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Abstract We evaluate the Community ocean Vertical Mixing project version of the K-profile

parameterization (KPP) for modeling upper ocean turbulent mixing. For this purpose, one-dimensional

KPP simulations are compared across a suite of oceanographically relevant regimes against horizontally

averaged large eddy simulations (LESs). We find the standard configuration of KPP consistent with LES across

many forcing regimes, supporting its physical basis. Our evaluation also motivates recommendations for

KPP best practices within ocean circulation models and identifies areas where further research is warranted.

The original treatment of KPP recommends the matching of interior diffusivities and their gradients to

the KPP-predicted values computed in the ocean surface boundary layer (OSBL). However, we find that

difficulties in representing derivatives of rapidly changing diffusivities near the base of the OSBL can lead to

loss of simulation fidelity. To mitigate this difficulty, we propose and evaluate two computationally simpler

approaches: (1) match to the internal predicted diffusivity alone and (2) set the KPP diffusivity to 0 at

the OSBL base. We find the KPP entrainment buoyancy flux to be sensitive to vertical grid resolution and

details of how to diagnose the KPP boundary layer depth. We modify the KPP turbulent shear velocity

parameterization to reduce resolution dependence. Additionally, an examination of LES vertical turbulent

scalar flux budgets shows that the KPP-parameterized nonlocal tracer flux is incomplete due to the

assumption that it solely redistributes the surface tracer flux. This result motivates further studies of the

nonlocal flux parameterization.

1. Introduction

The ocean surface boundary layer (OSBL) mediates momentum, heat, and scalar tracer fluxes between the

interior ocean and the atmosphere and cryosphere. Consequently, an accurate parameterization of turbu-

lence and the induced vertical mixing in the OSBL is essential for robust model simulations of climate physics

and of the abundance and distribution of important biological and chemical quantities. We here study the

formulation and behavior of the K-profile parameterization (KPP; Large et al., 1994), LMD94 for use in param-

eterizing upper ocean turbulent mixing. Our examination reconsiders many of the underlying physical and

numerical foundations of KPP, with our study providing an assessment of the scheme under a suite of forcing

scenarios and recommendations for best practices in circulation models.

The KPPmixing scheme has been used in a variety of ocean and climate applications. Tomaintain a controlled

examination framework, we focus on one-dimensional vertical mixing and compare KPP simulations with

horizontally homogeneous large eddy simulations (LESs). The fidelity of KPP vertical mixing in the presence

of horizontal features (e.g., baroclinic fronts; Bachman et al., 2017) is outside our scope.

1.1. The Suite of Ocean Boundary Layer Parameterizations

Boundary layer parameterizations like KPP assume the turbulent mixing is dominated by vertical fluxes.

Presently, varying degrees of complexity are used to parameterize these fluxes. Bulk boundary layer models

are perhaps the simplest (e.g., Gaspar, 1988; Kraus & Turner, 1967; Niiler, 1977; Price et al., 1986), where ocean

properties (tracers and momentum) are assumed to be vertically uniform in the OSBL. The assumption of no
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vertical structurewithin theboundary layer is both the key simplification and themaindeficiencyof bulkmod-

els. Namely, ocean tracers andmomentum are not generally uniform vertically, even in the presence of strong

vertical mixing. Hence, vertical integration over the depth of the OSBL precludes the simulation of OSBL pro-

cesses such as the Ekman spiral and boundary layer restratification (but see Hallberg, 2003, for a method to

remedy these deficiencies).

Turbulence kinetic energy (TKE) closure (TC) is another widely used framework for parameterizing upper

ocean boundary layer mixing (e.g., Canuto et al., 2001, 2007; Harcourt, 2015; Kantha & Clayson, 1994; Umlauf

& Burchard, 2005). In most variants of TC, the profiles of eddy diffusivity and viscosity are dependent on the

local TKE, which is prognostic (e.g., Kantha & Clayson, 1994; Mellor & Yamada, 1982). Most TC schemes are

local in that the turbulent fluxes of tracers andmomentum exist only in the presence of nonzero vertical gra-

dients of the mean quantities. Yet in highly convective conditions strong fluxes exist even in the absence of

vertical mean gradients. Thus, many TC models are deficient in highly convective conditions. However, a few

TC models (e.g., Lappen & Randall, 2001; Soares et al., 2004; Stull, 1993) do include nonlocal mixing effects.

The K-profile parameterization (KPP; LMD94) aims to fill the middle ground between bulk boundary layer

models and prognostic TC models. KPP allows for vertical property variations in the OSBL via a specified ver-

tical shape function (O’Brien, 1970). It was also the first OSBL parameterization to include a parameterized

nonlocal transport allowing for the existence of vertical turbulent fluxes in the absence of vertical gradients

of mixed quantities.

1.2. The CVMix Project

KPP has been implemented in numerous ocean circulation models. In our experience, each implementa-

tion makes slightly distinct physical and numerical choices. Sometimes, these implementation choices have

unintended consequences that can negatively impact the KPP boundary layer simulation. This situation pro-

vided the mandate for our development of KPP within the CVMix project (Griffies et al., 2015) and for the

examination of the CVMix implementation in this paper.

TheCVMix library is developedas a suiteof standardizedverticalmixingparameterizations tobe implemented

in and called by a three-dimensional ocean circulation or callingmodel. Here we test the CVMix implementa-

tion of KPP as realized in three distinct calling models: Model for Prediction Across Scales—Ocean (MPAS-O;

Ringler et al., 2013), Modular OceanModel Version 6 (MOM6; Adcroft et al., 2018), and Parallel Ocean Program

Version 2 (POP2; Smith et al., 2010) against LES configuredwith similar depth and surface forcing against. As a

part of the CVMix development, we found details of how KPP is implemented in a callingmodel explain some

differences in behavior relative to LMD94, and thus, the intermodel comparison is important for evaluating

the integrity of CVMix-KPP.

The CVMix baseline configuration is summarized in Table 1. We havemade two changes relative to traditional

configurations of KPP (e.g., Danabasoglu et al., 2006). First, the CVMix baseline configuration of KPP (note

that throughout the rest of this paper KPPwill refer to the CVMix implementation for brevity) does not match

KPP diffusivity and viscosity gradients to interior parameterizations. Only the diffusivity and viscosity values

are matched. Second, for this work we consider a critical Bulk Richardson number of 0.25 instead of 0.3. Our

results suggest (e.g., Figure 11) that matching to interior viscosity and diffusivity values alone is an important

inclusion for configurations of KPP. However, as our simulations demonstrateminimal sensitivity to the critical

Bulk Richardson number, we cannot make a general recommendation to alter this value from the traditional

choice. Finally, we note that a Langmuir Turbulence parameterization (Li et al., 2015) is also implemented in

CVMix-KPP, but its evaluation is outside our scope.

1.3. An LES Evaluation Framework for OSBL Parameterizations

LESs provide our evaluation framework for the KPP scheme. As configuredhere, the LES resolves thedominant

eddies and parameterizes subgrid turbulence, which is small relative to that realized at resolved scales away

from theparameterized surface layer. The LES is forcedwithhorizontally uniform surface fluxes and theoutput

is horizontally and temporally averaged. We compare the LES results to one-dimensional KPP simulations

using identical forcing and initialization.

Numerous studies have compared atmospheric boundary layer parameterizations to LES (e.g., Holtslag &

Moeng, 1991;Moeng& Sullivan, 1994; Brown, 1996; Ayotte et al., 1996; Noh et al., 2003). However, there are far

fewer LES evaluations of ocean boundary layer parameterizations. Many ocean LES comparisons have used

similar (and limited) initial conditions and forcing scenarios (e.g., Bachman et al., 2017; McWilliams & Sullivan,
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Table 1

Summary of the CVMix K-Profile Parameterization Default Configuration

Parameterization choice CVMix default value

OSBL interpolation Quadratic

Internal matching Only match to diffusivity and viscosity

Interpolation order for internal matching Linear

Convective diffusion Enabled

Ri crit (critical Richardson number) 0.25

� (fraction of OBSL occupied by surface layer) 0.1

Enhanced diffusivity at OSBL base Enabled

Shear instability-driven mixing LMD94 scheme

Note. CVMix = Community ocean Vertical Mixing project; OSBL = ocean surface boundary
layer.

2000; Reichl et al., 2016; Smyth et al., 2002). One excellent example of complex forcing in an ocean LES com-

parison is that in Large andGent (1999) wherein large-scale ocean circulationmodel forcingwas incorporated

to examine the diurnal variability of the equatorial thermocline. Unlike other previous studies (Bachman et

al., 2017; Hamlington et al., 2014; Whitt & Taylor, 2017), here we ignore influences of lateral gradients. We do

so to reduce the computational cost of each test case, to minimize the complexity of initial conditions, and

to focus on examining the influence of physical assumptions within KPP as well as numerical implementation

choices. Our chosen test suite facilitates an examination of KPP under a broader range of controlled forcing

scenarios relevant for simulating the ocean climate system.

1.4. Organization of This Paper

We start themain portion of this paper in section 2, where we summarize physical and numerical elements of

KPPandpresent salient implementation considerations and issues. TheLESmodel and test cases arediscussed

in section 3, and then we describe results and analysis in sections 4–7. The presentation of results focuses

on issues discussed in section 2 and offers possible solutions. We close the main portion of the paper with

conclusions and recommendedbestpractices in section8. Various appendicesoffer furtherdetails concerning

physical and numerical aspects of KPP and our benchmarking test cases.

2. KPP Considerations

The primary scope of this work is to (1) reexamine and clarify critical aspects of LMD94, for example, match-

ing of KPP to internal mixing parameterizations at the OSBL base, the parameterization of entrainment, and

the nonlocal tracer flux parameterization, and (2) introduce and test new configuration options of KPP, for

example, the disabling of matching to interior mixing parameterizations (section 2.4), and a reformulation of

the V2
t
parameterization (section 2.5.1). We present here some salient points that elucidate our reexamination

and introduces our new configuration options. Additional KPP formulation details are given in Appendix B. A

table of mathematical symbols along with preferred units is given in Appendix A.

