The KNS1 gene of Saccharomyces cerevisiae encodes a nonessential protein kinase homologue that is distantly related to members of the $C D C 28 / c d c 2$ gene family

Ramesh Padmanabha, Sonja Gehrung, and Michael Snyder
Department of Biology, Yale University, New Haven, CT 06511, USA
Received September 17, 1990

Abstract

Summary. A novel protein kinase homologue (KNS1) has been identified in Saccharomyces cerevisiae. KNS1 contains an open reading frame of 720 codons. The car-boxy-terminal portion of the predicted protein sequence is similar to that of many other protein kinases, exhibiting 36% identity to the $c d c 2$ gene product of Schizosaccharomyces pombe and 34% identity to the CDC28 gene product of S. cerevisiae. Deletion mutations were constructed in the KNS1 gene. kns1 mutants grow at the same rate as wild-type cells using several different carbon sources. They mate at normal efficiencies, and they sporulate successfully. No defects were found in entry into or exit from stationary phase. Thus, the KNSI gene is not essential for cell growth and a variety of other cellular processes in yeast.

Key words: Protein kinase - Yeast - CDC28 - Cell cycle

Introduction

Protein phosphorylation has been implicated in a wide variety of cellular functions as the mechanism by which both enzymatic and non-enzymatic activities of proteins are controlled (Krebs 1986). Events influenced by protein phosphorylation include enzyme regulation, assembly of cytoskeletal components, and cell cycle control. The $c d c 2$ gene of Schizosaccharomyces pombe and its closely related homologue in Saccharomyces cerevisiae, CDC28, encode protein kinases that are necessary for cell cycle control at G1/S and G2/M transitions (Wheals 1987). Several additional homologues of CDC28 have been identified in S. cerevisiae. These include KIN28, an essential gene in yeast (Simon et al. 1986), KSS1 and FUS3, two genes involved in growth control (Courchesne et al. 1989; Elion et al. 1990), and PHO85, a gene involved in negative regulation of the PHO genes (Toh-e et al. 1988). More distantly related members of this fami-

[^0]ly include casein kinase II the catalytic subunits of which are encoded by two genes, CKA1 and CKA2 (Chen et al. 1988; Padmanabha et al. 1990). All of these proteins are thought to phosphorylate serine and threonine residues and in most cases this has been directly demonstrated.

It is presently unclear just how large the CDC28 gene family is, and whether or not most members of this family participate in cell cycle regulatory functions is also not known. Described below is a novel protein kinase homologue which was identified while studying the organization of the SPA2 region on chromosome XII of S. cerevisiae (Snyder 1989). This putative kinase gene is a distantly related member of the CDC28 gene family.

Materials and methods

General methods. Yeast growth media and genetic manipulations were as described in Sherman et al. (1986). All bacterial media and manipulations were as described in Maniatis et al. (1982). Yeast strains used are listed in Table 1.

DNA sequence analysis. Individual subclones in either M13mp18 or mp19 (Yanisch-Perron et al. 1985) were sequenced by the dideoxy chain-termination method (Sanger et al. 1977) using the Sequenase kit (United States Biochemical) according to the recommendations of the manufacturer.

Gene disruption. A XhoI-SpeI DNA fragment containing a full-length KNS1 gene was cloned into pUC 18 . The resulting plasmid was designated p 217 . knst- 41 was constructed by partially digesting this plasmid with StyI and $X b a \mathrm{I}$, the ends were made flush by treatment with the large fragment of DNA polymerase I plus dNTPs, and ligated to a 1.1 kb HindIII fragment containing the yeast URA3 gene. The ends of the URA3 DNA fragment had previously been made flush by treatment with the large fragment of DNA polymerase I. Similarly, kns1-42 was

