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THE KOSZUL PROPERTY IN AFFINE SEMIGROUP RINGS

Jürgen Herzog, Vic Reiner and Volkmar Welker

We investigate the Koszul property for quotients of affine
semigroup rings by semigroup ideals. Using a combinatorial
and topological interpretation for the Koszul property in this
context, we recover known results asserting that certain of
these rings are Koszul. In the process, we prove a stronger
fact, suggesting a more general definition of Koszul rings, al-
ready considered by Fröberg. This more general definition of
Koszulness turns out to be satisfied by all Cohen-Macaulay
rings of minimal multiplicity.

1. Introduction.

The main point in this paper is an interplay between topological combi-
natorics and commutative algebra. Our goal is to relate the homological
properties of certain rings to the topology of certain poset complexes.

We begin by describing the rings to be studied. Let Λ be an associative
commutative finitely generated semigroup with a neutral element and satis-
fying the cancellation rule: λ1λ = λ2λ implies λ1 = λ2. We further assume
that no element of Λ is invertible. We call such a semigroup affine since
it may be identified with a semigroup generated by a finite set of mono-
mials in a polynomial ring, or, in additive notation, as a sub-semigroup
of Nd for some d. We can write the elements of an affine semigroup Λ
in either additive or multiplicative notation, once we identify an element
λ = (λ1, . . . , λd) ∈ Nd with the monomial zλ = zλ1

1 · · · zλdd . Addition of vec-
tors corresponds to multiplication of monomials and we write 0 or 1 for the
neutral element of Λ. Consider the semigroup ring k[Λ] of Λ over a field k.
The toric ideal IΛ is the kernel of the map φ : k[x1, . . . , xn]→ k[z1, . . . , zd]
sending xi to zαi := zαi11 zαi22 · · · zαidd , where the αi’s are minimal generators
of the semigroup. Consequently, we have

k[x1, . . . , xn]/IΛ
∼= k[Λ] ⊂ k[z1, . . . , zd].

Let J be an ideal in k[Λ] that is generated by semigroup elements, i.e. a
semigroup ideal. We denote by R the quotient ring k[Λ]/J .
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In the spirit of [BH2] we extend a result in [LS], [PRS] showing that the
computation of TorR· (k, k) is equivalent to the computation of the relative
homology of order complexes of the divisor poset of the semigroup and cer-
tain combinatorially defined sub-complexes (Theorem 2.1). Section 3 gives a
more concrete geometric description (Theorem 3.1) and topological analysis
(Lemma 3.3) of these complexes whose proofs use results from the theory of
subspace-arrangements and homotopy colimits as in [WZZ], [ZZ].

In Section 4 we apply this topological information to prove that R is
Koszul (see definition in Section 2) in the cases when either Λ = Nd and J
is a quadratic monomial ideal (Corollary 4.1), or J = 0 and Λ has minimal
generators α1, . . . , αn for which the toric ideal IΛ has a quadratic Gröbner
basis (Corollary 4.3). In the first case, R was shown to be Koszul by Fröberg
[Fr1], who explicitly described the generalized Koszul complex providing the
linear minimal free resolution of k. In the second case, if IΛ is graded with
respect to the grading with deg(xi) = 1 then R is again known to be Koszul;
this can be proved using the first case along with standard deformation argu-
ments (cf. [BHV] or [Ei, Section 15]). However our topological techniques
also apply when IΛ is not graded in the above way, and in particular Theo-
rem 4.2 generalizes some of the results in [PRS] which used the technique of
non-pure shellability. In particular, we recover the results of [PRS] giving
a rational expression for the Poincaré series of TorR· (k, k) when R is any
2-dimensional normal affine semigroup ring.

Furthermore, Corollary 4.3 inspired the developments of Section 5, in
which we generalize the notion of Koszul algebras to local rings and to Nd-
graded k-algebras. We call such a ring Koszul if its associated graded ring
is Koszul in the ordinary sense. This notion is justified by the fact, first
proved by Fröberg [Fr2], that in this case the Poincaré series of the ring
and its associated graded ring coincide. Along with providing an algebraic
proof of Corollary 4.3, we also prove (Theorem 5.2) that this new notion of
Koszulness applies to Cohen-Macaulay rings of minimal multiplicity. As a
consequence we obtain a rational expression for the Poincaré series of such
rings, generalizing the case of 2-dimensional normal affine semigroup rings.

2. Computing Betti numbers of rings by simplicial complexes.

Computation of Betti numbers of rings using relative homology was intro-
duced by Bruns and Herzog in [BH2] for finite resolutions of monomial
ideals in semigroup rings. The main result of this section, Theorem 2.1, is in
the same spirit, but deals with infinite resolutions. In the case when J = 0
the formula in Theorem 2.1 was proved in [LS] and [PRS]. The idea is
to identify the chains in the Bar resolution of k with the chains of certain
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simplicial complexes, as we now discuss.
The k-algebra R is naturally augmented with augmentation ideal m =⊕

λ∈Λ,λ6=0

kλ. Note that R is a Λ-graded k-algebra, and m a Λ-graded R-

module. Indeed, we may define Rλ = kλ for all λ ∈ Λ, and similarly for m.
Thus the minimal free resolution of k over R and the Tor-groups TorRi (k, k)
are naturally Λ-graded k-vector spaces, and we will denote by TorRi (k, k)λ
the λ-graded piece of TorRi (k, k).

In order to compute the Tor-groups we must construct certain simplicial
complexes. First, partially order the semigroup Λ by divisibility: For λ, µ ∈
Λ, say µ divides λ (written µ ≤ λ) if λ = µ + ι for some ι ∈ Λ Then the
closed and open intervals

[λ, µ] := {ρ ∈ Λ : µ ≤ ρ ≤ λ}, (λ, µ) := {ρ ∈ Λ : µ < ρ < λ}

are partially ordered sets with the induced ordering.
Associated with a poset P is its order complex ∆(P ). The ground set of

∆(P ) is the set of elements of P , and faces are the sub-sets {p1, . . . , pk} of
P whose elements form a chain p1 < p2 < · · · < pk. Define ∆λ := ∆((0, λ)),
i.e. ∆λ is the order complex for the open interval lying strictly between 0
and λ in the poset structure on Λ. Note that the complexes ∆λ are not pure
(all maximal faces of the same dimension) unless the minimal generators of
the monoid Λ lie on a hyperplane in Nd.

Let J be an ideal in k[Λ] that is generated by semigroup elements, what
we call a semigroup ideal. We will often abuse notation and use J both to
denote the ideal in the ring, and to denote the set {λ ∈ Λ : zλ ∈ J}. In the
case Λ = Nd the ideal J is called a monomial ideal. For λ ∈ Λ we denote by
∆λ,J the sub-complex of ∆λ consisting of all chains λ1 < · · · < λl in (0, λ)
such that if we set λ0 = 0 and λl+1 = λ then there is an index 0 ≤ i ≤ l such
that

λi+1 − λi ∈ J.
In other words, ∆λ,J is the sub-set of ∆λ consisting of the chains which con-
tain a “jump” from J . Since J is an ideal, this sub-set is actually a simplicial
sub-complex of ∆λ. The (relative, reduced) simplicial homology of the pair
(∆λ,∆λ,J) with coefficients in k will be denoted by H̃i(∆λ,∆λ,J ; k). Further-
more, we denote by C̃·(∆λ,∆λ,J) the augmented oriented chain complex of
the pair (∆λ,∆λ,J).

Theorem 2.1. Let Λ ⊆ Nd be an affine semigroup and let J be a semigroup
ideal in k[Λ]. Set R = k[Λ]/J . Then

TorRi (k, k)λ ∼= H̃i−2(∆λ,∆λ,J ; k)
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for all λ ∈ Λ and all i > 0.

