
The Knowledge Complexity of Interactive Proof-Systems

(Extended Abstract)

Shafi Goldwasser Silvio Micali Charles Rackoff
MIT MIT University of Toronto

1. Introduction
In the first part of the paper we introduce a

new theorem-proving procedure, that is a new efl-
cierlt method of communicafirrg a proof: Any such
method implies, directly or indirectly, a definition of
proof. Our “proofs” arc probabilistic in nature. On
input an II-bits long statement, we may erroneously
be convinced of its correctness with very small proba-

bility, say, -$, and rightfblly be convinced of its

1 correctness with very high probability, say, 1 - -.
2”

Our proofs are Clreruclhre. To eficicntly verify the
correctness of a statement, the “recipient” of the
proof must actively ask questions and receive answers
from the “prover”.

In the second part of the paper, we address the
following question:

How much knowledge should be communicated
fir proving a theorem T?

Certainly enough to see that T is true, but usually
much more. For instance, to prove that a graph is
Hamiltonian it suffices to exhibit an Hamiltonian tour.
This appears, however, to contain ,much additional
knowledge than the single bit “HamiltonianInon-
Hamiltonian”.

We give a computational complexity measure of
knowledge and measure tic amount of additional
knowlcdgc contained in proofs.

Permission to copy without fee all or part of this material is granted

provided that the copies arc not made or distributed for direct

commercial advantage. rhe ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by

permission of the Association for Computing Machinery. To copy

otherwise, or to repubhsh. requires a fee and/or specific permission.

@ 1985 ACM 0.89791-l51-2/85/005/0291 $00.75

We propose to classify languages according to the
amount of additional knowledge that must be
relcascd for proving membership in them.

Of particular interest is the case where this addi-
tional knowledge is essentially 0 and we show that is
possible to interactively prove that a number is qua-
dratic non residue mod m releasing 0 additional
knowledge. This is surprising as no efficient algorithm
for deciding quadratic rcsiduosity mod m is known
when m’s factorization is not given. Moreover, all
known NP proofs for this problem exhibit the prime
factorization of tn. This indicates that adding interac-
tion to the proving process, may decrease the amount
of knowledge that must be communicated in order to
prove a theorem.

2. Interactive Proof Systems
Much effort has been previously devoted to

make precise the notion of a theorem-proving pro-
cedure, NP constitutes a very successful formaliza-
tion of this notion. Loosely speaking, a theorem is in
provable in NP if its proof is easy to verify once it has
been found. Let us recall Cook’s [C] (and indepen-
dently Letin’s [t]) influential definition of NP in this
light.

The NP proof-system consists of two communi-
cating Turing machines A and a : respectively,
the prover and the verifier. The prover is
exponential-time. the verifier is polynomial-time.
Both A and f? arc dctcrministic, read a common
input and interact in a very elementary way. On

This research was supponcd in part by 1B.M Young Faculty
Development Award dated Scptcmber 1983. IBM Young
Fzrulty Dcvelopmcnt Award dated Scptcrnber 1984, and
NSF grant DCR-8413577

input a string .Y, belonging to an NP language
L, A computes a string y (whose length is
bounded by a polynomial in the lcngtb of X)
and writes y on a special tape that B can read.
B then checks that fLib)=x (where f, is a
polynomial-time computable function relative to
the language 1,) and, if so, halts and accepts.
This process is illusuatcd in figure 1.

Fig. 1: The Nf proof-system(‘)

What is intuitively required From a theorem-
proving procedure? First that it is possible to
“prove” a true theorem. Sccomd, that it is impossible
to “prove” a false theorem. Third, that communicat-
ing a proof should be cfhcient. in the following sense. -.
It does not matter how long must the prover compute
during the proving process, but it is essential that the
computation rcquircd from tbc verifier is easy.

Theorem-proving procedures differ in the
underlying definition of a proof. The notion of a
proof, like the notion of a computation, is an intuitive
one. Intuition, however, may alnd must be formalized.
Computability by (detcrminist.ic) Turing machines is
an elegant example of formalization of‘thc intuitive
concept of a computation. Each formalization. how-
ever, cannot entirely capture our original and intuitive
notions, exactly because they are intuitive. Following
our intuition, probabilistic algorithms [R] [SS] are
means of computing, though they arc not in the pre-
vious formal model. Similarly, NP is an elegant for-
malization of the intuitive notion of a theorem-
---------___-_____
(9 (By ----> we denote ii read/write head. by
---R -> a read-only head and by ---M-‘->
a write-only head)

proving procedure. Howcvcr, NP only captures a par-
ticular way of communicating a proof. It deals with
those proofs that can be “written down in a book”.
In this paper we introduce interactive proof-systems
to capture a more gcncral way of communicating a
proof. We deal with those proofs that can be
“explained in class”. Informally, in a classroom, the
lecturer can take full advantage of the possibility of
interacting with the “recipients” of the proof. They
may ask questions at crucial points of the argument
and receive answers. This makes life much easier.
Writing, down a proof that can be checked by every-
body without interaction is a much harder task. In
some sense, because one has to answer in advance ah
possible questions. Let us now formally set up the
proper computational model.

2.1 Interactive Turing machines and interactive pairs
of Turing machines

&kyygK T.
Fig,, 2: an interactive pair<f Turing machines

An interactive Turing machine (ZTIIf) is a Tur-
ing machine with a read-only input tape, a work tape
and a random tape. The random tape contains an
infinite sequence of random bits. The random tape
can be scanned only from left to right. When we say
that an interactive machine flips a coin we mean that
it reads next bit in its own random tape. This tape is
the only source of randomness for the machine. In
addition an interactive machine has a read-only com-
munication tape and B write-only communication
tape. The head writing on the latter tape moves only
from left to right, writes only on a blank cell and can-
not move to the right without writing.

Two ITM’s A and B form an brterucrive pair of

292

Turirrg rtmhiws(/l J) by ,I. 13,. , ,::

1) letting A and B share the same input tape and

2) letting n’s write-only communication tape bc
A’s read-only communication tape and vice
versa.