Table 1. Yeast strains

Strains genotypes								
Y264	α	ura3-52	lys2-801	ade2-101	his3-4200	trp1-901		
Y428	a ura3-52		lys2-801	ade2-101	trp1-901	leu2-498		
Y270	a	ura3-52	lys2-801	ade2-101	his3-4200	trp1-901		
	α	ura3-52	lys2-801	ade2-101	his3-4200	trp 1-901		
Y650	a	ura3-52	lys2-801	ade2-101	his3-4200	knst-41: : URA3		
	α	ura3-52	lys2-801	ade2-101	his3-4200	trp1-901	KNS1	
Y651	a	ura3-52	lys2-801	ade2-101	his3-4200	trp 1-901	1 knst-42	$U R A 3$
	α	ura3-52	lys2-801	ade2-101	his3-4200trp 1-901		KNS 1	
Y652	a	ura3-52	lys2-801	ade2-101	his3-4200trp1-901 k		kns1-43: URA3	
	α	ura3-52	lys2-801	ade2-101	his3-4200	trp 1-901	KNS1	
Y657	α	ura3-52	lys2-801	ade2-101	his3-4200	trp1-901	kns1-41:	URA3
Y659	a	ura3-52	lys2-801	ade2-101	HIS3	trp1-901	leu2-498	KNS1
	α	ura3-52	lys2-801	ade2-101	his3-4200	trp 1-901	LEU2	kns1-A1: : URA3
Y660	a	ura3-52	lys2-801	ade2-101	trp1-901	leu2-498	his3-4200	kns1-41: $: U R A 3$
Y661	α	ura3-52	lys2-801	ade2-101	trp1-901	leu2-498	his 3-4200	kns1- $11:$ URA3
Y662	α	ura3-52	lys2-801	ade2-101	trp1-901	leu2-498	his3-4200	kns1-41: URA3
Y663	a	ura3-52	lys2-801	ade2-101	trp1-901	leu2-498	his3-4200	kns1- $11:$ URA3
Y664	a	ura3-52	lys2-801	ade2-101	trp1-901	leu2-498	his3-4200	knst-41: URA3
	α	ura3-52	lys2-801	ade2-101	trp1-901	leu2-498	his 3-4200	kns1- $11:$: URA3
Y665	a	ura3-52	lys2-801	ade2-101	trp1-901	leu2-498	his 3-4200	kns1- $11:$ URA3
	α	ura3-52	lys2-801	ade2-101	trp $1-901$	leu2-498	his3-4200	kns1-A1: : URA3

All strains are congenic and in an S288C background. Y664 and Y665 are derived from different isolates
constructed by replacing the StyI fragment with the URA3 DNA fragment, and in kns $1-43$ the internal $X b a \mathrm{I}$ fragment was replaced with the URA3 gene. The orientation of the URA3 fragment in all the constructs was determined by restriction map analysis. Linearized DNA fragments containing the mutations were generated by digestion with EcoRI and HindIII and transformed into diploid yeast (Y270) (Ito et al. 1983; Rothstein 1983). The heterozygous diploids were then sporulated and the asci dissected (Sherman et al. 1986). Disruption of the KNS1 genomic locus was confirmed by gel blot analysis of genomic DNA as described by Maniatis et al. (1982).

Phenotype studies. The growth rates of KNS1 and kns1$\Delta 1$ strains were determined in YPD rich media. The doubling time was determined by measuring the OD_{600} of exponentially growing cultures every $4-5 \mathrm{~h}$ starting at $\mathrm{OD}_{600}=0.2$, for a total of 24 h . Mating efficiencies were determined by mixing equal numbers (2.5×10^{6} cells; 1 ml total volume) of exponentially growing MATa and MAT α cells and allowing them to stand upright in an 18 mm tube without agitation at $30^{\circ} \mathrm{C}$. After 5 h , the cultures were vortexed vigorously and serial dilutions of the cell suspensions plated on selective media to determine the number of diploids. For each mating experi-
ment between 150 and 280 diploids were counted. Sporulation efficiencies were determined essentially as described by Sherman et al. (1986). Stationary phase cells were washed in 1% potassium acetate and then incubated in 1% potassium acetate at $30^{\circ} \mathrm{C}$ for 3 days. The percentage of asci present was then determined by examining appropriate dilutions under a microscope.

The induction of thermotolerance in the different strains was determined in the following manner. Exponentially growing cells were diluted into fresh YPD media to $\mathrm{OD}_{600}=0.5$ and then grown at $30^{\circ} \mathrm{C}$. Aliquots were periodically removed and appropriate dilutions plated on YPD rich media either with or without a heat treatment. The portions that were heat-treated were transferred to glass 18 mm test-tubes and incubated at $53.5^{\circ} \mathrm{C}$ for 5 min . The cells were then cooled rapidly on ice and plated. Between 500 and 1500 cells were counted at different incubation times and the percentage survival determined.

RNA blot analysis. Total RNA was prepared by K. Voel-kel-Meiman from vegetatively growing diploid yeast cells by the method of Schmitt et al. (1990). Between 7 and $15 \mu \mathrm{~g}$ of the RNA was then subjected to electrophoresis in a 1.5% agarose gel in the presence of formal-
dehyde (Maniatis et al. 1982), transferred to a nylon membrane according to the recommendations of the manufacturer (Zeta-probe, Bio-Lab Laboratories), and probed with a 1.5 kb BgIII KNSI DNA fragment labelled with $\left[\alpha-{ }^{32} \mathrm{P}\right]$ ATP (Feinberg and Vogelstein 1983). After autoradiography, the probe was removed from the filter by incubation in $0.015 \mathrm{M} \mathrm{NaCl}, 0.0015 \mathrm{M}$ sodium citrate at $95^{\circ} \mathrm{C}$, and the blot was rehybridized with a 0.5 kb yeast actin probe (a gift from S. Roeder, Yale University). The actin probe hybridized with a 1.5 kb yeast RNA at less than one-third the intensity of the KNS1 probe.

