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THE KODAIRA DIMENSION OF LEFSCHETZ FIBRATIONS∗

JOSEF DORFMEISTER† AND WEIYI ZHANG‡

Abstract. In this note, we verify that the complex Kodaira dimension κh equals the symplectic
Kodaira dimension κ

s for smooth 4−manifolds with complex and symplectic structures. We also
calculate the Kodaira dimension for many Lefschetz fibrations.
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1. Introduction. Let M be a smooth 4-manifold. The manifold M can be
endowed with different structures: complex, symplectic, Lefschetz fibration, etc. If
given a complex structure, the (complex) Kodaira dimension κh(M, J) is defined
within the framework of birational classification of complex manifolds. This notion
has proven to be very useful, at least in complex dimension 2, in which we have a
detailed birational classification. Similarly, given a symplectic structure, there is the
concept of a (symplectic) Kodaira dimension κs(M, ω) (see [28],[17] and [21]). One
would like to achieve a similar classification as in the complex case for symplectic
manifolds. Such a classification is very clear when the symplectic Kodaira dimension
is −∞. Moreover, in symplectic Kodaira dimension 0, T.-J. Li ( [21] and [22] ) gives
a classification of symplectic 4 manifolds up to their rational homology groups (See
also [31] for a similar result). In Section 5 (Prop. 5.5), we will give some evidence to
support his conjecture, that the classification in [22] is complete.

The main goal of this paper is to show the relationship between κh(M, J) and
κs(M, ω) on manifolds admitting complex and symplectic structures and the role they
play in the classification of Lefschetz fibrations (and pencils).

In section 2, we state the definitions of the Kodaira dimension in the complex
and symplectic cases including some useful background information. We then define
the Kodaira dimension κl(g, h, n) for Lefschetz fibrations with base genus h ≥ 1, fiber
genus g and n singular points (See Def 2.7).

In Section 3, we show that the symplectic Kodaira dimension κs(M, ω) as defined
in [21] is the same as the complex Kodaira dimension for all smooth 4-manifolds
admitting complex and symplectic structures. That is, we have the following theorem:

Theorem 1.1. Let M be a smooth 4-manifold which admits a symplectic structure
ω as well as a complex structure J . Then κs(M, ω) = κh(M, J).

The symplectic structure ω is not necessarily compatible with or even tamed by
the complex structure J . In the Kähler case, this result is known to T.-J. Li ([21]).
This allows us to give the Kodaira dimension of a complex or symplectic 4-manifold
without ambiguity, we denote it simply as κ(M).

In the following, we address the equivalence of κ(M) and the Lefschetz Kodaira
dimension κl(g, h, n). This is broken into three cases: Excluding the exceptional case
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(g, h, n) = (> 2, 1,≥ 1), we first prove that on a complex manifold M the Kodaira
dimension κl(g, h, n) coincides with the complex Kodaira dimension κh(M, J):

Theorem 1.2. (See Theorem 3.6) If the complex manifold (M, J) admits a
smooth (g, h, n) Lefschetz fibration with h ≥ 2, then κh(M, J) = κl(g, h, n). This also
holds when h = 1, provided that either g ≤ 2 or n = 0 (the case of a fiber bundle).

In Section 3.3, we address the issue of equivalence on a symplectic Lefschetz
fibration. This differs very little from the complex case, the main result is

Theorem 1.3. Let M be a symplectic manifold admitting the structure of a
smooth (g, h, n) Lefschetz fibration with h ≥ 2, then κs(M, ω) = κl(g, h, n). This also
holds when h = 1, provided that either g ≤ 2 or n = 0 (the case of a fiber bundle).

Finally, we conjecture the equivalence of the dimensions in the exceptional case,
providing some evidence for the conjecture. This also has interesting connections to
work by Amoros, et. al. [2].

The results of Gompf and Matsumoto show that most Lefschetz fibrations admit
a symplectic or complex structure. Therefore Lefschetz fibrations are a nice structure
to research, especially as we hope that this will lead to a general definition of Kodaira
dimension for a much larger class of smooth 4-manifolds, and ultimately hopefully
to a definition for broken Lefschetz fibrations (It has recently been shown that every
smooth four manifold admits a broken Lefschetz fibration ([1], [20])). Additionally,
this may give insight into a possible extension of the symplectic Kodaira dimension
to higher dimensions.

It is worth noting at this juncture, that LeBrun has researched the connection
between the Yamabe invariant of a smooth four manifold and Kodaira dimension on
complex compact manifolds (see [17], [18] and [19]). This provides a possible gener-
alization of Kodaira dimension to smooth 4-manifolds. We should mention that the
equivalence of this “Yamabe Kodaira dimension” and symplectic Kodaira dimension
is still not clear.

The flavor of Section 5 is somewhat different from the previous Sections. Here
we attempt to give a combinatorial definition of Kodaira dimension in the h = 0
case, i.e. when the base is P1. Less is known in this (most interesting, see Theorem
2.10) case. However, this kind of combinatorial definition may be generalized to more
complicated fibration structures.

The authors hope to draw attention to the various possible generalizations of
Kodaira dimension in 4-dimensions. They furthermore hope this will lead to a deeper
understanding of the concept of Kodaira dimension and lead to useful definitions for
smooth four-manifolds and manifolds of higher dimension.

Acknowledgments. We would like to thank our thesis adviser Professor T.-J. Li
for many helpful comments and discussions. We also thank M. Usher for his interest
in our work.

We would like to express our gratitude to the referees, whose careful reading and
very useful suggestions greatly improved the paper.