2.1. Basic Definitions

The vertical position in the ocean, z, ranges from

−H(x, y) ≤ z ≤ �(x, y, t), (1)

where z = −H is the position of the static ocean bottom, z = � is the position of the dynamic ocean free

surface, z = 0 is the resting ocean surface (reference geopotential), and

depth = −z + � ≥ 0 (2)

is the positive distance from the ocean surface to a point in the ocean. When referring to positions within the

surface boundary layer, it is convenient to use a nondimensional boundary layer coordinate

� ≡ −z + �

h
0 ≤ � ≤ 1, (3)

where � = 0 at the ocean free surface and � = 1 at the boundary layer base where

−z + � = h OSBL thickness. (4)
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Figure 1. Schematic of the upper ocean regions associated with the KPP boundary layer parameterization. The upper
ocean is exposed to fluxes of momentum, � , mass, Qm, and buoyancy, Bf , at the air-sea interface. Penetrating shortwave
radiation, (w′�′)R, along with its associated buoyancy flux, BR > 0, also influences the upper ocean. The MO surface layer
transfers these fluxes to the remainder of the boundary layer. Here we assume the surface layer extends from the free
surface (z = �) to z = � − �h, where h> 0 is the depth of the boundary layer base (typically � ≈ 0.1). The colored portions
of the schematic represent the four components of KPP we focus on in this paper (section 2). The red section represents
the diffusivity matching (DM) in KPP, where Kosbl, Kint , and K(h) are the diffusivities at the last layer in the OSBL, the first
model layer below the OSBL, and at the OSBL, respectively. The green signifies the nonlocal (NL) parameterization, the
blue represents entrainment and detrainment across the OSBL base (i.e., property exchange, PE), and the brown
represents the influence of choices in the calling model on KPP fidelity. Here we focus on vertical resolution and model
time step (RT). The sections for each color denotes the portions of the paper where that process is examined. KPP =
K-profile parameterization; MO = Monin-Obukhov; OSBL = ocean surface boundary layer.

2.2. General Structure of the KPP Parameterization

For any prognostic scalar or vector field component � (e.g., tracer concentration and velocity component),

the KPP scheme parameterizes the turbulent vertical flux within the surface boundary layer according to

(w′� ′) = −K�
��

�z
+ K�	� , (5)

where � ′ represents the subgrid scale fluctuation relative to � . The first right-hand side term represents the

local contribution to the turbulent vertical flux of � , and the second term is the parameterized nonlocal flux.

The eddy diffusivity K� is written as the product of three terms

K� = hw� (�)G(�), (6)

where h is the KPP diagnosed OSBL depth (equation (4)) and G(�) is the vertical shape function. The CVMix

KPP algorithm to determine the boundary layer depth is discussed in section 2.3.

As shown by equation (6), the boundary layer depth h> 0 scales the diffusivity, so that K� increases as the

boundary layer deepens. Consequently, the behavior of KPP is critically dependent on the boundary layer

depth. Furthermore, the vertical structure of the KPP diffusivity, and hence, the nonlocal flux (equation (5))

are set by the nondimensional shape function, G(�).

In this work we focus on four main physical and numerical processes denoted by colors in Figure 1:

• DM: matching the diffusivity and its gradient at the OSBL base (red);

• PE: property exchange (i.e., entrainment and detrainment) across the OSBL base, resulting from diffusivity at

the OSBL base (blue);

• NL: nonlocal transport (green);

• RT: model resolution and time step (brown).
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All of the processes in Figure 1 are influenced by the KPP-diagnosed OSBL depth, h. Hence, the KPP OSBL

depth algorithm is pivotal to the performance of the scheme, with further details of its calculation provided

in section 2.3. Our four focus areas are introduced afterward.

2.3. Bulk Richardson Number and the Boundary Layer Depth

The bulk Richardson number in KPP is computed by

Rib =
(bsl − b(z)) (−z + �)

|usl − u(z)|2 + V2
t (z)

. (7)

The bulk Richardson number relates the gain in potential energy (numerator) of boundary layer filling eddies

to the loss of kinetic energy (denominator). In this expression, b is the buoyancy (dimensions of length per

squared time) based on the surface referenced potential density and bsl is the buoyancy averaged over the

depth of the surface layer between the depth range 0 ≤ � ≤ � (see Figure 1). Small differences of bsl − b(z)

signalweak vertical stratification, characteristic of a regionwithin the surfaceboundary layer. In contrast, large

differences arisewhen z reaches into themore stratified region beneath the boundary layer. The denominator

in Rib consists of the squared vertical shear resolved by themodel’s prognostic horizontal velocity field: |usl −

u(z)|2, whereusl is the surface layer averagedhorizontal velocity. In addition, the termV2
t
aims toparameterize

unresolved vertical shears near the OSBL base resulting from the turbulent energy of boundary layer eddies

near the boundary layer base (see section 2.5.1). When either the resolved or parameterized shear is large

(denominator of equation (8)), the bulk Richardson number is reduced and the OSBL deepens. Finally, note

that even if the buoyancy difference and vertical shear are vertically constant, the bulk Richardson number

increases linearly with depth, d = −z + �, given the presence of depth in the numerator of equation (7).

In most implementations of KPP (except the Regional Ocean Modeling System implementation [Lemarié et

al., 2012] of KPP, which uses an alternative integral formulation), the depth at the base of the ocean surface

boundary layer,−z+� = h, is diagnosed as the depthwhere the bulk Richardson number first equals a critical

value

Rib = Ri crit =
(b sl − b(h)) h

|u sl − u(h)|2 + V2
t (h)

. (8)

In LMD94, the critical bulkRichardsonnumberwas set toRi crit = 0.3and represents anempirical fit to available

ocean observations. We note that values between 0.25 and 1.0 have been used in similar formulations (e.g.,

McGrath-Spangler et al., 2015; Troen & Mahrt, 1986; Vogelzang & Holtslag, 1996). Theoretical values of Ri crit
vary from Ri crit = 0.25 for shear instability when using a linear stability analysis (Miles, 1961). This definition

maynot be appropriate forweakmean shear andbreaking internalwaves (Barad&Fringer, 2010; Troy&Koseff,

2005) to O(1) for a nonlinear stability analysis (Abarbanel et al., 1984). However, Troen andMahrt (1986) argue

that shearmay not be adequately resolved in amodel simulation, prompting use of a larger value of Ri crit that

is a function of vertical grid spacing.

In general, the correct diagnosis of the boundary layer depth is a key part of the KPP scheme, as this depth

controls theupperocean turbulent layer and the strengthofmixingwithin that layer. Thediagnosedboundary

layer depth also controls the strength of entrainment into the OSBL (see section 2.5.1). We thus expect the

chosen definitions of surface layer fraction (�; Figure 1), parameterized turbulent vertical shear, V2
t
, and the

critical bulk Richardson number, Ri crit, to influence KPP results.

It is unlikely that the bulk Richardson number computed at a model interface is exactly equal to the chosen

critical threshold. Furthermore, the region near the base of the OSBL is highly nonlinear due to the transition

from a relatively well mixed region to a region of high stratification and shear. Consequently, the KPP bound-

ary layer depth is sensitive to the interpolation method used to determine where Rib = Ri crit according to

equation (8) (Danabasoglu et al., 2006; Seidel et al., 2010). For the benchmarking of KPP relative to LES con-

ducted in this paper, we use the KPP bulk Richardson number method based on equation (8) to determine

the OSBL depth with LES data.

2.4. Shape Function and Diffusivity Matching

The vertical shape function, G(�), controls the vertical structure of diffusivity and the nonlocal flux in KPP

(equation (6)). The shape function is assumed to follow a cubic polynomial as proposed by O’Brien (1970).

The method to determine the polynomial coefficients is given in Appendix B1 and LMD94. Here we iden-
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tify potential issues with the matching of diffusivities from KPP to those determined by interior mixing

parameterizations (e.g., the shear instability-induced mixing parameterization of LMD94).

2.4.1. Problems Matching Diffusivity Derivatives at the OSBL Base

The KPP diffusivity matching proposed by LMD94 means that parameterized turbulence generated in the

ocean interior (e.g., internal waves and shear instabilities) indirectly influences the diffusivity within the sur-

face boundary layer. In LMD94, interior diffusivity parameterizations assumed a constant value or followed a

relatively simple formula. In modern calling models, interior-generated diffusivities can have nontrivial ver-

tical structure (either increasing or decreasing when moving toward the boundary layer base). Hence, the

magnitude of the vertical derivative of diffusivity can be large. Consequently, there is no guarantee that the

KPP diffusivity will vary smoothly across the OSBL base. Further, the vertical derivative of the diffusivity can

be sharp (i.e., discontinuous) near the OSBL base, which leads to a generally poor representation on a discrete

vertical grid. Given these potential difficulties, in section 6.2 we test the sensitivity of KPP to three variants of

internal matching: matching the internal diffusivity and its gradient, matching the internal diffusivity alone,

and abandoning matching altogether.

2.4.2. Problems With the Nonlocal Parameterization at the OSBL Base

With multiple turbulent processes active in and near the surface boundary layer, we are confronted with the

question of how these processes interact. Do they add,multiply, or cancel? As proposed by Large et al. (1994),

KPP traditionally chooses tomatchboundary layer diffusivities to those active below theboundary layer. How-

ever, in section 6.2 we show that an additive or dominance-based approach can reduce the OSBL bias relative

to LES in certain test cases. The full diversity of interactions between themany different classes of turbulence

present in the upper ocean is an active area of research outside of our scope.

The KPP nonlocal tracer flux parameterization acts to redistribute the surface tracer flux through the depth

of the boundary layer. Thus, we do not expect the nonlocal tracer flux parameterization to be active at and

below the OSBL base. Neglecting diffusivity matching allows the nonlocal parameterization to naturally tend

to 0 at the OSBL base. In contrast, retaining a nonzero diffusivity at the OSBL base retains a nonzero nonlocal

termat theOSBLbase. Even if KPPwere extended to include interactionswith additional processes at theOSBL

base (e.g., the turbulent transition layer, entrainment by roll vortices, and intermittent plumes) it is unclear if

these interactions would/should modify the KPP nonlocal term.

