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We consider a Bayesian ranking and selection problem with independent normal rewards and

a correlated multivariate normal belief on the mean values of these rewards. Because this

formulation of the ranking and selection problem models dependence between alternatives’

mean values, algorithms may utilize this dependence to perform efficiently even when the

number of alternatives is very large. We propose a fully sequential sampling policy called

the knowledge-gradient policy, which is provably optimal in some special cases and has

bounded suboptimality in all others. We then demonstrate how this policy may be applied

to efficiently maximize a continuous function on a continuous domain while constrained to

a fixed number of noisy measurements.
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1. Introduction

Consider the following problem: we are confronted with a collection of alternatives, and

asked to choose one from among them. It may be convenient to think of these alternatives

as possible configurations of an assembly line, different temperature settings for a chemical

production process, or different drugs for treating a disease. The chosen alternative will

return a reward according to its merit, but these rewards are unknown and so it is unclear

which alternative to choose. Before choosing, however, we have the opportunity to measure

some of the alternatives. As measurements have a cost, we are only allowed a limited number,

and our strategy should allocate these measurements across the alternatives in such a way as

to maximize the information gained and the reward obtained. Measurements are typically

noisy, and so a single alternative may merit more than one measurement. This problem is

known as the ranking and selection (R&S) problem.

1



The R&S problem is ubiquitous in application. Consider the following short list of

examples chosen from the long list that could be enumerated:

• We wish to choose the dosage level for a drug with the median aggregate response in

patients. This dosage level is desirable because it achieves the positive effect of the

drug while minimizing side effects. Similarly, we might wish to find the dosage level

maximizing some utility function which is increasing in positive drug response and

decreasing in negative drug response. The set of dosage levels from which to choose

is finite because only finitely many amounts of a drug can be easily distributed and

administered to patients.

• We wish to select the fastest path through a network subject to traffic delays by

sampling travel times through it. This network might be a data network through

which we would like to transmit packets of data, or a network of roads through which

we would like to route vehicles.

• In the early stages of drug discovery, pharmaceutical companies often perform robot-

ically automated tests in which chemical compounds are screened for effectiveness

against a particular disease. These tests, in which surviving diseased and non-diseased

cells are counted after exposure to a compound, are performed on a large number of

chemical compounds from which a small number of candidates will be selected.

• We wish to measure heat or pollution at discrete points in a continuous medium to

ascertain which of the finitely many discrete locations have the highest levels.

Common to these examples is the characteristic of dependence, by which we mean that

when we measure one alternative, we learn something about the others. In the drug dosage

example, drug response is generally increasing in dosage. In the network example, each

congested link slows travel times along all paths that share it. In the drug development

example, chemically related compounds often have similar effects. In the pollution example,

pollution levels at nearby locations are correlated. In this article, we introduce a fully

sequential sampling technique called the correlated knowledge-gradient (KG) policy which

takes advantage of this dependence in the prior belief to improve sampling efficiency.

While each of the examples has correlation in the belief, we will assume that any mea-

surement errors are independent. This may require additional assumptions in some of the
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examples. For example, in the continuous medium and network path examples, we assume

that measurements are taken sufficiently far apart from each other in time that measurement

noise can be assumed independent. In the drug discovery example, we assume that there

are no confounding factors like a time-varying laboratory temperature that would induce

correlated measurement noise.

The R&S and experimental design literature has devoted the most attention to our prob-

lem class (see Bechhofer et al. (1995) for a comprehensive treatment of R&S, and Fu (2002);

Swisher et al. (2003) for a review of R&S within the simulation community). Within this

literature, the techniques that most successfully exploit dependence are variance-reduction

techniques for simulation (Law and Kelton, 2000), which include control variates (Nelson and

Staum, 2006) and common random numbers (Kim and Nelson, 2001). While both variance-

reduction techniques and the correlated KG policy we describe here exploit dependence to

improve efficiency, the dependencies they exploit are different in kind. Variance-reduction

techniques use dependence in the noise, while we use dependence between the true values

of different alternatives under a Bayesian prior. Many applications admit one form of de-

pendence without admitting the other. Other applications admit both, and although it is

possible to exploit them both simultaneously, we do not treat that case here.

The use of a Bayesian framework for R&S is well-established, beginning with Raiffa and

Schlaifer (1968), who consider deterministic designs for maximizing the expected value of the

chosen alternative under an independent normally distributed prior. Several approximate

sequential and two-stage policies exist for maximizing a quality measure applied to the chosen

alternative, beginning with Gupta and Miescke (1996) and continuing with two distinct

families of policies: the Optimal Computing Budget Allocation (OCBA) (Chen et al., 1996,

2000; He et al., 2007), and Value of Information Procedures (VIP) (Chick and Inoue, 2001b;

Chick et al., 2007). Computational experiments (Inoue et al., 1999; Branke et al., 2007)

and theoretical results (Frazier et al., 2008) demonstrate that these policies perform very

well, and their sequential nature allows them to achieve even greater efficiency than could a

deterministic or two-staged policy (Chen et al., 2006).

While OCBA- and VIP-based policies for exploiting common random numbers have also

been introduced in Chick and Inoue (2001a) and Fu et al. (2007), to our knowledge no work

has been done within the R&S literature to exploit the dependence inherent in our prior

belief about the values of related alternatives. For example, in the drug discovery example

described above, we believe that similar chemicals are likely to have similar effects. Our
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prior should embody this belief.

Contrasting their rarity within R&S, correlated Bayesian priors have appeared frequently

within Bayesian global optimization, modeling belief in the similarity of continuous functions

at nearby points. Bayesian global optimization, which began with Kushner (1964) and was

recently reviewed in Sasena (2002) and Kleijnen (2009), uses a Gaussian process prior to

model belief about an unknown function, and then chooses experiments to most efficiently

optimize that function. Algorithms often evaluate the desirability of potential measurements

via a one-step Bayesian analysis, and then choose to perform a measurement whose desirabil-

ity is maximal, or nearly maximal. We will employ a similar approach, but for the general

class of multivariate normal priors on a finite number of alternatives.

In this article, we adopt a theoretical framework and one-step analysis introduced for a

one-dimensional continuous domain with Wiener process prior by Mockus (1972) (see Mockus

et al. (1978) for a description in English), and for the finite domain discrete independent

normal means case by Gupta and Miescke (1996). The independent normal means case was

analyzed further by Frazier et al. (2008), and extended to the unknown variance case by

Chick et al. (2007). In the one-step analysis used, one computes the sampling decision that

would be optimal if one were allowed to take only one additional sample, and then samples

according to this decision in general. We call this the “knowledge-gradient” approach, and

the resulting sampling policy the “knowledge-gradient policy”. The resulting policy has also

been called a Bayes one-step policy by Mockus et al. (1978), and a myopic policy by Chick

et al. (2007).

Such policies operate by greedily acquiring as much information as possible with each

measurement, and they work well to the extent to which this greed does not interfere with

information acquisition over longer timescales. One may also compare KG policies for R&S

to coordinate ascent methods for optimization, since KG policies choose the measurement

that would be best under the assumption that no other alternatives will be measured, and

coordinate optimization methods optimize each coordinate under the assumption that no

other coordinates will be optimized. Both KG and coordinate optimization methods work

well when the immediate benefits realized by their decisions are in harmony with long-

term progress. While the KG approach does not work well in all information collection

problems, and should be applied with care (see Chen et al. (2006) for a perfect information

R&S problem for which a myopic policy required modification to perform well), it has been

successfully applied to at least two other R&S problems (Frazier et al. (2008); Frazier and
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Powell (2008)), and promises to produce a class of principled yet flexible algorithms for

information collection.

While previous knowledge-gradient, Bayes one-step, and myopic approaches assumed ei-

ther an independent normal or one-dimensional Wiener process prior on the alternatives’

true means, we assume a general multivariate normal prior on a finite number of alterna-

tives. Different statistical models and priors lead to different KG policies, and although the

theoretical foundations leading to this KG policy and its progenitors are similar, the resulting

policies are quite different. In comparison with the independent policies, the correlated KG

policy is more computationally intensive, requiring O(M2 log(M)) computations to reach

a sampling decision where M is the number of alternatives, while the independent policy

requires only O(M), but the correlated KG policy often requires dramatically fewer samples

to achieve the same level of accuracy. In comparison with the one-dimensional Wiener pro-

cess prior policy of Mockus (1972), the correlated KG policy is also more computationally

intensive, but can handle more general finite alternative correlation structure, including but

not limited to other kinds of one- and multi-dimensional discretized correlation structure.

We begin our discussion of the KG policy in detail in Section 2 by making explicit the

correlated prior and associated model, and then, in Section 3, computing the KG policy that

results from this prior. We then generalize to the correlated normal case three theoretical

results that were first shown for the independent normal case in Frazier et al. (2008): the

KG policy is optimal by construction when there is only one measurement left to make; the

KG policy is convergent, in the sense that it always eventually discovers the best alterna-

tive if allowed enough measurements; and the suboptimality of the KG policy is bounded

in the finite sample case. Finally, in Section 4, we apply the correlated KG policy to the

maximization of a random function in noisy and noise-free environments, which is a prob-

lem previously considered by the Bayesian global optimization literature. We compare the

correlated KG policy to two recent Bayesian global optimization methods, Efficient Global

Optimization, or EGO (Jones et al., 1998), for use in the noise-free case, and Sequential

Kriging Optimization, or SKO, (Huang et al., 2006), for use in the noisy case. We show that

KG performs as well or better than the other methods in almost every situation tested, with

a small improvement detected in the noise-free (EGO) case, and larger improvements seen

in the noisy (SKO) case.
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2. Model

Suppose that we have a collection of M distinct alternatives, and that samples from alterna-

tive i are normally and independently distributed with unknown mean θi and known variance

λi. We will write θ to indicate the column vector (θ1, . . . , θM)′. We will further assume, in

accordance with our Bayesian approach, that our belief about θ is distributed according to a

multivariate normal prior with mean vector µ0 and positive semi-definite covariance matrix

Σ0,

θ ∼ N
(
µ0, Σ0

)
. (1)

Consider a sequence of N sampling decisions, x0,x1,. . . ,xN−1. The measurement decision

xn selects an alternative to sample at time n from the set {1, . . . ,M}. The measurement error

εn+1 ∼ N (0, λxn) is independent conditionally on xn, and the resulting sample observation

is ŷn+1 = θxn + εn+1. Conditioned on θ and xn, the sample has conditional distribution

ŷn+1 ∼ N (θxn , λxn). Note that our assumption that the errors ε1, . . . , εN are independent

differentiates our model from one that would be used for common random numbers. Instead,

we introduce correlation by allowing a non-diagonal covariance matrix Σ0.

We may think of θ as having been chosen randomly at the initial time 0, unknown to

the experimenter but according to the prior distribution (1), and then fixed for the duration

of the sampling sequence. Through sampling, the experimenter is given the opportunity to

better learn what value θ has taken.