Proof. Consider the bar resolution B of k over k[Λ], see [Ma, Ch. 10,§2],

B : · · · → Bi → Bi−1 → · · · → B0 → k → 0.

This is a particular free resolution of k as an R-module, which is far from
being minimal. In our case, B0 = R and, for i > 0, Bi is the free R-module
with basis {[λ1| · · · |λi]}, indexed by ordered i-tuples of non-zero elements of
Λ\J . The differential di : Bi → Bi−1 acts by the rule

di[λ1| · · · |λi] = zλ1 [λ2| · · · |λi] +
∑

1≤j≤i−1
(−1)j · [λ1| · · · |λj + λj+1| · · · |λi]

in which [λ1| · · · |λi] is interpreted as 0 whenever any λj is in J . To compute
TorRi (k, k), we must tensor this resolution with the trivial R-module k(=
R/m). This yields the complex of k-vector spaces

k ⊗B : · · · → k ⊗Bi → k ⊗Bi−1 → · · · → k ⊗B0 = k

with differential di[λ1| · · · |λi] =
∑

1≤j≤i−1 (−1)j · [λ1| · · · |λj + λj+1| · · · |λi].
By definition, TorRi (k, k) is the homology of this complex. Note that

the differential preserves the sum λ = λ1 + · · · + λi of the entries in each
bracket, that is, the Bar complex is the direct sum of its finite-dimensional
graded components (k ⊗ B)λ. If we identify [λ1|λ2| · · · |λi] with the chain
λ1 < λ1 + λ2 < · · · < λ1 + · · · + λi−1 in the open interval (0, λ), then the
differential of the Bar complex (k ⊗ B)λ is precisely the boundary map in
the augmented relative chain complex C̃·−2(∆λ,∆λ,J).

Before closing this section, we give a brief discussion of Koszul rings in this
context. When the generators of Λ all lie on some hyperplane in Nd, the toric
ideal IΛ is homogeneous with respect to the N-grading defined by deg(xi) = 1
for all i, and R and TorR· (k, k) inherit this N-grading. For any N-graded k-
algebra R, we let TorRi (k, k)j denote the jth-graded component of TorRi (k, k)
with respect to this grading, and it is easy to see that TorRi (k, k)j = 0 for
j < i. We say that R is Koszul if TorRi (k, k)j = 0 for all j 6= i. Recall
that dimk TorRi (k, k)j equals the number of basis elements of degree j in
the ith free R-module occurring in a minimal resolution of k as a trivial
R-module. Because of this interpretation, Koszulness of R is equivalent to
this resolution being linear, i.e. all matrix entries for the boundary maps are
either 0 or of degree 1. Koszulness has important consequences for R (see
for example, Lemma 5.5), and in [PRS, Corollary 2.2] it was observed that
Theorem 2.1. has the following consequence: In the case J = 0, R is Koszul
if and only if Λ is a Cohen-Macaulay poset (see [BGS] for information on
Cohen-Macaulay posets).
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It follows from work of Fröberg [Fr1] that when Λ = Nd, R is Koszul if
and only if the monomial ideal J is generated by quadratic monomials. At
present, we know of no example where J = 0 and IΛ is generated by quadrics
such that R is not Koszul. On the other hand, the following example shows
that a non-Koszul ring R which is a quotient of quadrics can appear in our
set-up, if we allow J 6= 0.
Example 2.2. Let Λ be the monoid generated by x = (0, 2), y = (1, 1),
z = (2, 0) in N2. Taking the quotient by the semigroup ideal J = 〈xy, z2〉
and the toric ideal IΛ = 〈y2 − xz〉 we obtain the ring R = k[x, y, z]/〈y2 −
xz, xy, z2〉. Consider the multidegree λ = (4, 4), which lies in degree 4 of
the N-grading. One can compute, for example with the computer algebra
package MACAULAY, that TorR3 (k, k)(4,4)

∼= H̃1(∆(4,4),∆(4,4),〈xy,z2〉; k) does
not vanish for any field k, so that TorR3 (k, k)4 6= 0 and R is not Koszul. By
[BF], up to an isomorphism, this is the only example of a non-Koszul ideal
generated by quadratic binomials in three variables.

We close this section with the following simple consequence of Theorem
2.1.

Proposition 2.3. Let R be a quotient of an affine semigroup ring k[Λ] by
a semigroup ideal J . Then the minimal free resolution (F·, d·) of k over R
is monomial, meaning that for p ≥ 0 we can choose basis for Fp so that the
matrix for the differential dp : Fp → Fp−1 has monomial entries.

Proof. We know that the basis elements for the modules Fp can be chosen
to be homogeneous with respect to the Λ-grading, and also the maps can
be chosen to preserve this Λ-grading. But this then implies that each entry
in the map is a monomial, since the ring R = k[Λ]/J has (up to multiplica-
tion by constants) a unique element in each multidegree and this element is
represented by a monomial.

3. Topological analysis.

The goal of this section is to provide a more concrete geometric understand-
ing of the pair (∆λ,∆λ,J) in the case where Λ = Nd. In this case we have
d = n and k[Λ] = k[x1, . . . , xn], so that J ⊆ k[x1, . . . , xn] is a monomial
ideal, and an element λ ∈ Λ is simply a monomial m in k[x1, . . . , xn]. We
will present a detailed topological analysis of the complexes ∆m and ∆m,J

in terms of subspace arrangements.
An arrangement of subspaces A in Rn is a finite collection of linear sub-

spaces. We identify A with its union
⋃
H∈AH. Here we consider the real
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n-space Rn with coordinates given by u1, . . . , un (since we are already using
the natural variables x1, . . . , xn as polynomial ring variables).

Let J ⊂ k[x1, . . . , xn] be a monomial ideal, and among its minimal gener-
ators, let the square-free monomials be m1, . . . ,ml. Given a monomial m, let
Um denote the subspace which is the intersection of all hyperplanes up = uq
for monomials xpxq dividing m. Then the canonical arrangement associated
to J is the subspace arrangement inside the hyperplane u1 + · · · + un = 0
consisting of its intersection with the union of all linear subspaces Umi . For
example, if J = (x2

1x2, x1x3, x
4
2, x2x3x4) ⊂ k[x1, x2, x3, x4], then AJ is the

union of the subspaces {u1 = u3} ∪ {u2 = u3 = u4} inside the hyperplane
u1 + u2 + u3 + u4 = 0.

Theorem 3.1. Let J be a monomial ideal and m a square-free monomial
in k[x1, . . . , xn], say without loss of generality, m = x1 · · ·xe. Then the pair
(∆m,∆m,J) is homeomorphic to the pair (Se−2,Se−2 ∩ AJe), where Se−2 is
the unit sphere in the hyperplane u1 + · · · + ue = 0 in real e-space and AJe
is the canonical arrangement corresponding to Je = J ∩ k[x1, . . . , xe] in Re.

Proof. The proof consists of identifying particular geometric realizations of
∆m and ∆m,J . The complex ∆m is easily seen to be the order complex of
the proper part of the Boolean lattice Be on an e-element set, i.e. it is the
simplicial complex of chains of proper sub-sets of an e-element set. To see
this, identify a monomial with the set of indices of the occurring variables.
Thus ∆m is the simplicial complex associated to the barycentric subdivision
of the boundary of an (e − 1)-simplex (sometimes known as the Coxeter
complex for type Ae−1). In particular, ∆m is homeomorphic to Se−2. If we
embed this (e−1)-simplex so that its vertices are the standard basis vectors
in Re, then it will naturally lie in the affine hyperplane u1 + · · ·+ ue = 1. A
face of ∆m corresponds to a chain of sub-sets

∅ = A0 ⊂ A1 ⊂ · · · ⊂ Ar ⊂ Ar+1 = {1, 2 . . . , e}.