KNS1-lacZ fusions. In order to determine whether the kinase protein was expressed, fusions between KNS1 and the lac Z gene of Escherichia coli were constructed. A 1.5 kb Bg III fragment which contained 341 nucleotides located upstream of the putative initiator methionine and extended into the kinase domain of $K N S 1$, was inserted into the BamHI site of plasmid B5 (a gift from S. Roeder, Yale University; plasmid B5 contains a truncated $\operatorname{lac} Z$ gene inserted into YCp 50). In the proper orientation, this produces an in-frame fusion between KNS1 and lacZ. Recombinants containing the BglII KNSt fragment inserted in both orientations were isolated and transformed into yeast.
β-Galactosidase assays were performed as follows. Patches of yeast cells containing the plasmids were allowed to grow overnight at $30^{\circ} \mathrm{C}$, after which a piece of Whatman 3 mm filter paper was placed over the patches until the paper was completely moist. The filter paper was removed with the yeast cells adhering to it; the paper was then exposed to chloroform vapours for 5 min to lyse the cells. The paper was then placed on a petri dish containing the assay medium $[0.7 \%$ agar, 0.1 M sodium phosphate, $\mathrm{pH} 7.0,1 \mathrm{mM} \mathrm{MgSO} 4,120$ $\mu \mathrm{g} / \mathrm{ml}$ 5-bromo-4-chloro-3-indolyl- β-D-galactoside (XGal)], and incubated at $30^{\circ} \mathrm{C}$ for 20 h until color development was complete. The assay was performed in duplicate.

Fig. 1. Restriction map of KNS1 region and sequencing strategy. Large arrows indicate the direction of transcription of the KNS1 and SPA2 genes respectively. Arrows beneath the map indicate the direction and extent of DNA sequencing as determined by the dideoxy chain-termination method (Sanger et al. 1977), using M13 vectors (Yanisch-Perron et al. 1985)

Results

A protein kinase homologue
lies 3^{\prime} to the SPA2 gene of yeast
During the sequencing of the SPA2 gene of S. cerevisiae, our analysis extended into the 3^{\prime} flanking region (Figs. 1 and 2). An open reading frame was identified which could potentially code for a protein the sequence of which shows significant similarity to those of a number of protein kinases. This gene was named KNS1 for kinase next to SPA2. The KNS1 open reading frame is 2208 bp in length and lies 339 bp away from the SPA2 open reading frame. There are two methionine codons located at the beginning of the KNS1 ORF, one at nucleotide 655 and the other at 703. It is likely that the second methionine is the one used for translation initiation since sequences near the second methionine more closely resemble the consensus sequences surrounding the initiator methionine of other eukaryotic genes (Kozak 1983). If this is the case, then the KNS1 translation product is 720 amino acids long. It is unlikely that the KNS1 gene is spliced within the coding region, as this sequence lacks the TACTAAC sequence found close to the 3^{\prime} end of all yeast introns ('Teem et al. 1984). The predicted amino acid sequence of the KNS1 gene was compared with those in the Genbank data base using the FASTA programs (Pearson and Lipman 1988); the last 420 amino acids of the putative KNS1 gene product have significant amino acid sequence similarity to many protein kinases. A more detailed comparison of the KNS1 sequence with the data of Hanks et al. (1988) confirmed that the protein encoded by KNS1 contained every invariant and semi-variant residue present in all known protein kinases (Figs. 3A and 4). These conserved residues span ten domains (Hanks et al. 1988).

The KNS1 protein kinase is most similar to the $\mathrm{CDC} 28 / \mathrm{cdc} 2$ kinase family

The sequences of a large number of protein kinases have been grouped into families based on their sequence similarities (Hanks et al. 1988). The closest matches of the KNS1 predicted sequence were with the CDC28 and FUS3 genes of S. cerevisiae, and cdc2 gene of S. pombe (Fig. 4). The KNS1 protein shares a number of residues characteristic of the members of this family (indicated by asterisks in Fig. 4). The number of identical residues shared with the CDC2, CDC28, and FUS3 proteins is $36 \%, 34 \%$, and 32%, respectively over a ca. 350 amino acid stretch. The number of similar residues between the KNS1 protein and these three proteins is $60 \%-70 \%$. The KNS1 protein, like other members of the cdc2/ CDC28 family, contains a large domain X in its carboxyterminus (see Figs. 3 and 4).

