annual IEEE Symposium on Foundations of Computer Science, pp. 229-240.

G. BRASSARD AND C. CREPAU, Non-transitive transfer of confidence: A perfect zero-

knowledge interactive protocolfor SAT and beyond, Proc. 27th Annual IEEE Symposium
on Foundations of Computer Science, October 1986.

D. CHAUM, Demonstrating the public predicate can be satisfied without revealing any

information how, in Proc. Crypto86.
J. COHEN (Benaloh), Cryptographic capsules, in Proc. Crypto86.
A. CHANDRA, D. KOZEN, AND L. STOCKMEYER, Alternation, J. Assoc. Comput. Mach.,

28 (1981), pp. 114-133.

S. COOK, The complexity of theorem-proving procedures, in Proc. 3rd Annual ACM Sym-
posium of Theory of Computation, 1971, pp. 151-158.

S. COOK AND R. RECKHOW, The relative efficiency ofpropositionalproofsystems, J. Symbolic
Logic, 44 (1979).

208 S. GOLDWASSER, S. MICALI, AND C. RACKOFF

IF]
[FMRW]

[FFS]

[Fo]

[FH]

[FHV]

[GM]

[GM1]

[GMS]

[GMR]

[GS]

[GHY]

[GMW]

[GMW2]

[HM]

[LMR]

[o]

[P]

[TW]

[ZF]

[Y]

P. FELDMAN, private communication.

M. FISCHER, S. MICALI, C. RACKOFF, AND D. WITENBERG, A secure protocol for the

oblivious transfer, unpublished manuscript, 1986.

U. FEIGE, A. FIAT, AND A. SHAMIR, Zero knowledge proofs of identity, in Proc. 19th

Annual ACM Symposium on Theory of Computing, 1987, pp. 210-217.

L. FORTNOW, The complexity of perfect zero-knowledge, in Proc. 19th Annual ACM Sym-

posium on Theory of Computing, 1987, pp. 204-209.

R. FAGIN AND J. HALPERN, Belief, awareness, and limited reasoning, in Proc. 9th Inter-

national Joint Conference on Artificial Intelligence, 1985, pp. 491-501.

R. FAGIN, J. HALPERN, AND M. VARDI, A model theoretic analysis of knowledge, in Proc.

25th Annual IEEE Symposium on Foundations of Computer Science, 1984, pp.

268-278.

S. GOLDWASSER AND S. MICALI, Probabilistic encryption, J. Comput. Science and Systems,
28 (1984), pp. 270-299.

, Proofs with untrusted oracles, unpublished manuscript (submitted to STOC, 1984).
Revised version: The information content of proof systems, unpublished manuscript

(submitted to STOC, 1984).
O. GOLDREICH, Y. MANSOUR, AND M. SIPSER, Interactive proof systems: Provers that

neverfail and random selection, in Proc. 28th Annual IEEE Symposium on Foundations

of Computer Science, 1987, pp. 449-460.

S. GOLDWASSER, S. MICALI, AND C. RACKOFF, The knowledge complexity of interactive

proofsystems, in Proc. 27th Annual Symposium on Foundations of Computer Science,

1985, pp. 291-304. Earlier version: Knowledge complexity, unpublished manuscript,

(submitted to FOCS, 1984).
S. GOLDWASSER AND M. SIPSER, Private coins versus public coins in interactive proof-

systems, in Proc. 18th Annual Symposium on Theory of Computing, 1986, pp. 59-68.

Z. GALIL, S. HABER, AND M. YUNG, A private interactive test of a Boolean predicate and

minimum-knowledge public-key cryptosystems, in Proc. 26th Annual IEEE Symposium

on Foundations of Computer Science, 1985, pp. 360-371.

O. GOLDREICH, S. MICALI, AND A. WIGDERSON, Proofs that yield nothing but their

validity and a methodology of cryptographic protocol design, in Proc. 27th Annual

IEEE Symposium on Foundations of Computer Science, 1986, pp. 174-187.

, Ho,w to play any mental game, in Proc. 19th Annual ACM Symposium on Theory

of Computing, 1987, pp. 218-229.

J. HALPERN AND Y. MOSES, Knowledge and common knowledge in a distributed environ-

ment, in Proc. 3rd Principles of Distributed Computing Conference, 1984, pp. 50-61.

M. LUBY, S. MICALI, AND C. RACKOFF, How to simultaneously exchange a secret bit by

flipping a symmetrically-biased coin, in Proc. 24th Annual IEEE Symposium on Founda-

tions of Computer Science, 1983, pp. 11-22.

Y. OREN, On the cunning power of cheating verifiers: some observations of zero-knowledge
proofs, in Proc. 28th Annual IEEE Symposium on Foundations of Computer Science,

1987, pp. 462-471.

C. PAPADIMITRIOU, Games against nature, in Proc. 24th Annual IEEE Symposium on

Foundations of Computer Science, 1983, pp. 446-450.

M. TOMPA AND H. WOLL, Random self reducibility and zero knowledge interactive proofs

ofpossession of information, in Proc. 28th Annual IEEE Symposium on Foundations

of Computer Science, 1987, pp. 472-482.

S. ZACHOS AND M. FURER, Probabilistic quantifiers vs. distrustful adversaries, in Proc.
Structure of Complexity Classes Conference, 1986.

A. YAO, Theory and application oftrapdoorfunctions, in Proc. 23rd Annual IEEE Symposium
on Foundations of Computer Science, November 1982, pp. 80-91.