2. The Kodaira dimension. In this section we will review the definitions of the
Kodaira dimension for complex and symplectic 4-manifolds. Furthermore, we define
the Kodaira dimension for Lefschetz fibrations. We begin with the classic definition
on a manifold admitting a complex structure and then consider manifolds admitting
symplectic structures and Lefschetz fibrations with positive genus base. Throughout,
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we include some relevant facts in preparation for the proofs of Theorems 1.1, 1.2 and
1.3.

2.1. Complex Kodaira dimension. If the manifold M admits a complex
structure J , then the Kodaira dimension is defined as follows (in the case dimRM = 4,
see Def 2.3 for the 2 dimensional case): The n-th plurigenus Pn(M, J) of a complex
manifold is defined by Pn(M, J) = h0(K⊗n

J ), with KJ the canonical bundle of (M, J).
We denote by c1 = c1(X, J) the first Chern class of the complex manifold (X, J).

Definition 2.1. The complex Kodaira dimension κh(M, J) is defined as

κh(M, J) =















−∞ if Pn(M, J) = 0 for all n ≥ 1,
0 if Pn(M, J) ∈ {0, 1}, but 6≡ 0 for all n ≥ 1,
1 if Pn(M, J) ∼ cn; c > 0,
2 if Pn(M, J) ∼ cn2; c > 0.

Let (M, J) be a complex surface. Then M is called minimal if it does not contain
a nonsingular rational curve of self-intersection −1. A nonsingular surface Mmin is
called a minimal model of M if it is minimal and if M can be obtained from Mmin by
blowing up a finite collection of points. It is known, that every compact nonsingular
complex surface M has a minimal model Mmin and, if κh(M, J) ≥ 0, then the minimal
model is unique up to isomorphism. The classification of minimal compact complex
surfaces is called the Enriques-Kodaira classification:

Theorem 2.2. ([15] or [3]) Let (M, J) be a minimal complex surface. Denote
by pg the geometric genus of M and q the irregularity of M . Then (M, J) is classified
according to the following table:

Class κh

1 algebraic surfaces with pg = 0 −∞, 0, 1, 2
2 K3 surfaces 0
3 complex tori (of dimension 2) 0
4 elliptic surfaces with b1 even, pg > 1, c1 6= 0 0, 1
5 algebraic surfaces with pg > 1, c1 > 0, c2

1 > 0 2
6 elliptic surfaces with b1 odd, pg > 1, c2

1 = 0 0, 1
7 surfaces with b1 = q = 1, pg = 0 −∞, 0

The first five classes admit Kähler structures. The seventh class of surfaces all
have b2 = 0 and hence admit no symplectic structures. Details can be found in [3].

2.2. Symplectic Kodaira dimension. Let (M, ω) be a symplectic manifold.
The symplectic canonical class Kω is the first Chern class of the cotangent bundle
with any ω-compatible almost complex structure. The set of ω-compatible almost
complex structures is nonempty and contractible, so Kω is well-defined. A symplectic
manifold is called minimal if it does not contain a symplectic embedded sphere with
self intersection −1. A symplectic manifold (M, ω) is symplectically minimal if and
only if M is smoothly minimal.

The symplectic Kodaira dimension of a 2-manifold is defined as follows:
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Definition 2.3.

κs(M, ω) =







−∞ if Kω < 0,
0 if Kω = 0,
1 if Kω > 0.

Clearly, κ(M, ω) = −∞, 0 or 1 if and only if the genus is 0, 1 or > 2. These
coincide with the complex Kodaira dimension if dimRM = 2.

A similar definition can be made for 4-manifolds, the symplectic Kodaira dimen-
sion κs(M, ω) is defined by Li [21] (see also [17], [27]) to be:

Definition 2.4. For a minimal symplectic 4−manifold M with symplectic form
ω and symplectic canonical class Kω the Kodaira dimension of (M, ω) is defined in
the following way:

κs(M, ω) =















−∞ if Kω · ω < 0 or Kω · Kω < 0,
0 if Kω · ω = 0 and Kω · Kω = 0,
1 if Kω · ω > 0 and Kω · Kω = 0,
2 if Kω · ω > 0 and Kω · Kω > 0.

The Kodaira dimension of a non-minimal manifold is defined to be that of any of
its minimal models.

If the symplectic manifold carries a complex structure J in addition to the sym-
plectic structure, then we can define two classes: The first Chern class c1(KJ) of the
canonical bundle KJ and the symplectic canonical class Kω. Please note that c1(KJ )
and Kω may differ: If the manifold M admits a Kähler structure and is minimal, then
the first Chern class of the canonical bundle KJ is given by the canonical class Kω of
the Kähler form and it is unique up to diffeomorphism (see [34] and [10]). If J and ω
are not compatible, then c1(KJ ) and Kω are not necessarily equal. On a non-Kähler
symplectic manifold there may be many symplectic canonical classes Kω depending
on the choice of symplectic structure ω. Hence the Kodaira dimension may depend
on the choice of symplectic structure ω. The following Theorem addresses this issue:

Theorem 2.5. (Thm 2.4, [21]) Let M be a closed oriented smooth four manifold
and ω an orientation compatible symplectic form on M . Let (M, ω) be minimal.

1. The Kodaira dimension is well defined.
2. κs(M, ω) only depends on the oriented diffeomorphism type of M , hence

κs(M, ω) = κs(M).
3. κs(M) = −∞ if and only if M is rational or ruled.
4. κs(M) = 0 if and only if Kω is a torsion class.