The interactive pair (A ,B) is ordered and machine 8
starts rhc computation. The machines take turns in
being active. When, say, A is active it can perform
internal computation, mad and write on the proper
tapes and send a mcssagc to B by writing on the
appropriate communication tape. The ith message of
A is the entire string that A writes on the communi-
cation tape during its ith turn. The ith mcssagc of B

is similarly defined. Either machine can, during its
turn, terminate the computation of the pair. Consider
a computation of (A .B) on input x. Let the compu-
tation consist of II turns and let a, be A *s ith message
and b, be B’s ith message. Thea the lext of rhe com-

pulalion is defined to be the scqucncc

{b l,Ul, . . b ,b,,u,,). (a, is empty if it is 13 that halts the
computation of (A ,B) in its n th turn). The text of all
possible computations of A and B on input x will be
of re!cvance to our analysis and it will bc dcnotcd by
(A .B)[x]. This set has the structure of a probability
space in the natural way. The probability of each
computation in (A ,B)[x] is taken over the coin tosses
of both machines.

2.2 lntcractivc proof-systems

Let I,ClO.l}’ be a language and (A ,B) an
interactive pair of Turing machmes. We say that
(A , B) is an inreraclive proofsysrem for L if A (the
prover) has infinite power, B (the ver$er) is polyno-
mial time and they satisfy the following properties.

1) For any x EL given as input to (A ,B), B halts

and accepts with probability at least 1-s for

each k and sufficiently large n.

2) For any ITM A’ and for any,rx not in L given
as input to (A ‘,B), B accepts with probability at

most .L ,~ for each k and sufficiently large n.

Here 11 denotes the length of the input and the pro-
babilitics arc taken only over B’s own coin tosses.

Condition 1 csscntially says that. if xEL, there
exist a way to easily prove this fact to B that succeeds
with ovcrwhclming probability. This way is A’s algo-
rithm. In other words, it is possible to prove a true
thcorcm so that the proofs arc easily verified (B is
polyllomial-tilnc). Condition 2 says that, if x not in
L, thcrc exist no strategy, for convincing B of the
contrary, that succeeds with non negligible probabil-
ity. In other words, no one can prove a false theorem.
In fact, B needs not to trust (or to know) the machine
with which it is interacting. It is enough for B to

trust the randomness of its own coin tosses. Notice
that, as for NP, the emphasis is on the “yes-
instances”: if a string is in the language we want to
show it, if it is not WC do not care. Let us consider an
example of an interactive proof-system.

Example 1: Let Zl dcnotc the set of integers
bctwccn 1 and Tut that arc relatively prime with m.

An elcmcnt afZi is a quadruhc residue mod n if
a =x2 mod tn for some x CZi. clsc it is a quadruric

nonresidue. Now let I. -7{()~ .x) l x EZZ is a quadratic
nonrcsiduc }. Notice that IA ENP: a prover needs only
to compute the factorization of ~1 and send it to the
verifier without any further interaction. nut looking
ahead to zero knowledge proof-systems, WC will con-
sider a more interesting interactive proof-system for
L. The vcrificr B begins by choosing n = lnr 1 ran-
dom mcmbcrs of Zi, (rl,r2 ,..., r”}. For each
i, l<isn, hc flips a coin, and if it comes up heads
hc forms r, = r,’ mod tn, and if it comes up tails he
forms ~,=x-r,~ mod m. Then B sends fl,fz ,..., r, to A.

The prover, having unrcstrictcd computing power,
finds which of the r, arc quadratic rcsiducs, and uses
this information to tell B the results of his last n coin
tosses. If this information is correct, B accepts.

Why dots this work? If (m,x)EL, then A
correctly predicts all last II coin tosses of B who will
dcfinitcly accept. If (m.x) not in L. then the {Ii} are
just random quadratic rcsiducs. and the prover will
respond correctly in the last part of the computation

with probability $. In fact. for each of the last n

coin tosses of B, A has probability exactly l/2 of
guessing it correctly.

A more complex intcractivc prloof-system for L. that
releases essentially 0 additional knowlcdgc, can be
found in section 4.2.

2.3 Intcractivc Complrxity Classes

We dcfinc IP, Interactive Pol)?totttial-ritt~e, to be
the class of languages possessing an intcractivc proof-
system. In this case we may also say that I, is intcrac-
tively provable. To cmphasizc that the prover has
unlimited power, we may write IP, for If. To closer
analyze the role of the prover, we dcfmc If”,,,, to be
the class of languages having an interactive proof-
system whose prover runs in time T(n). To focus on
the role of mtcmction, we Ict fPLf(n)] denote the
class of languages having a proof-system that, on
input a string x of length tl, halts within f(n) turns.
Here f is a non decreasing function from natural
numbers to natural numbers.

Interactive proof-systems should be contrasted
with the “Arthur-Merlin” games of Babai [B]. In
those games Merlin plays the role of n and Arthur
the role of R. The big difference is that Merlin sees
all results of Arthur’s coin tosses. This allows Babai to
prove that arbitrary interaction lis not necessary in his
framework: it is suficicnt to al’low Arthur to talk to
Merlin and have Merlin respo:nd; at least as long
they alternate a constant number of times. Actually
Arthur’s message to Merlin consists exactly of the
sequence of its own coin tosses. (See figure 3).

1N Pu-r

fig. 3: The Arthur-Merlin proof-system

If membership in a language L can bc proved by an
Arthur-Merlin game (LfAN) then, for any random
oracle 0, I; GNP0 with probability 1. It is apparent
that AMCIP (actually, AMcf.P[l]) and we bclicvc

that the inclusion is a strict one. We also believe that
our “intcractivc hierarchy” dots not collapse, i.e. that
Il’(k] is strictly contained in fl’[k +l]. In any case,
intcractivc proof-systems arc the right proof model to
both analyze and rcducc the knowlcdgc complexity of
a language. Next section is dcvotcd to the discussion
of this more subtlc notion. Let us also mention Papa-
dimitriou’ [P] “games against nature”. This is an
elegant characterization of PSPACE, though not an
efficient :method of communicating a proof.