We define a filtration (Fn) wherein Fn is the sigma-algebra generated by the samples

observed by time n and the identities of their originating alternatives. That is, Fn is the

sigma-algebra generated by x0, ŷ1, x1, ŷ2, . . . , xn−1, ŷn. We write En to indicate E[· | Fn],

the conditional expectation taken with respect to Fn, and then define µn := En [θ] and

Σn := Cov [θ | Fn]. Conditionally on Fn, our posterior predictive belief for θ is multivariate

normal with mean vector µn and covariance matrix Σn. Further discussion of the way in

which µn and Σn are obtained as functions of µn−1, Σn−1, ŷn, and xn−1 is left until Section 2.1.

Intuitively we view the learning that occurs from sampling as a narrowing of the condi-

tional predictive distribution N (µn, Σn) for θ, and as the tendency of µn, the center of the

predictive distribution for θ, to move toward θ as n increases. In fact we will later see that,

subject to certain conditions, µn converges to θ almost surely as n increases to infinity.

After exhausting the allotment of N opportunities to sample, we will suppose that the

experimenter will be asked to choose one of the alternatives 1, . . . ,M and given a reward
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equal to the true mean θi∗ of the chosen alternative i∗. We assume an experimenter who

desires maximizing expected reward, and such a risk-neutral decision-maker will choose the

alternative with largest expected value according to the posterior predictive distribution

θ ∼ N (µN , ΣN). That is, the experimenter will choose an alternative from the set arg maxi µ
N
i ,

attaining a corresponding conditional expected reward maxi µN
i . Note that a risk-averse ex-

perimenter would penalize variance and might make a different choice. We do not consider

risk-aversion here.

We assume that the experimenter controls the experimental design, that is, the choice of

measurement decisions x0, x1, . . . , xN−1. We allow the experimenter to make these decisions

sequentially, in that xn is allowed to depend upon samples observed by time n. We write this

requirement as xn ∈ Fn. Note that we have chosen our indexing so that random variables

measurable with respect to the filtration at time n are indexed by an n in the superscript.

We define Π to be the set of experimental designs, or measurement policies, satisfying

our sequential requirement. That is, Π :=
{
(x0, . . . , xN−1) : xn ∈ Fn

}
. We will often write

π = (x0, . . . , xN−1) to be a generic element of Π, and we will write Eπ to indicate the

expectation taken when the measurement policy is fixed to π. The goal of our experimenter

is to choose a measurement policy maximizing expected reward, and this can be written as

sup
π∈Π

Eπ
[
max

i
µN

i

]
. (2)

2.1. Updating equations

Since the prior on θ is multivariate normal and all samples are normally distributed, each of

the posteriors on θ will be multivariate normal as well. After each sample is observed, we

may obtain a posterior distribution on θ as a function of xn, ŷn+1, and the prior distribution

specified by µn and Σn. The posterior distribution is specified by µn+1 and Σn+1, so to

understand the relationship between the posterior and the prior it is enough to write µn+1

and Σn+1 as functions of xn, ŷn+1, µn and Σn.

Temporarily supposing that our covariance matrix Σn is non-singular, we may use Bayes’

law and complete the square (see, e.g., Gelman et al. (2004)) to write

µn+1 = Σn+1
(
(Σn)−1µn + (λxn)−1ŷn+1exn

)
, (3)

Σn+1 = ((Σn)−1 + (λxn)−1exn(exn)′)−1, (4)
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where ex is a column M -vector of 0s with a single 1 at index x, and ′ indicates matrix-

transposition. Note that the new mean is found by a weighted sum of the prior mean and

the measurement value, where the weighting is done according to the inverse variance. Also

note that Σn+1 is measurable with respect to Fn rather than merely Fn+1.

We may rewrite the formula (4) using the Sherman-Woodbury matrix identity (see, e.g.,

Golub and Loan (1996)) to obtain a recursion for Σn+1 that does not require matrix inversion.

We can then substitute this new expression for Σn+1 into (3) to obtain a new recursion for

µn+1 as well. Taking x = xn temporarily to simplify subscripts, the recursions obtained are

µn+1 = µn +
ŷn+1 − µn

x

λx + Σn
xx

Σnex, (5)

Σn+1 = Σn − Σnexe′xΣ
n

λx + Σn
xx

. (6)

The formulas (5) and (6) hold even when Σn is positive semi-definite and not necessarily

invertible, even though the formulas (3) and (4) hold only when Σn is positive-definite.

We will now obtain a third version of the updating equation for µn+1 which will be useful

later when considering the pair (µn, Σn) as a stochastic process in a dynamic-programming

context. Toward this end, let us define a vector-valued function σ̃ as

σ̃(Σ, x) :=
Σex√

λx + Σxx

. (7)

We will later write σ̃i(Σ, x) to indicate the component e′iσ̃(Σ, x) of the vector σ̃(Σ, x).

By noting that Var [ŷn+1 − µn | Fn] = Var [θxn + εn+1 | Fn] = λxn + Σn
xnxn , and defining

random variables (Zn)N
n=1 by Zn+1 := (ŷn+1−µn)/

√
Var [ŷn+1 − µn | Fn], we can rewrite (5)

as

µn+1 = µn + σ̃(Σn, xn)Zn+1. (8)

The random variable Zn+1 is standard normal when conditioned on Fn, and so we can view

(µn+1) as a stochastic process with Gaussian increments given by (8). This implies that,

conditioned on Fn, µn+1 is a Gaussian random vector with mean vector µn and covariance

matrix σ̃(Σn, xn)(σ̃(Σn, xn))′. The expression (8) will be useful when computing conditional

expectations of functions of µn+1 conditioned on Fn because it will allow computing these

expectations in terms of the normal distribution.

We conclude this discussion by noting that the update (6) for Σn+1 may also be rewritten

in terms of σ̃ by

Σn+1 = Σn − σ̃(Σn, xn)(σ̃(Σn, xn))′ = Σn − Cov
[
µn+1 | Fn

]
.
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This expression may be interpreted by thinking of the covariance matrix Σn as representing

our “uncertainty” about θ at time n. The measurement xn and its result ŷn+1 removes some

of this uncertainty, and in doing so alters our point estimate of θ from µn to µn+1. The

quantity of uncertainty removed from Σn, which the expression shows is Cov [µn+1 | Fn], is

equal to the amount of uncertainty added to µn.

2.2. Dynamic programming formulation

We will analyze this R&S problem within a dynamic programming framework. We begin by

defining our state space. As a multivariate random variable, the distribution of θ under our

belief at any point in time n is completely described by its mean vector µn and its covariance

matrix Σn. Thus we define our state space S to be the cross-product of RM , in which µn

takes its values, and the space of positive semidefinite matrices, in which Σn takes its values.

We also define the random variable Sn := (µn, Σn), and call it our state at time n.

We now define a sequence of value functions (V n)n, one for each time n. We define

V n : S %→ R,

V n(s) := sup
π∈Π

Eπ
[
max

i
µN

i | Sn = s
]

for every s ∈ S.

The terminal value function V N may be computed directly from this definition by noting that

maxi µN
i is FN -measurable, and thus the expectation does not depend on π. The resulting

expression is

V N(s) = max
x∈{1...M}

µx for every s = (µ, Σ) ∈ S.

The dynamic programming principle tells us that the value function at any other time

0 ≤ n < N is given recursively by

V n(s) = max
x∈{1...M}

E
[
V n+1(Sn+1) | Sn = s, xn = x

]
, for every s ∈ S. (9)

We define the Q-factors, Qn : S× {1 . . . M} %→ R, as

Qn(s, x) := E
[
V n+1(Sn+1) | Sn = s, xn = x

]
, for every s ∈ S.

We may think of Qn(s, x) as giving the value of being in state s at time n, sampling from

alternative x, and then behaving optimally afterward. For a Markovian policy π, we denote

by Xπ,n : S %→ {1 . . . M} the function that satisfies Xπ,n(Sn) = xn almost surely under Pπ,

which is the probability measure induced by π, and call this function the decision function

for π. A policy is said to be stationary if there exists a single function Xπ : S %→ {1 . . . M}
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such that Xπ(Sn) = xn almost surely under Pπ. We define the value of a measurement policy

π ∈ Π as

V π,n(s) := Eπ
[
V N(SN) | Sn = s

]
, for every s ∈ S.

A policy π is said to be optimal if V n(s) = V π,n(s) for every s ∈ S and n ≤ N . The dynamic

programming principle tells us that any policy π∗ whose measurement decisions satisfy

Xπ∗,n(s) ∈ arg max
x∈{1...M}

Qn(s, x), for every s ∈ S, n < N , and x ∈ {1 . . . M}, (10)

is optimal.

In some cases, when discussing the effect of varying the number N of measurements

allowed, we make the dependence on N explicit by using the notation V 0( · ; N) to denote

the optimal value function at time 0 when the problem’s terminal time is N . Similarly,

V π,0( · ; N) denotes the value function of policy π at time 0 when the terminal time is N .

3. Knowledge gradient

We define the KG policy πKG to be the stationary policy that chooses its measurement

decisions according to

XKG(s) ∈ arg max
x

En

[
max

i
µn+1

i | Sn = s, xn = x
]
−max

i
µn

i (11)

with ties broken by choosing the alternative with the smallest index. Note that maxi µn
i is

the value that we would receive were we to stop immediately, and so (maxi µ
n+1
i )−(maxi µn

i )

is in some sense the incremental random value of the measurement made at time n. Thinking

of this incremental change as a gradient, we give the policy described the name “knowledge

gradient” because it maximizes the expectation of this gradient. This is the same general

form of the knowledge-gradient that appears in Frazier et al. (2008), and may be used

together with an independent normal prior to derive the (R1, . . . , R1) policy in Gupta and

Miescke (1996). It may also be used together with a Wiener process prior to derive the

one-step Bayes policy in Mockus et al. (1978).

Note that we write XKG rather than the more cumbersome XπKG
. We will also write

V KG,n rather than V πKG,n to indicate the value function for the KG policy at time n. We

immediately note the following remarks concerning the one-step optimality of this policy.

Remark 1. When N = 1, the KG policy satisfies condition (10) and is thus optimal.
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Remark 2. Consider any stationary policy π and suppose that it is optimal when N = 1.

Then its decision function Xπ must satisfy (10), and hence must also satisfy (11). The

policy π is then the same as the KG policy, except possibly in the way it breaks ties in (11).

In this sense, the KG policy is the only stationary myopically optimal policy.