Although the KNS1 protein sequence is most similar to that of members of the CDC28 family, there are several noteworthy differences. First, the KNS1 protein lacks the conserved tyrosine residue at position 308; a tyrosine residue at this position in the $c d c 2$ protein of S. pombe

778 acg cge aca anc ang ctg ctg gac gag atg ttt gct cgg cai ant tct ttt cta aca gac ant ctg agg anc agt cta gac cig ant
 865 CAA GCA GAC aAt ccg ctc cgt cct cgg can cac cai cac cag ttg ttc ttg gac ant gai ant gcc ata gan cta gac gag gag ccg

 1300 CAA ACT GAA AAT GAG CTG tTG CAT CTA ACG GGG tCG tGT gCA aAG act ctg gag ggc adc ang gCa gTg ant ctc acg att gCt cac
 1387 AGC ACT TCT CCC TTT TCC AAC CCA CCA GCA CAA ATA GCT TCC CTG CGT CAA TCC AAC CTC AAG AAA CAA ATt GGT TCT TCA CTA CGG

 1648 gat adc ang tat gai cct aft tac gtg gct gta ana gtg ata agg gct gta gat aga tat aga gai gcc gcc ana aca gai cta aga 1735 att cta cag act atc ctg ant ant gac cct can ggt cag ttc cag tgc ctc ttg cta agg gag tgc ttc gat tac aad ant cac att
 1822 tgt ttg gtg aca gat cta tac gge agg tcc att tac gat ttt atg tge tcc adc ggc att gca get tce ccg gct ctc ata tca gge 1909 cat tgc aga cag cta atc aga tct gtc tgc ttc ttg cac gat ttg ggc ata ata cac agg gat ttg ada cca gat ant atc ctg att

 2083 CGC AAA atc ttg ana at cca gai atc ana atc att gat tic gGt agc gca att ttc cat tac gat tat cat cct cct gia ata tcc
 2170 act cgt cac tat aga gce ccg gaa att gtc ctt ggc ttg gGc tgg tcg ttc cce tgc gac att tgg tcc atc geg tgt gic cta gta

 2344 cCC aca gac att att gat ang atg ttt tac aAa tct ana cat ana ttg ggc anc tct cca tca gac cta ant tca acg gtg ata ang

 2518 gtc ttg cag tca tgt gat cge tta gat att tac atc tca ang gtc ttg aad cag gat tac ggc gat agc tta agc atc aft tgg ata

 2692 gai ctc gat ang gai act ttc ttg ttt tgg tac tgg ttc atc gat cta ctc agg aad atg ttt gag ttc gac cca aca aad agg att 2779 acc gca ang gac gct ctg gac cat gai tgg ttt ant ctg ggc ata gtg gat gat ggt att gca act tat ant ant acc cai gga tag

2866 TGGGTGTTCTCGTTCTACTTTTCTCTTCTTTTTTTCACATCTTTTACTAGTTCCGTTTTTTTTITITTTAACTCTTCTTTTTCATtTICCGGTTTTTAATAATATTTCTTTAAAT 2981 TTCTATATTCAATAAAAATTCTTCCTACATATATATCTTCATATTCAAACATTTATAGTATTTTTACTAATTITTTGTTGTTTTAATATACTATAATAATATTATTATTACTGCT 3096 TTAACTACTATTATTATTATTATAATTATTATTATTATATGTCATACATAATACATTCTATTGATTGTCTITGTCTTCCTTTTCTTTCTCCTCTAGA

Fig. 2. DNA sequence of the $K N S 1$ region. The translation of the $K N S 1$ open reading frame starting at the second methionine is shown beneath the DNA sequence. The first and second methionine residues are indicated in italics. Numbers adjacent to the nucle-
otide sequence refer to the nucleotide position; numbers in italics indicate the respective amino acid residue positions downstream of the second methionine

Fig. 3. A Amino acid residues in the predicted KNS1 protein (top line) that are present in other protein kinases (bottom line). Regions conserved in all known kinases are indicated by the filled segments. $\mathrm{X}=$ any residue. Residues in the lower line are in all protein kinases; residues in brackets are usually found in other protein kinases, but other residues are sometimes found. B knst deletions in which the URA3 gene has been substituted for portions of the KNSi gene. kns1-41 and knst-43 begin at codon 51 . kns1-42 begins at codon 305, which encodes the first conserved residue of the kinase domain indicated by the filled segment; the remaining fragment of KNS1 is indicated by shading. knst-41 and knst-42 deletions end at exactly the last codon of the KNS1 open reading frame
has been shown to be phosphorylated in vivo (Gould and Nurse 1989). The KNS1 protein also contains 305 amino acids upstream of the putative kinase domain; an upstream domain of comparable size is not present in other members of the CDC28 family. Although we do not yet know its function, this upstream region may be involved in the regulation of kinase activity, via interaction with substrates and/or interaction with as yet undiscovered subunits. This region also contains a possible nuclear localization sequence, KKFKKQR, beginning at residue 176 (see Kalderon et al. 1984 for examples of other nuclear localization sequences), suggesting that perhaps the KNS1 protein functions within the nucleus.