3. K~~owledge Complexity
Communication is a tool for transferring or

exchanging knowledge. Knowlcdgc has received a lot
of attention in a model-theoretic framework [FHV],
[HM]. In this context, roughly speaking,

1) All parricipanrs are considered to have i&ire
cotqxuing power. (E.g. each participant “knows”
all logical conscqucnccs of the information in his
hands) and

2) The objecr Ihey rty lo “know berfer” is not an
available public input. (Rather some event occurs
that is witnessed or noticed by w but not 4
participants. To give an elementary example,
one participant flips a coin and tells the outcome
to a few others who now “know” it. The
remaining participants do not “know” what the
outcome was and they have to decide between
two possible worlds: one in which “heads” came
up and one in which “tails” came up).

This scenario may not bc realistic in many practical
contexts. In physics. for example, scientists have
bourtded <resources and the object they try to know
better is a public ittpur: nature. Our point of view is
that

1) Knowledge is a norion relafive IO a spectftc model
of cotnpu ta!iotJ wirh specified cottlpuring resources
and

2) One studies and gains knowledge about available

objecrs

In this paper WC mcasurc the amount of knowledge
that can be gained from a communication by a parti-
cipant with polynomially bounded resources and

294

invcstigatc how much knowledge must bc communi-
catcd for proving a thcorcm!‘) Our computational
complexity measure of knowlcdgc is. howcvcr. of
wider applicability. For example, as skctchcd in scc-
tion 6. ir constitutes a powerful tool for dcvcloping a
mathematical theory of cryptographic protocols, The
following concept will be crucial to our analysis.

3.1 Degrees of distinguishability for probability distri-
butions

Let I be an infinite set of strings and c a posi-
tive constant. For each x EI with length n, Ict lI, be
a probability distribution over the II’-bit strings.
Then w Bay ti i&~tr.(IT~ 1 u E8) is a I-c-ensemble.
By saying that l-I is an erlsemble or a I-eruemble we
mean, respectively, that there exist I and c or simply
c such that iI is a I-c-ensemble.

A disrillguishet is a probabilistic polynomial-time
algorithm D that on input a string s outputs a bit b.
Let II,={Il,,,IxE1} and l12={lI~,xIxEZ} bc two
I-c-ensembles. Let p$ denote the probability that D
outputs 1 on input a 1 x 1 ‘-bit long string randomly
selected with probability distribution lI,,X. Symmetri-
cally, pf’* denotes the probability that D outputs 1 on
input a Ix (‘-bit long string randomly selected with
probability distribution II,,. Let p:N+[O,l]. . We say
that the ensembles II, and n2 arc al most p
disrirlguishable if for all distinguishers D,

1~:~ -p$ I < p(I x I) + & for all k and suf’fi-

ciently long X.

Of particular interest will be the notion of at
most O-distinguishability (or indistinguishability). In
this case the two ensembles are “equal” with respect
to any polynomial-time computation. In section 4.2
we will prcscnt an interesting example of indiscin-
guishablc cnscmblcs. In this example. the n,,, and
172,X arc indistinguishable in a stronger scnsc. In fact
the probability that they assign to each 1 x (‘-bit
string is identical except for a set of stings strings
------------______
(2) Our definitions may be given with respect to any time
bound. but wc restrict our attention to polynomial-time both
to Amplify the matter a bit and because we believe that it
constitutes the most important case.

1 whose total probability dots not exceed -
24”l

for

some constant d bctwccn 0 and 1. Such strong indis
tir.guishability is a luxury not always available and, in
any case. is ?ot ncccssary to dcvclop our theory.

Notice that our distinguishcrs are Fed with a sin-
gle I x I’-bit string at a time. One may consider dis
tinguishcrs that arc fed with more strings of length
I x I c at the same time. In this case, if two ensemble
are O-distinguishable, they will remain undistinguish-
able (as long “more” < poly (I x I)). If the two ensem-
bles arc at most p-distinguishable, they may remain at
most p-distinguishable or the probability of “distin-
guishing” them may become much higher. (This
plays a role for deciding whether a certain crypto-
graphic protocol may be played securely more than
once using the same secret key).

Related notions of indistinguishability. have
been previously considered in [GM] in the context of
probabilistic encryption and then in [y] and [GGMJ in
the context of pseudo-random number generation.

3.2 The knowledge computable from a communica-
tion

Which communications convey knowledge?
Informally, those that transmit the output of an
unfeasible computation. a computation that we cannot
perform ourselves. For example, if A sends to B n
random bits, this will be 11 bits of information. We
would say this contains no knowledge, however,
because B could generate random bits by himself.
Similarly, the result of any probabilistic polynomial-
time computation will not contain any knowledge.
With this in mind we would like to derive an upper
bound (exprcsscd in bits) for the amounf of
knowledge that a polynomially bounded B can
extract from a communication.

First a bit of notation. Notice that any proba-
bilistic Turing machine Al gcneratcs the ensemble

wl=Mxl3,cl. where ,U[x] dcnotcs the set of pos-
sible outputs of Al (on input xEI) taken with the
probability distribution induced by Al’s coin tosses.
Similarly, we will dcnotc by (n.B)l] the cnscmble
associated to an interactive pair of Turing machines

295

(n,B). WC arc now ready to introduce our dclini-
tion.

Dclinition: I.ct (A J) be an intcractivc pair of
Turing machines and I the set of its inputs. Ict B be
polynomial-time and f :N-+N bc non dccrcasing. WC
say that A corwmnica/es al IUOSI f (II) bits of
kjlowledge fo B if there exists a probabilistic
polynomial-time machine A4 such that the I-

ensembles ,\!I] and (A ,B)l] are at most 1 -A- 2f (n)
distinguishable. WC say that A conmmicates at-most
f(rr) bifs of k now e ge 1 d if for all polynomial-time
ITM’s B’ A communicates at most for) bits of
knowledge to B’.

Remark 1: Assume AI, on input x, tries to select
a string “as undistinguishable as possible” from a
computation randomly sclectcd in (A ,O)[x]. Note
that in this attempt no information is hidden from Jl:
A ‘s program, R’s program and x arc all inputs of M.
A{ may have “built in” the description of A. This,
however, is not of great help, as A ‘s algorithm may
be absolutely inefficient.