The KG policy (11) was calculated in Gupta and Miescke (1996), and again more ex-

plicitly in Frazier et al. (2008), under the assumption that Σ0 is diagonal. In this case the

components of θ are independent under the prior, and under all subsequent posteriors. It

was shown that in this case,

XKG(Sn) ∈ arg max
x

σ̃x(Σ
n, x)f

(
− |µn

x −maxi%=x µn
i |

σ̃x(Σn, x)

)
if Σn is diagonal, (12)

where the function f is given by f(z) := ϕ(z) + zΦ(z), with ϕ as the normal probability

density function and Φ as the normal cumulative density function. Furthermore, if Σn is

diagonal then σ̃x(Σn, x) = Σn
xx/

√
λx + Σn

xx.

In general, one may model a problem with a correlated prior, i.e., one in which Σ0 is not

diagonal, but then adjust the model by removing all non-diagonal components, keeping only

diag(Σ0). This allows using the formula (12), which we will see is easier to compute than the

general case (11). We will also see, however, that the additional computational complexity

incurred by computing (11) for non-diagonal Σn is rewarded by increased per-measurement

efficiency.

3.1. Computation

We may use our knowledge of the multivariate normal distribution to compute an explicit

formula for the KG policy’s measurement decisions in the general case that Σn is not diagonal.

The definition of the KG policy, (11), may be rewritten as

XKG(Sn) = arg max
x

E
[
max

i
µn

i + σ̃i(Σ
n, xn)Zn+1 | Sn, xn = x

]
−max

i
µn

i

= arg max
x

h(µn, σ̃(Σn, x)) (13)

where h : RM × RM → R is defined by h(a, b) = E [maxi ai + biZ] −maxi ai, where a and b

are any deterministic vectors and Z is a one-dimensional standard normal random variable.

We will provide an algorithm for computing this function h as a generic function of any

vectors a and b. This will allow us to compute the KG policy at any time n by substituting
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µn for a and σ̃(Σn, x) for b with each possible choice of x ∈ {1, . . . ,M}, and then choosing

the x that makes h(µn, σ̃(Σn, x)) largest.

Consider the function h with generic vector arguments a and b, and note that h(a, b)

does not depend on the ordering of the components, so that h(ã, b̃) = h(a, b) where i and

j are two alternatives, ã is a but with the components ai and aj flipped, and b̃ is b but

with the components bi and bj flipped. Thus we may assume without loss of generality that

the alternatives are ordered so that b1 ≤ b2 ≤ . . . ≤ bM . Furthermore, if there are two

alternatives i, j with bi = bj and ai ≤ aj, h(a, b) will be unchanged if we remove alternative

i from both a and b. Thus we may assume without loss of generality that the ordering in b

is strict so b1 < b2 < . . . < bM . This ordering allows us to make several remarks concerning

the lines z %→ ai + biz, of which we have one for each i = 1, . . . ,M .

Remark 3. Let z < w be real numbers and i < j be elements of {1, . . . ,M}. Then, since

bj − bi > 0 we have

(ai + biw)− (aj + bjw) = (ai−aj)−w(bj− bi) < (ai−aj)−z(bj− bi) = (ai + biz)− (aj + bjz),

and thus, if ai + biz ≤ aj + bjz then ai + biw < aj + bjw.

This remark shows that the relative ordering of the lines z %→ ai + biz, i = 1, . . . ,M ,

changes in a particular fashion as z increases. Taking this line of thought further, let us

define a function g : R %→ {1, . . . ,M} by g(z) := max(arg maxi ai + biz). This function g

tells us which component i ∈ {1, . . . ,M} is maximal, in the sense that its corresponding line

ai + biz has the largest value of all the lines when evaluated at the particular point z ∈ R.

We break ties by choosing the largest index.

With this definition, if i is an element of {1, . . . ,M} and z < w are real numbers such

that i < g(z), then the component g(z) satisfies ai+biz ≤ ag(z)+bg(z)z, and Remark 3 implies

that ai + biw < ag(z) + bg(z)w. Thus, i )= g(w). Since this is true for any i < g(z), we have

shown that g(w) ≥ g(z), and thus g is a non-decreasing function. Additionally, g is obtained

by taking the maximum index in the argmax set, and so is itself right-continuous. Combining

these facts, that g is non-decreasing and right-continuous, we see that there must exist a

non-decreasing sequence (ci)M
i=0 of extended real numbers such that g(z) = i iff z ∈ [ci−1, ci).

Note that c0 = −∞ and cM = +∞.

Observe further that if an alternative i is such that ci = ci−1, then g(z) = i iff

z ∈ [ci−1, ci) = ∅ implies that g(z) can never equal i. Such an alternative is always less
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than or equal to another alternative, and we say that it is dominated. We define a set A

containing only the undominated alternatives, A := {i ∈ {1, . . . ,M} : ci > ci−1}. We will

call the set A the acceptance set.

One algorithm for computing the sequence (ci) and the set A is Algorithm 1, which

has computational complexity O(M). The algorithm may be understood as belonging to

the class of scan-line algorithms (see, e.g., Preparata and Shamos (1985)), whose member

algorithms all share the characteristic of scanning in one dimension without backtracking

and performing operations when certain structures are encountered during the scan. In

the case of Algorithm 1, it keeps counters i and j that it increments as it scans, and per-

forms an operation whenever it encounters an intersection between lines z %→ aj + bjz and

z %→ ai+1 + bi+1z. The details of the algorithm’s derivation and computational complexity

are given in the online supplement.

Algorithm 1 Calculate the vector c and the set A
Require: Inputs a and b, with b in strictly increasing order.
Ensure: c and A are such that i ∈ A and z ∈ [ci−1, ci) ⇐⇒ g(z) = i.
1: c0 ← −∞, c1 ← +∞, A← {1}
2: for i = 1 to M − 1 do
3: ci+1 ← +∞,
4: repeat
5: j ← A[end(A)]
6: cj ← (aj − ai+1)/(bi+1 − bj).
7: if length(A) )= 1 and cj ≤ ck, where k = A[end(A)− 1] then
8: A← A(1, . . . , end(A)− 1)
9: loopdone← false

10: else
11: loopdone← true
12: end if
13: until loopdone
14: A← (A, i + 1)
15: end for

We now compute h(a, b) using the identity maxi ai + biz = ag(z) + bg(z)z, recalling that

the function g is fully specified by the sequence (ci) and the set A as computed by Al-

gorithm 1. Since maxi ai + biz = maxi∈A ai + biz for all z ∈ R, alternatives outside A

do not affect the computation of h(a, b), and we may suppose without loss of generality

that these alternatives have been removed from the vectors a, b, and c. To compute h, we

could use the identity h(a, b) =
∑M

j=1 ajP{g(Z) = j} + bjE
[
Z1{g(Z)=j}

]
and then calculate
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P{g(Z) = j} = P{Z ∈ [cj−1, cj)} and E
[
Z1{g(Z)=j}

]
= E

[
Z1{Z∈[cj−1,cj)}

]
, but this leads to

an expression that, while correct, is sometimes numerically unstable.

Instead, we write ag(Z) + bg(Z)Z as the telescoping sum

ag(0) + bg(0)Z +




g(Z)−1∑

i=g(0)

(ai+1 − ai) + (bi+1 − bi)Z



 +




g(0)−1∑

i=g(Z)

(ai − ai+1) + (bi − bi+1)Z



 ,

where only the first sum has terms if Z ≥ 0 and only the second sum has terms if Z < 0.

We then apply the identity ai+1 − ai = −(bi+1 − bi)ci and alter the sums using indicator

functions to rewrite this as,

ag(0) + bg(0)Z +




M−1∑

i=g(0)

(bi+1 − bi)(−ci + Z)1{g(Z)>i}



 +




g(0)−1∑

i=1

(bi+1 − bi)(ci − Z)1{g(Z)≤i}



 .

Note that (−ci + Z)1{g(Z)>i} = (−ci + Z)+ and (ci − Z)1{g(Z)≤i} = (ci − Z)+ with

z+ = max(0, z) being the positive part of z. Noting that ag(0) = maxi ai, we can then

evaluate h(a, b) as

h(a, b) = E
[
ag(Z) + bg(Z)Z − ag(0)

]

=




M−1∑

i=g(0)

(bi+1 − bi)E
[
(−ci + Z)+

]


 +




g(0)−1∑

i=1

(bi+1 − bi)E
[
(ci − Z)+

]




=
M−1∑

i=1

(bi+1 − bi)E
[
(−|ci| + Z)+

]
=

M−1∑

i=1

(bi+1 − bi)f(−|ci|), (14)

where the function f is given as above in terms of the normal cdf and pdf as

f(z) = ϕ(z) + zΦ(z). In the first equality on the third line we have used that i ≥ g(0)

implies ci ≥ 0 and i < g(0) implies ci < 0, and that Z is equal in distribution to −Z. In the

second equality on this line we have evaluated the expectation using integration by parts.

For avoiding rounding errors in implementation, the expression (14) has the advantage of

being a sum of positive terms, rather than involving subtraction of terms approximately equal

in magnitude. Its accuracy can be further improved by evaluating the logarithm of each term

as log(bi+1−bi)+log ϕ(ci)+log(1−|ci|R(|ci|)), where R(s) = Φ(−s)/ϕ(s) is Mills’ ratio. One

can then evaluate log h(a, b) from these terms using the identity

log
∑

i exp(di) = log(maxj dj) + log
∑

i exp(di − maxj dj). To evaluate log(1 − |ci|R(|ci|))
accurately for large values of |ci|, use the function log1p available in most numerical software
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packages, and an asymptotic approximation to Mills’ ratio such as R(|ci|) ≈ |ci|/(c2
i + 1),

which is based on the bounds |ci|/(c2
i + 1) ≤ R(|ci|) ≤ 1/|ci| (Gordon (1941)).

In summary, one computes the KG policy by first computing the sequence (ci) and the

set A using Algorithm 1, then dropping the alternatives not in A and using (14) to compute

h(a, b). The complete algorithm for doing so is given in Algorithm 2.

Algorithm 2 KnowledgeGradient(µn, Σn)
Require: Inputs µn and Σn.
Ensure: x∗ = XKG(µn, Σn)
1: for x = 1 to M do
2: a← µn, b← σ̃(Σn, x).
3: Sort the sequence of pairs (ai, bi)M

i=1 so that the bi are in non-decreasing order and ties
in b are broken so that ai ≤ ai+1 if bi = bi+1.

4: for i = 1 to M − 1 do
5: if bi = bi+1 then
6: Remove entry i from the sequence (ai, bi)M

i=1.
7: end if
8: end for
9: Use Algorithm 1 to compute c and A from a and b.

10: a← a[A], b← b[A], c← (c[A], +∞), M ← length(A).

11: ν ← log
(∑M−1

i=1 (bi+1 − bi)f(−|ci|)
)

12: if x = 1 or ν > ν∗ then
13: ν∗ ← ν, x∗ ← x
14: end if
15: end for

To analyze the computational complexity of Algorithm 2, we note that the loop executes

M times, and that within that loop, the step with the largest computational complexity is

the sort in Step 3 with complexity O(M log M). Therefore the algorithm has computational

complexity O(M2 log M).