2.5. Property Exchanges Across the OSBL Base

Property exchanges at the OSBL base are determined in two ways: a parameterization of unresolved turbu-

lence (V2
t
) and the enhanced diffusivity parameterization. The V2

t
parameterization exerts a strong influence

at fine vertical resolution, while the enhanced diffusivity dominates at coarser vertical resolution. We discuss

both in this section.

2.5.1. The Parameterization of V2
t
in Rib

The KPP scheme includes a term related to the kinetic energy of unresolved turbulence (V2
t
) in the bulk

Richardson number denominator in equation (7). The purpose of this term is to sufficiently deepen the OSBL

to ensure that the empirical rule of free convection is satisfied. The entrainment depth is defined as the depth

of the minimum turbulent buoyancy flux, where the empirical rule of convection (see LMD94) gives this flux

as
(w′b′)he ≈ −0.2 (w′b′)sfc, (9)

where he is the entrainment depth (see Figure 2). In addition to being the depth of the minimum buoyancy

flux, the entrainment depth is where water from below the boundary layer is exchanged with boundary layer

water.

The parameterization of V2
t
is derived by considering a buoyancy profile that is well mixed to a given depth

(hm) with linear stratification below (Figure 2). The buoyancy flux at he is written (using equations (5) and (6))

as

(w′b′)he = −hwb(�)G(�)
(
�b

�z
− 	b

)
with � =

he

h
(10)

wherewb is a turbulent velocity scale (equation (B3)). Near the boundary layer depth, h, the nonlocal term 	b
(see equation (19)) is small and can be ignored. Furthermore, in convective conditions,
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Figure 2. Schematic illustrating the various depths arising in the boundary layer as forced by a destabilizing surface
buoyancy flux, in which case (w′b′) sfc > 0 (defined in equation (33)). This forcing supports active nonlocal convective
boundary layer turbulence. Data for this figure are taken from the large eddy simulation results of the free convection
(FC) experiment (Figure 4a). The vertical axis is the nondimensional depth, � = (−z + �)∕h, extending from beneath the
boundary layer base (� > 1) to the base of the surface layer (� = �) (see Figure 1). The dashed line is the local turbulent
buoyancy flux, (w′b′), normalized by the surface buoyancy flux (w′b′) sfc. The scale for this ratio is along the top axis.
Depths where (w′b′)∕(w′b′) sfc < 0 are where the local turbulence stabilizes the boundary layer, which occurs near the
boundary layer base. The solid line is the difference in local buoyancy and the surface layer buoyancy, b − b sfc, with
corresponding scale along the bottom axis (in units of 10−4 m/s2). The mixed layer is where buoyancy is weakly
stratified, �b∕�z ≈ 0. The mixed layer base is determined subjectively by �b∕�z>(�b∕�z) min > 0, with (�b∕�z) min a
chosen minimum stratification criteria. For much of the boundary layer, b − b sfc > 0, since the surface layer buoyancy is
driven low by the destabilizing surface flux. The entrainment depth, he , is where (w′b′)∕(w′b′) sfc < 0 reaches a
minimum, with he straightforward to diagnose in a large eddy simulation. Appendix F discusses an idealized buoyancy
profile similar to that shown here that allows for an analytic expression for h. In the entrainment layer, buoyancy
changes rapidly (Δb), reflecting enhanced vertical stratification below the boundary layer. Below the entrainment layer,
the buoyancy profile is roughly constant (b ≈ N2 z with N2 > 0 constant and z < 0). The K-profile parameterization
boundary layer depth, h, is determined by the bulk Richardson number criteria in equation (8).

wb(he∕h) → 

(
cs 
 �

)1∕3
w∗ , (11)

where 
 is the von Kármán constant, cs is an empirical constant, and w∗ is the convective turbulent velocity

scale (Deardorff, 1970) defined as

w∗ ≡ (−h (w′b′) sfc)
1∕3. (12)

Also, noting that the N2
e
= (�b∕�z)e and he ≈ h, where Ne is the entrainment layer stratification, equation (10)

becomes

(w′b′)he = −

(
cs
�

)1∕3
w∗

(
1 −

he

h

)2

hN2
e

(13a)

= −

(
cs
�

)1∕3
w∗

(
h − he

)2
N2
e
∕h. (13b)

At the OSBL base, Rib = Ri crit (see equation (8)), which can be used to write an expression for V2
t
. By assuming

the resolved vertical shear is 0 we have
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Ri crit =
h (bsl − b(h))

V2
t

. (14)

Given the assumed linear buoyancy profile, the numerator of equation (14) is hN2
e
(h − he), which implies

h − he =
V2
t
Ri crit

hN2
e

. (15)

Using equations (14) and (15) brings equation (13b) into the form

(w′ b′)he = −

(
cs
�

)1∕3
w∗ V

4
t
Ri2crit N

2
e
∕(N4

e
h3). (16)

If the empirical rule of convection (equation (9)) is enforced in equation (16), then we can solve for V2
t
so that

V2
t
=

√
0.2Cv

Ri crit 

2∕3

(
cs �

)−1∕6
hNe w∗. (17)

In LMD94, ocean observations were used to determine a constant Cv such that the model diagnosed Ne is

equivalent to Cv × Ne(he), where Nobs(he) is the observed entrainment layer stratification.

Note thatNe is the stratificationwithin the entraining layer. This approach contrasts to the use of stratification

below the OSBL suggested by Danabasoglu et al. (2006; their Appendix A). Both options are tested relative to

LES in sections 6.1.1.

2.5.2. The LMD94 Enhanced Diffusivity Parameterization

For coarse vertical resolution, LMD94 propose the addition of an enhanced diffusivity to partially mitigate

resolution-dependent biases. Here we suggest that the enhanced diffusivity parameterization also serves to

parameterize unresolved sources of entrainment.

In their Appendix D, LMD94 note that as vertical resolution coarsens near the OSBL base, staircase structures

can emerge in the time series of the boundary layer depth. We show this behavior in Figure 4a discussed in

section 4. To understand the cause of the staircase structures, start by assuming the OSBL base is alignedwith

a grid cell center. Furthermore, as in the case discussed in LMD94 (and the free convection test case described

in section 3.2), assume zero vertical property gradients within the boundary layer. Now allow the OSBL to

deepen further into the grid cell. As it deepens, boundary layer-induced mixing at the next grid interface

below is not possible until the boundary layer reaches the bottom of this cell. Once the OSBL depth deepens

into the nextmodel cell, diffusivities jump to a larger value, inwhich case propertiesmix quickly. The resulting

time series of boundary layer properties thus exhibits a stair-step structure.

Use of a quadratic interpolation scheme, where the stencil for quadratic interpolation includes the firstmodel

level where Rib > Ri crit, as well as the two model levels above that layer, to determine the OSBL depth has

reduced these staircase structures (Danabasoglu et al., 2006). Nonetheless, we still see such structures in

our simulations (e.g., Figure 4a). Fundamentally, the staircase structures in OSBL depth illustrate a lack of an

appropriate representation of unresolved entrainment fluxes. The V2
t
parameterization attempts to represent

boundary layer entrainment, but given the dependence of V2
t
on the modeled stratification near the OSBL

base (see equation (17)), entrainment in KPP will be strongly resolution dependent. The LMD94 enhanced

diffusivity parameterization also acts to enhance entrainment fluxes (section 6.3) by increasing the KPP pre-

dicted diffusivity near the OSBL base, thus smoothing vertical movement of the boundary layer between grid

cells. LMD94 defines the enhanced diffusivity (Λ) at the OSBL base via

K∗(dosbl) = (1 − �)2K(dosbl−1) + �2K(dosbl−1∕2),

Λ(dosbl) = (1 − �)�(dosbl−1∕2) + �K∗(dosbl). (18)

Here dosbl−1 is the depth of the first model grid center above the OSBL base, dosbl−1∕2 is the depth of the first

model interface above the OSBL, � is the fractional distance between dosbl−1 and the OSBL base, K is the KPP

boundary layer diffusivity, and � is the diffusivity predicted by internal mixing parameterizations. Note that

even if �(dosbl−1∕2) is 0, equation (18) shows that the diffusivity can still be enhanced at the OSBL base given

the dependence on K . For additional details on the enhanced diffusivity parameterization, see Appendix D of

LMD94.
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2.6. The KPP-Parameterized Nonlocal Tracer Transport

The parameterized nonlocal tracer flux from KPP is the product of the diffusivity (equation (6)) and a parame-

terized nonlocal term. The nonlocal term is nonzero only for tracers (though see Smyth et al., 2002, and Sinha

et al., 2015, who suggest forms for nonlocal momentum fluxes, where the latter includes effects from coastal

Langmuir turbulence) only in unstable surface buoyancy forcing. It takes the form (e.g., Mailhot & Benoit,

1982), LMD94

	� = C∗ 

(
cs 
 �

)1∕3
(
(w′� ′) sfc

w� h

)
, (19)

where 
 is the von Kármán constant and cs and C∗ are constants (see LMD94 or Griffies et al., 2015, for details

of these constants). The turbulent tracer flux (w′� ′) sfc arises from surface tracer transport due to air-sea or

ice-sea interactions (see Appendix C). For potential temperature, the nonlocal flux (� = �) is

K� 	� ≡ (w′�′) nonlocal = C∗ 

(
cs 
 �

)1∕3
G(�) (w′�′) sfc. (20)

Hence, the parameterized nonlocal tracer flux is proportional to the shape function times the surface turbu-

lent tracer flux. Specifically, this form for the KPP nonlocal potential temperature flux identifies it as a vertical

redistribution of the surface flux (w′�′) sfc throughout the boundary layer. The KPP nonlocal fluxes for other

tracers take on the same form but with potentially different constants. This form provides a useful concep-

tual framework for understanding the KPP nonlocal parameterization as well as a guide toward its numerical

implementation.