A non mathematical discussion: Let us try to
illustrate the above definitions. Assume that a crime x
has happened, B is a reporter and ,4 a police officer.
A understands the rights of the press but, for obvious
reasons, also tries not to communicate too much
knowledge. Should reporter B call the police officer
n to know more about x? It depends. If he has pro-
bability csscntially equal to 1 of gcncrating at home,
in front of his typewriter, the “same” conversations
about this specific
x that he might have with A, he should not bother

to call. A will give him essentially 0 knowledge about
x. If, instead. say, he may gcncrare an honest conver-
sation about x with probability lr’4 (i.e. what he gen-
erates is at most 3/4-distinguishable from the “real”
conversations), then the officer may tell him some-
thing that he dots not know. Tlhis knowledge how-
ever, will not exceed two bits and may not bc of the
“useful” kind! Still, it may pay off to call. If. finally,
B has only chance 1 in 2’O” of generating the possible
conversations about x with the police ofliccr, then A
is a real gossiper and B should rush to the telephone!

Assume now that B is so news-hungry that is ready to
bccomc dishonest during the phone conversation, i.e.
hc is ready to transform himself to B’. Dcspitc this, if
the officer is so skillful to bc one who communicates,
say, at most 2 bits of knowledge, no matter how tricky
questions 8’ asks and how much he cheats, he will
not get out of him more than two bits about x. (Here
WC arc implicitly assuming that a cheating reporter
still remains a polynomial-time one!)

Example 2: Consider the ITM (A , B) of example
1. Restrict its inputs only to the strings in L. Then
A communicates at most 0 bits of knowledge to B.
In fact, them exists a probabilistic polynomial-time
machine AI such that (for those inputs) generates
exactly the same cnscmblc that (,4 ,B) does. Essen-
tially, Al can simulate B. as B is polynomial-time,
and simulates A by_looking at R’s coin tosse3 as fol-
lows. When U sends r, computed by squaring r,, M
will answer “quadratic residue”. When B sends r,
computed by squaring r, and then multiplying it by x,
A,/ answers “quadratic nonresidue”.

Notice, however, that, if the problem of deciding qua-
dratic rcsiduosity is not in probabilistic polynomial-
time, A does not communicate at most 0 bits of .-
knowledge. in fact, some machine B’, interacting with
A, may decide to create the Ii’s in a different way.
For instance, such a B may send the, sequence of
integers r, - i and therefore receive an answer about
their quadratic residuosiry that it may not be able to
compute by itself.

An interesting ITM A that communicates at most 0
bits of knowledge may be found in section 4.2.

3.3 The knowledge complexity of a Isnguage

How much knowledge should be communicated
to provide a proof of a tbcorem T? Certainly enough
to verify that T is true. Usually, much more. For
example. to prove that a certain aC2; is a quadratic
rcsiduc, it is sufficient to, communicate an x such that
a =x2 mod tn. This communication, however, con-
tains more knowledge than just the fact that P is a
quadratic residue. It communicates a square root of
a. We intend to measure the additional knowledge
that a prover gives to a verifier during a proof, and

investigate. whcther:this,additional knowledge ma) bc
essentially 0.

Definition: Let L bc a language possessing an
intcractivc proof-system (A ,B). Let f: N --) N be non
decreasing. WC say that L has knowledge cotnplexily
f(n) if, when restricting the inputs of (R,R) to the
strings in L A communicates at most f(n) bits of
knowledge. We denote this fact by L EKC(f(n)).

.4n informal discussion. Let us recall that WC arc
concentrating on the “yes-instances”. When a string
x is not in the language the prover “gives up” and WC
do not mcasurc knowledge. When, instead, xEL,
what is the verifier’s point of view at the end of an
intcractlve proof? First, it is “convinced” (correctly
with overwhelming probability) that x EL. This was
the goal of the proof-system in the first place. Second,
it possesses the text of the entire computation with
the prover on input X. This text, has been used to
verify that xEL, but dots not contain more than
f(n) bits of additional knowledge. In fact, on input
xEI,, we are guaranteed to be able to easily generate
such texts with probability distribution ak most (l-

-&)-distinguishable from the “real” texts, no maftcr

with which machine B’ A is interacting. The special
case L EKC (0) is of particular interest. In this case,
by interacting with A and from the text of the com-
putation, B can verify that x EL , but, with respect to
polynomial-time computation, the text is irrclcvant for
any other purpose, no matter with which B’ A is
interacting. In fdct, on input a guaranteed xEL, such
texts can be easily selected with essentialiy the right
probability distribution and without A.

We believe that. knowledge complexity is one of
the fundamental parameters of a language or,
equivalently, of a theorem-proving procedure.
Theorem-proving procedures are intended to com-
municate knowlcdgc and it is very natural to classify
them according to the amount of knowledge they
communicate.

Note that knowledge complexity is also defined
for NP proof-systems as they are a special type of
interactive proof-system. However, their knowledge
complexity tends to be very high.

A rvcry important application of knowledge com-
plcxity is that it cnablcs proving correctness of crypto-
graphic protocols in a modular way (see section 6).

4. Languages in KC(O)

Every language in P or RP or BPP has trivially
knowledge complexity 0. If L is not in probabilistic
polynomial-time, no NP proof-system for L can
release 0 additional knowledge. However, there may
bc a more interactive proof-system for L that does
relcasc 0 additional knowledge. A natural question
arises, Do meaningful examples of languages in
KC(O) exist or is KC(O)-BPP a fancy way to define
the empty set? A similar question could bc asked for,
say, RP. Namely, is RP-P a fancy name for the
empty set? The best sign of a possible negative answer
to the latter question is constituted by the fact that
primality testing is in RP [SS] [R] and, while the prob-
lem of dctcnninistically deciding primality has
received a lot of attention for centuries, no
polynomial-time algorithm is currently known. Simi-
larly, it is of great intcrcst to find candidates for
languages in KC(O) but not in, say, BPP. This is the
best one can do, given our current knowledge about
proving lower-bounds.

We know of two interesting languages that have
knowledge complexity 0. Both are algebraic. The first
one is the following language BL proposed by Blum
in [Bll] where he gives all the essential ingredients to
prove BL UC(O). Let)I be an integer with prime

factorization n =p:l -p:‘. Then n f BL if the number
of different p,s congruent to 3 mod 4 is even. The
other language that is known to belong to KC(O) is
the well known quadratic non-residuosity language.
We give a proof of this fact in this section.