3.2. Optimality and convergence results

The KG policy exhibits several optimality and convergence properties. We only state and

briefly discuss these properties here, leaving proofs and further discussion to the Online

Supplement. First, as shown in Remark 1, the KG policy is optimal by construction when

N = 1. Second, in the limit as N →∞, the suboptimality gap of the KG policy shrinks to

0. Third, for 1 < N < ∞, we provide a bound on the suboptimality gap of the KG policy.

These results extend optimality results proved in Frazier et al. (2008) for independent normal
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priors. Because the prior lacks independence, the proofs of convergence and bounded finite

sample suboptimality are more involved, and the statements of the theorems themselves are

somewhat different than in the independent case.

The second optimality result, that the suboptimality of the KG policy shrinks to 0 as

N →∞, is given in the following theorem.

Theorem 4. For each s ∈ S, limN→∞ V 0(s; N) = limN→∞ V KG,0(s; N).

We refer to this property as asymptotic optimality of the KG policy, since it shows that

the values of KG and optimal policies are asymptotically identical. It should be emphasized

that this use of the term “asymptotic optimality” does not refer to the asymptotic rate of

convergence, but only to the asymptotic equality between the two value functions. Theorem 4

is essentially a convergence result, since both the KG policy and the optimal policy achieve

their asymptotic values limN→∞ V 0(s; N) by exploring often enough to learn perfectly which

alternative is best. In other words, our posterior belief about which alternative is best

converges to one in which the best alternative is known perfectly.

While convergence and hence asymptotic optimality is generally easy to prove for simple

non-adaptive policies like equal allocation, it is usually more difficult to prove for adaptive

policies. Since non-adaptive policies like equal allocation usually perform badly in the finite

sample case, the value of proving convergencing under the KG policy lies in KG’s adaptive

nature, and in KG’s good finite sample performance in numerical experiments (see Section 4).

By itself, convergence is not sufficient evidence to use a particular policy in an application,

but when a policy has other good properties, convergence provides extra reassurance that it

may be a good choice. We prove and discuss Theorem 4 further in Section A.2 of the Online

Supplement.

The third optimality result, which provides a general bound on suboptimality in the cases

1 < N <∞ not covered by the first two optimality results, is given by the following theorem.

This bound is tight for small N and loosens as N increases. It uses the notation ||σ̃(Σ, · )||
to indicate maxx,i,j σ̃i(Σ, x)− σ̃j(Σ, x).

Theorem 5. V n(Sn)− V KG,n(Sn) ≤ 1√
2π

maxxn,...,xN−2

∑N−1
k=n+1 ||σ̃(Σk, · )||.

A proof of this theorem is given in Section A.3 of the Online Supplement.
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4. Numerical experiments

To illustrate the application of the KG policy, we consider the problem of maximizing a

continuous function over a compact subset of Rd. We will suppose that noisy evaluations

of the function may be obtained from some “black box”, but that each evaluation has a

cost and so we should try to minimize the number of evaluations needed. This problem

appears in many applications: finding the optimal dosage of a drug; finding the temperature

and pressure that maximize the yield of a chemical process; pricing a product through a

limited number of test markets; or finding aircraft design parameters that provide the best

performance in a computer simulation. The problem is particularly well-studied in the

context in which the function is evaluated by running a time-consuming simulation, as in

the last of these examples, where it is known as simulation optimization. When the problem

is accompanied by a modeling decision to place a Bayesian prior belief on the unknown

function θ, it is further known as Bayesian global optimization.

Bayesian global optimization is a well-developed approach, dating to the seminal work

of Kushner (1964). Because it is so well-developed, and contains several well-regarded al-

gorithms, it offers a meaningful and competitive arena for assessing the KG policy’s per-

formance. We will compare the KG policy against two recent Bayesian global optimization

methods that compare well with other global optimization methods: the Efficient Global

Optimization (EGO) policy introduced in Jones et al. (1998), and the Sequential Kriging

Optimization (SKO) policy introduced in Huang et al. (2006). Both algorithms were designed

for use with a continuous domain, but can be easily adapted to the discretized version of the

problem treated here.

The modeling approach generally employed in Bayesian global optimization is to suppose

that the unknown function θ is a realization from a Gaussian process. Wiener process priors,

a special case of the Gaussian process prior, were common in early work on Bayesian global

optimization, being used by techniques introduced in Kushner (1964) and Mockus (1972).

The Wiener process in one dimension is computationally convenient both because of an

independence property under the posterior probability measure, and because the maximum

of the posterior mean is always achieved by a previously measured point. Later work (see

Stuckman (1988) as well as Mockus (1989, 1994)) extended these two methods to multiple

dimensions while continuing to use the Wiener process prior.

The paths of the Wiener process are nowhere-differentiable with probability 1, which
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can cause difficulty when using it as a prior belief for smooth functions. A more general

class of Gaussian processes has been used for estimating mineral concentrations within the

geostatistics community since the 1960s under the name kriging (see Cressie (1993) for a

comprehensive treatment, and Currin et al. (1991); Kennedy and O’Hagan (2001) for a

Bayesian interpretation) and it was this more general class of priors that was advocated for

use by Sacks et al. (1989) and others. The EGO algorithm against which we compare uses

this more general class of priors. EGO assumes the absence of measurement noise, but was

extended to the noisy case by Williams et al. (2000), and then later by Huang et al. (2006),

which introduced the SKO algorithm. To maintain computational efficiency, EGO and its

descendants assume that the point with the largest posterior mean is one of those that was

previously measured. While true under the Wiener process prior, this assumption is not true

with a general Gaussian process prior.

The class of Gaussian process priors is parameterized by the choice of a mean function

with domain Rd, and a covariance function with domain Rd×Rd. Under a Gaussian process

prior so parameterized, the prior belief on the vector (θ(i1), . . . , θ(iK)) for any fixed finite

collection of points i1, . . . , iK is given by a multivariate normal distribution whose mean

vector and covariance matrix are given by evaluating the mean function at each of the K

points and the covariance function at each pair of points. If there are known trends in the

data then the mean function may be chosen to reflect this, but otherwise it is often taken it

to be identically 0, as we do in the experiments described here. The class of Gaussian process

priors used in practice is usually restricted further by choosing the covariance function from

some finite dimensional family of functions. In our experiments we use the class of power

exponential covariance functions, under which, for any two points i and j,

Cov(θ(i), θ(j)) = β exp

{
−

d∑

k=1

αk(ik − jk)
2

}
, (15)

where α1, . . . ,αd > 0 and β > 0 are hyperparameters chosen to reflect our belief. Since

Var(θ(i)) = β , we choose β to represent our confidence that θ is close overall to our chosen

mean function. We may even take the limit as β → ∞ to obtain an improper prior that

does not depend upon the mean function. The hyperparameter αk should be chosen to

reflect how quickly we believe θ changes as we move in dimension k, with larger values of αk

suggesting more rapid change. This class of covariance functions produces Gaussian process

priors whose paths are continuous and differentiable with probability 1, and for this reason

is often used for modeling smooth random functions.
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In practice, one is often unsure about which hyperparameters are best, and particularly

about the smoothness parameters α1, . . . ,αd. This ambivalence may be accommodated by

placing a second-level prior on the hyperparameters. In this hierarchical setting, inference

with the full posterior is often computationally intractable, so instead the maximum a pos-

teriori (MAP) estimate of the hyperparameters is used by first maximizing the posterior

likelihood of the data across the hyperparameters, and then proceeding as if our posterior

belief were concentrated entirely on the values attaining the maximum. If the prior is taken

to be uniform on the hyperparameters then the MAP estimate is identical to the MLE. This

is the approach we apply here.

While usual approaches to Bayesian global optimization generally assume a continu-

ous domain, the knowledge-gradient approach described herein requires discretizing it. We

choose some positive integer L and discretize the domain via a mesh with L pieces in each

dimension, obtaining M = Ld total points. Our task is then to discover the point i in this

mesh that maximizes θ(i).

We now describe in greater detail the algorithms against which we will compare KG: EGO

and SKO. The EGO algorithm is designed for the case when there is no measurement noise.

It proceeds by assigning to each potential measurement point an “expected improvement”

(EI) given by

EI(x) = En

[
max

(
θ(xn), max

k<n
θ(xk)

)
| xn = x

]
−max

k<n
θ(xk), (16)

and then measuring the x with the largest value of EI(x). In the version of the problem with

a continuous domain, the above formula may be used to compute EI(x) for any given value of

x, and then a global optimization algorithm such as the Nelder-Mead simplex search is used

to search for the x that maximizes EI(x). In our discretized version of the problem EGO

simply evaluates EI(x) at each of the finitely many points and measures a point attaining

the maximum. If there is more than one point attaining the maximum then EGO chooses

uniformly at random among them.

In the calculation (16) of EI(x), the term maxk<n θ(xk) is the value of the best point we

have measured by time n, and is Fn-measurable in light of the assumption of no measurement

noise. The term θ(xn) is the value of the point that we are about to measure, and is Fn+1-

measurable. Thus EI(x) is exactly the expected value of measuring at xn = x and then

choosing as implementation decision the best among the points x0, . . . , xn. This quantity is

quite similar to the factor QN−1(Sn; x) used by the KG policy to make its decisions, except
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that QN−1(Sn; x) does not restrict its potential implementation decisions to those points

measured previously. Generally speaking, the points maximizing EI(x) and QN−1(Sn; x) are

frequently distinct from one another, but they are also often close together, and so KG and

EGO policies often perform similarly in those noise-free cases in which EGO can be used.

SKO is a generalization of the EGO policy to the case of non-zero measurement noise. It

operates at time n by first considering a utility function, u(x) = µn(x)−c
√

Σn
xx, and maximiz-

ing this over the points already measured to obtain an “effective best point”,

x∗∗ ∈ arg maxxk,k<n u(xk). Then, when considering whether to measure at some candidate

point x, it calculates an augmented expected improvement function,

EI(x) = En

[
max

(
µn+1(x)− µn(x∗∗), 0

)
| xn = x

]
·
(

1−

√
λx

Σn
xx + λx

)
. (17)

The first term is essentially the expected improvement over implementing at x∗∗, and the

second term is added to suggest more measurement in unexplored regions of the domain.

As λx goes to 0, the second term goes to 1 and x∗∗ goes to arg maxxk,k<n µn
xk , and so the

augmented expected improvement in (17) goes to the noise-free expected improvement in

(16). In this limit, SKO behaves identically to EGO.