Throughout the KNS1 protein sequence there are several homopolymer tracts of amino acids, for example, at positions 142 (SSSS), 147 (NNNNN), and 671 (SSSSS) based on numbering relative to the first methionine of the KNS1 ORF (Fig. 2). The latter polyserine stretch is part of a potential recognition sequence for casein kinase II (SSSSSTTDE) (Tuazon and Traugh 1989). This raises the possibility that the KNS1 protein itself may be regulated by phosphorylation.

The KNS1 protein is not essential for cell viability in yeast

To help determine the role of the KNS1 protein in yeast, three deletion mutations were constructed within the KNS1 region, and these are shown in Fig. 3B. knst- 41 is a substitution of URA3 for a large region of KNS1; only 51 codons of KNS1 coding sequence lie upstream of the URA3 gene, assuming the second methionine co-
don is the initiator methionine. The knst- 41 deletion ends exactly at the last codon of the open reading frame. kns $1-42$ contains a precise substitution of the URA3 gene for the 1274 bp coding segment of the kinase domain; this deletion begins at the codon for the first conserved residue of the kinase domain (residue 305) and also ends exactly at the last codon of the open reading frame. A third deletion, knst-43, removes an intermediate amount of DNA relative to knst-41 and knst-42.

Each of the different knsi alleles were introduced into diploid yeast strains, and the resulting heterozygotes were sporulated. For all three alleles, four viable spores were obtained, and the markers segregated $2 \mathrm{Ura}^{+}$: Ura^{-}, indicating that the KNS1 gene is not essential for cell viability. Proper substitution at the KNSI locus was determined by gel blot analysis of genomic DNA (not shown). knsi-1 mutants grow at the same rate as wild-type cells in rich media (YPD) at $30^{\circ} \mathrm{C}$ and at $11^{\circ} \mathrm{C}$ (see Table 2 for $30^{\circ} \mathrm{C}$ results), and have the same proportion of unbudded, small budded, and large budded cells. kns1 cells also form normal-sized colonies when incubated at either $18^{\circ}, 30^{\circ}$ or $37^{\circ} \mathrm{C}$, or when incubated on plates containing either galactose or glycerol as their primary carbon source. knst cells mate at approximately the same efficiency as wild-type cells (Table 3), and knsi/ kns 1 diploids successfully undergo meiosis to form fourspored tetrads at equivalent levels to wild-type cells (Table 4).

Since CDC28 homologues participate in control steps of the cell cycle we also examined entry into and exit from stationary phase. Wild-type yeast cells acquire thermal tolerance upon entry into stationary phase (see Snyder 1989). When cultures of yeast cells were incubated for up to 2 days, kns1 mutant cells acquired thermal tolerance at a rate equivalent to that of wild-type cells, indicating that entry into stationary phase was normal (Fig. 5). Exit from stationary phase into a proliferative cycle was also tested. Incubation of wild-type cells in the presence of glucose caused a rapid loss of cell viability; the loss of cell viability is suggested to be caused by initiation of cell growth in media that cannot sustain growth (Granot and Snyder 1991). Glucose-induced loss of cell viability occurred in knst mutant cells at a rate similar or faster to that in wild-type cells (not shown), indicating that exit from stationary phase was normal in kns1 mutant cells. Thus, kns1 cells appeared normal compared to wild-type cells in all aspects examined.

The KNS1 protein is expressed in vegetatively growing yeast cells

The lack of any observable defect in knst cells might be due to failure of the $K N S 1$ gene to produce a transcript or protein in yeast. To determine whether the KNS1 gene is expressed, two types of experiments were performed, RNA blot analysis and $K N S 1$: :lacZ fusions. Total RNA from vegetatively growing yeast cells was prepared and probed with a KNS1 probe (see the Materials and methods). As shown in Fig. 6, a 2.5 kb tran-

 - - - VRVVAASTRTPAGNSLGTIIMEFGGNVTLHQVIYGAAGHPEGDAGEPHCRTGGQLSIGKCLKYSIDVVNG

 LK S I H S A Q V I Hir D I K

 L D Y C \quad H

 LGSRHYSTGVDTWSVGCIEAEMIRRSPLFPGDSEI-DEIFKIFQVLGTPNEEVNP-GVTLLQD--YKSTE


```
    Q D LIKKLITTRDLSERRLGNLQNGSEDVKNHPW [57]
                        AGLIKKRMLIVNPLNRISINEIMODDNFKV D [324]
                        G D V I Q R C W R P S A A O
```