For y EZ: WC define
.

I 0
QmW =

if y is a quadratic residue mod m
1 otherwise

Then .L = {(J,M) 1 Q,,,(y)=l) is the quadratic
non-rcsiduosity language.

Our proof that LEK(0) dots not dcpcnd on
any unproved computational complexity assumptions.

237

WC first rcvjew what is known about the complexity
of deciding membership in this Ilanguage.

4.1 The Quadratic Rcsiduosity .Problcm

The quadratic residuosity problem with parame-
tcrs mEA’ and xEZ~ consists of computing Q,,(x).
If the factorization of m is known, it is trivial to com-
pute Q,,,. If the factorization of m is unknown, then
there is no known efficient procedure for computing
Q,,,. This decision problem is one of the four main
problems discussed by Gauss in “Disquisitiones Arith-
meticac” (1801) (along with primality testing, integer
factorization and Solvability o:f Diophantinc Equa-
tions). A polynomial time soluti.on for it would Imply
a probabilistic polynomial time solution for other
open problems in Number Theory such as deciding
whether a composite integer m is a product of 2 or 3
primes.

The Jacobi symbol (2) for nr EN and xfZ: is

a polynomial time computable function that evaluates
to 1 and -1 and provides some information about

Qm(x). Namely, if (:)= -1 then Q,,,(x)=l. How-

ever, when (i)=l then computing Q,(x) is a hard

problem. n fact., it is not even known how to effi-
ciently produce a single “guaranteed” quadratic non-
residue mod nt with Jacobi symbol 1.

4.2 A “0” Knowledge Interactive Proof System for L

In the proof system, (A,B:), that we exhibit for
O,,m)EL the prover A is only rcquircd to be a pro-
babilistic polynomial time Turing machine with the
additional power of being able to evaluate Q,. (Of
course, it remains true that no infinitely powerful A’
can convince 13 that y is a quadratic non-residue mod
m if that is not the case).

For simplicity, we only consider proving that

(y,?ft)EI, when the Jacobi symbol (x)=1. The case

where (ij= -1 is uninteresting. We specify A and

B by giving-their explicit program at each step of the
interaction.

The basic idea is that B generates numbers of
two types: x =9 mod I)? (type 1) and x =y.r2 mod m
(type 2) where r is randomly chnscn, and quizzes A
about them. If indeed (y .nt) is in L, then A cam tell
the types of these numbers. If @ ,m) is not in L , they
look all the same to A and it will fail the quizzes with
very high probabiilty. The danger with this basic idea
arises when indeed ~,uI) is in L as A , when answer-
ing the quizzes, may release some knowledge other
than b,m)EL (e.g. the quadratic residuosity of
specific other xG$ chosen by a cheating B’). We
ovcrcomc this danger, by having A make sure that
the machine with which it is interacting “knows” what
are the types of the numbers it quizzes A about.

A and B’s Interactive Program

Input: b,nr)EL such that (i)=l and n =logzm.

Initialize ilerarion =O.

Step 1:
B first chooses a random to from Zi, and then
tosses a coin C, . If C, =O, then B sets
x=ri mod n, else if C, =l , B sets
x =,y-t-02 mod n . B sends x to A.

Then, B chooses two random sets, each
n,

T = { 11,12,...,tn 1 tl = c2 mod m)

and,

of size

S =’ { ~~+~,l~+~,...,t~~ f it = y$ mod m)

B sends to A the elements in TUS in random
order.

Step 2:
A picks a random subset ZCT US of size n
and sends it back to B.

Step 3:
For each zEZ, B sends to A r such that I = 9
mod m or z = y-i2 mod m.
Suppose that the sizes of T-Z and S -Z
differ by d. Then. B chooses d random elements
from the larger set, + ,..., ‘id and sends their

respective r,,, . . . , rid to A. (i.e l, =$ or
I

ft,=y*ri, mod m for some 1 5 i, < 2t1).

B sets X =T-2 -(II, l . . , I,,, and

Y=S-z-(f,, ,..., f$,*

Ifx=rJ modm,Blets:

X’ = {ro’r, = Jzmod n 1 f,EX }
Y’ = fy*roq = JY*x*~, mod n 1 Ii EY }.

else if x =y.ri mod m, B Us:

f: f gsros4 = ~/y-x-f, mod n 1 I,EX 3
-ro-rl = JF& mod n 1 f,EY 3

B then sends the elements in X’U Y’ to A in
random order.

step 4:
A checks that X’U Y’ is of the form specified
in step 3 (i.e for all wEX’U Y’, ti=f,x mod m
or w2=f,-x-y mod m for some Ii EX U Y) and

that IX’U Y’J > f. If this is not the case, A

halts detecting cheating. Otherwise, A sends B
the value v =Q,,(x).

Step 5:
If v#C, then B halts detecting cheating, other-
wise iteration =iferafion + 1 (this is the end of
an iteration).
If ilerafiorl 2 n, then B accepts b,m)EL, oth-
erwise B goes back to step 1.

Let us first prove that (A,B) constitutes an interactive
proof-system for L.

Remark 2: Note that if A,B both operate
according to specification, then each iteration of the

program will be completed with probability > l-f

for 0 < c 5: 1.

The following claims l&2 hold for each com-
plctcd iteration.

Claim 1: If (y .nr) is not in L, then A (or any other
A ’) correctly gucsscd C, (i.e sends v=C,), with

1 probability exactly T.

proof: The proof folIows from the fact that C, =0

with probability exactly t and that even with infinite

computation power A’ can’t distinguish between a
computation with B in which C, =0 from one in
which C, =l. The latter can be seen as follows.

Suppose C,‘=O.

Then, in step 3 for all r, EX, A receives
ror, =dG = d m mod m. Note that
q =1,*x mod 1~ is a random square, (as f, is)
and ror, is a random square root of e, mod m.

for all w, A receives
dym mod VI. Note that

f, =y+x =y2*r$x mod m is a random square,
(as r,2 is) and y$ro-r, is a random square root of
f, mod m.