Remark. The definition of the symplectic Kodaira dimension κs(M, ω) contains
all possible combinations of Kω · Kω and Kω · ω save one: It was shown in [21] that
the pairing Kω · Kω > 0 and Kω · ω = 0 is not possible. The first statement of Thm.
2.5 follows from this.

As in the complex category, certain results on minimal models hold: In the sym-
plectic category there exist minimal models, and for surfaces with κs(M) ≥ 0 these
are unique up to isomorphism. Moreover, if κs(M) = −∞, then there exist at most
two minimal models up to diffeomorphism.

To determine the Kodaira dimension of a symplectic manifold, it is necessary to
determine the value of K2

ω. Assume M admits an almost complex structure. Let χ
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denote the Euler characteristic and let σ denote the signature of the manifold M .
Then

K2
ω = 2χ + 3σ. (1)

Actually, what we really used in this paper for the definition of symplectic Kodaira
dimension is a combination of Definition 2.4 and Theorem 2.5.

Corollary 2.6. Let M be a closed oriented smooth four manifold and ω an
orientation compatible symplectic form on M . Let (M, ω) be minimal. M is said to
have symplectic Kodaira dimension κs(M) = −∞ if M is rational or ruled. Otherwise,
the Kodaira dimension κs(M) of M is defined in terms of Kω as follows:

κs(M) =







0 if Kω is torsion ,
1 if Kω is non-torsion but K2

ω = 0,
2 if K2

ω > 0.

For a non-minimal M , κs(M) is defined to be κs(N), where N is a minimal model of
M .

2.3. The Kodaira dimension of Lefschetz fibrations. The notion of a Lef-
schetz fibration is important for both symplectic and complex manifolds. In partic-
ular, it can be viewed as a topological characterization of symplectic manifolds. In
the following we present a definition of the Kodaira dimension for Lefschetz fibrations
when the base is not S2.

2.3.1. Lefschetz fibrations. We begin with an overview of Lefschetz fibrations
and their connection to symplectic manifolds.

Definition 2.7. A (g, h) Lefschetz fibration on a compact, connected, oriented
smooth 4-manifold M is a map π : M → Σh, where Σh is a compact, connected,
oriented genus h 2-manifold and π−1(∂Σh) = ∂M , such that

• the set of critical points of π is isolated and lies in the interior of M ;
• for any critical point x there are local complex coordinates (z1, z2) compatible

with the orientations on M and Σh such that π(z1, z2) = z2
1 + z2

2,
• π is injective on the set of critical points and
• a regular fiber is a compact, connected, oriented genus g 2-manifold.

Let n denote the number of singular points. A singular fiber is a transversally
immersed surface with a single positive double point. If there are no critical points
(n = 0), then π : M → Σh is just a surface bundle.

A (g, h) Lefschetz fibration is called relative minimal if no fiber contains a sphere
of self intersection −1.

Lemma 2.8. ([32]) For (g, h) Lefschetz fibrations with h ≥ 1, relative minimal is
equivalent to M minimal.

The total space M may admit symplectic structures ω or complex structures J ,
however these may not be compatible with the fibration structure. This leads to the
following definition.

Definition 2.9.

1. A (g, h) Lefschetz fibration is called symplectic if there exists a symplectic
form ω on M such that, for any p ∈ Σ, ω is nondegenerate at each smooth
point of the fiber Fp and at each double point, ω is nondegenerate on the two
planes contained in the tangent cone.
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2. A (g, h) Lefschetz fibration is called holomorphic if there exists a complex
structures J and j on M resp. Σh such that the map π : (M, J) → (Σh, j) is
holomorphic.

The following two results show the intimate connection between Lefschetz fibra-
tions and symplectic manifolds:

Theorem 2.10.

1. [6] If (M, ω) is a symplectic 4-manifold, then there exists a nonnegative integer

n such that the n-fold blowup M#nCP2 admits a symplectic (g, 0) Lefschetz
fibration over S2.

2. [12] Suppose M is a 4-manifold admitting a (g, h) Lefschetz fibration π : M →
Σh. If the fiber class F ∈ H2(M) is nontrivial, then M admits a symplectic
Lefschetz fibration structure. In particular, if g 6= 1 then this result holds.

Thus, given a (g, h) Lefschetz fibration with nontrivial fiber class, we can construct
a symplectic structure on the underlying smooth manifold M . This in turn allows
us to identify M with a (k, 0) Lefschetz fibration after a finite number of blow-ups.
The following question is interesting in particular from the viewpoint of Kodaira
dimension, which is invariant under blow-up:

Question 2.11. What is the connection between (g, h, n) and (k, 0, n′)?

We cannot hope to obtain a precise answer to this question, as the number of
singular fibers n′ resulting from Donaldson’s construction is not bounded above. In
particular, the (k, 0, n′) Lefschetz fibration structure is not unique. However, the
genus k and the value n′ depend on each other. We will consider this topic in Section
5.

We note two important properties of Lefschetz fibrations: Recall the Definition
of the Kodaira dimension for a 2-manifold given in Def. 2.3.