Fig. 4. Comparison of the putative $K N S 1$ protein sequence with that of other protein kinases. Residues often found in members of the cdc2/CDC28 family and not often present in other protein kinases are indicated by an asterisk. Residues common to all family members are enclosed in boxes. For comparison $C D C 7, T P K 3$, SNF1, c-mos, and c-src protein sequences are included; these are not members of the cdc2/CDC28 family. The number of amino acid residues upstream of the depicted kinase domains are 291 (KNS1); 0, (cdc2); 4 (CDC28); 9 (FUS3); 9 (KSS1); 4 (KIN28);

36 (CKA1); 46 (CKA2); 5 (CDC7); 85 (TPK3); 52 (SNF1); 57 (c-mos); and 267 (c-src). The protein sequences were obtained from Hindley and Phear 1984 (cdc2); Lorincz and Reed 1984 (CDC28); Courchesne et al. 1989 (KSS1); Elion et al. 1990 (FUS3); Simon et al. 1986 (KIN28); Chen et al. 1988 (CKA1); Padmanabha et al. 1990 (CKA2); Patterson et al. 1986 (CDC7); Toda et al. 1987 (TPK3); Celnza and Carlson 1986 (SNF1); Watson et al. 1982 (cmos); Anderson et al. 1985 (c-src)

Table 2. Growth rates

Strain	Doubling time at $30^{\circ} \mathrm{C}$
MATa KNS1 (Y428)	110
MATa KNS1 (Y264)	120
MATa knst- 11 (Y660)	126
MATa knst-A1 (Y661)	115

KNS1 and kns1- -11 yeast strains were grown in rich media. The doubling time was determined by measuring the OD_{600} of exponentially growing cultures every $4-5 \mathrm{~h}$ starting at $\mathrm{OD}=0.2$ for a total of 24 h

Table 3. Mating efficiencies

MATa	MATx	Mating efficiency
KNS1 (Y428)	KNS1 (Y264)	1.0
KNS1 (Y428)	kns1--1 (Y661)	0.753
kns1-11 (Y660)	KNS1 (Y264)	0.825
kns1-1 (Y660)	kns1-11 (Y661)	0.514
kns1- $\Delta 1$ (Y663)	kns1-41 (Y662)	0.921

$M A T a$ and $M A T \alpha$ cells growing exponentially were incubated to $\mathrm{OD}_{600}=0.5$ and mating efficiency were determined as described in the Materials and methods. For each mating between 150 and 280 diploid colonies were counted

Table 4. Sporulation efficiencies

Diploids	No. of cells counted	No. of spores	$\%$ Asci
KNS1/KNS1 (Y270)	187	43	22.9
kns1- $11 / k n s 1-\Delta 1$ (Y664)	149	34	22.8
kns1-41/kns1-41 (Y665)	153	28	18.3

Diploid yeast cells were sporulated in $30^{\circ} \mathrm{C}$ in 1% potassium acetate, and the $\%$ acsi was determined after 3 days

Fig. 5. Test for entry into stationary phase of wild-type cells and of kns1 mutant cells of the following strains was performed as described in the Materials and methods: MATx KNS1 (Y264), MATa KNS1 (Y428), MATa kns1 (Y661), and MATa kns1 (Y662)

Fig. 6. RNA blot analysis of $K N S 1$. Lane 1, $7 \mu \mathrm{~g}$ of total yeast RNA; lane $2,15 \mu \mathrm{~g}$ of total yeast RNA. The size of the hybridizing band was estimated based on the mobility of the ribosomal RNA bands
script capable of encoding the entire KNS1 protein was present. The KNSt transcript appears to be more abundant than yeast actin RNA (not shown).

In order to determine whether this KNS1 transcript was capable of being translated, the lac Z gene of E. coli was fused in frame to KNS1 coding sequences (see the Materials and methods), transformed into yeast, and assayed for the presence of β-galactosidase. A low level of β-galactosidase activity was observed; this level was at least 50 -fold lower than that of the SPA2:: β-gal fusion protein (Snyder 1989; C. Costigan and M. Snyder, unpublished results). Control strains with lac Z present in the opposite orientation relative to KNS1 failed to produce any detectable β-galactosidase. The low levels of enzyme activity detected in β-galactosidase assays can be explained in several ways: (i) the KNS1 transcript may be poorly translated, (ii) the presence of the KNS1 protein may be only transient during the yeast cell cycle, (iii) the KNS1 protein or the KNS1:: β-gal fusion protein might be particularly sensitive to proteolysis, or (iv) the β-galactosidase activity of this particular fusion construct may itself be intrinsically low. In any event, the KNS1 gene appears to be expressed as RNA and occurs, at least at a low level, as protein in yeast.