One can check that geometrically the relative interior of this face is the set
of points in the affine hyperplane u1 + · · ·+ ue = 1 satisfying the conditions
(a) ui = ui′ if i, i′ lie together in some set Aj+1 −Aj, and
(b) ui < ui′ if i ∈ Aj and i′ ∈ Aj′ for some j < j′.

We obtain a homeomorphic picture if we first translate the entire (e −
1)-simplex by the vector −1

e
(1, . . . , 1) so that the simplex now lies in the

hyperplane u1 + · · · + ue = 0, and then map each point of the boundary of
the simplex radially to the point on the unit sphere Se−2 in u1 + · · ·+ue = 0
which lies on the same ray from the origin. Now the relative interior of
the above face is the set of points on the unit sphere satisfying the same
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conditions (a) and (b) above. The advantage to this situation is that now
every subspace of the form ui1 = · · · = uir has its intersection with the
sphere Se−2 triangulated as a sub-complex of the Coxeter complex ∆m.

By the definition of ∆m,J , it will be the sub-complex consisting of all such
chains in which there is an index j for which

∏
i∈Aj+1−Aj xi is divisible by a

square-free monomial in J . Comparing this with the description in (a) and
(b) above, these are exactly the faces in the barycentric subdivision which
triangulate the intersection of the canonical arrangement AJe and the unit
sphere Se−2.

The next two results give a closer topological analysis of the pair
(∆m,∆m,J) in the case where J is a quadratic monomial ideal. To state
these results, we need to establish some notation.

Say that a non-commutative monomial in k〈y1, . . . , yn〉 has content m (or
that it lies in the non-commutative fiber of m) if it maps to m under the
map

k〈y1, . . . , yn〉 → k[x1, . . . , xn]

defined by yi 7→ xi. Here we use the notation k〈· · · 〉 and k[· · · ] to denote
non-commutative and commutative polynomial rings, and all ideals in the
non-commutative ring k〈y1, . . . , yn〉 are assumed to be two-sided. Given a
quadratic monomial ideal J in k[x1, . . . , xn], let its complementary ideal J ′

be the ideal generated by the set of all quadratic monomials in k[x1, . . . , xn]
that do not lie in J . Given two non-commutative monomials, say that they
are J ′-commuting equivalent if they have the same image under the quotient
map

k〈y1, . . . , yd〉 → k〈y1, . . . , yd〉/(yiyj − yjyi : xixj ∈ J ′).
Lastly, say that a non-commutative monomial is J ′-non-stuttering if no rear-
rangement in its J ′-commuting class contains two adjacent letters yiyi with
x2
i ∈ J ′. For a (commutative) monomial m we denote by C(m) the set of
J ′-non-stuttering J ′-commuting classes of non-commutative monomials with
content m.

The next result further analyzes the case where m is square-free and J
is quadratic. Of course, since m is square-free all J ′-commuting classes are
J ′-non-stuttering.

Lemma 3.2. Let J,m be as in Theorem 3.1. If in addition J is a quadratic
monomial ideal then, AJe is an arrangement of hyperplanes, and the set of
chambers cut out by AJe is in bijection with the set C(m).

Proof. When J is a quadratic monomial ideal, it is clear from the definition
that AJe is the arrangement of hyperplanes (inside

∑
i ui = 0) which is the
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union of all ui = uj with xixj ∈ J . So without loss of generality, it only
remains to identify the chambers of AJ in case J is an ideal generated by
square-free quadratic monomials.

In this case, AJ is a sub-arrangement of the braid arrangement Ae−1 which
has all hyperplanes of the form ui = uj with 1 ≤ i < j ≤ n. Notice that
the chambers cut out by the braid arrangement are of the form uσ1 > · · · >
uσe for some permutation σ : i 7→ σi of {1, 2, . . . , e}, corresponding to the
maximal faces of the Coxeter complex ∆m. Note that these chambers also
biject with the non-commutative monomials of content m. Since AJ is a sub-
arrangement of Ae−1, its chambers will be unions of chambers from Ae−1,
i.e. they will correspond to certain sub-sets of non-commutative monomials,
which we must identify.

The key observation is that AJ is a graphic arrangement [OT, §2.4]: To
a graph G (with no loops or multiple edges) on e vertices one associates
the arrangement AG ⊆ Ae−1 consisting of all hyperplanes ui = uj for all
edges {i, j} in G. In particular, Ae−1 = AKe for Ke the complete graph on e
vertices. The graphic arrangements AG are exactly the arrangements AJ for
ideals J generated by square-free quadratic monomials. It is known [GZ]
that the chambers of a graphic arrangement AG are in bijection with the
acyclic orientations of the edges of G (i.e., the directed graphs containing
no directed cycles which are obtained by picking a direction for each of G).
One can also view such an acyclic orientation Ω as defining a poset structure
PΩ on the vertices of G, where v > v′ in PΩ if there is a directed edge from
v to v′.

If G is the graph associated to the square-free monomial ideal J , meaning
{i, j} is an edge of G exactly when xixj ∈ J , it is easy to see that these
acyclic orientations biject to the set C(m) of all J ′-commuting equivalence
classes of permutations ω, under the correspondence which sends Ω to the set
of all of linear extensions of the poset PΩ. The inverse correspondence which
produces a poset P (and hence an acyclic orientation) from a J ′-commuting
equivalence class of permutations ω was first described by Cartier and Foata
[CF] (see also [Sta, Exercise 3.48, p. 163]). Also note that in this case
since m is square-free no element of C(m) can J ′-stutter, so the set of J ′-
commuting classes of permutations ω is the same as the set C(m). Therefore
the chambers of AJ and the acyclic orientations of G are both in bijection
with C(m).

The next result analyzes the case where m is not square-free.

Lemma 3.3. Let J be a monomial ideal, and m a monomial of degree e in
k[x1, . . . , xn].
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(1) If m is not square-free then ∆m is homeomorphic to a polytopal ball
Be−2.

(2) If in addition J is generated by quadratic monomials then the sub-
complex ∆m,J is homotopy equivalent to a one-point wedge of (e− 3)-
spheres indexed by C(m), i.e. to∨

ω∈C(m)

Se−3.

The proof of this lemma will occupy the remainder of this section.

Proof. Let m = xe11 · · ·xenn be a not necessarily square-free monomial of
degree e. We polarize m to obtain a square-free monomial mpol:

mpol = x
(1)
1 x

(2)
1 · · ·x(e1)

1 · · ·x(1)
n x(2)

n · · ·x(en)
n .

Consider the braid arrangement Ae−1 associated to mpol as in the proof of
the previous lemma, lying in the space having coordinates

u
(1)
1 , u

(2)
1 , . . . , u

(e1)
1 , . . . , u(1)

n , u(2)
n , . . . , u(en)

n .

We claim that the simplicial complex ∆m is then isomorphic to the sub-
complex of the Coxeter complex ∆mpol which covers the intersection of Se−2

(the unit sphere in the hyperplane
∑
i ui = 0) with the convex cone defined

by

u
(1)
1 ≥ u(2)

1 · · · ≥ u(e1)
1(3.1)

...

u(1)
n ≥ u(2)

n · · · ≥ u(en)
n .

To see this claim, recall that a maximal face in ∆m corresponds to a non-
commutative monomial yi1 · · · yie having content m. Replacing the jth oc-
currence of yi in the monomial by y

(j)
i , we get another non-commutative

monomial y(j1)
i1 · · · y(je)

ie , and this corresponds to the maximal face in ∆mpol

lying inside the above cone and cut out by the stronger set of inequalities

u
(j1)
i1 ≥ · · · ≥ u(je)

ie .