Lemma 2.12. Let M be the total space of a (g, h) Lefschetz fibration.
1. ([14])Assume the manifold M admits a compatible complex structure J , i.e.

a J makes the Lefschetz fibration holomorphic. Then

κh(M, J) ≥ κh(Σg) + κh(Σh). (2)

2. ([23]) Assume the manifold M admits a symplectic structure ω. Then

κs(M) ≥ κs(Σg) + κs(Σh). (3)

In order to determine the Kodaira dimension of a symplectic or complex manifold
M , we need to estimate the square of the canonical class. Assume M admits a
relative minimal holomorphic Lefschetz fibration (allowing h = 0 as well). Define
the holomorphic Euler characteristic χh = χ+σ

4 . Then Xiao [35] proved the slope
inequality for fibrations with fiber genus g ≥ 2:

K2 − 8(g − 1)(h − 1) ≥ (4 −
4

g
)(χh − (h − 1)(g − 1)). (4)

Note that the assumption that the fibration is holomorphic is vital for this result
to hold. See also the discussion in Section 3.3.
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2.3.2. Kodaira dimension. We present a definition of the Kodaira dimension
for Lefschetz fibrations with h ≥ 1. The case h = 0 will be discussed in Section 5.
This definition is purely combinatorial and should thus be extend able to more general
structures on M . In the following Sections, we proceed to show the equivalence of
this definition with κs(M) or κh(M, J) when M admits the structure of a Lefschetz
fibration with h ≥ 1 and a complex or symplectic structure in all cases but the
exceptional one.

Definition 2.13. Given a relative minimal (g, h, n) Lefschetz fibration with
h ≥ 1, define the Kodaira dimension κl(g, h, n) as follows:

κl(g, h, n) =



















−∞ if g = 0 ,

0 if (g, h, n) = (1, 1, 0) ,

1 if (g, h) = (1,≥ 2) or (g, h, n) = (1, 1, > 0) or (≥ 2, 1, 0) ,

2 if (g, h) ≥ (2, 2) or (g, h, n) = (≥ 2, 1,≥ 1).

The Kodaira dimension of a non-minimal Lefschetz fibration with h ≥ 1 is defined
to be that of its minimal models.

Remark. A priori, this definition does not necessarily provide a diffeomorphism
invariant. Once Theorems 1.2 and 1.3 as well as Conjecture 4.1 have been proven, this
will be an invariant up to diffeomorphism. Moreover, we will show later (Proposition
4.4) that κl is a diffeomorphism invariant even if we can prove only κh = κl.

3. The Kodaira dimension on a complex or symplectic manifold. We
have defined three kinds of Kodaira dimension: the complex κh(M, J), symplectic
κs(M) and the Lefschetz κl(g, h, n) Kodaira dimensions. In this Section, we prove
the equivalence of these definitions when M admits a complex structure.

3.1. κs(M) = κh(M, J). The Kähler case of the following Theorem was observed
in [21] and communicated to us by T.-J. Li. We include his proof for the convenience
of the reader.

Theorem 3.1. Let M be a smooth 4-manifold which admits a symplectic structure
ω as well as a complex structure J . Then κs(M) = κh(M, J).

Proof. Assume that M is not minimal. The Kodaira dimensions κs(M) and
κh(M, J) are invariant under blow-up and blow-down. Thus we may blow down any
exceptional curves and work only with the minimal manifolds thus obtained. We may
therefore assume that M is minimal in the following proof.

We consider first the Kähler case: Let (M, J, ω) be a Kähler surface with inte-
grable complex structure J and Kähler form ω. Let KJ be the canonical line bundle.
Notice that the first Chern class of KJ is just Kω.

Castelnuovo-Enriques proved that Kähler surfaces with κh = −∞ are rational or
ruled surfaces. So if κh(M, J) = −∞ then κs(M) = κh(M, J) by Theorem 2.5.

The plurigenera Pn(M, J), hence the Kodaira dimensions, do not change under
blowing down. Moreover, for a Kähler surface with non-negative holomorphic Kodaira
dimension, if the manifold is holomorphically minimal, then it is smoothly minimal, in
particular it is symplectically minimal (see [10]). Notice this is not true when (M, J)
is a rational surface, e.g. the Hirzebruch surface F3 is holomorphically minimal but
not smoothly minimal). Thus, to compare κh(M, J) and κs(M) when κh(M, J) ≥ 0,
we can assume that (M, J) is holomorphically minimal.
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If (M, J) is a minimal surface with κh(M, J) = 0, then some positive power of KJ

is a trivial holomorphic line bundle. In particular, c1(KJ ) is a torsion class. Therefore
κ(M) is equal to zero as well by Theorem 2.5.

If (M, J) is a minimal surface with κh(M, J) = 1, then it is a minimal elliptic
surface by the surface classification. In particular, c1(KJ) has zero square.

For a surface (M, J) with κh(M, J) = 2, if n ≥ 2, then

Pn(M, J) =
n(n − 1)

2
c2
1(KJ ) +

1 − b1 + b+

2
.

In particular, c1(KM ) has positive square.
As Kω = c1(KJ ) and applying Cor. 2.6 prove κs(M) = κh(M, J) if κh(M, J) is

equal to 1 or 2, hence the result in the Kähler case.
Assume now that M admits a symplectic and a complex structure but is not

Kähler. Such manifolds exist, for example the Kodaira-Thurston manifolds. Recall
the classification given in Theorem 2.2. It follows, that the only class of interest is
class (6), as class (7) is not symplectic (b2 = 0).

Therefore, consider elliptic surfaces in class (6). Class (6) surfaces with
κh(M, J) = 0 are just primary Kodaira surfaces. It is shown in [21] that the symplec-
tic Kodaira dimension of a primary Kodaira surface is 0. A result of Biquard [4] shows
that for κh(M, J) = 1, symplectic is equivalent to Kähler. Thus a non-Kähler class
(6) surface with κh(M, J) = 1 doesn’t admit a symplectic structure. This finishes the
proof in the non-Kähler case.