The nonlocal potential temperature flux includes a contribution from penetrating shortwave radiation. How-

ever, it is unclear howmuch of the shortwave absorbed in the boundary layer to include in (w′�′) sfc. Here we

follow LMD94 and carry the shortwave radiation absorbed in the OSBL in the nonlocal heat flux parameter-

ization and have found little sensitivity to this choice in our test cases. However, sensitivity to this choice is

further discussed in Appendix C1.3.

2.6.1. The Nonlocal Term and Turbulence Closure Theory

The KPP diagnosed turbulent buoyancy flux (equation (5)) consists of two components: a local term pro-

portional to the vertical gradient of buoyancy and a nonlocal term that is independent of the vertical

buoyancy gradient. The parameterized nonlocal turbulent buoyancy flux is derived from the turbulent buoy-

ancyfluxbudget (Note that someatmospheric derivations [e.g., Deardorff, 1972] use the temperature variance

equation instead of the turbulent buoyancy flux equation. Yet the form of the resulting parameterization

is identical). For atmospheric modeling applications (Deardorff, 1966, 1972; Ertel, 1942; Holtslag & Moeng,

1991;Mailhot & Benoit, 1982), the buoyancy depends solely on virtual potential temperature (e.g., Stull, 2012),

and thus, the nonlocal turbulent buoyancy flux directly corresponds to the nonlocal turbulent heat flux. For

oceanic applications KPP introduces separate nonlocal flux parameterizations for potential temperature and

salinity. To derive these separate parameterizations we first build the turbulent temperature and salinity flux

budgets from thew′, �′, and S′ budgets by invoking nonhydrostatic dynamics, given the general presence of

strong vertical motions in the turbulent boundary layer and assuming an f plane. Using these assumptions

we have

�w′�′

�t
= − w′2 ��̄

�z
⏟⏟⏟

local

+ g
(
���

′2 − �S�
′S′

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
buoyancy production

−
�w′w′�′

�z
⏟⏞⏟⏞⏟
triple moment

−
�′

�o

�p′

�z
,

⏟⏟⏟
pressure-temperature

covariance

(21)

�w′S′

�t
= − w′2 �S̄

�z
⏟⏟⏟

local

+ g
(
���

′S′ − �SS
′2
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
buoyancy production

−
�w′w′S′

�z
⏟⏞⏟⏞⏟
triple moment

−
S′

�o

�p′

�z
.

⏟⏟⏟
pressure-salinity

covariance

(22)

From the discussion of boundary conditions in Appendix C3, and assuming a linear equation of state, wewrite

the turbulent buoyancy flux as
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w′b′ = gw′ (�� �
′ − �S S

′), (23)

where we assume the thermal expansion and haline contraction coefficients are locally constant so they do

not contribute to turbulent fluctuations. Similarly, the buoyancy variance can be written as

b′2 = g2 (���
′ − �SS

′)2. (24)

Using equations (23) and (24) we can derive a budget equation for the turbulent buoyancy flux through

multiplying equation (21) by g �� , equation (22) by g �S, and then taking the difference, namely,

�w′b′

�t
= −w′2 �b̄

�z
+ b′2 −

�w′w′b′

�z
−

b′

�o

�p′

�z
. (25)

Terms on the right-hand side of equation (25) that do not include the vertical gradient of the mean buoy-

ancy correspond to the nonlocal terms in KPP. As seen in the following, the KPP nonlocal tracer transport

parameterization derives from the buoyancy variance.

Use of surface similarity theory and a pressure-buoyancy covariance parameterization (e.g., Canuto et al.,

2001; Moeng &Wyngaard, 1986) yields

w′b′ ≈ −�w′2

(
�b̄

�z
+ C

(w′b′) sfc

w∗h

)
, (26)

where w∗ = [(w′b′) sfch]
1∕3 is the convective velocity scale (section 2.5.1) and C is a constant. The first term

on the right-hand side of equation (26) is parameterized by KPP using a flux gradient expression, whereas

the second is parameterized by a nonlocal redistribution of the surface turbulent buoyancy flux throughout

the boundary layer. KPP includes surface momentum forcing effects in equation (26) by replacingw∗ withws

(equation (B3)), given thatws is dependent on u∗.

To split the nonlocal buoyancy flux parameterization (equation (26)) into separate parameterizations for a

nonlocal heat and salt flux (see equation (19)) we assume that the thermal and haline expansion coefficients

are constant throughout the OSBL and within the calling model grid cell. We make this assumption even

though these values may change over larger length and timescales within the calling model. As a result, KPP

can compute a nonlocal transport when there is a destabilizing surface flux of either heat or salt. We examine

the KPP nonlocal transport term relative to LES in section 7.

2.6.2. Parameterized Nonlocal Salt Transport

LMD94 formulated KPP for models with a virtual salt flux at the ocean surface. For a virtual salt flux, the non-

local salt fluxes are directly implemented just as the nonlocal heat fluxes given by equation (20). However,

in models making use of a freshwater surface boundary condition rather than a virtual salt flux, for example,

MPAS-O andMOM6, the salinity in the top layer is changed via surfacemass fluxes (arising from precipitation,

evaporation, runoff, ice melt/formation, and brine release). Implementation of the nonlocal transport for real

water flux models requires a separately defined salt flux given by

Qs = Qm S sfc, (27)

where S sfc is the salinity in the surface grid cell and Qm is the freshwater flux. Equation (27) also applies to all

tracers that, like salt, have a high solubility in water and that do not leave the ocean with evaporating water.

See Appendix C for more details about surface boundary fluxes.

2.7. Choices Made in the Calling Model

During the development of CVMix, we discovered that certain choices made in the circulation model imple-

mentation can influence the results of the one-dimensional KPP tests. For example, as discussed in section 2.5,

the KPP V2
t
parameterization is dependent on stratification near theOSBL; thus, we expect the effectiveness of

this parameterization to be sensitive to the chosen model resolution. In our comparisons, we test a variety of

vertical grid spacings (0.1 to 10 m). Comparisons to LES confirm that there is indeed a resolution-dependent

bias. We discuss this bias and possible remedies in section 4.1.
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MPAS-O, POP, andMOM6utilize different time stepping schemes.We thusdonot presume, before testing, that

results are robust across the models. Despite the different time stepping schemes, eachmodel computes the

vertical mixing tendency implicitly in time to avoid numerical stability restrictions on the time step. However,

due to sensitivity to theparabolic Courant number (Lemarié et al., 2015) there canbebiases that growwith the

time step (Lemarié et al., 2012). In section 4.2 we test the sensitivity of KPP to the chosen time step following

the test case in Reffray et al. (2015).

In all models the interior shear-driven mixing parameterization of LMD94 is used when surface momentum

forcing is imposed. The diffusivity and viscosity resulting from shear instability are assumed to be given by a

polynomial function of the gradient Richardson number (see equation (28) in LMD94).

3. The LES Model and the One-Dimensional Test Cases

We here present the LES model used for establishing a baseline behavior to be compared with KPP and then

summarize the one-dimensional oceanic test cases used to benchmark KPP.

3.1. LES Model

We compare one-dimensional column tests of KPP to a mature and commonly utilized LES model (Moeng &

Wyngaard, 1984; McWilliams et al., 1997; Sullivan et al., 2007). The LES utilizes the Deardorff (1980) subgrid

parameterization with the stability functions of LMD94 to parameterize the surface layer. The LES model also

uses the third-order Runge-Kutta time stepping scheme and is pseudo-spectral.

TheLES results providea target for theKPP simulations and thusprovideauseful point of comparison.Wehave

made two key modifications to the LES code for our tests. First, we include salinity by setting the buoyancy

equal to

b = −g
[
1 − ��

(
� − �̄

)
+ �S

(
S − S̄

)]
. (28)

In this equation, �� > 0 is the thermal expansion coefficient, �S > 0 is the haline contraction coefficient, and

the overline represents a horizontal average over the domain. We choose the constant values

�� = 2 × 10−4K−1, (29a)

�̄ = 298.15K, (29b)

�S = 8 × 10−4ppt−1, (29c)

S̄ = 35ppt. (29d)

In addition, the buoyancy production terms in the subgrid TKE scheme have been modified so that equation

(23) is satisfied. Next, the stability factor in the length scale parameterization (Deardorff, 1980) has been

modified, with evaluation of these changes presented in Appendix D.

An additional modification involves the implementation of a diurnal cycle in the LESmodel along with short-

wave radiation (similar to Wang et al., 1998). The vertical penetration of incoming solar radiation follows a

two-band exponential formulation with constant extinction coefficients of a Jerlov type IB water mass (Paul-

son & Simpson, 1977), which is consistent with that used in MPAS, POP, and MOM6 KPP tests. The function

describing the time variation of surface shortwave radiation is described in Appendix E.

3.1.1. Details of the LES Test Cases

Inmost simulations, the LES utilizes a stretchedgrid over its 150-mvertical extent, with the first layer thickness

of 0.1m. The LES has a horizontal extent of 128m and a uniform horizontal resolution of 0.5m. For the surface

heating and wind forced case, the LES resolution is uniform in the horizontal and vertical at 0.25 m. In every

simulation we have also tested the sensitivity of the LES to horizontal and vertical resolution by doubling the

resolution for a short test run. The sensitivity tests yielded little change in the horizontally averaged statistics;

thus, we conclude our test cases are not sensitive to the chosen resolution. We have also verified that our
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Figure 3. Time variation of the maximum vertical velocity variance (w′2 ) in
depth normalized by the maximum vertical velocity variance in time for
each simulation. Each colored line corresponds to a large eddy simulation
test case. Each line includes the sum of the large eddy simulation resolved
and subgrid scale contributions. CEW = cooling, evaporation, and wind;
CWB = cooling with background shear; DC = diurnal cycle; HW = heating
and wind; FC = free convection; FCML = free convection with a mixed layer.

results are not sensitive to the horizontal domain width by showing that

LES model variables decorrelate over the length of the of the horizontal

domain (not shown).