As one varies over the non-commutative monomials of content m, these
smaller cones cover the cone defined by (3.1), proving the claim.

The previous argumentation shows that ∆m is homeomorphic to a ball
Be−2. We can visualize this as a polytopal ball in the following way. If we
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assume (without loss of generality) that e1 ≥ 2, then the radial projection
of the intersection of the cone and sphere onto the affine hyperplane u(1)

1 −
u

(2)
1 = 1 is a homeomorphism of ∆m onto the convex polytope defined by

the inequalities (3.1) inside this affine hyperplane. Assertion (1) of Lemma
3.3 is now proved.

We move on to proving assertion (2), so from now on assume that J is
generated by quadratic monomials. We polarize the monomial ideal J as
follows. Consider the map

k
[
x

(1)
1 , x

(2)
1 , . . . , x

(e1)
1 , . . . , x(1)

n , x(2)
n , . . . , x(en)

n

]
→ k[x1, . . . , xn]

which sends x(j)
i to xi for each i and j, and let Jpol be the ideal in the domain

which is generated by all square-free monomials that map to a (quadratic)
monomial which is a minimal generator of J in k[x1, . . . , xn]. It is clear
that the sub-arrangement AJpol of Ae−1 gives a polytopal decomposition of
the polytopal ball ∆m. Note however that some of the subspaces in AJpol

may intersect only the boundary but not the interior of this ball. So these
subspaces do not participate in the decomposition.

The maximal cells in this decomposition will correspond to chambers in
∆mpol lying in the convex cone described by the inequalities (3.1), and these
chambers exactly correspond to the set of J ′-commuting equivalence classes
ω of non-commutative monomials of content m, as in the proof of Lemma 3.2.
For each such class ω, let ∆ω denote the sub-complex of ∆m which trian-
gulates this chamber. We can then consider the covering Um of ∆m by the
maximal cells ∆ω in the above polytopal decomposition. On the top of the
intersection poset of this covering we add an artificial 1̂ (corresponding to
the empty space).

Now consider the sub-complex ∆m,J , which we may identify with the
arrangement AJpol intersected with the ball ∆m. For each maximal cell
∆ω in the polytopal decomposition of ∆m, let ∆ω,J denote the intersection
∆ω ∩∆m,J .

Clearly the {∆ω,J} form a cover Um,J of ∆m,J .

Lemma 3.4. In the covering Um of ∆m by the maximal cells {∆ω}, every
proper intersection lies in the sub-complex ∆m,J .

Proof. Since the covering of ∆m by these maximal cells was the polytopal
decomposition cut out by the arrangement AJpol , all proper intersections of
the maximal cells lie inside some hyperplane of this arrangement, and hence
inside ∆m,J .

As a consequence of this lemma, the coverings Um and Um,J have isomor-
phic intersection posets, and differ only in the spaces assigned to minimal
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elements p in the poset, where Um has the spaces ∆ω and Um,J has the spaces
∆ω,J .

Recall that if J is a quadratic monomial ideal in k[x1, . . . , xe] then J ′ is the
complementary quadratic monomial ideal, generated by the complementary
set of quadratic monomials to those in J .

Lemma 3.5. For any J ′-commuting class ω of non-commutative mono-
mials with content m, the space ∆ω,J is either a sphere Se−3 or ball Be−3,
depending upon whether ω is J ′-non-stuttering or J ′-stuttering.

Proof. Since ∆ω,J = ∆ω ∩∆m,J , it is a sub-complex of the boundary of the
polytope ∆ω. It is not hard to see that the walls of the chamber ∆ω in the
arrangement AJpol correspond to all possible
• adjacent pairs of repeated letters, or
• adjacent pairs of letters corresponding to a quadratic monomial in J

occurring among the non-commutative monomials belonging to the class ω.
Therefore, if ω is J ′-non-stuttering then every such wall corresponds to a
pair of letters that comes from a quadratic monomial in J , so every wall
lies in ∆ω,J . This implies ∆ω,J is the entire boundary sphere Se−3 of the
polytopal ball ∆ω.

On the other hand, assume some word in ω stutters on some elements of
J ′. Classify the walls of the polytopal ball ∆ω according to whether they
lie in ∆ω,J or not. We claim that the walls which do not lie in ∆ω,J have
non-empty common intersection F , which must therefore be some boundary
face F of ∆ω. To see this claim, note that each such wall not in ∆ω,J

corresponds to an occurrence of a pair of adjacent equal letters yiyi with x2
i

in J ′ in some representative of the class ω. It is not hard to see (and follows
easily from Cartier-Foata theory [CF]) that there is some representative of ω
which has all possible such pairs of J ′-stutterings, and then the intersection
of the J ′-stuttering facets of the simplex corresponding to this particular
representative will be non-empty and lie in the desired intersection F . Given
this claim, we can describe ∆ω,J as the sub-complex of the boundary of the
polytope ∆ω which is the union of all facets not containing the face F .
This implies ∆ω,J is a ball by Lemma 6.4. This completes the proof of
Lemma 3.5.

To complete the proof of assertion (2) in Lemma 3.3, we need to show that
∆m,J is homotopy equivalent to the one-point wedge of spheres

∨
ω∈C(m)

Se−3.

To see this, we apply the Wedge Lemma 6.1 to the covering Um,J . This
covering satisfies the necessary hypotheses because all of the spaces Up for
p non-minimal in P coincide with the corresponding spaces in the covering
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Um (which came from a polytopal decomposition of a polytopal ball). Let
P denote the common intersection poset of Um and Um,J . Note that in U ,
for any p in P with p 6= 1̂, the corresponding space (which is the same as
in Um,J) is contractible because it is a polytope. Also note that the order
complex ∆(P<1̂) is contractible because P<1̂ is the face poset for the poly-
topal decomposition of the ball ∆m, and hence it triangulates the barycentric
subdivision of this polytopal decomposition.

Therefore ∆m,J is homotopy equivalent to the wedge∨
p∈P

∆(P<p) ∗ Up

By the previous discussion, the only non-contractible contributions to the
wedge come from the spaces Up corresponding to the minimal elements p
in the covering. But these spaces Up are by definition the spaces ∆ω,J .
Lemma 3.5 then gives exactly what we want, and the proof of Lemma 3.3 is
complete.

4. Topological proofs of Koszulness.

In this section we specifically study the following two situations and give
topological proofs of Koszulness of R:
• Λ = Nd (so R = k[x1, . . . , xd]) and J is a quadratic monomial ideal,

or
• J = 0 and Λ has minimal generators α1, . . . , αn for which the toric

ideal IΛ has a quadratic Gröbner basis. We refer the reader to [CLO]
for notions and terminology related to Gröbner bases.

Let S be an Nd-graded finitely generated associative k-algebra. The
Hilbert series of S is the generating function

Hilb(R; z1, . . . , zd) =
∑
λ∈Nd

dimk(Sλ)zλ,

although we will occasionally use other variables than z1, . . . , zn as power
series variable in the generating function. In fact, we will even abuse notation
by sometimes using the variables xi or zi as generating function variables
when S is a sub-algebra or quotient of k[x1, . . . , xn] or k[z1, . . . , zd]. We
hope that this creates no confusion.

As was mentioned earlier, the groups TorRi (k, k) are Nd-graded or Λ-
graded as well. Let TorRi (k, k)λ be the λ-graded part of TorRi (k, k). The
Poincaré series of k is

PoinkR(t, z1, . . . , zd) =
∑
i≥0

∑
λ∈Nd

dimk TorRi (k, k)λ tizλ.
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Let R = k[Λ]/J be an affine semigroup ring for a semigroup Λ ⊆ Nd modulo
a semigroup ideal J . Then clearly

Hilb(R; z) :=
∑
λ∈Λ

dimk Rλzλ =
∑
λ∈Λ\J

zλ.