Remark.

1. The symplectic Kodaira dimension and complex Kodaira dimension in di-
mension 4 are both diffeomorphism invariants.

2. For projective manifolds, the above theorem is related to the abundance con-
jecture. See [5] for example. For the Kähler case, there are some discussions
in [27].

3. For the above argument, we only need Biquard’s result for properly elliptic
surfaces with pg = 1. If pg > 1, we can use the classification in [22]. In this
case, b1 = 2pg + 1 > 5. However, it was shown in [22], that b1 ≤ 4 for all M
with κs(M) = 0. Hence κs(M) ≥ 1 would follow without the results in [4].

3.2. κl(g, h, n) = κh(M, J). This section is devoted to the proof of Theorem
1.2. We begin with some preliminary results which hold in both the complex and
symplectic cases.

Proposition 3.2. Let π : M → Σh be a relative minimal (g, h) Lefschetz fibra-
tion. Assume that M admits a complex or symplectic structure. Denote the corre-
sponding Kodaira dimension by κ(M).

1. If g ≥ 2 and h ≥ 2, then κ(M) = 2.
2. If g = 0, then κ(M) = −∞.

Proof. Assume that g, h ≥ 2, then we obtain κ(Σg) = κ(Σh) = 1 by Def 2.3. The
subadditivity of the Kodaira dimension for Lefschetz fibrations (Lemma 2.12) states

κ(M) ≥ κ(Σg) + κ(Σh).

Thus κ(M) ≥ 2 if g, h ≥ 2.
Assume g = 0. Then the Lefschetz fibration has no nontrivial vanishing cycles,

hence it has no singular points if our fibration is relative minimal. We obtain a S2
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bundle over a Riemann surface of genus h. This has κ(M) = −∞ by Castelnuovo-
Enriques (complex case) or Theorem 2.5 (symplectic case).

Applying the subadditivity of the Kodaira dimension again, we obtain the follow-
ing simple corollary:

Corollary 3.3. Assume that M admits a complex or symplectic structure.
Denote the corresponding Kodaira dimension by κ(M).

1. If g = h = 1, then κ(M) > 0.
2. If g > 2 and h > 1 or h > 2 and g > 1, then κ(M) > 1.

Proof. If g ≥ 2, then we can apply Lemma 2.12 due to Thm. 2.10. If g = 1,
then we can also apply Lemma 2.12 when the total space is symplectic (in [33] it was
shown that T 2 bundles over a surface Σg admit symplectic structures if and only if
the fiber class is nontrivial). When the total space is complex, it has to be elliptic.
Thus again we may apply Lemma 2.12.

This corollary reduces the problem to the following two cases:

1. g = 1 ;
2. g ≥ 2 and h = 1 (the exceptional case).

We first consider the case g = 1. The following proposition will be useful in the
discussion relating to this case, it holds in the more general framework of a surface
bundle with either base or fiber a torus, but with the genus of the base positive: In
that case χ(M) = 0 by the multiplicity of the Euler number. A theorem of Meyer
[29] states that σ(M) = 0 if we have a surface bundle, such that the genus of the base
is strictly positive and either the base or the fiber is a torus. The main point of the
proof is that we have a bound on the signature in terms of g and h, but we can allow
any k-fold multiple cover of T 2 by another T 2. By pulling back by such a cover, we
obtain a contradiction. Thus we have:

Proposition 3.4. For a (g, 1) or (1, g) surface bundle (g > 2) it follows that
κ(M) = 1.

Once again, we let κ denote one of κs or κh, whichever is defined.

Proof. By Meyer [29], σ(M) = 0, then K2 = 3σ(M) + 2χ(M) = 0 (Eq. 1). By
Cor. 3.3, κ(M) > 1 and M must have κ(M) = 1.

We now return to the case where the fiber is a torus. When the total space is
complex, we have the following famous result of Matsumoto ([26]): Every relative
minimal elliptic Lefschetz fibration over a surface Σh is either a torus bundle over Σh

or E(n, h) = E(n)♯f{Σh × T 2} and all admit compatible complex structures. Thus
we have:

Proposition 3.5. If g = 1, then the relative minimal (1, h) Lefschetz fibrations
with a complex or symplectic structure either have Kodaira dimension −∞, 0 or 1.
Specifically, letting κ denote one of κs or κh, whichever is defined, we have:

1. κ = −∞: T 2 × S2(Ruled surface), non-trivial T 2 bundle over S2 (Hopf sur-
face), or E(1) (non-minimal rational surface);

2. κ = 0: E(2), T 2 bundles over T 2;
3. κ = 1: All the other cases.

Proof. Consider first torus bundles over Σh:
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1. h = 0: All such bundles are complex and have κ = −∞. More precisely, they
are the following: The ruled surface T 2 ×S2 or the Hopf surface which is the
non-trivial T 2 bundle over S2.

2. h = 1: The bundles in this case are symplectic ([11]) and have κ = 0 ([21]).
3. h > 2: Then κ(M) = 1 due to the result of Prop. 3.4.