All LES cases experience a transition to turbulence,wherein the turbulence

kinetic energy increases rapidly and thenequilibrates. The transition to tur-

bulence is illustrated in Figure 3, as the rapid increase in the normalized,

maximumw′2 in depth. KPP is not expected to simulate this transition, and

thus, we cannot compare LES to KPP simulations before turbulence is well

developed in the LES. In our test cases, small-amplitude noise is seeded

in the top six layers to quicken the transition to turbulence and allow for

a longer record of LES comparison with KPP. The noise is constructed to

ensure that no horizontal mean vertical velocities are created.

We note a few limitations of our LES cases. First, we do not consider

the influence of potentially important processes such as Langmuir turbu-

lence, breaking waves, and bubbles. The latter two are not represented by

KPP, and the Langmuir turbulence has only recently been implemented,

and thus, the Langmuir turbulence modifications will be examined in our

future work. Second, we only have one ground truth for each forcing sce-

nario. Hence, results may not be generalizable to all strengths of imposed

surface forcing.

3.2. Description of the Test Cases

We examine the impacts of the KPP considerations discussed in sections

2.4–2.7 through a series of one-dimensional test cases. These tests span a

range of oceanographically relevant forcing and include the following.

• FC (free convection): convectivedeepening inducedby surface coolingwithno initial OSBL (linearly stratified

in temperature),

• WNF (wind without Coriolis): OSBL deepening dominated by wind stress with no initial OSBL,

• HW (heating and wind): OSBL deepening via wind stress with surface heating,

• CEW (convection evaporationwind): OSBLdeepeninggeneratedbymechanical and thermodynamic forcing

with no initial OSBL,

• FCML (free convection with a mixed layer): turbulence generated by surface cooling with a preexisting

thermocline and halocline,

• CWB (convection wind and background shear): the influence of boundary layer deepening into preexisting

background shear,

• DC (diurnal cycle): the influence of diurnal variability in surface buoyancy forcing.

For identification purposes, the tests are named according to their salient details. For example, the test forced

by surface cooling, evaporation, and wind is designated CEW. We show the names and key details in Table 2,

whereas more complete details are given in Tables 3 and 4.

Table 2

Test Case Names and Salient Features

Test name Salient details

FC Free convection

CEW Surface cooling, evaporation, and wind stress

FCML Free convection with T & Smixed layers

WNF Wind stress with no Coriolis

CWB Surface cooling and wind stress with background shear

FCE Free convection due to surface evaporation

DC Diurnal cycle

HW Surface heating and wind stress
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Table 3

Summary of Forcing Scenarios Considered in the Test Cases

Qo Qmax
sw E �x T(z), S(z) f

(W/m2) (W/m2) (mm/day) (Pa) (s−1)

FC −75 0 0 0 A 10−4

CEW −75 0 1.37 0.1 A 10−4

FCML −75 0 0 0 C 10−4

WNF 0 0 0 0.1 D 0

CWB −75 0 0 0.1 E 0

FCE 0 0 1.37 0 B 10−4

DC −75 235.62 0 0 A 10−4

HW 75 0 0 0.1 A 10−4

Note.Qo is the nonsolar surface heat flux (positive is into the ocean), andQ
max
sw is themax-

imumof surface diurnal shortwave radiation.Weprovide details of the diurnal shortwave
forcing in Appendix E. E is the surface evaporation rate, �x is the zonal wind stress, and
�y = 0 in all simulations. T(z) and S(z) are respectively the initial temperature and salin-
ity profiles, which are given in Table 4. The Coriolis parameter (f ) is held fixed for a given
simulation. In CWB, a background shear is imposed (equation (30)). The FCE test is used
to verify the LES implementation of salinity in Appendix D. CEW = cooling, evaporation,
and wind; CWB = cooling with background shear; DC = diurnal cycle; FC = free convec-
tion; FCE = free convection due to surface evaporation; FCML = free convection with a
mixed layer; HW = heating and wind; WNF = wind without Coriolis.

In nearly all test cases, only surface forcing is considered. However, in CWB, a constant background shear layer

is imposed via a background velocity profile given as

Ū(z) =

⎧
⎪⎨⎪⎩

0, if z>−25,

−
0.3

50.0
(z + 25), if z ≤ −25 and z>−75,

0, otherwise.

(30)

Here the imposed shear is roughly equivalent to observed shear in the equatorial undercurrent (Johnson et

al., 2002). This shear is imposed as an external forcing in the LES and MPAS-O. For the CWB case, the LES

momentum and buoyancy equations become

�u

�t
+
(
� + f

)
× (u + Ū(z)) = −∇

(
p +

1
2
||u + Ū(z)||2

)
+ b ‚z (31a)

�b

�t
+ (u + Ū(z)) ⋅ ∇b = 0. (31b)

The inclusion of Ū(z) in the LES is accomplished by adding equation (30) to the LES-resolved zonal momen-

tum prior to computing right-hand side accelerations and then removing this profile prior to updating

Table 4

Initial Temperature (°C) and Salinity (ppt) Profiles Used in the Experiments Given in Table 3

Profile T(z) S(z)

A 20 + 0.01z 35

B 20 35 − 0.007813z

C

{
20 z>−25

20 + 0.01(z + 25) z ≤ −25

⎧⎪⎨⎪⎩

35 z>−25

35 − 0.03(z + 25) −35 < z ≤ −25

35.3 z ≤ −35

D 20 + 0.05z 35

E

{
20 z>−25

20 + 0.05(z + 25) z ≤ −25
35

Note. Recall that the vertical position (geopotential coordinate z) is positive upward, with
z = 0 at the resting ocean surface and z < 0 in the ocean interior.
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Table 5

List of Theory and Results Sections AssociatedWith the Implementation Considerations

Shown in Figure 1

Experiment Description Results Relevant tests

Diffusivity matching 2.4 6.2 CEW, FCML

Property exchange 2.5 6.3 FC, CEW, FCML, WNF, DC

Nonlocal transport 2.6 7 CEW, FCML, CWB

Resolution and time step 2.7 4 FC, CEW, WNF

Note. The final column lists each test case pertinent to each individual issue. CEW = cool-
ing, evaporation, and wind; CWB = cooling with background shear; DC = diurnal cycle;
FC = free convection; FCML = free convection with a mixed layer; WNF = wind without
Coriolis.

the LES-resolved zonal momentum. This choice also ensures that the subgrid parameterization feels the

background shear as well.

The reduced momentum equation for the KPP tests is

�u

�t
≈

�

�z

(


�(u + Ū)

�z

)
. (32)

In MPAS-O we simply add equation (30) to the tridiagonal solve routine. We also include this external forcing
in the call to the LMD94 shear-driven mixing parameterization and the boundary layer depth computation
routine (i.e., it is added in the denominator of equation (8)). The implementation we have chosen here allows
for a direct comparison between the LES and KPP.

A number of specifications common to most test cases are the following:

• Equation of state and buoyancy forcing: We use a linear equation of state (equation (28)). The values of ��
and �S used in equation (28) are identical to those used for the LES (see equations (29) and (29)). Given a

linear equation of state, the surface buoyancy flux is given by

w′b′ sfc = g
(
�� w

′�′ sfc − �S w
′S′ sfc

)
. (33)

Hence, a positive correlation between vertical velocity fluctuations and temperature fluctuations contribute
to a positive turbulent buoyancy flux, as does a negative correlation between vertical velocity and salinity
fluctuations.

• Simulation length: Most simulations are run for eight days. However, WNF is run for only one day, CWB is run
for 4 days, HW is run for 3 days, and FCML is run for 12 days.

• Time step: In most KPP simulations, except those examining time step sensitivity, use a 20-min time step.
• Shortwave in the DC test: In the DC test, the time-dependent shortwave heat flux is constructed such that
the daily integrated positive (stabilizing) buoyancy input is balanced by the daily integrated upward (desta-
bilizing) buoyancy flux. The explicit form of the shortwave radiation used in the DC test given in equation

(E3) (see Appendix E), and the maximum daily shortwave radiation is listed in Table 3.

• Internal mixing: In all KPP simulations, constant background mixing is disabled. For the FC, FCML, and DC

tests (see Table 2) all internal mixing schemes (mixing below the boundary layer) are disabled. Hence, the

diffusivity vanishes beneath the boundary layer so that details of diffusivity matching are irrelevant.

• Across all configurations and parameter settings six LES cases were run with more than 100 KPP tests. We

present a subset of these tests, emphasizing lessons learned that lead to best practice recommendations.

Finally, we note that most of the test cases outlined here expose more than one physical and/or numerical

consideration raised in section 2. Table 5 lists the four focus areas illustrated in Figure 1 as well as the tests

pertinent to each consideration. In Table 6, we summarize the labels used for each sensitivity test and changes

made to KPP relative to the baseline configuration of Table 1.

4. Analysis of the CVMix Default Configuration

The default configuration of CVMix (Table 1) is compared across MPAS-O, MOM6, and POP to LES in Figure 4

for the free convection (FC), CEW (cooling, evaporation, and wind), diurnal cycle (DC), and HW (heating and
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Table 6

Sensitivity Tests ConductedWithinMany of the Test Cases Detailed in Tables 3 and 4

Test label Parameter(s) changed

Base Follows Table 1

NM Internal matching disabled

NM_Add As in test NM, but with interior diffusivity added in the OSBL

NM_noE Internal matching and LMD94 enhanced diffusivity disabled

N2 N = max(N(kosbl − 1),N(kosbl)) as in equation (39)

MB Match �zK
int
� (h) in internal matching

Note. Test labels correspond to figures in sections 4–7. NM = no match.

wind) tests.We also showan analytic solution (see equation (F11) for the FC case,which is derived inAppendix

F). OnlyMPAS-O has been used for the FCML (free convectionwith amixed layer) and CWB (coolingwith back-

ground shear) tests. The three calling models yield very similar OSBL depths, yet they systematically deviate

from the LES solution in the FC, HW, andCEW tests. The largest difference between themodels is in theDC test

for shallow boundary layers in stable forcing, which is due to the assumed minimum boundary layer depth.