KG is similar to EGO and SKO in that all three do some type of one-step analysis consid-

ering the change in the expected value of the best implementation decision before and after

the measurement, but KG is essentially different from EGO and SKO in its understanding

that measuring at a point xn can cause the best posterior implementation decision to be at

some entirely new location not equal to any previously measured point. We illustrate this

in Figure 1, where we show two posterior beliefs and the decision process of KG and EGO

in each. In the first situation (two left panels), EGO prefers to measure at a point that is

very close to previous measurements. EGO prefers this location because it has a large mean

in comparison with the unexplored region of the function’s domain. The unexplored region

also has value to EGO, but not as much as does the region with large mean, as displayed by

the plot of expected improvement.

In contrast, KG prefers to measure in the unexplored region. When calculating the value

of measuring in this region, both KG and EGO include the potential benefit of learning that

the measured point is better than the previous best point. KG, however, also includes a more

subtle benefit: measurement in the unexplored region will alter the location of the posterior

maximum even if the point measured is not found to be better than the previous best point.
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Figure 1: Upper plots display the posterior belief at two different points in time, with time
n = 4 on the left and n = 5 on the right. The prior mean is plotted as a solid line, with
two standard deviations above and below plotted as dotted lines. Previous measurements
are circles. The n = 5 belief is obtained by beginning with n = 4 and taking the EGO
decision. Lower plots display EGO’s Expected Improvement quantity and KG’s improvement
factor En

[
maxi µ

n+1
i | xn = x

]
−maxi µn

i for the corresponding belief above. The alternative
that each policy would measure is marked with a square, with disagreement at n = 4 but
agreement at n = 5.

If the measurement reveals the point to be worse than expected, this will shift the maximum

to the left of where it was previously, and if the measurement reveals the point to be even a

small amount better than expected, this will shift the maximum to the right. This shifting

left and right also carries with it shifting up and down, and a positive net benefit. This

added benefit is enough to convince KG to measure in the unexplored region.

Such differences in measurement decision between EGO and KG tend to cause relatively

small differences in their expected performances, as demonstrated in our second set of exper-

iments to be discussed below, with one reason pictured in the two right panels of Figure 1.

Here we see the belief state resulting from the measurement advocated by EGO in the left
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panel. Now both KG and EGO agree, with the point of their agreement being close to

where KG wanted to measure originally. This situation, with KG and EGO choosing similar

measurements, is common.

The differences between SKO and KG have as origin KG’s inclusion of extra considera-

tions into its calculation, but they also include SKO’s inclusion of an extra exploration term

in its calculation. The benefits provided by SKO’s explicit exploration term appear to be

provided implicitly by KG’s full one-step analysis, and their difference in expected perfor-

mance tends to be greater than is the difference between KG and EGO. This is demonstrated

in our experiments below.

When estimating the hyperparameters from previous observations using the MLE and

at the same time measuring according to a policy that depends upon the hyperparameters

like KG, EGO or SKO, it is necessary to initially sample according to some other design

to obtain a reasonable estimate of the hyperparameters, and then to switch over to the

hyperparameter-dependent policy. When the measurement noise is zero, Jones et al. (1998)

recommends using an initial Latin hypercube design with 2 × number of dimensions mea-

surements. When the measurement noise is unknown, Huang et al. (2006) recommends using

the same Latin hypercube design with the same number of measurements followed by two

additional measurements at the previously measured locations with the two best outcomes.

We followed these recommendations in the experiments described here.

In our first set of experiments, pictured in Figure 2, we generated three one-dimensional

random functions labeled a, b and c and discretized them into M = 80 points each. The

three functions were drawn from Gaussian process priors with mean 0 and power exponential

covariance matrices with β = 1/2 and α1 equal to 100/(M−1)2, 16/(M−1)2 and 4/(M−1)2

respectively. With each truth, experiments were performed with normally distributed noise

with standard deviations of 0.1 and 0.2. We compared KG with SKO, both with correlated

priors, and also with KG under an independent noninformative prior.

With both correlated KG and SKO algorithms we used an initial design of 12 points as

described above to obtain an initial MAP estimate of the hyperparameters, updating this

MAP estimate with each sample taken. With the independent KG algorithm, we began

with a noninformative prior in which the prior probability distribution on θi was uniform

over R, resulting in a first stage of size M = 80 in which each alternative was measured

once in random order. Each combination of truth, noise variance and policy was repli-

cated between 860 and 1100 times, and the opportunity cost was recorded as a function

22



20 40 60 80
!2

!1

0

x

!
x

Truth a

20 40 60 80
!1.5

!1

!0.5

0

0.5
Truth b

20 40 60 80
0

1

2
Truth c

50 100 150 200
!4

!2

0

lo
g 1

0
(O

C
)

n

 

 

50 100 150 200
!4

!2

0

50 100 150 200
!4

!2

0

50 100 150 200

!3

!2

!1

0

lo
g 1

0
(O

C
)

n

50 100 150 200

!3

!2

!1

0

50 100 150 200

!3

!2

!1

0

CKG SKO IKG

Var(noise)=(0.2)
2

Var(noise)=(0.1)
2

Figure 2: Comparison of correlated KG (CKG), SKO, and independent KG (IKG) on three
functions drawn from Gaussian process priors. CKG and SKO policies estimated hyper-
parameters adaptively with an initial stage of 22 measurements. IKG used an indepen-
dent noninformative prior. The top row shows the three functions tested, and the middle
and bottom rows show policy performance at noise variances (.1)2 and (.2)2 respectively.
Each policy performance plot shows the log10 of expected opportunity cost (OC) vs. it-
eration. Standard errors were too small to be plotted. The maximum in each plot of
| log10(estimated OC± 2× stderr)− log10(estimated OC)| over all three policies is, from left
to right, .17, .12, .12 for the second row and .09, .07, .12 for the third row.

of iteration n. Opportunity cost is here defined as (maxi θi) − θi∗ , with i∗ being given by

i∗ ∈ arg maxxk,k<n Yxk during the first stage when the hyperparameters have not yet been

estimated, and i∗ ∈ arg maxx µn
x after the first stage. After the first stage, opportunity cost

is the difference between the best implementation decision given perfect knowledge and the

best implementation decision given the knowledge collected by the policy by time n.

The base-10 logarithm of the sample average of the opportunity costs observed over all

the replications is plotted against iteration in Figure 2 for each choice of truth and noise

variance. Sampled opportunity costs from batches of 25 replications were averaged together

to obtain approximately normally distributed estimates of expected opportunity cost, and

their sample deviations were used to estimate the error in the plotted lines, but the resulting

error estimates were too small to be graphed. Instead, we state them in the caption to
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Figure 2.

The figure shows that correlated KG outperformed SKO in each of the six situations

tested, and at the final measurement (n = 200) the expected opportunity cost incurred

by SKO was as much as 4.4 times larger than that incurred by KG. For the truths a, b

and c respectively, the ratio of opportunity costs at the final measurement was 4.4, 2.1 and

1.3 when the measurement variance was (.1)2, and 2.4, 2.0 and 1.9 when the measurement

variance was (.2)2.

The figure also shows that both SKO and correlated KG outperformed independent KG,

often by a significant margin. The independent KG policy was shown in Frazier et al. (2008)

to perform well in comparison with other R&S policies on problems with independent beliefs,

and so this relative performance should be seen as a function of the correlation present in

the prior, and as likely to be evidenced by other R&S policies assuming independent beliefs

like OCBA and VIP. Indeed, these results show that there is often great benefit to using

correlations in the prior when the problem encourages it. The margin between independent

KG and the other policies is largest for truth c because it has the largest correlation across

the domain. Generally, the advantage of including correlation in the prior increases as the

underlying function becomes more strongly correlated. In particular, had we chosen a finer

discretization level but used the same truths, independent KG would have suffered while the

performance of correlated KG and SKO would have been relatively unaffected.

In our second set of experiments, pictured in Figure 3, we compare EGO and CKG.

In the previous set of experiments we also examined KG and EGO performance with no

measurement noise, but found no statistically significant difference between them with the

number of replications we performed. Indeed, without measurement noise, the test problems

were easy enough that the best point was discovered during the first stage of measurements

where there is no difference between the two policies. This second set of experiments was

designed with this similarity in mind to be as sensitive as possible to differences in the

measurement policies. Instead of estimating expected opportunity cost for a single true

function θ, we generated 26, 000 1-dimensional functions from a Gaussian process prior,

simulated each policy on each function and averaged them together to obtain expected

opportunity cost under the prior. The Gaussian process prior had mean identically 0 and

power exponential covariance function with β = 1/2 and α1 = 1/64, and discretization level

L = 200. Also, instead of using a large first stage to adaptively estimate the hyperparameters,

we restricted the first stage to a single uniformly distributed measurement, and we allowed the
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Figure 3: Comparison of KG with EGO
on 26, 000 one-dimensional functions
drawn from a Gaussian process prior
with parameters β = 1/2, α1 = 1/64
and L = 200. The plot shows the differ-
ence in expected opportunity cost be-
tween the two polices, with a positive
difference indicating that KG performed
better.

measurement policies to use the true hyperparameter values rather than the MAP estimate.

The results, in Figure 3, show that the difference between the policies was quite small but

still statistically significant, with KG performing better than EGO, and with the biggest

improvement in the early iterations.

In our third and final set of experiments, pictured in Figure 4, we compared KG with SKO

on several standard test functions with measurement variance (.1)2. These test functions

are the six-hump camelback function from Branin (1972), a “tilted” version of the Branin

function from Huang et al. (2006), and the Hartman-3 function from Hartman (1973). Their

functional forms, discretization levels and domains are given in the table in Figure 4. These

functions are traditionally minimized, and we do so in these numerical experiments by max-

imizing their negative.

In all three tests the algorithms performed similarly in the first stage. Then, on the

Tilted Branin and Hartman-3 functions, both KG and SKO rapidly improved their opportu-

nity cost as the first stage ended and both their implementation decision and measurement

decisions became free to range across the entire domain. KG was able to maintain this rapid

improvement for longer, achieving a lower opportunity cost by approximately iteration 30 in

the Tilted Branin example, and by approximately iteration 40 in the Hartman-3 example.

KG then maintained this advantage through the increasing iterations.

On the six-hump camelback function, both SKO and KG algorithms suffered an initial

increase in opportunity cost after the first stage in which the belief acquired by the Latin

hypercube sampling combined with the Gaussian process prior led them to believe that the

function was better at a point far from where they have measured previously, when in fact

this belief was incorrect. Both policies quickly recovered, but SKO initially recovered more

quickly than KG, outperforming it until approximately iteration 45. This may be because

SKO has a greater tendency toward measuring the alternative that it would like to implement,
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Name Functional Form, Domain and Discretization Level (L) Source
Six-hump f(x) = 4x2

1 − 2.1x4
1 + 1

3x
6
1 + x1x2 − 4x2

2 + 4x4
2, Branin (1972)

camelback with x ∈ [−1.6, 2.4]× [−.8, 1.2] and L = 30.