Suppose C, = 1.

Then, in step 3, for a11 f, EX, A receives
y-rO-rt=dy.f;x =dy’r:rl mod m. Note that
Zi =y-f,.x mod 1~ is a random square, (as both
y and f, arc now squares and r, is a random
square) and y~,r, is a random square root of 2,
mod m.

for all f, E Y, A receives y-to-r, = d z mod m,
Note that f, =I,.x =y’-$.ri mod m is a random
square, [as r: is) and y-roar, is a random square
root of j, mod m.

Thus, for both C, =0 and C, =1 A will still receive
random square roots of random squares. Therefore A
can’t have any advantage in predicting C,.

Claim 2: If (y,,n) in L, then A correctly computed C,
in step 4.

Theorem 1: (A.B) is an interactive proof-system for L.

Proof: For every (y .nr)E L given as input to (A,B), B
hahs and accepts with probability greater than

(1 - f) for all constants 0 < c 5 1 and sufficiently

large n . This follows by claim 2. For any machine A ’
and for any ~,TH) not in L, given as input to (A ‘J),

B accepts with probability at most f by claim 1 and

remark 3.

We now proceed to show that L has knowledge
complexity 0.

293

Theorem 2: L has knowledge complexity 0.

Proof: To show that (A .R) constitutes a 0 knowledge
proof-system for L, we must show that for each
polynomial-time ITM B’. thcrc exists a probabilistic
polynomial-time Turing Machine M, such that the two
enscml&s 1!!1] and (A , B ‘)I] are indistinguishable.
The basic idea is that Ai can easily simulate B’, as B’
runs in polynomial time. On the other hand, M will
succeed in simulating A, by running B’ twice with the
same coin tosses.

A more precise description of M is the following: On
input (~~.rn)cL, M randomly fills the random tape of
B’ with a sufficiently long string R, and makes B’
perform “its own version” of step 1. (B’ may in fact
execute a different algorithm than. R during step 1.)
Simulating A in step 2 is easy for M, as all A does
here is picking a random subset. Next, M makes 8’
perform its own version of step 3. Now, M must
simulate A in step 4. Notice that it is easy to check
whether A will halt in step 4. ‘Thcrcfore it will be
easy for M to simulate A in a computation with B’ in
which A halts in step 4. Difficulti:es arise if A won’t
halt but continue, This implies that A, must compute
Q,,,(x) correctly as A does. This is easy to do for A
who has enough power to decide the quadratic resi-
duosity of X. Notice that this would also be easy for
AI if B’, either generated x by squaring mod m an ro
that A! may observe (in which case M knows that
Q,(x)=O), or if B’ generated x bly squaring mod R
an r. and multiplying by y (in which case M knows
that Q,(x)=l). However, life may be not so easy.
B’ might have generated x in some other way (e.g.
at random) which would make it h.ard for M to com-
pute Q,,,(X). We overcome this difficulty as follows.

BY CI.C~.C~,... we denote fixed, positive constants
depending on A and B’. Without. loss of generality,
we may assume that on input @,tn), A will halt in

step 4 with probability less than 1 -- -. ’ (Otherwise
p*

by simulating A and B’ for steps 1.,2 and 3. as above,
and having A halt in step 4. WC triv.ially gcncrate com-
putations which arc indistinguishable from

(A 9mJJ,mll.

At the end of step 3, Al saves all messages sent so far

by B’ and the “virtual” A. M now runs B’ again with
the same input (y,m) and the same content R in the
random tape of R ‘, For this second compuation, M
simulates A anew. by flipping new coins. Four things
will happen in this second computation.

1)

2)

3)

4)

M

B ’ sends in step 1 the same sets 5’ and T, as in
its first computation.

In step 2, A will select a random subset
iC_TUS. With probability greater than

1-L
2czn ’

Z#Z (where Z denotes the set

chosen in the first computation).

In step 3, B sends the sets k and p. (The
respcctivc sets in the first compuation were X’

and Y ‘). With probability > 1 - 4, 2 and y
23

are of the right form (i.e could not cause the
legal A to halt).

With probability > 1 - 4, 2*:x’ and

h Y’.
24

now sclccts an element r,E(T - X’)n,$* As

I,ET-X’, in the first computation B’ sent its
corresponding ri. As r, Ef . in the second computa-
tion B’ sends 4 x!, mod m or J xr,V mod In. Now,
in whatever case, it is just a matter of algebra for M
to easily compute r. such that ri =x mod m or
ri-y=x mod tn. If O),m)EL, exactly one of,these
casts may occur. Therefore M, having computed rh
can simulate A by sending a v = Q&).

QED

5. A parenthetical section.
Remark 3: A stronger way of saying that A

communicates at most f(rl) bits of knowledge with
respect to polynomial-time computation, is the foklow-
ing.

For all ITM B’ there exist a polynomial-time
ITM Al that by interacting with B’ (but also
reading the random tape of B’!) produces an

ensemble at most (l- &)-distinguishable from

(A .B’)H.

This notion is stronger as it allows B’ not to bc bound
to polynomial-time computation while A needs not to
know what the computing power of B’ is. Full details
will be given in the final paper. Intcrcstingly. the
interactive proof-system for quadratic non-rcsiduosity
of section 4.2 rcleascs 0 additional knowledge even
with respect to this stronger definition.

An informal dcfinitiow One advantage of the
point of view of Remark 3 is that it allows one to
express in a clean way notions like “the polynomial-
time machine B knew x at some point of its computa-
tion”. Let us consider a particular example. Assume
that machine B started computing on input k and
outputs a k-bit integer M. B may have randomly
selected two primes p1 and pz, multiplied them
together to produce m, then “erased” pl and p2 and
output ~1. What could one mean by saying that B
knew the factorization of m? A natural choice is that
B is able to compute it. In a narrow scnsc, this may
mean that, in performing next instruction, B will out-
put 01’s factorization or that it was written, say, at the
beginning of B’s work-tape at some point in time. In
a broader sense it may mean that if a probabilistic
polynomial-time machine A4 “monitors” the sequence
of istantaneous descriptions of B’s computation, then
M outputs nt’s factorization with very high probabil-
ity in poly(k) time. This, however, may not be gen-
eral enough. In fact, “extracting” N’S factorization
may not be easy for M, and still B had enough
“potential” to efficiently compute it (though B’s pro-
gram may never explicitly do so). WC believe that the
following (informal) definition achieves the right level
of generality. Let M be a probabilistic polynomial-
time machine that monitors B’s computation from the
start till it outputs m. In particular, M reads all the
inputs (random and not) of B and all its outputs.
Informally we say that B knew m ‘sfic~orizu~iurr if M
can now USC B to compute M’S factorization. This
use of B may bc very general. For example. M may
run R more than once after altering the content of its
tapes. An example of this is imphcit in section 4.2.
Full details will be given in the final paper.