In POP theminimumOSBL depth is half of the first model thickness whereasMPAS andMOM6 choose the full

layer thickness.

At the fine resolutions (dz = 1 m), high-frequency temporal OSBL noise develops near the surface during

stabilizing buoyancy forcing (e.g., Figure 4c) in the DC test case. This behavior is similar to what is seen in the

FC test (Figure 4a, near the start of the simulation). In section 6.3, we further examine these biases and present

a possible solution.

Given that MPAS-O, MOM6, and POP are consistent across tests that span important forcing regimes (convec-

tive, shear driven, and stable heating) and KPP configurations, we focus on results from MPAS-O for various

sensitivity tests in subsequent sections.

4.1. Exhibiting Sensitivity to Vertical Grid Resolution

A number of the test cases (e.g., FC, FCML, and DC) show that, surprisingly, the KPP boundary layer depth is

more consistent with LES at coarser grid resolution, with finer grid resolution showing a persistent shallow

boundary layer bias. As an example, Figures 4a and 4c illustrate a persistent shallow bias in OSBL depths at

fine resolution relative to LES and coarse-resolution KPP results.

To further quantify the resolution-dependent bias, we have examined a range of vertical spacings (0.1 to 20

m) across our six test cases. For each test, we compute the relative OSBL error as

REtest(t) =
OSBLtest(t) − OSBLLES(t)

OSBLLES(t)
, (34)

where the subscript test indicates a KPP simulation (e.g., dz = 1 m). We have plotted the average relative

error for the last day of each test case and every vertical spacing in Figure 5. Across all test cases, KPP exhibits

sensitivity to the chosen vertical resolution. Consistent with Figure 4, the highest vertical resolution exhibits

the most bias in nearly every test case. The resolution that exhibits the least bias also varies across test cases.

4.2. Sensitivity to Time Step

The WNF (wind stress with no Coriolis force) test has been used previously as a benchmark for

one-dimensional turbulence models (e.g., Burchard & Bolding, 2001). It is motivated by the laboratory exper-

iment conducted by Kato and Phillips (1969), who measured the deepening of the surface boundary layer in

an initial linearly stratified fluid (N2 = 10−4s−2) forced by a constant surface friction velocity (u∗ = 0.01m/s).

The boundary layer depth in the experiment is defined as the depth of themaximumN2 in the water column,

which we refer to as the Kato-Phillips (KP) boundary layer depth (h KP). Kato and Phillips (1969) found that the

KP boundary layer depth followed an empirical relation given by
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Figure 4. Boundary layer depths diagnosed using equation (8) from the base configuration of MPAS-O, MOM, and POP.
(a) Free convection (FC) test, (b) convection, evaporation, and wind (CEW) test, (c) diurnal cycle (DC) test, and (d) heating
and wind (HW) test. Results from MPAS-O is also shown for the (e) free convection with a mixed layer (FCML) test and
the (f ) convection with background shear (CWB) test. The LES output is dashed black. In panel (a), the thick black line is
an analytic solution computed from equation (F11). LES = large eddy simulation; MPAS-O = Model for Prediction Across
Scales—Ocean; OSBL = ocean surface boundary layer; MOM = Modular Ocean Model; POP = Parallel Ocean Program.

h KP =
1.05 u∗

√
t√

N(t = 0)
. (35)

The WNF test is run for 24 hr as Kato and Phillips (1969) found this relation to hold only for timescales on the

order of 30 hr.

Figure 6 shows the root mean square (RMS) relative error averaged over the last 12 hr for the WNF case.

Equation (35) is used as the baseline in place of LES results. Our chosen algorithm to diagnose h KP simply

locates the level of maximum stratification without interpolation between levels, which could yield oscilla-
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Figure 5. Relative error (equation (34)) averaged over the final day of each test case (Tables 2, 3) for five different vertical
grid spacings. The colored markers represent the resolution. For test case DC, the 20-m error is above the y axis limit
(6.82). CEW = cooling, evaporation, and wind; CWB = cooling with background shear; DC = diurnal cycle; FC = free
convection; FCML = free convection with a mixed layer; HW = heating and wind.

tions in the relative error about 0.When time averaged the KPP bias could appear artificially low. Thus, we plot

the RMS of equation (34) in Figure 6.

At fine resolution and across all time steps, KPP (in both configurations) captures well the empirical relation

given in equation (35), as shown by a small RMS relative error. Coarse-resolution simulations also perform

reasonably well across all time steps.

Figure 6. RMS relative error, where equation (35) is used as the reference solution in place of large eddy simulation,
from the wind without Coriolis test demonstrating the sensitivity to a chosen time step in K-profile parameterization.
The RMS relative error has been averaged over the final 12 hr of the simulation. The cyan markers are for dz = 10m and
the purple markers are dz = 1m. RMS = root mean square.
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Figure 7. Relative error (equation (34)) averaged over the last day of each test case for a series of K-profile
parameterization sensitivity tests. The tests are summarized in Table 6. Each colored marker corresponds to a single
sensitivity test. Two vertical grid spacings are shown: (a) 1 m and (b) 10 m. CEW = cooling, evaporation, and wind; CWB
= cooling with background shear; DC = diurnal cycle; FC = free convection; FCML = free convection with a mixed layer;
HW = heating and wind; NM = no match.

5. Analysis of Default CVMix-KPP OSBL Biases and Possible Remedies

We have conducted a number of sensitivity tests to further examine the biases discussed in the previous

section and a few solutions are proposed to remedy some of the biases. The sensitivity tests are summarized

in Table 6. Each test is associated with a modification to KPP. Figure 7 presents a summary of these tests via

the relative error metric defined in equation (34) for dz = 1-m (a) and dz = 10-m (b) resolutions. In nearly

every casewe find that the relative OSBL depth error in the baseline configuration of KPP can be reducedwith

one of the sensitivity tests. However, there is no single sensitivity test that consistently improves the baseline

configuration error. These tests are discussed further in the next sections.
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6. Treatment of the Boundary Layer Base

The diagnosed boundary layer depth is dependent on near-surface processes through the surface layer buoy-

ancy andmomentum (equation (8)) as well as processes near the boundary layer base. Here we examine KPP

sensitivities to theparameterizationofdiffusivity and its associatedentrainmentnear theboundary layerbase.

6.1. Remedying the Shallow Bias FoundWith Fine Grid Spacing

We revisit how the boundary layer depth is diagnosed to help understand the shallow bias seen in the

fine-resolution KPP simulations from section 4.1. We focus on the FC, FCML, and DC tests, in which the KPP

boundary layer depth computed according to equation (8) simplifies to

Ri crit =
h
[
bsl − b(h)

]
C hNe w∗

. (36)

To reach this expression, we made use of a simplified definition of the unresolved shear, V2
t
, in which all the

constants in equation (17) are subsumed into C. We furthermore assume zero velocity. Hence, for a fixed

boundary layer buoyancy, bsl, and surface buoyancy forcing (which fixes w∗), the key means to modify the

Richardson number for these simulations is via the entrainment layer stratification as measured by Ne.

6.1.1. A Reformulation of V2
t
to Reduce the Resolution-Dependent Bias

Increased entrainment layer stratification, which is a region of large stratification (e.g., the region with d ≈ h

in Figure 2), increases the unresolved turbulent shear, V2
t
(equation (17)). This increased V2

t
in turn reduces

the bulk Richardson number. The diagnosed boundary layer depth then increases to further enhancemixing.

At fine vertical resolution, the stratification varies rapidly in the entrainment layer, suggesting that the KPP

boundary layer depth can be very sensitive to the level of stratification used for computing V2
t
.

We identify twoways to approximate the entrainment layer stratification, Ne, for the Bulk Richardson number

calculation. Danabasoglu et al. (2006) define Ne according to

Ne =
b(kosbl+1∕2) − b(kosbl−1∕2)

z(kosbl+1∕2) − z(kosbl−1∕2)
, (37)

where kosbl is the vertical index for the grid cell closest to theOSBLdepth. In contrast, as shown in section 2.5.1,

Ne should be defined one cell shallower in the column (i.e., within the boundary layer as in Figure 2) so that

Ne =
b(kosbl−1∕2) − b(kosbl−3∕2)

z(kosbl−1∕2) − z(kosbl−3∕2)
. (38)

Yet our tests suggest the following provides a preferable alternative measure of the entrainment layer

stratification

Ne = max

(
b(kosbl+1∕2) − b(kosbl−1∕2)

z(kosbl+1∕2) − z(kosbl−1∕2)
,
b(kosbl−1∕2) − b(kosbl−3∕2)

z(kosbl−1∕2) − z(kosbl−3∕2)

)
. (39)

This formulation increases Ne (and hence V2
t
) at fine vertical grid spacing and prevents a case where Ne ≈ 0 at

coarse spacing (which would lead to a nonrobust calculation of the Richardson number).

In Figure 8, we exhibit the relative error averaged over the final day of each test case using equation (39) for

the V2
t
calculation. The new definition of Ne greatly reduces the resolution dependent bias found in the FC

test and slightly in the FCML and HW test cases.

In the CEW and CWB tests, the model-predicted shear of horizontal momentum dominates the denominator

of equation (8), weakening the sensitivity to V2
t
, and hence Ne. In the DC test, the new calculation of Ne again

only slightly diminishes the resolution-dependent bias during destabilizing surface buoyancy forcing.

In most cases, altering the definition of Ne according to equation (39) reduces the OSBL bias relative to LES,

although only modestly. Thus, our results suggest that altering Ne is a useful, albeit not critical, consideration

for KPP configurations.
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Figure 8. As in Figure 5, but for the N2 sensitivity test (Table 6 and equation (39)). The N2 test is shown as circles, and
the base configuration results from Figure 5 are reproduced with an “x.” Again the N2 relative error for test DC is above
the y-axis limit (6.73). CEW = cooling, evaporation, and wind; CWB = cooling with background shear; DC = diurnal cycle;
FC = free convection; FCML = free convection with a mixed layer; HW = heating and wind.