We first recover Fröberg’s result:

Corollary 4.1 ([Fr1]). Let R = k[x1, . . . , xn]/J for a quadratic monomial
ideal J . Then R is Koszul for all fields k, and

PoinkR(t,x) = Hilb(k〈y1, . . . , yn〉/({yiyj − yjyi}xixj 6∈J , {y2
i }x2

i
6∈J); t,x)

(4.1)

=
[

1
Hilb(R; x)

]
xi 7→−txi

(4.2)

where the non-commutative variable yi is considered to have the same mul-
tidegree as xi, and here xi is used both as a variable in the polynomial ring
and as an indeterminate in the Hilbert series.

Proof. Equation (4.2) follows from Koszulness of R (see Lemma 5.5). Koszul-
ness of R and Equation (4.1) will follow from Theorem 2.1, once we establish
that for any monomial m in R of degree e we have

H̃i−2(∆m,∆m,J ; k) =

{
k|C(m)| if i = e

0 else.

To see this in the case where m is square-free of degree e, by Theorem 3.1
we need to show that

H̃i−2(Se−2,Se−2 ∩ AJe ; k) =

{
k|C(m)| if i = e

0 else.

However, this follows from Lemma 3.2, as we now explain. Note that the
relative homology of (Se−2,Se−2 ∩ AJe) is the same as the (absolute) ho-
mology of the quotient space Se−2/(Se−2 ∩A), because the two spaces form
a relative pair of finite CW-complexes. On the other hand, for any hyper-
plane arrangement A in an (e − 1)-dimensional space, the quotient space
Se−2/(Se−2 ∩ A) will be the one-point wedge of spheres

∨
ω∈C Se−2 indexed

by the set of chambers C cut out by A. Therefore Lemma 3.2 gives the
assertion.
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In the case m is not square-free, ∆m is a ball by Lemma 3.3. Thus the
long exact sequence for homology gives

H̃i−2(∆m,∆m,I ; k) ∼= H̃i−3(∆m,I ; k)

∼= H̃i−3

 ∨
ω∈C(m)

Se−3; k


=

{
k|C(m)| if i = e

0 else,

where the second isomorphism also follows from Lemma 3.3.

For the rest of this section, we consider the case when the toric ideal IΛ

has a quadratic initial ideal with respect to some monomial ordering ≺ on
k[x1, . . . , xn]. Let J be the initial ideal J = in≺IΛ.

Extending the notation of §3, given λ in Λ, say that a monomial m in
k[x1, . . . , xn] is in the commutative fiber of λ if it maps to zλ under xi 7→ zαi ,
and say that a monomial in k〈y1, . . . , yn〉 is in the non-commutative fiber of
λ if it maps to an element of the commutative fiber of λ under yi 7→ xi. Note
that the facets (maximal faces) of ∆λ correspond to maximal chains in the
open interval poset (0, λ) and therefore naturally biject with the monomials
λ in the non-commutative fiber of λ.

Say that the monomial ordering ≺ reversely grades Λ if whenever m,m′

lie in the commutative fiber of some λ ∈ Λ and m ≺ m′ we have deg(m) ≥
deg(m′).

As in Section 3, for any ideal J generated by quadratic monomials, we
have a notion of J ′-commuting equivalence classes and J ′-non-stuttering for
non-commutative monomials. Denote by C(λ) the set of J ′-non-stuttering
J ′-commuting equivalence classes in the non-commutative fiber of λ.

Theorem 4.2. Let Λ ⊆ Nd be an affine semigroup. Assume that either
• IΛ is homogeneous with respect to deg(xi) = 1 and there is a term

order for which it has a Gröbner basis of quadratic binomials, or
• IΛ is not homogeneous with respect to the above grading and there is a

term order ≺ which reversely grades Λ and for which IΛ has a quadratic
initial ideal.

Then the simplicial complex ∆λ is homotopy equivalent to the wedge of
spheres ∨

ω∈C(λ)

S|ω|−2 ,
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where |ω| is the length of any of the non-commutative monomials in its
equivalence class.

Proof. For each monomial m in the commutative fiber of λ, let ∆m be the
sub-complex of ∆λ generated by the maximal faces corresponding to non-
commutative monomials λ of content m. It follows from Theorem 3.1 and
Lemma 3.3 that ∆m is either a sphere Sdeg(m)−2 or a ball Bdeg(m)−2 depending
upon whether or not m is square-free.

Order the monomials m1,m2, . . . ,mr in the commutative fiber of λ ac-
cording to ≺, i.e.

m1 ≺ · · · ≺ mr.

Let J be the initial ideal of IΛ with respect to ≺. For a fixed s ≤ r, if we let
X =

⋃s−1
i=1 ∆mi and Y = ∆ms , it is then easy to check that X ∩ Y may be

identified with the sub-complex ∆ms,J in the notation of Theorem 3.1. By
induction on s, we have that X is homotopy equivalent to

∨
ω S|ω|−2 as ω

ranges over the J ′-non-stuttering J ′-commuting classes of monomials having
content in {m1, . . . ,ms−1}. Now we consider the change in topology from
X to X ∪ Y in the inductive step when we add in Y = ∆ms . We will see
below that the intersection X ∩Y is always homotopy equivalent to a wedge
of spheres of codimension 1 in Y , and then the assumption that ≺ reversely
grades Λ insures that the hypotheses in Lemma 6.2 about dimensions are
satisfied. In order to analyze which spheres occur in the wedge, we break up
into two cases depending on whether ms is square-free.

If ms is square-free of degree e, then Y = Se−2 and X ∩ Y ∼= Se−2 ∩ AJe .
By Lemma 6.3 and Lemma 3.2, we have

X ∩ Y =
|C(ms)|−1∨

j=1

Se−3.

Hence by induction on s and Lemma 6.2 we have

X ∪ Y =
∨
ω

S|ω|−2

as ω ranges over the J ′-non-stuttering J ′-commuting classes of monomials
having content in {m1, . . . ,ms}. This completes the inductive step in this
case.

If ms is not square-free, then Y ∼= Bdeg(ms)−2 and Lemma 3.3 says that
X∩Y is homotopy equivalent to

∨|C(ms)|
j=1 Sdeg(ms)−2. Hence by induction and

Lemma 6.2 we have
X ∪ Y =

∨
ω

S|ω|−2
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as ω ranges over the J ′-non-stuttering J ′-commuting classes of monomials
with content in {m1, . . . ,ms}. This completes the inductive step in the
remaining case, so the theorem is proved.

Corollary 4.3. With Λ, R, IΛ, J as in the previous result, we have

PoinkR(t, z) = Hilb(k〈y1, . . . , yn〉/({yiyj − yjyi}xixj 6∈J , {y2
i }x2

i
6∈J); t, z)

=
[

1
Hilb(k[x1, . . . , xn]/J ; x)

]
xi 7→−tzαi

.(4.3)

Furthermore:
• If IΛ is homogeneous with respect to deg(xi) = 1, then R is Koszul and

all of the complexes ∆λ are Cohen-Macaulay for any field k, i.e. Λ is
a Cohen-Macaulay poset.

• If IΛ is not homogeneous and there is a term order ≺ which reversely
grades Λ and for which IΛ has a quadratic initial ideal, then all of
the complexes ∆λ are sequentially Cohen-Macaulay for any field k (see
[Wa] for a definition and facts about sequential Cohen-Macaulayness).

Proof. By Theorems 2.1 and 4.2 we have that

PoinkR(t, z) =
∑

λ∈Λ,i≥0

dimk TorRi (k, k)λ tizλ =
∑

λ∈Λ,i≥0

dimk H̃i−2(∆λ; k) tizλ

=
∑

λ∈Λ,i≥0

dimk H̃i−2

 ∨
ω∈C(λ)

S|λ|−2; k

 tizλ
=
∑
λ∈Λ

∑
ω∈C(λ)

t|ω|zλ

= Hilb(k〈y1, . . . , yn〉/({yiyj − yjyi}xixj 6∈J , {y2
i }x2

i
6∈J); t, z).