6. Applications to Cryptographic Protocols
Given our current state of knowledge about

lower bounds, the security of a cryptographic protocol
must bc proved based on the intractability assumption
of some candidate hard problem. lln~s one must
accept that further analysis may reveal some candi-
date hard problems to be efficiently solvable. What
is not acceptable is that a protocol may be broken
without violating the rclativc intractability assumntion.

In traditional computational complexity or com-
munication complexity, the goal is to communicate as
much knowledge as possible as. efficiently as possible.
Since all participants arc considcrcd good friends, no
one carts if more knowlcdgc than ncccssary is com-
municatcd. The situation with respect to cryptographic
protocols is very different. In this cast there is gen-
erally no problem at all communicating the
knowlcdgc efficiently, but the whole problem is mak-
ing sure not too ntuch knowledge has been communi-
cated.

Model theoretic knowledge has been used to
analyze protocols. For example, in [HR] it has been
used co prove Rabin’s “Oblivious Transfer” correct In
some setting. Howcvcr. as pointed out in [FMR],
Rabin’s oblivious transfer still lacks a proof of correct-
ness in a complexity theoretic framework.

We believe that knowledge complexity provides
the right framework to discuss the correctness of
crytographic protocols. Applying rhcsc ideas, [FMR]
modified Rabin’s oblivious transfer so that it can be
proved correct. A sketch of this can be found in sec-
tion 6.1.

Knowledge complexity helps in proving or
disproving the correctness of cryptographic protocols
as thcsc arc based on the secrecy of some private
information and should prcscrve this secrecy. The
privacy of some information is what gives us an
advantage over our advcrsarics. Let A(licc) possess
the prime factorization of an integer n (say n =pi*p2),
while B(ob) only knows tr. During a protocol with
B, A must protect the privacy of her information.
Assume that A can perform each step of the protocol
without having even to look at the value of pi and pz.

Then it is easy to show that the protocol did not

331

compromise the privacy of n s factorization. It Is also
easy to see, however, that the protlocol could not have
accomplished any interesting task. In fact A has not
made use of her “advantage”! The protocol may
accomplish a non-trivial task if, in at lcast one step of
it, A performs a computation c that depends on p1

and p2. This raises the question:

Will c(p,,pJ betray to much informorion about p1

and pz?

Classical information theory does not provide an
answer to this question. Knowledlge complexity can.
In particular,

1) We can quantify the amount of knowledge
about p1 and p2 that c conveys and

2) We can design protocols so to minimize this
amount of knowledge.

If (A .B) is a 0 knowledge interactive proof-system for
L, we already saw that, on input ;I EL, A gives B at
most one bit of knowledge, namely xEL. (That is 0
additional knowledge). More generally however, we
define an upper bound, measured in bits, on the
amount of knowlcdgc A gives to B in a particular pro-
tocol (to appear in the final paper).

We use this to give an upper bound on the
number of times a single protocol or a combination of
protocols can be played, using a common secret key,
without giving away too much information about the
secret key. In addition, trying to measure the amount
of knowledge revealed during the cxccution of a pro-
tocol about the sccrct, may pin point weaknesses in
the design of the protocol. For example the amount
of knowledge revealed in a protocol of [BDJ appeared
to be unreasonably large. Further analysis by [H]
showed that this protocol could be broken if the
encryption function used in the protocol is RSA with
low exponents or Rabin’s function.

A most important application of these ideas is
that it allows us to prove corrcctncss of protocols in a
modular way. Complex protocols are usually com-
posed of sub-protocols. For instance, many protocols
use a sub-protocol for “coin tossing over a tclcphone”
(Rlum [Ml]). However, it is not clear how to use a
“normal” definition of correctness of “coin tossing” to

prove the correctness of me main protocd In general,
it appears that much strungcr definitions for t&se
sub-protocols are ncedcd in order to fit them modur
larly and cleanly inside larger protocols. Full details
will be given in the final paper.

6.1 A Modific~~iun of the 4IbM~us Trw&x
That Its Provably Equivalent to Facto&g

This section is joint work of IFMR]. The notion
of an Oblivious Transfer (OT) has been introduced by
Rabin [HR] who also proposed the first protocol
implementing it. OT appears useful as a design tool.
See for example Blum [B12] and Even Goldreich and
Lempel [EGL]. Rabin introduced OT (to be described
below) in a number theoretic setting. Mom generally
tbc OT can bc vicwcd as a protocol for transfer* a
large amounf of knowledge with probability 112 [EGL].
Bcrgcr. Peralta and Tedrick [RPlJ present a correct
protocol for “obliviously transferring” a random
number. Different from OT, this protocol transfers
no knowledge.

The notion of an OT involves two parties A and
B and an integer n (product of two large distinct
primes) whose factorization is only known to A. A
would like to send the factorization of n to B with
the following constraints:

1) 13 must have 50% chance of receiving the factor-
ization of n and the other half of the time B
should not know any information at all about
the factors of n.

2) A should not have any idea whether or not B
received the factorization of n.

Rabin’s protocol relies on the computational difficulty
of factoring. However, as described below, there is a
potential flow in his protocol: it is possible that B can
cheat and factor n with probability much higher than
l/2 even if the intractability assumption of factoring
holds. Although we cannot prove that B can really
cheat, no one has yet been able to prove that B can

not. Before proceeding any further, let us desc&
Rabin’s proposed protocol. We assume that A and B
both know n and that A knows its factorization.