Tilted f(x) =
(
x2 − 5.1

4π2 x2
1 + 5

πx1 − 6
)2

Huang et al. (2006),
Branin +10(1− 1

8π ) cos(x1) + 10 + 1
2x1, modified from

with x ∈ [−5.10]× [0, 15] and L = 30. Branin (1972)

Hartman-3 f(x) = −
∑4

i=1 ci exp
(
−

∑3
j=1 αij(xj − pij)2

)
, where Hartman (1973)

α =





3 10 30
.1 10 35
3 10 30
.1 10 35



 c =





1
1.2
3

3.2



 p =





.3689 .1170 .2673

.4699 .4387 .7470

.1091 .8732 .5547
.03815 .5743 .8828



,

with x ∈ [0, 1]3 and L = 10.
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Figure 4: Comparison of KG with SKO on three standard test functions. Both policies
estimated hyperparameters adaptively with an initial stage of 2 × dimension + 2 measure-
ments. Plots show the log10 of the expected opportunity cost vs. iteration n at measurement
variance (.1)2 for three functions: Six-hump camelback (left); Tilted Branin (center); and
Hartman-3 (right). Lines are plotted for each policy at log10(estimated OC ± 2× stderr).

i.e., that has the largest posterior mean, and this helps to correct posterior beliefs that are

incorrect in the manner described. By iteration 45 KG had recovered completely and was

reducing its opportunity cost more rapidly. In the larger iterations, KG outperformed SKO.

Across these three sets of experiments, we found that KG performed well in comparison

with SKO and EGO, performing as well or better than these two other policies in every

situation tested except on the early iterations of the six-hump camelback test function in the

second set of experiments. That KG performed well in comparison to these other Bayesian

global optimization methods should not be surprising, since it is derived along similar lines

but with a more complete account of the effect of a single measurement. This improved per-

formance comes at the cost of increased complexity, however. KG requires the cross terms
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of the correlation matrix, and in its current form requires discretizing the domain. These

complications can dramatically increase the computational complexity of the algorithm, par-

ticularly if the discretization needs to be fine. Nevertheless, if the cost of each measurement

is large enough then the computational cost of computing the KG policy will be dwarfed by

the cost of measurement, and any improvement in measurement efficiency will be worthwhile.

5. Conclusion

In this article we presented a policy for sequential correlated multivariate normal Bayesian

R&S, generalizing the policy presented in Gupta and Miescke (1996) and Frazier et al.

(2008), which required that alternatives be independent under the prior, and generalizing

the policy presented in Mockus (1972) that required the prior to be a one-dimensional Wiener

process. We proved optimality of the general policy in certain special cases, and proved that

it has bounded suboptimality in the remaining cases. The policy may be used effectively in

applications with large numbers of alternatives for which the only way to achieve an efficient

solution is by utilizing the dependence between alternatives, and its sequential nature allows

greater efficiency by concentrating later measurements on alternatives revealed by earlier

measurements to be among the best. Its discrete nature allows an exact calculation of the

knowledge-gradient, avoiding the approximations used by other Bayesian global optimization

techniques like EGO and SKO, and leading to improved performance in the cases tested.

In closing, we would like to suggest that the method we have pursued for solving the

general multivariate normal sequential Bayesian R&S problem can also be applied to other

sequential Bayesian R&S problems. Once a problem is formulated in the Bayesian framework,

the only further requirement for applying a KG approach is that the quantity

arg maxx En

[
maxi µ

n+1
i

]
, as in (11), should be calculable exactly or approximately in an

efficient manner. For example, one could assume a different prior, e.g., a hierachical mul-

tivariate normal prior whose variances are themselves random. One might also consider

objectives other than the expected value of the selected alternative, such as the expected

risk-averse utility of the selected alternative, or square deviation from a desired target level.

In addition, an adaptive stopping rule could be used rather than a fixed sampling budget.

With these and other variations in mind, we believe that the technique of posing R&S prob-

lems within a Bayesian framework and then calculating a KG policy appropriate for that

framework promises practical results for a wide variety of applications.
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A. Optimality and convergence results

As discussed in Section 3 of the main paper, the KG policy posseses several optimality and

convergence properties. First, it is optimal by construction when N = 1 (Remark 1). Second,

the suboptimality gap between the values of the KG and the optimal policies narrows to 0 as

N →∞ (Theorem 4). This is a convergence result, since it shows that when sampling under

the KG policy we are guaranteed to eventually discover the alternative that is truly best.

Third, the suboptimality gap is bounded for N between these two extremes (Theorem 5).

Here, we discuss and prove these latter two results, discussing the convergence result in

Section A.2, and the general bound on suboptimality in Section A.3. These results extend

those proved in Frazier et al. (2008) for independent normal priors.

A.1. Benefits of measurement

We begin by stating the following preliminary results concerning the benefits of measurement.

These results will be used later to show optimality properties of the KG policy. They show

that the values of both stationary and optimal policies increase as more measurements are

allowed, which is a natural result since allowing more measurements makes R&S easier.

Proposition A.1 shows that if we provide more measurement opportunities to any sta-

tionary measurement policy, then it will perform better on average.

Proposition A.1. For any stationary policy π and state s ∈ S, V π,n(s) ≥ V π,n+1(s).

Proposition A.2 states a stronger result holding for the optimal policy, which is that if

we allow it a single extra measurement of a fixed alternative, the optimal policy will perform

better on average than if allowed no extra measurement at all.

Proposition A.2. For s ∈ S and x ∈ {1, . . . ,M}, Qn(s, x) ≥ V n+1(s).

1



Propositions A.1 and A.2 are similar to results proved for the independent case in Frazier

et al. (2008), and the proofs contained there may be extended to the more general correlated

case without undue difficulty. These proofs have been omitted due to their similarity.

Corollary A.3 then uses Proposition A.2 to show the weaker result that if the optimal

policy is allowed to decide how to allocate its extra measurement then it will do better on

average than if given no extra measurement at all. This is the analog of Proposition A.1, but

for the optimal policy. Note that the optimal policy is not generally known to be stationary.

Corollary A.3. For s ∈ S, V n(s) ≥ V n+1(s).

Proof. In Proposition A.2, take the extra measurement x to be the measurement made by

an optimal policy in state s. For such an x, Qn(s, x) = V n(s).

A.2. Convergence and asymptotic optimality

In this section we prove Theorem 4, which states that the difference in value between the

KG and optimal policies shrinks to 0 as the number of measurements, N , increases to

infinity. This may be understood as convergence, in the sense that the KG policy eventually

discovers the alternative that is truly the best given enough measurements. This may also

be understood as asymptotic optimality, where we use the term “asymptotic optimality” to

mean only that the suboptimality gap shrinks to 0 in the limit, and not that it shrinks to 0

at an optimal rate.

On its own, convergence or asymptotic optimality of a policy is little evidence of efficiency

in the finite sample case. Indeed, equal allocation or any other policy measuring every

alternative infinitely often will also be convergent, and many such policies do not perform

particularly well. With this in mind, convergence may then be understood first as a condition

we require a candidate measurement policy to possess before being willing to use it, but not

one that by itself suggests a candidate policy is worth using. In this way, it is a necessary but

not sufficient condition for merit. If we would like to use the KG policy because of its good

finite sample performance, the convergence result then reassures us that no pernicious cases

exist in which the KG policy becomes stuck measuring a proper subset of the alternatives,

never discovering the best no matter how many measurements it makes.

In the case of the KG policy, it is also interesting to consider convergence and asymptotic

optimality together with Remark 1, which we recall states that the KG policy is optimal when

there is only one measurement left to give. Considering myopic and asymptotic optimality
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together, we see that the KG policy is optimal for both immediate and distant horizons.

Short- and long-term benefit are usually countervailing concerns, so it is interesting that the

KG policy accommodates both simultaneously.

One may construct other policies that are both myopically and asymptotically optimal,

for example by measuring according to the KG policy on the first measurement and according

to the equal allocation policy on all subsequent measurements. This will be optimal when

N = 1, and will also converge to the correct answer as N →∞, but will not necessarily be

a good policy for values of N in between. Distinguishing the KG policy from such mixture

policies is the fact that the KG policy is stationary, applying a myopic rule at each point

and nevertheless still guaranteeing convergence, instead of achieving short-term optimality by

behaving myopically in the early iterations, and then later switching over to a “far-sighted”

rule that guarantees convergence in the limit. Remark 2 shows that, except for differences

on how ties are broken, the KG policy is the only stationary policy that is both myopically

and asymptotically optimal.

We begin our proof of Theorem 4 by showing in Proposition A.4 that the asymptotic

value of a policy is well defined and bounded above by the value E[maxx θx] of learning every

alternative exactly. Then, we show in Lemma A.6 that those states s for which there is no

residual myopic value to be gained through any single measurement are states in which we

have already achieved this upper bound on the asymptotic value. Thus any stationary mea-

surement policy under which the limiting state has this property is asymptotically optimal.

(The limiting state is shown to exist in Lemma A.5.) We then show in Lemma A.7 that if we

measure an alternative infinitely often then the residual myopic value of measuring it under

the limiting state vanishes. Finally, in the proof of Theorem 4 we show that the limiting

state under the KG policy is one in which there is no residual myopic value in any single

measurement, and thus the KG policy is asymptotically optimal. The proof centers on the

notion that as an alternative is measured, the marginal value of measuring it in the future

decreases to the point that the KG policy will eventually measure some other alternative.

We define the asymptotic value function V ( · ;∞) by the limit V (s;∞) := limN→∞ V 0(s; N)

for s ∈ S. Below, Proposition A.4 shows that this limit exists. Similarly, we denote the

asymptotic value function for stationary policy π by V π( · ;∞) and define it by

V π(s;∞) := limN→∞ V π,0(s; N) for s ∈ S. Proposition A.4 shows that this limit also exists.

If V π(s;∞) is equal to V (s;∞) for every s ∈ S, then π is said to be asymptotically

optimal. In particular, if a stationary policy π achieves the upper bound U( · ) on V ( · ;∞)

3



shown in Proposition A.4 below, then π must be asymptotically optimal. This upper bound

U corresponds to the value of an “oracle” that always knows which alternative is the best.

This oracle always chooses an implementation decision in arg maxi θi, and under the prior

distribution given by S0 this perfect implementation decision has expected value U(S0).

The bound shown in Proposition A.4 then corresponds with our intuition that no feasible

measurement policy can outperform this oracle. We will use Proposition A.4 later to show

the asymptotic optimality of the KG policy.

Proposition A.4. Let s ∈ S. Then the limit V (s;∞) exists and is bounded above by

U(s) := E
[
max

i
θi | S0 = s

]
<∞, (A.1)

where we recall that θ ∼ N (µ0, Σ0). Furthermore, V π(s;∞) exists and is finite for every

stationary policy π.

Proposition A.4 generalizes Proposition 5.1 from Frazier et al. (2008), and the proof found

there may be easily extended to include the general correlated case. We therefore omit the

proof from this article.

We now present three lemmas leading up to the main result of this section, Theorem 4.