This proves the first equality in the corollary. Equality (4.3) then follows
from Equation (4.2).

In the homogeneous case, Koszulness follows from Theorem 4.2 since every
λ in C(λ) has the same length |λ|. Cohen-Macaulayness of ∆λ follows from
Theorem 4.2 and the fact that all links of its faces are joins of complexes of
the form ∆µ for µ in Λ.

In the inhomogeneous case, sequential Cohen-Macaulayness again follows
from Theorem 4.2 and [Wa, Theorem 1.3] along with the fact that all links
of faces in ∆λ are joins of complexes of the same form.

One of the motivating special cases for these results are the 2-dimensional
normal affine semigroup rings whose Poincaré series were studied in [LS]
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and further studied in [PRS]. In this case Λ is the set of points in N2 which
lie in a closed 2-dimensional cone bounded by two rays of rational slope
emanating from the origin (see proof of Proposition 5.3). If one numbers the
minimal generators α1, . . . , αn of Λ as they are traversed in counterclockwise
order from the x-axis to the y-axis, then it is easy to check that the reverse
lexicographic order ≺ reversely grades Λ and gives a quadratic initial ideal
J .

We remark that in the next section, it will be shown that in the inhomo-
geneous case of Corollary 4.3, R is Koszul in a more generalized sense to be
defined.

5. Koszulness.

In this section we extend the notion of a Koszul algebra to local and Nd-
graded k-algebras (Definition 5.1). Our motivation for this definition was
to understand algebraically Equation (4.3) in the previous section, and this
is achieved in Proposition 5.4 (see also [Fr2] for a formulation in the local
situation) and the results following it. Proposition 5.4 shows that for rings R
which are Koszul in our more general sense, one can again relate the Poincaré
series to the Hilbert series of its associated graded ring, and thereby obtain
a rational expression for the Poincaré series. One application is that this
more general notion of Koszulness is shown to apply to all Cohen-Macaulay
rings of minimal multiplicity (Theorem 5.2).

Throughout this section (R,m) denotes either
• a Noetherian local ring R with maximal ideal m, or
• an Nd-graded k-algebra R with maximal graded ideal m :=

⊕
λ∈Nd

λ6=0

Rλ.

We will generally state results for both kinds of rings, but often give proofs
only in the case of local rings when the proofs for Nd-graded rings are anal-
ogous.

Let M be an R-module (respectively, graded R-module). Then we denote
by grm(M) the associated graded module

⊕
i≥0m

iM/mi+1M with respect to
m. In particular, the associated graded ring grm(R) is an N-graded k-algebra.
Definition 5.1. We call a ring (R,m) as above Koszul, if grm(R) is Koszul
in the usual sense for N-graded rings, i.e. if Torgrm(R)

i (k, k)j = 0 for j 6= i.

Note that in the case where R is an N-graded k-algebra, then grm(R) ∼= R
as N-graded rings. Thus our definition is an extension of the usual notion
of Koszulness (see also [Fr2]).

Before exploring the consequences of Koszulness for R, we exhibit a class
of rings which are Koszul in this generalized sense, but we must first recall
some basic notions of commutative algebra.
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A regular sequence for (R,m) is a sequence (θ1, . . . , θr) of elements in m
such that θi+1 is a non-zerodivisor in R/(θ1, . . . , θi). A local ring (R,m) is
called Cohen-Macaulay if there exists a regular sequence (θ1, . . . , θr) in R of
length r equal to the Krull dimension dimR.

When R is a Noetherian N-graded k-algebra, its Hilbert series

Hilb(R; t) :=
∑
i≥0

dimk Rit
i

is known to be a rational function P (t)/Q(t) by a fundamental result of
Hilbert and Serre. The multiplicity of R is defined to be e(R) := P (1)
when P,Q are chosen so that gcd(P (t), Q(t)) = 1. For our local and Nd-
graded rings (R,m), we define more generally the multiplicity e(R) of R as
e(grm(R)); see [BH1, p. 181].

Recall (see [Ab]) that if (R,m) is Cohen-Macaulay, then the multiplicity
e(R) is bounded from below as follows:

e(R) ≥ dimkm/m
2 − dim(R) + 1

where dimkm/m
2 is called the embedding dimension of (R,m). In the case

of equality one says that the ring has minimal multiplicity (see [BH1, Ex-
ercise 4.5.14]).

Theorem 5.2. If Λ is an affine semigroup in Nd and k[Λ] is Cohen-
Macaulay with minimal multiplicity then k[Λ] is Koszul. In particular, if k[Λ]
is normal with minimal multiplicity then k[Λ] is Koszul in the generalized
sense.

Proof. The second assertion follows from the first, since by a result of Hochster
every normal affine semigroup ring is Cohen-Macaulay; see [BH1, Theo-
rem 6.3.5 (a)].

By a result of J.D. Sally [Sa], if R is Cohen-Macaulay and of minimal mul-
tiplicity then grm(R) is Cohen-Macaulay too. It also follows that grm(R) is
of minimal multiplicity, since grm(R) and R share the same Krull dimension
[BH1, Theorem 4.4.6 (b)], and clearly also the same embedding dimension.
Therefore, we may replace R by grm(R) and assume that we have the fol-
lowing situation: R is N-graded, generated by R1, and Cohen-Macaulay of
minimal multiplicity. We may also assume that k is an infinite field, since
one can easily check that the Koszul property is independent of flat ring
extensions. Hence, there exists a maximal regular sequence θ1, . . . , θr of
1-forms in R such that m2 = (θ1, . . . , θr)m; see [BH1, Exercise 4.5.14 (c)].
Thus, the square of the maximal ideal of A = R/(θ1, . . . , θr) is zero, which
implies that

A ∼= k[x1, . . . , xm]/(xixj)1≤i≤j≤m.
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Therefore, by the result of Fröberg (Corollary 4.1) the ring A is Koszul.
However, it is known that the quotient of a homogeneous k-algebra by a
regular sequence of 1-forms is Koszul if and only if the algebra itself is
Koszul. This can be easily seen from the fact that if Q is an N-graded
k-algebra and θ is a non-zero divisor of degree 1 then

PoinkQ(t, z) :=
∑
i,j≥0

dimk TorQi (k, k)jtizj = PoinkQ/(θ)(t, z) · (1 + tz).

Hence Q is Koszul if and only if Q/(θ) is. Applying this fact repeatedly to R
and the regular sequence θ1, . . . , θr, we conclude that R is Koszul.

Since much of this work was originally motivated by the study of 2-
dimensional normal affine semigroup rings, it is worth mentioning the fol-
lowing fact:

Proposition 5.3. All 2-dimensional normal affine semigroup rings are
Cohen-Macaulay of minimal multiplicity, and hence Koszul in the generalized
sense.

Proof. Assume Λ ⊆ N2 is normal. We know that R = k[Λ] is Cohen-
Macaulay because it is normal. By Gordan’s Lemma (see Proposition 6.1.2
[BH1]) we can assume that Λ is the set of integral points in the intersection
of two rational halfspaces. Recall, that in the given situation the multiplicity
e(R) is counted by the normalized volume (=twice the usual volume) of the
set-theoretic difference of the convex hull of Λ and the convex hull of Λ\{0}
(see Chapter 5.3 of [GKZ]). This set is triangulated by triangles whose only
integral points are the vertices, which consist of two neighboring minimal
generators of Λ and the origin. Each of these triangles has volume 1/2. The
number of triangles equals the number of minimal generators of Λ minus 1.
But this implies that k[Λ] is of minimal multiplicity.