Consider now the case E(n, h) = E(n)♯f{Σh × T 2}. All of these manifolds are
known to admit compatible complex structures. We present a symplectic argument
here: When h = 0, these are just the elliptic surfaces E(n) which, by the classification
of elliptic surfaces, have

κ =











−∞ E(1),

0 E(2),

1 E(n) n > 2.

When h > 1, then κ(Σh × T 2) > 0. Furthermore, we can check that the fiber
sum E(n, h) is relative minimal. For example, given E(1, h), then Σh × T 2 is already

minimal, and in the E(1) part, the fiber class is 3h −
∑9

i=1 ei, which pairs positively
with any exceptional class ei. For general E(n, h), we can add E(1) step by step.
Then it follows (Theorem 4.2, [24]), that κ(E(n, h)) = 1.

Now let the total space is symplectic and has at least one singular fiber, we know
they are all holomorphic (see [30]), and then it follows by the above discussion.

Remark.

1. Note that Prop. 3.5 gives information also for the case in which the base is S2,
a case which we have excluded in our Definition of the Kodaira dimension
κ(g, h, n). In particular, this result as well as Prop 3.2 include relatively
minimal Lefschetz fibrations with base S2.

2. Part 2 of Prop. 3.5 can also be found in [31].
3. In [33] it was shown that T 2 bundles over a surface Σg admit symplectic

structures if and only if the fiber class is nontrivial. When the fiber class
is trivial, there exist families of complex surfaces (See class (6), Thm 2.2).
However, we don’t know if there are any T 2 fibrations over Σg(g ≥ 2), which
are neither symplectic nor complex.

Thus we have proved the main result of this section:

Theorem 3.6. Let M admit a relative minimal (g, h, n) Lefschetz fibration with
h ≥ 1 and a complex structure. If (g, h, n) 6= (> 2, 1,≥ 1), then κh(M, J) = κl(g, h, n).

Remark.

1. The case (g, h, n) = (2, 1, > 0) follows from Prop. 4.3.
2. Assume that M admits a (g, 1) holomorphic Lefschetz fibration. Applying

Xiao’s result (Eq. 4) provides the estimate

K2 ≥ (4 −
4

g
)χh

which leads to the estimate

σ ≥
−(g + 1)

2g + 1
χ. (5)
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This estimate is particularly interesting when compared to the signature re-
sult in the hyperelliptic case, see Eq. 6. It would be of great interest in the
purely symplectic case as well (For example, our Conjecture 4.1 follows then),
however it is an open question: Question 5.10 posed in [2] in the symplectic
setting would lead to this inequality if it is answered in the affirmative.

3.3. κl(g, h, n) = κs(M).

Theorem 3.7. Let M be a smooth symplectic manifold admitting the structure
of a (g, h) Lefschetz fibration. Then κs(M) = κl(g, h, n) if (g, h, n) 6= (> 2, 1, > 0).

Proof. This follows from Prop. 3.2, Cor. 3.3, Prop. 3.5 and Prop. 3.4 as well as
Prop. 4.3 which addresses the (g, h, n) = (2, 1, > 0) case.

Remark. Notice that by Definition 2.13, Theorem 1.2 and Theorem 1.3 we
actually have the following additivity relations

κh(M) = κh(Σg) + κh(Σh)

κs(M) = κs(Σg) + κs(Σh)

for the Kodaira dimension of a Lefschetz fibration if the fibration is a bundle. Addi-
tivity can be shown to hold for all the cases in Definition 2.13 by the notion of relative
Kodaira dimension in the sense of [25].

4. The exceptional case: Conjectures and results.

Conjecture 4.1. If (g, h, n) = (> 2, 1, > 0), then κh(M, J) = 2 when M is
complex and κs(M) = 2 when M is symplectic.

By Cor. 3.3, the only possible values are κs(M) = 1 or κs(M) = 2. In other
words, we only need to determine if K2

ω = 0 or not by the definition of the symplectic
Kodaira dimension. We know that K2

ω = 3σ(M) + 2χ(M). Moreover, given a (g, 1)
Lefschetz fibration, the Euler number is determined by the number of vanishing cycles.
In fact,

χ(M) = χ(Σg) · χ(T 2) + ♯{vanishing cycles} = ♯{vanishing cycles}.

Hence χ = n > 0. Thus, if Eq. 5 held, the result would follow.
In the following two Propositions, we provide some evidence for the validity of

this conjecture:

Proposition 4.2. Given a (g, 1) Lefschetz fibration (g ≥ 2) with n 6= 0 mod 3.
Then κs(M) = 2.

Proof. We know that κs(M) ≥ 1 by Cor. 3.3. Assume that K2
ω = 0, i.e. that

κs(M) = 1. Then

0 = 2χ(M) + 3σ(M) ⇔ −
2

3
χ = σ(M) ∈ Z.

This is a contradiction, as χ(M) = n 6= 0 mod 3; thus κs(M) = 2.

Using similar methods, we can show that the conjecture holds for all spin mani-
folds M admitting a (g, 1) Lefschetz fibration if 24 ∤ χ(M). This is essentially a result
of Rokhlin’s Theorem.
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If we assume that M is complex, then the conjecture holds if 12 ∤ χ(M). This
assumption rules out the case K2

J = 0, as in the complex case M would admit the
structure of a properly elliptic fibration, for which 12 divides χ(M).

Proposition 4.3. Suppose the Lefschetz fibration is hyperelliptic, i.e. the mon-
odromy group of every singular fiber has a conjugation to the hyperelliptic subgroup of
the mapping class group. Then, every hyperelliptic (g, 1) Lefschetz fibration (g > 2)
has κs = 2. In particular, every (2, 1, > 0) Lefschetz fibration has κs = 2.