The presence of the KNS1 gene

on a high copy number plasmid in yeast
does not suppress the cdc28-1 mutation of yeast
The KNS1 gene is distantly related to the CDC28 gene. To determine whether the KNS1 protein might contain overlapping functions with that of the CDC28 protein, we tested whether the KNS1 gene when present on a high copy number plasmid, YEp24, might suppress the cdc28-1 mutation of S. cerevisiae. Wild-type and $c d c 28$ mutant cells containing either a KNS1/YEp24 high copy number plasmid or YEp24 alone exhibited no difference in colony size when cells were grown at either the restric-
tive temperature $\left(37^{\circ} \mathrm{C}\right)$ or at semipermissive temperatures (30° and $32^{\circ} \mathrm{C}$). Thus, although we have not determined whether the $K N S 1 / \mathrm{YEp} 24$ plasmid overproduces $K N S 1$ RNA or protein, the $K N S 1 / Y E p 24$ plasmid does not suppress the $c d c 28-1$ mutation.

Discussion

A novel kinase homologue, KNS1, which is a distant member of the $C D C 28 / c d c 2$ gene family has been identified. The KNS1 protein differs from proteins encoded by other members of the $C D C 28 / c d c 2$ gene family in that it contains a 30 kDa segment upstream of the kinase domain, which may regulate the KNS1 kinase activity. An attached regulatory domain might make the KNS1 kinase less versatile than other members of the cde2/ CDC28 family, because the other members of this family can potentially ineract with a number of regulatory domains. The SPA2/KNS1 region lies on the left arm of chromosome XII, 21 cM from the centromere. The KNS1 gene contains a NotI site in its coding region (Fig. 1), which should allow its precise positioning on a physical map, once it becomes available.

A large deletion of the $K N S 1$ gene was constructed. kns1 mutant cells appear similar to wild-type cells in all aspects that were examined. The $K N S 1$ gene produces a 2.5 kb transcript and $K N S 1$:: lac Z fusions produce β-galactosidase activity indicating that the KNS1 gene is expressed in yeast. Either we have not found the appropriate conditions under which KNS1 plays an important function in yeast, or there is another gene or set of genes that has an overlapping function with KNS1. There are other examples of dispensable genes in yeast where a second or third homologue exists with a closely related function [examples include cAMP-dependent protein kinase genes TPK1, TPK2, TPK3 (Toda et al. 1988); RAS1, RAS2 (DeFeo Jones et al. 1983); histone genes $H 2 A, H 2 B, H 3, H 4$ (Hereford et al. 1979; Smith and Murray 1983); and casein kinase II genes CKA1, CKA2 (Padmanabha and Glover 1987)]. Low stringency hybridizations with $K N S 1$ probes failed to reveal any related homologue, indicating that if KNS1 homologues exist, they must be divergent in sequence.

Our serendipitous finding of the KNS1 gene probably reflects the fact that there are many protein kinase genes in yeast. So far, at least 24 yeast protein kinase genes or homologues have been identified. Approximately 520 sequences yeast genes which are expected to be transcribed by RNA polymerase II are present in the GenBank data base (Release 63); thus kinase homologues comprise about $4 \%-5 \%$ of the total, a number slightly higher than that predicted by Hunter (1987). If $4 \%-5 \%$ represents the frequency of protein kinases in yeast, then we predict that the yeast genome contains approximately $400-500$ protein kinases among its 10000 genes. We recognize that there are a number of factors that may bias this estimate.

Acknowledgements. We thank K. Voelkel-Meiman for total yeast RNA, B. Grimwade for help with the computer analysis and C.

Costigan, B. Grimwade, and B. Page for comments on the manuscript. This work was support by NIH grant GM36494 (90%) and by an Institutional American Cancer Society Grant (10%). R.P was supported by an Anna Fuller Postdoctoral Fellowship. The sequence data are available from GenBank/EMBL/DDBJ under accession number M36980.