6.2. Diffusivity at the Boundary Layer Base

As discussed in section 2.4, there are a number of considerations regarding the matching of interior (below

the boundary layer) diffusivities to the diffusivities within the boundary layer. Our results suggest that config-

urationswith (base) andwithout (nomatch)matching, with a few critical alterations, can performwell relative

to LES. We restrict our analysis in this section to those cases in which the interior shear-driven mixing param-

eterization is enabled, thus producing a nonzero diffusivity in the interior region below the boundary layer.

These tests include the CEW, CWB, and HW configurations.

6.2.1. Considerations for the No Match Configuration

Overall, the simulated OSBL depths from the no match (NM) configuration are similar to the results from the

base configuration of KPP (Figure 9), with only a few exceptions. In the CWB test, which simulates a boundary

layer deepening into a region of preexisting shear, there is less temporal noise in the simulated OSBL depths

in the NM configuration. In the CEW and HW tests, the OSBL depths are slightly shallower than the base con-

figuration of KPP (Figure 9a), although the OSBL depth bias relative to LES improves in the HW test relative

to the base configuration. We suggest that the shallower OSBL depths in the NM configuration are partially

caused by the inability of interior shear instability-driven mixing to influence the OSBL.

Figure 10 shows the influence of extending the LMD94 shear instability-driven mixing scheme into the OSBL

(test NM_Add) for the CEW, CWB, and HW tests. At fine resolution, the CEW and HWOSBL depths (Figures 10a

and 10c) increase when shear instability-driven mixing is included in the OSBL. Yet there is no clear improve-

ment in KPP-simulated OSBL depths as the bias relative to LES increases in the HW test but decreases in the

CEW test. At coarse resolution, the inclusion of shear instability-driven mixing in the OSBL does not dramati-

cally alter the results. We conjecture that the insensitivity to interior mixing in the OSBL is due to the relatively

weakmodeled vertical shear of horizontal currents and weakened buoyancy gradients, each resulting from a

larger grid spacing dz.

In contrast to the CEW and HW tests, the CWB OSBL depth shallows when interior shear instability-driven

mixing is added in the OSBL. Further, temporal noise emerges, similar to the base configuration result (see

Figure 4 or 9). It is possible that this temporal noise results from the LMD94 shear instability-driven mixing

parameterization. The LMD94 scheme is dependent on the gradient Richardson number and can thus be

sensitive to grid scale variations in the vertical. Grid scale noise in the gradient Richardson number can lead

to noise in the vertical diffusivity and hence themodeled turbulent heat flux, which could cause the temporal
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Figure 9. OSBL depths from tests examining the sensitivity of K-profile parameterization to disabling internal matching.
(a) CEW test, (b) CWB test, and (c) the HW test. Recall that in the NM configuration, the internal shear-driven mixing
parameterization does not influence the boundary layer directly. In every test, the boundary layer depth is calculated
following equation (8). CEW = cooling, evaporation, and wind; CWB = cooling with background shear; HW = heating and
wind; LES = large eddy simulation; MPAS = Model for Prediction Across Scales; NM = no match; OSBL = ocean surface
boundary layer.
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Figure 10. As in Figure 9, but here with the diffusivities and viscosities from the LMD94 interior shear-driven-mixing
parameterization added the K-profile parameterization OSBL diffusivities and viscosities. In every test, the boundary
layer depth is calculated following equation (8). CEW = cooling, evaporation, and wind; CWB = cooling with background
shear; HW = heating and wind; LES = large eddy simulation; MPAS = Model for Prediction Across Scales; NM = no match;
OSBL = ocean surface boundary layer.
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Figure 11. As in Figure 9 but for sensitivity tests matching the gradient of diffusivities across the boundary layer base.
CEW = cooling, evaporation, and wind; CWB = cooling with background shear; HW = heating and wind; LES = large
eddy simulation; MPAS = Model for Prediction Across Scales; OSBL = ocean surface boundary layer.
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noise seen in the CWB test. However, tests where the gradient Richardson number is strongly smoothed in

the vertical did not ameliorate the temporal noise.

Overall, KPP simulations with the NM configuration are similar to the base configuration, with onlymarginally

reduced OSBL depth biases. Adding diffusivities from interior mixing schemes (e.g., shear instability) can

slightly reduce biases in a few cases (e.g. CEW) but can increase temporal noise and mean biases in the sim-

ulated OSBL (CWB test case). Therefore, in the NM configuration we do not recommend adding diffusivities

from the shear instability scheme to the KPP diagnosed value. Finally, even though OSBL depths simulated

with the NM configuration are similar to the baseline configuration, the NM configuration does not require

the added complexities associated with matching diffusivities between the KPP scheme and interior mixing

parameterizations. This simplification motivates the NMmethod.

6.2.2. Considerations for the Base Configuration

Recall that the CVMix base configuration of KPP does not match to gradients of internal diffusivities (Table 1).

Sensitivity to this choice is tested in Figure 11. In the CEW and CWB tests there is minimal sensitivity in simu-

lated OSBL depths; however, in the HW test (Figure 11c), matching to internal diffusivity gradients increases

the OSBL bias relative to LES at fine grid resolution.

Even though theOSBLbias relative to LESdoesnot strongly increase in theCEWandCWBcases, KPP-simulated

momentum and heat fluxes can exhibit sporadic biases relative to LES. Figure 12 shows one such example

from the CWB test. When the interior diffusivity and its gradient are matched (MB test), there are brief peri-

ods of anomalously strong momentum fluxes (e.g., near day 3 in Figure 12c). When the OSBL deepens into

the layer of strong background shear, the interior predicted diffusivities can vary rapidly near the OSBL base

and thus strongly influence the KPP OSBL diffusivities. When we match to the interior-predicted diffusivities

and viscosities and not the gradients (CVMix default), these regions of vigorous fluxes are strongly damped

(compare Figures 12b and 12c). Again, we note that some of the sensitivity seen in Figure 12 may be due in

part to the chosen interior shear instability-driven mixing scheme.

Our results (inparticular theCWB test) suggest that if diffusivitymatching is used, thenmatchingat thebound-

ary layer base should be just to the diffusivities and viscosities. Matching should not occur to the gradients of

the diffusivities.

6.3. Examining the Influence of the LMD94 Enhanced Diffusivity Parameterization

LMD94 describe the enhanced diffusivity parameterization (section 2.5.2) as a method to overcome a shal-

low bias and boundary layer staircase structures commonly found at coarse resolution. Thus, the enhanced

diffusivity parameterization is an attempt to increase the effective vertical resolution for a given grid spac-

ing in a highly nonlinear region. Accordingly, it has a much larger effect at coarse resolution. Figure 13 shows

boundary layer depths for a subset of our test cases without the enhanced diffusivity parameterization.When

the enhanced diffusivity parameterization is disabled, the coarse-resolution OSBL depth shallows and strong

temporal noise develops. However, note that prior to the development of temporal noise, the resolution

dependence in the FC test case (Figure 13a) is greatly reduced.

The influence of the enhanced diffusivity parameterization on the resolution-dependent bias (section 4.1) is

examined inmore detail in Figure 14, which shows the time-averaged relative error in OSBL depths (equation

(34)) across a wide range of vertical grid spacings (dz = 0.1 m to dz = 20 m) for each test case. When the

enhanced diffusivity parameterization is disabled the resolution dependence is decreased in most test cases.

However, the mean relative error (averaged across all tested resolutions) decreases in many test cases, which

implies a shallow OSBL bias relative to LES.

These results suggest that the enhanced diffusivity parameterization is partially responsible for the observed

resolution dependence for KPP simulated OSBL depths (Figure 5). However, the enhanced diffusivity parame-

terization is necessary toprovide sufficient entrainment in order toprevent temporal noise inOSBLdepthsbut

is an incomplete representation of unresolved entrainment across resolutions and surface forcing. We further

discuss the temporal noise issue in light of the nonlocal tracer transport parameterization in the next section.

7. Nonlocal Transport in KPP

We now focus on the parameterized nonlocal tracer transport. The KPP nonlocal transport is enabled only

under destabilizing surface buoyancy forcing. Across most test cases, the parameterized nonlocal transport

behaves well. Yet our experiments also suggest possibilities for extensions warranting further research.
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Figure 12. Test case cooling with background shear: Turbulent momentum flux normalized by the surface friction
velocity (a–c). The LES results, which are the sum of subgrid and resolved fluxes, are the top row; the middle row is the
base configuration; and the bottom row is a test where matching is between the boundary layer and interior diffusivity
value and gradient. For K-profile parameterization simulations, the turbulent fluxes are computed via the
parameterizations in equations (5), (6), and (20). In every plot, the red line is the boundary layer depth computed via
equation (8). LES = large eddy simulation.

7.1. Nonlocal Tracer Transport

In KPP, the nonlocal tracer transport derives from the buoyant production term in the turbulent buoyancy flux

equation (see section 2.6.1) and is only nonzero in the presence of a nonzero surface tracer flux. To examine

this assumption, we consider the budget for the turbulent salinity flux (equation (22)). Figure 15 shows the

budget terms from the FCML LES test case. Note that the sum of the tendency terms is not exactly 0, most

likely due to the lack of inclusion of subgrid scale turbulent flux tendencies in equation (22) (Mironov, 2001).

VAN ROEKEL ET AL. 2671



Journal of Advances in Modeling Earth Systems 10.1029/2018MS001336

Figure 13. Boundary layer depth sensitivity to the enhanced diffusivity parameterization in the NM configuration. The
LES output is dashed black. All OSBL depths are computed using equation (8). (a) The FC test and (b) the FCML test. In
panel (b) we have only plotted every other time value of the OSBL depth for visualization. FC = free convection; FCML =
free convection with a mixed layer; LES = large eddy simulation; MPAS = Model for Prediction Across Scales; NM = no
match; OSBL = ocean surface boundary layer.

Figure 15 shows that the buoyant production of the turbulent salinity flux is larger in magnitude than the

local production of the turbulent salinity flux in the OSBL, which implies that the KPP formulation of nonlocal

tracer transport is incomplete.