Proof. For every hyperelliptic (g, 1) Lefschetz fibration , we have a signature
formula in [8]:

σ(M) = −
g + 1

2g + 1
a +

[ g
2
]

∑

h=1

(
4h(g − h)

2g + 1
− 1)sh. (6)

Here a is the number of nonseparating vanishing cycles and sh denotes the number
of separating vanishing cycles with one of the separated components a genus h surface.

Denote s =
∑[ g

2
]

h=1 sh to be the number of separating vanishing cycles. Then

χ(M) = ♯{vanishing cycles} = a + s.

Thus,

K2 = 3σ(M) + 2χ(M)

=
g − 1

2g + 1
a +

[ g
2
]

∑

h=1

6h(g − 2h) + 2g(h − 1) + (4gh − 1)

2g + 1
sh

> 0,

when g > 2 and #{singular points} = ♯{vanishing cycles} = a + s > 0.
Hence, every hyperelliptic (g, 1) Lefschetz fibration (g > 2) has κs = 2. In

particular, every (2, 1, > 0) Lefschetz fibration is hyperelliptic, thus has κs = 2.

Remark. Consider the fiber sum M = M1#M2 of two symplectic manifolds
M1, M2 as defined by Gompf [13]. Results in [24] provide an inequality for the Kodaira
dimension κs(M) with respect to κs(Mi) and the surface F along which the sum is
performed:

κs(M) ≥ max{κs(M1), κ
s(M2), κ

s(F )}. (7)

With regards to that result, we can produce more examples by taking the sym-
plectic fiber sum of a hyperelliptic (g, 1) Lefschetz fibration with a (g, 0) Lefschetz
fibration along the Lefschetz fiber and applying Eq. 7. This will produce a (g, 1) Lef-
schetz fibration with κs(M) = 2 which generically should no longer be hyperelliptic.
The same could be done with a (g, 0) Lefschetz fibration with underlying manifold of
Kodaira dimension κs = 2.

At the end of this section, we want to show that, if the first part of the Conjecture
holds, κl is a diffeomorphism invariant.

Proposition 4.4. Assume that κh(M, J) = 2 if M is a complex surface and
(g, h, n) = (> 2, 1,≥ 1). Then κl is a diffeomorphism invariant.
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Proof. What we need to prove is that when M admits two different Lefschetz
fibrations with h ≥ 1, these should have the same value for the Kodaira dimension
κl. The only case which needs consideration is the exceptional case of Conj 4.1:
(g, h, n) = (> 2, 1,≥ 1). We will prove that, if a manifold M admits a (g, h, n) =
(> 2, 1,≥ 1) Lefschetz fibration, then at the same time it does not admit a (1, h, n)
or (≥ 2, 1, 0) fibration. We can rule out the case of a (≥ 2, 1, 0) Lefschetz fibration
because in both cases the last number in the triple is the Euler characteristic χ(M) of
M . Every (1, h, n) Lefschetz fibration admits a complex structure by Proposition 3.5;
M would be an elliptic complex surface. However, we have assumed κh(M, J) = 2 if
(g, h, n) = (≥ 2, 1,≥ 1) (Conj. 4.1) and hence this case can be ruled out.

Note, that if the first part of Conjecture 4.1 holds, then we have shown that a
complex surface does not admit a (≥ 2, 1,≥ 1) and a (1, h, n) Lefschetz fibration at
the same time.

5. The Kodaira dimension of Lefschetz pencils. In the previous Section,
we did not discuss in great detail the case when the base is S2. The main reason is
that a relatively minimal Lefschetz fibration is no longer necessarily minimal if the
base is S2. For this reason it is interesting to consider Lefschetz pencils. In this
Section, we want to give some easy combinatorial results in this most interesting case.
We begin by stating some results in [7].

Definition 5.1. A Topological Lefschetz Pencil (TLP) on a compact smooth
oriented 4-manifold X consists of the following data.

• Finite, disjoint subsets A, B ⊂ X, A 6= ∅;
• A smooth map f : X\A −→ S2 which is a submersion outside A ∪ B; such

that f(b) 6= f(b′) for distinct b, b′ ∈ B and which is given in suitable oriented
charts by the local models f(z1, z2) = z2/z1 (in a punctured neighborhood of
a point in A) and f(z1, z2) = z2

1 + z2
2 (in a neighborhood of a point in B).

We shall generally also denote by A (or B) the number of points in the respective
sets, our definition implies A > 0.

We can define two important classes: Firstly, the “hyperplane class” h ∈ H2(X ;Z)
which is the Poincaré dual of the fiber class. Secondly, K(X, f) ∈ H2(X ;Z) defined
by

K(X, f) = −(c1(V ) + 2f∗([S2])).

Here V is an oriented 2-plane bundle given by the tangent space to the fibre of
f . This can be extended to X and the extension is unique up to isomorphism. We
should note that if X carries a symplectic structure ω and the pencil is compatible
with ω, then K(ω) = K(X, f). The following topological facts can be found in [7]:

Facts:

1. The genus k of a smooth fibre of f is 1
2 (h · h + K(X, f) · h + 2);

2. A = h · h;
3. B = χ(X) + h · h + 2K(X, f) · h.

We can now make precise the first statement of Theorem 2.10: If a smooth 4-
manifold X admits a TLP structure with hyperplane class h such that h · h > 0,
then there exists a symplectic form in class h compatible with the fibration structure.
Moreover, blowing up X at A points gives the manifold mentioned in Theorem 2.10.
Conversely, a symplectic manifold (X, ω) admits a compatible TLP with hyperplane
class τ [ω] for τ sufficiently large. This leads to the following definition:
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Definition 5.2. For any minimal smooth 4-manifold M admitting a TLP
(k, A, B), we can define the Kodaira dimension κp(M) of the manifold M as follows:

κp(M) =















−∞ if 2k − 2 − A < 0 or 3σ(M) + 2χ(M) < 0,
0 if 2k − 2 − A = 0 and 3σ(M) + 2χ(M) = 0,
1 if 2k − 2 − A > 0 and 3σ(M) + 2χ(M) = 0,
2 if 2k − 2 − A > 0 and 3σ(M) + 2χ(M) > 0.