Lemma A.5. (Sn) converges almost surely to a random variable S∞ in S.

Proof. Let Mn = (µn, Σn + µn(µn)′). It is sufficient to show that Mn converges almost

surely as n → ∞ since Sn = (µn, Σn) is a linear transformation of Mn. We may write

the components of Mn as the conditional expectation of an integrable random variable with

respect to Fn by µn = En[θ], Σn + µn(µn)′ = En[θθ′]. This implies that Mn is a uniformly

integrable martingale and hence converges (see, e.g., Kallenberg (1997) Lemma 5.5 and

Theorem 3.12).

Lemma A.5 states that the sequence of posterior distributions converges to a limiting pos-

terior distribution. Our goal in this section is to show that this limiting posterior distribution

is one in which the best alternative is known perfectly.

Lemma A.6. Let s = (µ, Σ) ∈ S. If V N(s) = QN−1(s; x) ∀x then V N(s) = U(s).

Proof. Fix any x. We will first show that σ̃i(Σ, x) = σ̃1(Σ, x) for every i.
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Without loss of generality we may reorder the index set {1, . . . ,M} so that

µ1 = maxi µi = V N(s). For a standard univariate normal random variable Z,

0 = QN−1(s; x)− V N(s) = E
[
max

i
µi + σ̃i(Σ, x)Z

]
− µ1

= E
[
max

i
(µi − µ1) + (σ̃i(Σ, x)− σ̃1(Σ, x))Z

]
+ E [σ̃1(Σ, x)Z]

= E
[
max

i
(µi − µ1) + (σ̃i(Σ, x)− σ̃1(Σ, x))Z

]
.

This is the expectation of a non-negative random variable since the term over which the

maximum is taken, (µi − µ1) + (σ̃i(Σ, x)− σ̃1(Σ, x))Z, is 0 almost surely when i = 1. Thus

we can write this expectation, which is known to be 0, as the integral,
∫ ∞

0

P
{

max
i

(µi − µ1) + (σ̃i(Σ, x)− σ̃1(Σ, x))Z ≥ u
}

du = 0,

which implies that P {maxi(µi − µ1) + (σ̃i(Σ, x)− σ̃1(Σ, x))Z ≥ u} = 0 for almost every u

in [0,∞). Taking the limit as u→ 0 and using the bounded convergence theorem,

0 = lim
u→0

P
{

max
i

(µi − µ1) + (σ̃i(Σ, x)− σ̃1(Σ, x))Z ≥ u
}

= P
{

max
i

(µi − µ1) + (σ̃i(Σ, x)− σ̃1(Σ, x))Z > 0
}

.

As already noted, the random variable maxi(µi−µ1)+(σ̃i(Σ, x)− σ̃1(Σ, x))Z is non-negative,

so this implies that maxi(µi − µ1) + (σ̃i(Σ, x)− σ̃1(Σ, x))Z = 0 almost surely, which implies

in turn that σ̃i(Σ, x) = σ̃1(Σ, x) for every i.

Now fix xn to x and define a normal random vector W with components

Wi := µn+1
i − µn+1

x + θx. Conditioned on Fn+1, it has mean vector µn+1 and co-

variance matrix with all entries equal to Σn+1
xx . We will show that W is equal in distribution

to θ, with the interpretation being that the only variability left in θ is a constant translation

term that affects each component equally.

Define a constant c by c :=
(
λx/

√
Σn

xx + λx

)
σ̃1(Σn, x). Then, regardless of the choice of

i, we have √
Σn

xx + λx

λx
c = σ̃i(Σ

n, x) = e′iσ̃(Σn, x) =

√
Σn

xx + λx

λx
e′iΣ

n+1ex.

Cancelling the
√

Σn
xx + λx/λx shows that Cov [θi, θx | Fn+1] = e′iΣ

n+1ex = c, which does not

depend on i. Furthermore, by choosing i = x we have c = Σn+1
xx , and so the conditional

covariance matrices of θ and W agree at Fn+1. We also have agreement in the mean vectors,

which are µn+1 for both W and θ. Thus, since the distribution of a normal random vector
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is completely determined by its mean and covariance, we must have equality in distribution

between W and θ when conditioned on Fn+1. We use this fact to write,

U(Sn+1) = En+1

[
max

i
θi

]
= En+1

[
max

i
Wi

]
= En+1

[
max

i
µn+1

i + θx − µn+1
x

]

= max
i

µn+1
i + En+1

[
θx − µn+1

x

]
= max

i
µn+1

i = V N(Sn+1).

Finally, we use that U(Sn+1) = V N(Sn+1) almost surely, together with the tower property,

to complete the proof.

V N(s) = QN−1(s, x) = E
[
V N(Sn+1) | Sn =s, xn =x

]

= E
[
U(Sn+1) | Sn =s, xn =x

]
= E

[
E

[
max

i
θi | Sn+1

]
| Sn =s, xn =x

]

= E
[
max

i
θi | Sn =s, xn =x

]
= U(s).

Lemma A.6 states that if a posterior distribution given by s = (µ, Σ) is such that there

is no benefit gained by taking one more measurement, then the best alternative is known

perfectly under this posterior distribution. We may also think of V N(s) = QN−1(s; x) as

meaning that alternative x is known perfectly, and hence there is no information to be gained

by measuring it. This lemma gives us a criterion by which to judge whether the limiting

distribution S∞ shown to exist in Lemma A.5 satisfies asymptotic optimality.

Lemma A.7. If the policy π measures alternative x infinitely often almost surely, then

QN−1(S∞; x) = V N(S∞) almost surely under π.

Proof. Let G be the sigma-algebra generated by the collection
{
ŷn+11{xn=x}

}
n≥0

random

variables. This collection of random variables contains the information learned from the

measurements of θx, and that information only. Since the collection has infinitely many

independent measurements of θx with finite variance λx, the strong law of large numbers

implies θx ∈ G. Then, since G ⊆ F∞, we have that θx ∈ F∞. Let ε be a scalar random

variable equal in distribution to ε1 but independent of F∞. Then

QN−1(S∞, x) = E
[
max

i
E [θi | F∞, θx + ε] | F∞

]
.

Since θx is measurable with respect to F∞ and ε is independent of F∞,

E [θi | F∞, θx + ε] = E [θi | F∞] .

Substituting this relation shows

QN−1(S∞, x) = E
[
max

i
E [θi | F∞] | F∞

]
= max

i
E [θi | F∞] = V N(S∞).
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Lemma A.7 is a natural consequence of the law of large numbers and shows that, if we

have measured an alternative infinitely many times, there is no benefit to measuring it one

more time. This will take us closer to showing that the limiting distribution S∞ satisfies the

precondition of Lemma A.6.

We now restate Theorem 4 from Section 3.2.

Theorem 4. For each s ∈ S, limN→∞ V 0(s; N) = limN→∞ V KG,0(s; N).

This theorem, which states that the asymptotic value functions V KG( · ;∞) and V ( · ;∞)

are identical, is equivalent to the statement that the KG policy is asymptotically optimal.

It may also be understood primarily as a convergence result because it is equivalent to the

statement that, with probability 1, the KG policy eventually learns which alternative is best.

We sketch the proof first, before proving the theorem in detail. The proof’s main ar-

gument is that there can never be an alternative whose measurement would provide addi-

tional useful information under the limiting distribution achieved by the KG policy. This

is because if any such alternative were to exist, it would satisfy QN−1(S∞; x) < V N(S∞)

and the KG policy would prefer to measure it over some other alternative x′ for which

QN−1(S∞; x′) = V N(S∞). Thus, among those alternatives satisfying QN−1(S∞; x) < V N(S∞),

at least one gets measured infinitely often. This is a contradiction because measuring an

alternative x infinitely often causes QN−1(S∞; x) = V N(S∞). We now give the full proof.

Proof of Theorem 4. Lemma A.5 shows that S∞ exists. We will show that, under the KG

policy, V N(S∞) = U(S∞) almost surely. This will imply

V KG(S0;∞) = EKG
[
V N(S∞)

]
= EKG [U(S∞)] = E

[
E

[
max

i
θi | F∞

]]
= E

[
max

i
θi

]
= U(S0),

and U(S0) ≥ V (S0;∞) by Proposition A.4. Since we also know V KG(S0;∞) ≤ V (S0;∞),

this shows V KG(S0;∞) = V (S0;∞) and the KG policy is asymptotically optimal.

Consider the event Hx :=
{
QN−1(S∞; x) > V N(S∞)

}
where x ∈ {1, . . . ,M}. Let A be a

subset of {1, . . . ,M} and define

HA := [∩x∈AHx] ∩
[
∩x/∈AHC

x

]
,

where HC
x is the complement of Hx. Since Proposition A.2 implies QN−1(·; x) ≥ V N(·), HA

is the event that QN−1(S∞; x) > V N(S∞) for x ∈ A and QN−1(S∞; x) = V N(S∞) for

x /∈ A. We will show that P{HA} = 0 when A is nonempty, which will imply P{HA} = 1

when A is the empty set.
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Choose A += ∅ and let ω ∈ HA ∩ {Sn → S∞}. By the contrapositive of Lemma A.7 there

exists a finite number Kx(ω) for each x ∈ A such that the KG policy does not sample x

for n > Kx(ω). Let K(ω) := maxx Kx(ω). Thus, the KG policy samples no x in A for any

n > K(ω). That is,

xn(ω) /∈ A ∀n > K(ω). (A.2)

But the fact that QN−1(S∞(ω); x) > V N(S∞(ω)) = QN−1(S∞(ω); y) for all x ∈ A, y /∈ A,

together with Sn(ω)→ S∞(ω), implies that there exists ñ(ω) > K(ω) such that

min
x∈A

QN−1(Sñ(ω)(ω); x) > max
y '=A

QN−1(Sñ(ω)(ω); y).

Thus the KG policy must sample from x ∈ A at time ñ(ω). That is, xñ(ω) ∈ A. This contra-

dicts our statement (A.2) that the KG policy never samples from A for n > Kx(ω) This con-

tradiction implies that the event HA∩{Sn → S∞} is empty and, since P{Sn → S∞} = 1,

we have P{HA} = 0 for our nonempty A. Therefore P{H∅} = 1 and QN−1(S∞; x) = V N(S∞)

almost surely for all x. Finally, by Lemma A.6, V N(S∞) = U(S∞) almost surely.

In practice, the KG policy will begin by distributing measurements to those alternatives

that early samples suggest are better. Eventually, as the variance of these better alternatives

shrinks small enough, measurements will flow again to those alternatives with smaller µx but

much larger Σxx. Measurements will flow in this fashion such that every alternative is either

known perfectly in finite time through a perfect measurement or a zero variance prior, or in

the limit through an infinite number of measurements.