Step 1: B chooses a random x, 1 < x 5 n , relatively
prime with 11. Then B computes y=x’ mod n and
sends y to A.

Step 2: A computes a random square root (mod n) z

of y and sends z to B. (If no square root exists, A
does nothing).

Step 3: B checks that z’=y mod n. (If not, B halts
detecting cheating). Let us assume that z*ry mod n.
It is well known that y has four square roots mod n
that can be written as {x,-x,w,-w}, where B
knows x. With probability 50% z will be x or -x
and B reccivcs no knowledge With probability 50%.
however, z will be w or -w, in which case
gccd(n ,x + z) will be a factor of II, allowing B to com-
pute the factorization of n.

Party A cannot cheat by sending back some
cleverly chosen square root z of of n: no matter
what n dots, zE(x, -x) with probability 50% and
zE(w, - w) witn probability again 50% and A cannot
know which is the case.

Is it clear, however, that B cannot cheat? We
wish it to be the case that at the end of the protocol
B cannot factor with probability (much) bigger than
l/2, even if B cheats, and we wish to prove this
assuming only that factoring is hard. What happens if
B does not square any x at a!!, but instead picks a
particular cleverly chosen square mod n y to send?
Perhaps knowing any square root mod tr of y will
allow fl to factor n. That is, perhaps there is a poly-
nomial time algorithm that given n produces a “spe-
cial” square mod n y, and another polynomial time
algorithm that given y,n and any square root of J
mod 11 factors n. The point is not that WC have such
algorithms, but that no one has proved that the
existence of such algorithms contradicts the assump-
tion that factoring is hard. Hence, the proof that
Rabin’s protocol is correct relies not only on the
assumption that factoring is hard, but on an additional
complicated and unnatural assumption, essentiaHy that
the above algorithms do not exist.

We have been able to prove that a modified
version of Rabin’s OT is correct. Le. the probability
(taken over the possible choices of n and a!! possible
random choices of B) that B can factor n in k steps

at the end of the protocol, equals l/2 + the probabil-
ity that B can factor 11 in k steps before the protocol
starts. The heart of the modified protocol is that in
addition to y, B gives A a minimum knowledge
interactive proof that he possesses a square root of y
following’ the ideas in section 4.2. In particular, such
interactive proof will not reveal any information
about which square root B knows. Now that we have
made sure that B knows one square root of y. when
A will give him one of them at random, it is easy to
prove that B’s probability of factoring n at the end of
the protocol equals l/2 + the probability that he had
of factoring n before the start of the protocol.

7, Open Problems

Many open problems arise. We only list a few
of them.

1. Is NP strictly contained in IP?

2. Is KC(O) contained in NP?

3. Is KC(O) contained in IP[l]?

4. Is Ip[k J strictly contained in IP[k + l]?

5. Are there NP Complete languages in KC(Q(lr))?

6. For what time-bound T(n). if any,
I&a, c IPT(J

Acknowledegements

Mike Sipser greately helped in focusing on this
problem.

We highly bcnefitcd from the encouragement
and the ideas of Dena Angluin, Manuel Blum, Steve
Cook, Mike Fischer, Odcd Goldreich. Ravi Kannan,
Dick Karp. David Lichtcnstcin, Albert Meyer, Gary
Miller, Ron Rivcst and Paul Weiss.

To all our most sincere thanks.

References

[B] Babai L., Trading Group Theov for Randomness

[Bll] M. Blum, Coin flipping by relephone, IEEE
COMPCON 1982.

[BlZ] M. Blum. Three uppkuriom of rhe oblivious
fransfer, Unpublished manuscript, 1981

303

[BPT]Berger, Pcralta, Tedrick, Ow Jxing rhe Oblivious
I ‘rurzsfer, Presented in Eurocrypt 1983. These
Proceedings

[C] SCook, The Complexity of Theorem-Proving
Procedures’: Proc. of 3rd STOC, 1971.

[DB] D. Dolev, A. Broder, Flipping Coins in Many
Pockets, Proc. of 25th FOCS, 1984.

[EGL]Even, Goldrcich Lempel, A randomized profocol
for Signirlg Co~fmcrs, Advances in Cryptology:
proceedings of Crypt0 1982, Plenum press, 1983,
205210.

Complexily, 14th STOC, 1982.

Iy] AC. Yao, Sonoe Co&exify (&&ions iM&# to
DisMbutive Computing Froc. of 11th STOC,
1979.

M AC. - Yao, They and ApglicaGorrs of Trapboor
Funcrions, Proc. of 23rd FOCS, 1982.

[FHV]R. Fagin, J. Halpem, M. Vardi, A model-
thcorctic analysis .of knowhzdge, Proc, df 25th
FOCS, 1984.

[FMR]M. Fischer, S. Micali and C, Rackoff, A Secure
Protocol for rhe Oblivious Transfer, Eurocrypt
1984.

[HM] J. Halpern, Y. Moses, Knowledge gnnd Common
Knowledge in a Dislributed Knvironmenf, Proc. of
3rd PODC, 1984.

[H] J. Hastad, On Solving A System of Simulkzrteous
Alodtilar Polynomial Equations of Low Degree
In preparation.

[HR] J. Halpcrn and M.O. Rabin, A Logic 10 reason
aboul likehood, Proc. of 15th. STOC. 1983.

[HS] J. Hastad, A. Shamir, On fhe Security of
Linearly Truncated Sequences, this proceedings.

[GM] S. Goldwasser, and S. IMicali, Probabilistic
Encryprion, JCSS Vol. 28. No. 2. April 1984.

[GM]S. Goldwasser, and S. Mlcali ,Proofi with
Unrntsred Oracles, Unpublished Manuscript
1983.

[GGMIO. Goldreich, S. Goldwasser, and S. Micali,
How to Consirucl Random Funclion, 25th FOCS,
1984.

[L] L.A.I.cvin, Universal Sequen,rial Search Problems,
Probl. Inform. Transm. 9/3 (1973), pp. 26,5-266.

[p] C. Papadimitriou, Games against nature, Proc.
24th ann. Symp. on Foundations of Computer
Sciende, 1983, pp 446-450.

IpS] Papadi&iou and Sipse:r, Communication

304