This combined with the fact that the symplectic Kodaira dimension is a diffeo-
morphism invariant, leads to the following result:

Theorem 5.3. Let (M, ω) be a minimal symplectic manifold. Then κs(M) =
κp(M). Moreover, κp(M) is well defined.

Proof. As stated above, we can find a TLP on M such that the symplectic
structure ω is compatible with the fibration. Moreover, we can choose [ω] = h without
loss of generality. As ω and the TLP are compatible, we have K(X, f) = Kω. Thus
the definition coincides with our original one if we know that K(X, f) ·ω = 2k−2−A.
However, this is a quick consequence of the first fact above.

The definition is independent of the choice of the TLP because the symplectic
Kodaira dimension is an invariant of the diffeomorphism type of the manifold and not
dependent on the choice of symplectic structure ω.

Remark.

1. The first half of the definition consists of combinatorial values of the TLP, the
second half of topological data. Notice that, χ(M) also has a combinatorial
expression in terms of (k, A, B). For hyperelliptic TLP, we have a purely
combinatorial explanation of σ(M) by virtue of Endo’s formula (6). Thus,
our definition is purely combinatorial for hyperelliptic TLP.

2. Given two TLP (k, A, B) and (k′, A′, B′) for a minimal 4-manifold M with
3σ(M) + 2χ(M) > 0. Then 2k − 2 − A > 0 if and only if 2k′ − 2 − A′ > 0.

In the spirit of Question 2.11, we have the following result.

Proposition 5.4. Given a (g, h, B′) Lefschetz fibration and let (k, 0, A, B) be a
corresponding Lefschetz pencil. Then k = 1

4 (A + B − B′) − gh + g + h.

Proof. It follows from Fact 3 and Fact 2 above that K(X, f) · h = B −A−χ(X).
Moreover, χ(X) = χ(B) · χ(F ) + B′. Thus

K(X, f) · h =
1

2
(B − A − χ(B) · χ(F ) − B′) =

1

2
(B − A − B′ − (2 − 2g)(2 − 2h)).

Finally,

k =
1

2
(h · h + K(X, f) · h + 2)

=
1

2
(A +

1

2
(B − A − B′ − (2 − 2g)(2 − 2h)) + 2)

=
1

4
(A + B − B′) − gh + g + h.

At the end of this Section, we want to say something about the possible clas-
sification of symplectic manifolds with class κ = 0. Li showed, that up to rational
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homology type, all symplectic manifolds with κs = 0 are either the K3 surface, the
torus T 4 or a T 2-bundle over T 2 ([21] and [22]). It was further conjectured, that this
list is complete up to diffeomorphism. The first result gives evidence of Li’s conjec-
tural classification of symplectic manifolds with κ = 0. The second result gives some
restrictions on such kind of manifolds.

Proposition 5.5. Let M be a minimal symplectic 4-manifold with κ(M) = 0.

• If M admits a (g, h) Lefschetz fibration with h > 1, then M must be a T 2-
bundle over T 2. Especially, an Enriques surface or a K3 surface does not
admit such a kind of Lefschetz fibration.

• For any TLP on M the number A must be even. This is also true for the
number of singular fibers B. Furthermore, the genus k ≥ 2.

Proof. The first one is a Corollary of our classification. It’s a combination of
Propositions 3.2, 3.5, 3.4 and 4.3. Notice that a K3 surface cannot be realized by a
(g, h) Lefschetz fibration with h > 1 because a Lefschetz fibration π : X −→ Σ with
fiber F induces an exact sequence

π1(F ) −→ π1(X) −→ π1(Σ) −→ π0(F ) −→ 0,

which implies π1(X) is non-trivial when π1(Σ) is non-trivial.

For the second one, notice that if A = h · h > 0, then by the discussion above
Definition 5.2, and Fact 1, we have h·h is even. Similarly, B = χ(X)+h·h+2K(ω)·h =
χ(X) + A and it was shown in [22] that χ(X) ∈ {0, 12, 24}.

The last result follows from a simple calculation using the above Definitions and
Prop. 3.5.

Remark.

1. The first part can be extended to the case of S2 base and S2 or T 2 fiber
Lefschetz fibration by Proposition 3.5. For the torus fiber case, see also
Theorem 4.2 in [31].

2. Consider the homotopy K3 surfaces constructed by Fintushel and Stern [9].
These manifolds are constructed from knots K in S3. 0-framed knot surgery
on K produces a manifold MK containing a circle m and hence the manifold
Mk × S1 contains a torus T with self-intersection 0. Let X be a K3 surface
and Tf a square 0 torus in X . Then construct the symplectic fiber sum
XK = X#Tf =T (MK × S1). It was shown in [9] that the Seiberg-Witten
invariant of this manifold is given by the Alexander polynomial of the knot K.
Moreover, each of the XK is a homotopy K3 surface. It admits a symplectic
structure if the Alexander polynomial is monic. By the main theorem in [24],
κs(XK) = 1.
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