Note that the correlated multivariate prior allows a policy to achieve asymptotic opti-

mality without measuring an initially unknown alternative infinitely often because one may

learn θx perfectly without measuring x if θx is perfectly correlated with the values of other

alternatives. This is the essential difference between asymptotic optimality for the inde-

pendent and correlated cases, and is the reason why the proof in Frazier et al. (2008) of

the asymptotic optimality of the KG policy under an independent prior cannot be simply

extended to the correlated case.

A.3. Bound on suboptimality

We have shown that the KG policy is optimal when N = 1 and in the limit as N →∞. In

this section we prove Theorem 5, which bounds the suboptimality of the KG policy in the
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intermediate region. The heart of Theorem 5 is contained in the following lemma, which

bounds the marginal value of the last measurement, xN−1.

The proof uses a norm || · || on RM defined by ||u|| := maxi ui −minj uj. Note that this

defines an operator on vectors, while the same notation || · || applied to the function σ̃(Σ, ·)
(a function that maps measurement decisions in {1, . . . ,M} to vectors in RM) was defined

in Section 3.2 by ||σ̃(Σ, · )|| = maxx,i,j σ̃i(Σ, x)− σ̃j(Σ, x). This previously defined notation

can be written in terms of the newly defined norm on RM as ||σ̃(Σ, · )|| = maxx ||σ̃(Σ, x)||.

Lemma A.8. Let s = (µ, Σ) ∈ S. Then V N−1(s) ≤ V N(s) + ||σ̃(Σ, · )||/
√

2π.

Proof. Bellman’s equation implies V N−1(s) = maxxN−1 E
[
V N(SN) | SN−1 =s

]
. We may

bound the inner term V N(SN) by

V N(SN) = max
i

µN
i = max

i

(
µN−1

i + σ̃i(Σ
N−1, xN−1)ZN

)

=

(
max

j
µN−1

j

)
+ max

i




µN−1

i −
(

max
j

µN−1
j

)

︸ ︷︷ ︸
term is ≤ 0.

+σ̃i(Σ
N−1, xN−1)ZN





≤
(

max
j

µN−1
j

)
+ max

i
σ̃i(Σ

N−1, xN−1)ZN

= V N(SN−1) + max
i

σ̃i(Σ
N−1, xN−1)ZN .

Thus, we may bound the whole expression by

V N−1(s) ≤ max
xN−1

E
[
V N(SN−1) + max

i
σ̃i(Σ

N−1, xN)ZN | SN−1 =s
]

≤ V N(s) + max
xN−1

E
[
max

i
σ̃i(Σ

N−1, xN−1)ZN | SN−1 =s
]
.

The term E
[
maxi σ̃i(ΣN−1, xN−1)ZN | SN−1 =s

]
is of the form E [maxi b′iZ] where

b = σ̃(ΣN−1, xN−1) and Z is a one-dimensional standard normal random variable. We have

maxi biZ = (maxi bi) Z1{Z≥0} + (mini bi) Z1{Z<0}. Thus

E
[
max

i
biZ

]
=

(
max

i
bi

)
E

[
Z1{Z≥0}

]
+

(
min

i
bi

)
E

[
Z1{Z<0}

]
= ||b||E

[
Z+

]

where Z+ indicates the positive part of Z. Since E [Z+] = 1/
√

2π we may write

V N−1(s) ≤ V N(s) + maxx ||σ̃(Σ, x)||/
√

2π, completing the proof.

The following proposition extends the bound shown in Lemma A.8 to hold when there is

any number of measurements remaining.

9



Proposition A.9.

V n(Sn) ≤ V N−1(Sn) +
1√
2π

max
xn,...,xN−2

N−1∑

k=n+1

||σ̃(Σk, · )||

Proof. The proof is by induction. The base case, n = N − 1, follows trivially. Now consider

any n < N − 1. By Bellman’s equation and the induction hypothesis,

V n(s) = max
xn

E
[
V n+1(Sn+1) | Sn =s

]

≤ max
xn

E
[
V N−1(Sn+1) + max

xn+1,...,xN−2

N−1∑

k=n+2

||σ̃(Σk, · )||/
√

2π | Sn =s

]
.

Applying Lemma A.8 to V N−1(Sn+1) on the right-hand side,

V n(Sn) ≤ max
xn

E
[
V N(Sn+1) + max

xn+1,...,xN−2

N−1∑

k=n+1

||σ̃(Σk, · )||/
√

2π | Sn

]

≤ max
xn

E
[
V N(Sn+1) | Sn

]
+ max

xn,xn+1,...,xN−2

N−1∑

k=n+1

||σ̃(Σk, · )||/
√

2π.

Finally, noting that the first term on the right-hand side can be written as

maxxn E
[
V N(Sn+1) | Sn

]
= V N−1(Sn) shows the result.

We now combine this result with Proposition A.1 to bound the suboptimality of the KG

policy in Theorem 5. We restate Theorem 5 here for convenience before the proof.

Theorem 5.

V n(Sn)− V KG,n(Sn) ≤ 1√
2π

max
xn,...,xN−2

N−1∑

k=n+1

||σ̃(Σk, · )||

Proof. Since the KG policy is optimal when N = 1, we have V N−1(Sn) = V KG,N−1(Sn).

Furthermore, from Proposition A.1 we have V KG,N−1(Sn) ≤ V KG,n(Sn). Substituting the

resulting inequality V N−1(Sn) ≤ V KG,n(Sn) into Proposition A.9 shows the result.

B. Discussion of Algorithm 1

Section 3.1 presented Algorithm 1 (reprinted here for reference) for computing the sequence

(ci) and acceptance set A needed in Algorithm 2 to compute the KG policy, but did not give

the details of its derivation or its computational complexity. We present those details here.
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Algorithm 1 Calculate the vector c and the set A
Require: Inputs a and b, with b in strictly increasing order.
Ensure: c and A are such that i ∈ A and z ∈ [ci−1, ci) ⇐⇒ g(z) = i.
1: c0 ← −∞, c1 ← +∞, A← {1}
2: for i = 1 to M − 1 do
3: ci+1 ← +∞,
4: repeat
5: j ← A[end(A)]
6: cj ← (aj − ai+1)/(bi+1 − bj).
7: if length(A) += 1 and cj ≤ ck, where k = A[end(A)− 1] then
8: A← A(1, . . . , end(A)− 1)
9: loopdone← false

10: else
11: loopdone← true
12: end if
13: until loopdone
14: A← (A, i + 1)
15: end for

For ease of presentation, we first consider the case that every alternative is acceptable,

so A = {1, . . . ,M}. We then have the situation illustrated in Figure B.1, and ci (where

i ∈ {1, . . . ,M − 1}) is simply the point where the line ai + biz crosses the next line in the

sequence, ai+1 + bi+1z. This point is ci = ai−ai+1

bi+1−bi
. Note that ci is finite since bi+1 += bi. The

interior portion of the sequence (ci), that is the portion i = 1, . . . ,M − 1, may be computed

with a single pass through the alternatives. To complete the calculation, we set c0 = −∞
and cM = +∞.

In general, however, some alternatives will be completely dominated by others and A will

not contain the full set of alternatives. This is illustrated in Figure B.2. In this more general

case, if we were to calculate each ci as simply the point where ai+biz crosses ai+1+bi+1z, our

sequence (ci) would occasionally decrease. To remedy the situation, we need to remove those

lines that are dominated from the set A and then, for i + 1 ∈ A, compute cj as the point

at which the line aj + bjz crosses ai+1 + bi+1z, where j is the first acceptable (undominated)

alternative smaller than i + 1. If A were the full set of alternatives, j would equal i, giving

us the special case above.

Algorithm 1 accomplishes this calculation in general. In support of its analysis, we

introduce a function gi for each i = 1, . . . ,M which is defined by,

gi(z) = max(arg max
j≤i

aj + bjz).
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a 3+
b 3za

1 +b
1 z

c1 c2

a2+b2z

z
g(z) g(z)=1

g(z)=2
g(z)=3

Figure B.1: Illustration of the case when M = 3 and no alternatives are dominated. The
upper part of the illustration shows the three lines ai + biz for i = 1, 2, 3, with z ranging
along the horizontal axis. The thicker portions of the lines constitute maxi ai + biz. The
lower part of the figure shares the same horizontal z-axis, with the special points c1 and c2

annotated, and shows the value of g(z).

At Step 2 in Algorithm 1, the vector c and the set A contain what would be the correct

values if M were equal to i. That is, gi(z) = l ⇐⇒ l ∈ A and z ∈ [cl−1, cl). Note in

particular that i is always an element of A and ci is always equal to +∞. This is because bi

is strictly the largest component of b with index less than or equal to i, and so as z becomes

large enough, gi(z) will equal i.

In Steps 3 through 14 the algorithm considers adding to A the line defined by ai+1+bi+1z.

It computes where this line intersects the line indexed by j, which is the undominated line

with the largest index among the previously considered lines (that is, among lines with

indices ≤ i). This intersection point is cj, and if the intersection is to the left of where line j

intersects the next undominated line to the left, then line j is now dominated in this larger

set of lines that now includes i+1. If this happens, we remove j from A in Step 8, reset j to

the next undominated line to the left of i+1 in Step 5, and recompute where i+1 intersects

this new j in Step 6. On the other hand, if j is still undominated even under the larger set

of lines, then all previously undominated lines to the left of j also remain undominated. We

add i + 1 to the set A and loop back to Step 2.

In this way, the algorithm maintains the post-condition on Step 2 that

gi(z) = l ⇐⇒ l ∈ A and z ∈ [cl−1, cl). Since gM(z) = g(z) and i = M when the al-

gorithm terminates, we see that g(z) = l ⇐⇒ l ∈ A and z ∈ [cl−1, cl) at this termination

time. Therefore the algorithm is correct.
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c1=c2 c3

a3+b3z

z
g(z)

a2+b2z

g(z)=1
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g(z)=4

Figure B.2: Illustration of the case when M = 4 and alternative 2 is dominated. As in
Figure B.1, the upper part of the illustration shows the lines ai + biz for i = 1, 2, 3, 4 and the
lower part of the figure shows the value of g(z) as a function of z. Alternative 2 is dominated
because a2 + b2z is lower than another line for all z, which causes c2 to be equal to c1 and
g(z) += 2 for all z.

To analyze this computational complexity of this algorithm, first note that it contains an

outer loop at Step 2, and an inner loop beginning at Step 5 that optionally repeats at Step 7.

Each time the inner loop repeats it removes an element from A. A total of M elements are

added to A in Steps 1 and 14, and A finishes with at least one element, so the inner loop can

repeat at most M−1 times through the course of the entire algorithm. Note that this O(M)

bound on inner-loop iterations is a bound on the number that take place over the course of

the entire algorithm, and not just a bound on the number per outer loop. The outer loop

clearly executes M − 1 times, so the maximum number of times that any statement may be

executed is 2(M − 1). Thus, this algorithm has computational complexity O(M).
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