We now proceed to investigate the consequences of Koszulness for (R,m).
Proposition 5.4 tells us that R and grm(R) share the same (Nd-graded)
Poincaré series, when (R,m) is Koszul. In particular, this means that grm(R)
is Koszul in the usual sense, and hence both its own Poincaré series and that
of R are rational. Before we can discuss this, however, we must first make
clear what is meant by the various gradings, Poincaré series, and Hilbert
series for grm(R) when R is Nd-graded.

Given (R,m) with a Nd-grading on R, we know that grm(R) carries
a natural N-grading in which the degree of a homogeneous element f is
the number i such that f ∈ mi \ mi+1. We also define a Nd-grading on
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grm(R) as follows. An element g + mi+1, g ∈ mi \ mi+1 is called Nd-
homogeneous of degree a = (a1, . . . , ad), if there exists an Nd homoge-
neous element h ∈ R of degree a such that g + mi = h + mi. One easily
checks that this is well-defined and induces an Nd-grading on grm(R) that
is compatible with the multiplication and that grm(R) is the direct sum
of its multigraded components. Putting together the two gradings (N−
and Nd−) on grm(R) gives a Nd+1-grading, and we can consider the finely
graded Hilbert series Hilb(grm(R), z0, z1, . . . , zd) in which the first variable
z0 keeps track of the N-degree. The Poincaré series PoinkR(t, z1, . . . , zd) and
Poinkgrm(R)(t, z0, z1, . . . , zd) are then defined as usual (i.e. with t keeping
track of the homological degree). In the local case, there is no ambiguity in
defining PoinkR(t), and we define Hilb(grm(R); z),Poingrm(R)(t, z) similarly to
the above.

The following result is due to Fröberg [Fr2], where it is stated in the local
situation. We give a different proof which also exhibits more facts relating
the resolution of k over R and over grm(R) (see Lemma 5.8).

Proposition 5.4. If (R,m) is Koszul and Nd-graded we have for all λ ∈ Nd

TorRi (k, k)λ ∼= Torgrm(R)
i (k, k)λ

and consequently

PoinkR(t, z1, . . . , zd) =
[
Poinkgrm(R)(t, z0, z1, . . . , zd)

]
z0 7→1

.

If (R,m) is Koszul and local we have

TorRi (k, k) ∼= Torgrm(R)
i (k, k)

and consequently

PoinkR(t) =
[
Poinkgrm(R)(t, z)

]
z 7→1

.

The isomorphism of the Tor-groups asserted in the theorem will be proved
in two lemmas (Lemma 5.7 and Lemma 5.8) at the end of this section.
But first let us deduce some consequences of Proposition 5.4. The first
consequence requires a simple lemma:

Lemma 5.5. Let Q be a Nd+1-graded k-algebra which is Koszul (in the
standard sense) with respect to the N-grading induced by the first component
of its Nd+1-grading. Set

Hilb(Q; z0, z1, . . . , zd) :=
∑

(a0,a1,... ,ad)∈Nd+1

dimk R(a0,a1,... ,ad)z
a0
0 z

a1
1 · · · zadd
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and

PoinkQ(t, z1, . . . , zd)

=
∑
i≥0

ti
∑

(a0,a1,... ,ad)∈Nd+1

dimk TorRi (k, k)(a0,a1,... ,ad)z
a1
1 · · · zadd .

Then
PoinkQ(t, z1, . . . , zd) =

[
1

Hilb(Q; z0, z1, . . . , zd)

]
z0 7→−t

.

Proof. It is easy to see that one can choose a minimal free resolution of Q
in which the basis elements and maps are all Nd+1-graded. Interpreting the
dimensions of the multigraded components of TorQ· (k, k) as the multidegrees
of the basis elements in the free modules of the resolution, exactness of the
resolution gives

1 =
∑
i≥0

(−1)i
∑

(a0,... ,ad)∈Nd+1

dimk TorQi (k, k)(a0,... ,ad)z
a0
0 z

a1
1 · · · zadd

·Hilb(Q; z0, z1, . . . , zd).

Since Q is Koszul with respect to the first grading variable we conclude that
only the terms with i = a0 in the above sum are non-zero. Hence

1 =
∑
i≥0

(−z0)i
∑

(a0,... ,ad)∈Nd+1

dimk TorQi (k, k)(a0,... ,ad)z
a1
1 · · · zadd

·Hilb(Q; z0, z1, . . . , zd).

The last equation is equivalent to the assertion of the lemma.

Corollary 5.6. Let (R,m) be Koszul in the generalized sense. Then if R
is Nd-graded we have

PoinkR(t, z1, . . . , zd) =
[

1
Hilb(grm(R); z0, z1, . . . , zd)

]
z0 7→−t

,

and if R is local we have

PoinkR(t) =
1

Hilb(grm(R);−t) .

In particular, in either case the Poincaré series for R is rational.

Proof. Apply Proposition 5.4, and then Lemma 5.5 with Q = grm(R).

We are now in a position to deduce Equation (4.3) algebraically.
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Algebraic proof of Equation (4.3). We use the same notation as in
Corollary 4.3. Recall that the toric ideal IΛ is the kernel of the surjec-
tion k[x] → R = k[Λ] defined by xi 7→ zαi . Similarly, define LΛ to be the
kernel of the surjection k[x] → grm(R) defined by xi 7→ zαi . It then follows
by definition of grm(R) that

LΛ = inm(IΛ) := (inm(f) : f ∈ IΛ)

where here inm(f) is the term in f having smallest degree in the N-grading
induced by powers of m. Also, since ≺ reversely grades Λ,

(5.1) in≺(LΛ) = in≺(inm(IΛ)) = in≺(IΛ) =: J.

As a consequence, since J is assumed to be a quadratic monomial ideal, we
conclude that LΛ has the same quadratic initial ideal J with respect to ≺
that IΛ did. Hence grm(R) is Koszul and R is Koszul in the generalized
sense. We then have the following chain of equalities

PoinkR(t, z)

=
[

1
Hilb(grm(R); z0, z1, . . . , zd)

]
z0 7→−t

=
[

1
Hilb(k[x]/LΛ; x)

]
xi 7→−tzαi

=
[

1
Hilb(k[x]/in≺(LΛ); x)

]
xi 7→−tzαi

=
[

1
Hilb(k[x]/J ; x)

]
xi 7→−tzαi

.

The first equality is by Corollary 5.6. The second equality is by definition
of LΛ. The third equality is due to the Gröbner basis fact that for any ideal I
and any term order ≺, the image in k[x]/I of the standard monomials (those
monomials not in in≺(I)) form a k-basis of k[x]/I. The fourth equality
follows from (5.1).

The next two lemmas prove the isomorphism of the Tor-groups claimed in
Proposition 5.4, by describing a relation between the minimal free resolutions
of k over R and over grm(R); this relation is described by a filtration.

Let G =
n⊕
i=1

Rei be a free R-module of rank n. Define a standard filtration

with shifts a1, . . . , an by FjG =
n⊕
i=1

mj−aiei. Then grF (G) =
n⊕
i=1

grm(R)(−ai).
Let (G·, d·) be a resolution of k over R and let F be a standard filtration

on G·. Assume dj is compatible with the filtration F , that is, dj(FiGj) ⊂
FiGj−1. Then there is an obvious induced graded differential

grF (dj)
∣∣∣
FiGj/Fi+1Gj

: FiGj/Fi+1Gj → FiGj−1/Fi+1Gj−1.
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Clearly, grF (dj)◦grF (dj+1) = 0. Thus (grF (G·), grF (d·)) is a graded complex.
The following two lemmata can be proven by standard arguments from

commutative algebra. We therefore leave the detailed proof to the reader.