References

Anderson SK, Gibbs CP, Tanaka A, Kung H-J, Fujita DJ (1985) Human cellular src gene: nucleotide sequence and derived amino acid sequence of the region coding for the carboxy-terminal two-thirds of pp60 $0^{\text {c-src. }}$. Mol Cell Biol 5:1122-1129
Celnza JL, Carlson M (1986) A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233:1175-1180
Chen J L-P, Padmanabha R, Glover C (1988) Isolation, sequencing and disruption of the CKA1 gene encoding the alpha subunit of yeast casein kinase II. Mol Cell Biol 8:4981-4990
Courchesne WE, Kunisawa R, Thorner J (1989) A putative protein kinase overcomes pheromone-induced arrest of cell cycling in S. cerevisiae. Cell 58:1107-1119

DeFeo Jones D, Scolink EM, Koller R, Dhar R (1983) ras-Related gene sequences isolated from Saccharomyces cerevisiae. Nature 306:707-709
Elion EA, Grisafi PL, Fink GR (1990) FUS3 encodes a cdc2 ${ }^{+}$/ CDC28-related kinase required for the transition from mitosis into conjugation. Cell 60:649-664
Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6-13
Gould KL, Nurse P (1989) Tyrosine phosphorylation of the fission yeast cdc2 ${ }^{+}$protein kinase regulates entry into mitosis. Nature 342:39-45
Granot D, Snyder M (1991) Glucose induces cAMP-independent growth-related changes in stationary-phase cells of Saccharomyces cerevisiae. Proc Natl Acad Sci (USA) 88:5724-5728
Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42-52
Hereford L, Fahrner K, Woolford J, Rosbash M, Kaback DB (1979) Isolation of yeast histone genes H2A and H2B. Cell 18:1261-1271
Hindley J, Phear GA (1984) Sequence of the cell division gene CDC2 from Schizosaccharomyces pombe; patterns of splicing and homology to protein kinases. Gene 31:129-134
Hunter T (1987) A thousand and one protein kinases. Cell 50:823829
Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163-168
Kalderon D, Richardson WD, Markham AF, Smith AE (1984) Sequence requirements for nuclear location of simian virus 40 large T-antigen. Nature 311:33-38
Kozak M (1983) Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol Rev 47:1-45
Krebs EG (1986) The enzymology of control by phosphorylation. In: Krebs EG and Boyer PD (eds) The enzymes, vol 18, Academic Press, London, pp 3-20
Lorincz AT, Reed SI (1984) Primary structure homology between the product of yeast cell division control gene CDC28 and vertebrate oncogenes. Nature 307:183-185
Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
Padmanabha R, Glover C (1987) Casein kinase II of yeast contains two distinct alpha subunits and an unusually large beta subunit. J Biol Chem 262:1829-1835
Padmanabha R, Chen J L-P, Hanna DE, Glover C (1990) Isolation,
sequencing and disruption of the yeast CKA2 gene: Casein kinase II is an essential enzyme. Mol Cell Biol 10:4089-4099
Patterson M, Sclafani RA, Fangman WL, Rosamond J (1986) Molecular characterization of the cell cycle gene $C D C 7$ from Saccharomyces cerevisiae. Mol Cell Biol 6:1590-1598
Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444-2448
Rothstein RJ (1983) One-step gene disruption in yeast. Methods Enzymol 101:202-211
Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463-5467
Schmitt ME, Brown TA, Trumpower BL (1990) A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18:3091-3092
Sherman F, Fink G, Hicks I (1986) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
Simon M, Seraphin B, Faye G (1986) KIN28, a yeast split gene coding for a putative protein kinase homologous to CDC28. EMBO J 5:2697-2701
Smith MM, Murray K (1983) Yeast H3 and H4 histone messenger RNAs are transcribed from two non-allelic gene sets. J Biol Chem 169:641-661
Snyder M (1989) The SPA2 protein of yeast localizes to sites of cell growth. J Cell Biol 108:1419-1429
Teem J, Abovitch N, Kaufer NF, Schwindinger WF, Warner JR,

Levy A, Woolford J, Leer RJ, van Raamsdonk-Duin MMC, Mager WH, Planta RJ, Schultz L, Friesen JD, Fried H, Rosbash M (1984) A comparison of yeast ribosomal protein gene DNA sequences. Nucleic Acids Res 12:8295-8312
Toda T, Cameron S, Sars P, Zoller M, Wigler M (1987) Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50:277-287
Toh-e A, Tanaka K, Usono Y, Wickner RB (1988) PHO85, a negative regulator of the PHO system is a homolog of the protein kinase gene CDC28 of Saccharomyces cerevisiae. Mol Gen Genet 214:162-164
Tuazon PT, Traugh JA (1989) Casein kinase I and II - multipotential serine protein kinases: structure, function and regulation. In: Greengard P and Robison GA (eds) Advances in secondmessenger and phosphoprotein research, vol 23, Raven Press, pp 123-164
Watson R, Oskarsson M, Van de Woude GF (1982) Human DNA sequence homologous to the transforming gene (mos) of Moloney murine sarcoma virus. Proc Natl Acad Sci USA 79:40784082
Wheals AE (1987) Biology of the cell cycle in yeasts. In: The yeasts, vol 1. Academic Press, London, pp 283-391
Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103-119

Communicated by N.D.F. Grindley

[^0]: Offprint requests to: R. Padmanabha