Lemma 5.7. Let (R,m) be either local or Nd-graded. There is a free (but
not necessary minimal) resolution (G·, d·) of k over R and a standard filtra-
tion F on G·, such that (grF (G·), grF (d·)) is a minimal graded free resolution
of k over grm(R). If R is Nd-graded then (grF (G·), grF (d·)) is also.

As a consequence of this lemma, we conclude that when (R,m) is local we
have

dimk TorRi (k, k) ≤ dimk Torgrm(R)
i (k, k)

for all i, and when (R,m) is Nd-graded we have

dimk TorRi (k, k)λ ≤ dim Torgrm(R)
i (k, k)λ

for any i and any λ ∈ Nd.
The natural filtration on G· with respect to m is given by FiGj = mi−jGj,

j ≤ i and FiGj = Gj for j > i. In particular, grm(Gj)(−j) ∼= grF (Gj) =⊕
i≥0 FiGj/Fi+1Gj. Of course, the natural filtration is a standard filtration.

Note, that the natural filtration of G· is a filtration of the complex (G·, d·)
if and only if di(Gi) ⊆ mGi−1.

Lemma 5.8. Let (R,m) be either local or Nd-graded. Let (G·, d·) be a
minimal free resolution of k over R, and let F be the natural filtration on
G·. Then R is Koszul if and only if (grF (G·), grF (d·)) is acyclic. If these
equivalent conditions hold then (grm(G·), grm(d·)) is a minimal graded free
resolution of k over grm(R). Furthermore, if R is a Nd-graded k-algebra
then (grm(G·), grm(d·)) is also multigraded.

As a consequence of this lemma, in the case when (R,m) is Koszul, the
inequalities which followed from Lemma 5.7 can be sharpened to equalities:
If (R,m) is Koszul and local we have

dimk TorRi (k, k) = dimk Torgrm(R)
i (k, k)

for all i, and if (R,m) is Koszul and Nd-graded we have

dimk TorRi (k, k)λ = dimk Torgrm(R)
i (k, k)λ

for all i and all λ ∈ Nd. Thus Proposition 5.4 follows.
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6. Appendix: Combinatorial topology tools and lemmas.

We collect here some of the tools from combinatorial topology that are used
in Sections 3 and 4.

Let X be a regular CW-complex. By a covering U of X we understand a
finite collection X1, . . . , Xl of closed subcomplexes of X such that X1∪· · ·∪
Xl = X. To each covering U of X one associates its intersection poset P U .
The intersection poset has elements XJ =

⋂
j∈J

Xj, for non-empty subsets J of

{1, . . . , l}, and these are ordered by reversed inclusion – note that the poset
is defined on the set of intersections XJ , so if XJ = XJ′ for two different
subsets J, J ′ of {1, . . . , l} then they contribute to a single element in the
intersection poset. For an element p in the intersection poset P U we write
Up to denote the intersection corresponding to p.

Recall, that the topological join X ∗ Y of two topological spaces X,Y is
defined as the quotient space

X ∗ Y := X × Y × [0, 1]/((x, 0) ∼ x, (y, 1) ∼ y).

Note that the join S0 ∗X of X with a 0-sphere is the same as the suspension
Susp(X). The wedge X ∨ Y of two topological spaces X and Y is the space
(X ] Y )/(x ∼ y) where two distinguished points x ∈ X and y ∈ Y are
identified in the disjoint union of X and Y . Note, if X and Y are path-
connected then the homotopy type of X ∨ Y does not depend on the choice
of x ∈ X and y ∈ Y .

We now formulate a version of the “Wedge Lemma” from [ZZ] (see also
[WZZ]) that is adapted to our purposes.

Wedge Lemma 6.1 ([ZZ]). Let U be a covering of a regular CW-complex
X by closed subcomplexes X1, . . . , Xl. Let P be the intersection poset of
U . Assume that for all p ∈ P there is a point cp ∈ Up such that all maps
Uq → Up are homotopic to the constant map to

⋃
q>p

Uq → {cp}. Then X is

homotopy equivalent to the wedge∨
p∈P

∆(P<p) ∗ Up

in which the wedge identifies the vertex p in ∆(P<p) with the vertex p in
∆(P<1̂), where 1̂ is the top element of P corresponding to the intersection⋂l
i=1Xi.

For the proof of Lemma 3.3 we need the following lemma. In the formu-
lation, X ' Y means that the topological spaces X and Y are homotopy
equivalent.
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Lemma 6.2. Let X, Y be CW-complexes. If X and Y are l-connected
and X ∩ Y is a sub-complex of dimension at most l, then X ∪ Y ' X ∨ Y ∨
Susp(X ∩ Y ). In particular, if

X '
r∨
i=1

Sd
X
i , Y '

s∨
j=1

Sd
Y
j , X ∩ Y '

t∨
k=1

Sd
X∩Y
k

and dim(X ∩ Y ) < dXi , d
Y
j for all i, j then X ∪ Y is homotopy equivalent to

the one-point wedge of spheres

X ∪ Y '
r∨
i=1

Sd
X
i ∨

s∨
j=1

Sd
Y
j ∨

t∨
k=1

Sd
X∩Y
k +1 .

Proof. Use the covering
X ←↩ X ∪ Y ↪→ Y

of X ∩Y and the Wedge Lemma 6.1. Observe that this lemma applies since
both inclusions are null-homotopic, due to the fact that every map from
a space of dimension at most l to an l-connected space is null-homotopic.
By the Wedge Lemma, the homotopy type of X ∪ Y is given by X ∨ Y ∨
Susp(X ∩ Y ) since the order complex of the poset below X ∩ Y is just two
points, i.e. the 0-sphere S0.

The next lemma is needed in the proof of Theorem 4.2.

Lemma 6.3. Let A be an arrangement of hyperplanes in Rn and Sn−1 the
unit sphere. Then the intersection Sn−1 ∩A has the homotopy of a wedge of
(n−2)-spheres, with the number of spheres being one fewer than the number
of chambers cut out by A.

Proof. It is easily seen that intersection Sn−1 ∩ A carries the structure of
an (n − 2)-dimensional regular CW-complex, and therefore its homology
vanishes in dimensions greater than n−2. The quotient space Sn−1/(Sn−1∩
A) is a one-point wedge of as many (n − 1)-spheres as there are chambers
cut out by A on Sn−1. Thus H̃i(Sn−1/(Sn−1 ∩ A)) is free and concentrated
in dimension n− 1. By the long exact sequence of the pair (Sn−1,Sn−1∩A),
the homology of Sn−1 ∩A is free, concentrated in dimension n− 2, and has
rank one smaller than Hn−1(Sn−1/(Sn−1 ∩ A)). Thus by the Hurewicz and
Whitehead Theorems, the intersection Sn−1∩A for n ≥ 4 is simply connected
and has the homotopy of a wedge of (n − 2)-spheres, with the number of
spheres one smaller than the number of chambers cut out by A.
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As an alternative to the previous proof, one could consult the much more
general formula by Ziegler & Živaljević in [ZZ] on the homotopy type of
Sn−1 ∩ A for an arbitrary real subspace arrangement A.

Our last topological lemma is needed in the proof of Lemma 3.5.

Lemma 6.4. Let P be a d-dimensional polytope and F a face on its bound-
ary. Then the union of all maximal faces of P not containing F is a shellable
ball Bd−1.

Proof. Choose a shelling of P which shells the maximal faces containing F
last, e.g. by picking a linear functional on the vertices of the polar dual P ∗

which orders the vertices in the dual face F ∗ last (see [DK] for a definition
of shelling and why this choice is possible). Then in this shelling, the union
of all facets not containing F gets shelled along the way, and hence is a ball
Bd−1.
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