FC sensitivity tests show that if the KPP-parameterized entrainment is too weak, then the OSBL oscillates

rapidly (Figure 13a) in time due to an interaction with the nonlocal temperature flux parameterization. This

spurious behavior is mitigated by the enhanced diffusivity parameterization, which increases entrainment at

the OSBL base. However, for shallow OSBL depths at fine resolution, temporal noise is evident even with the

enhanced diffusivity parameterization enabled (Figure 4a).

A parameterization similar to Noh et al. (2003) could replace the enhanced diffusivity parameterization of

LMD94 and perhaps reduce the resolution dependence seen in predicted OSBL depths given that there is no

explicit consideration of grid resolution in the Noh et al. (2003) parameterization. An improved entrainment

heat flux could reduce the interaction with the nonlocal tracer flux parameterization seen in the FC and FCML

tests.
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Figure 14. Relative error (equation (34)) averaged over the final day of the simulation for the base configuration
(Table 1), xs and sensitivity tests with enhanced diffusivity disabled. Note that in the FC test case, we have averaged over
the 24 hr preceding the onset of temporal noise in the coarse-resolution simulation. CEW = cooling, evaporation, and
wind; CWB = cooling with background shear; DC = diurnal cycle; FC = free convection; FCML = free convection with a
mixed layer; HW = heating and wind; NM = no match.

7.2. Nonlocal Momentum Transport

In the CEW test, a vertical gradient of the vertical flux of meridional momentum was observed in LES in the

presence of well-mixed meridional momentum profiles (not shown). This result suggests nonlocal momen-

tum transport could be important. To include a nonlocal momentum transport in KPP, we could use the form

suggested by Smyth et al. (2002). We are unaware of published tests of this parameterization in a calling

model. Further, it is important to include enhancement due to Langmuir turbulence in any nonlocal momen-

tum transport parameterization. Previous works (Li et al., 2015; McWilliams & Sullivan, 2000; Reichl et al.,

Figure 15. Test case free convection with a mixed layer: budget terms for the turbulent salinity flux equation (see
equation (22)) diagnosed from large eddy simulation. The red line is the pressure-salinity covariance, the green line is
the buoyant production term, the blue line is the local production term, and the purple line is the triple moment term.
The data have been averaged over the final 12 hr of day 12. The two panels span the entire boundary layer, but the x

range in the upper ocean surface boundary layer is tightened to better elucidate the profiles.
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2016) have suggested parameterizations for the influence of Langmuir turbulence on the local diffusivity in
KPP, but a nonlocal momentum parameterization that includes Langmuir turbulence has not been proposed
for the global ocean (Sinha et al., 2015, proposed a nonlocal momentum transport for Langmuir turbulence
associated with full depth Langmuir cells).

8. Conclusions and Best Practice Recommendations

In this paper,we investigated thebehavior of theKPPboundary layer parameterization as implementedwithin
the CVMix package (Griffies et al., 2015). The KPP schemewas rigorously tested against a series of horizontally
averaged LESs. Whilemany different implementations of KPP have been tested in a number of circumstances,
for example, observations (e.g., LMD94, Mukherjee & Tandon, 2016; Van Roekel & Maloney, 2012; Zedler et
al., 2002), large-scale ocean simulations (e.g., Li et al., 2001), and against limited LES (e.g., Large & Gent, 1999;
McWilliams & Sullivan, 2000; Noh et al., 2016; Reichl et al., 2016; Smyth et al., 2002), it has not been subject
to testing against a series of tightly controlled LES cases such as presented in this paper. Our tests focused
on implementation choices related just to vertical physics under simplified surface forcing. The tests do not
consider the influence of horizontal processes. Horizontal processes represent an important and active (e.g.,
Bachman et al., 2017; Hamlington et al., 2014) direction for future evaluation of KPP.

8.1. Summary of Main Results and Recommendations

Our tests focused on four main components of KPP physical and numerical choices: vertical resolution and
time stepping (sections 2.7 and 4), internal matching (sections 2.4 and 6.2), entrainment at the OSBL base
as represented by the enhanced diffusivity parameterization (sections 2.5 and 6.3), and nonlocal transport
(sections 2.6 and 7). We here summarize key findings as well as potential solutions.

• MODEL CHOICES:
∘ The CVMix implementation appears robust across ocean circulation models given that we tested it within
three very different calling models that yielded similar results (Figure 4).

∘ KPP is sensitive to the vertical grid spacing (Figure 5). Using the base configuration (Table 1) KPP does not
converge to the LES or analytic solutions in the FC test case. Using equation (39) for the V2

t
parameterization

mitigates some of this resolution dependence (Figure 8).
∘ KPP is robust to variation in time step (Figure 6).
• NONLOCAL TRANSPORT:
∘Without a sufficient entrainment buoyancy flux, either from the enhanced diffusivity parameterization or
our reformulation of the V2

t
parameterization, then the KPP-simulated OSBL depths can exhibit large and

unphysical temporal oscillations (Figure 13).
∘ Results from the FCML test case suggest that a nonlocal transport based only on surface fluxes is not suf-
ficient (Figure 15). We suggest that a nonlocal redistribution of the entrainment buoyancy flux should be
explored.

• TREATMENT AT THE BOUNDARY LAYER BASE:
∘We have tested values Ri crit(dz) between 0.25 and 1.0. In cases with no currents, there is no dependence,
given the rapid variation of Ri crit(dz) across the OSBL base. For simplicity, we recommend choosing a single
value of Ri crit across most resolutions.

∘ KPP simulates entrainment buoyancy fluxes in two ways. At fine resolution, the entrainment fluxes are
sensitive to the V2

t
parameterization (Figure 4). Use of equation (39) in the V2

t
parameterization reduces

this sensitivity (Figure 8). At coarse resolution, entrainment strength is determined by the enhanced dif-
fusivity parameterization. In a number of tests this parameterization caused a bias that grew as resolution
coarsened (Figure 14).

∘ For shallow boundary layers and at fine resolution (e.g., the DC test case), high-frequencyOSBL depth noise
develops (Figure 4c). This noise suggests a lack of simulated entrainment within KPP for this test case.

∘ KPP OSBL biases relative to LES are similar for configurations with and without matching boundary layer
diffusivities to interior diffusivities (Figure 9). Our results suggest considerations for both configurations of
KPP (base and NM) that are summarized here.

∗ Matching to interior mixing: Matching to the internal diffusivity and its vertical gradient can lead to
noise in the simulated OSBL depths (Figure 11) and periods of anomalously strong fluxes (Figure 12).
Therefore, if matching is retainedwe recommendmatching only to the interior diffusivity and not its
gradient.

∗ Nomatching: Diffusivities from the LMD94 shear instability parameterization should not be included
in the OSBL. Including interior diffusivities in the OSBL reduces the OSBL depth bias slightly in the
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Table A1

Symbols Used in This Paper, AlongWith Preferred Units

Symbol Description Units

(w′�′) sfc Surface temperature flux m ⋅ s−1 ⋅ K

(w′S′) sfc Surface salinity flux m ⋅ s−1 ⋅ ppt

(w′b′) sfc Surface buoyancy flux m ⋅ s−1 ⋅m ⋅ s−2

h Ocean boundary layer depth m

he Depth of the minimum buoyancy flux (entrainment depth) m

hm Depth of the well-mixed layer m

� = (−z + �)∕h Boundary layer coordinate Nondimensional

� = 0.1 Surface layer depth as a percentage of h Nondimensional

Xsl Surface layer average of X Dimensions of X

G(�) Shape function for diffusivity profile Nondimensional

wx Turbulent velocity scale of quantity x m∕s

Kx Parameterized KPP eddy diffusivity for quantity x m2∕s

Rib Bulk Richardson number Nondimensional

Ri crit Critical bulk Richardson number Nondimensional

V2t Squared unresolved turbulent velocity (in Rib) m2s−2

	x Nonlocal term Tracer conc ×m−1

Kx 	x Nonlocal flux Tracer conc ×m∕s

C∗ Strength of nonlocal term Nondimensional


 von Kármán constant Nondimensional

�� Thermal expansion coefficient K−1

�S Haline contraction coefficient ppt−1

�̄ Horizontal mean of temperature K

S̄ Horizontal mean of salinity ppt

N2 ≡ �b∕�z Squared buoyancy frequency s−2

� Return to isotropy timescale s

g Gravitational acceleration m∕s2

f Coriolis parameter s−1

Note. KPP = K-profile parameterization.

CEW test case (Figures 10a) but introduces temporal oscillations in the OSBL depth in the CWB test

case (Figure 10c).

The current configuration of KPP has performed well in many forcing scenarios. However, our results sug-

gest directions for alternative approaches or extensions to KPP to improve model fidelity for several relevant

dynamic and thermodynamic situations.

Appendix A : List of Symbols

A summary of selected symbols used in this paper, alongwith their preferred units, are presented in Table A1.

Appendix B : Elements of the KPP Boundary Layer Scheme

For any prognostic scalar or vector field component � (e.g., velocity components and tracer concentrations),

the KPP scheme parameterizes the turbulent vertical flux within the surface boundary layer according to

w′� ′ = −K�

(
��

�z
− 	�

)
. (B1)

In this equation, the eddy diffusivity K� is written as the product of three terms

K� = hw� (�)G(�). (B2)
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The boundary layer depth h> 0 scales the diffusivity, so that K� is larger for deeper boundary layers. The

nondimensional shape function, G(�), is described in B1.

The turbulent velocity scale, w� ≥ 0, is computed according to

w� =

(

 u∗

�� (�h∕L)

)
. (B3)

In this expression, 
 = 0.4 is the von Kármán constant, u∗ ≥ 0 is the friction velocity scale (determined by

the square root of the surface stress magnitude), � is the nondimensional boundary layer coordinate (see

equation (3)), and L is the Obukhov length scale, which is held fixed at its surface value. The function �� ≥ 0

is a nondimensional flux profile that is smaller for negative buoyancy forcing and goes to unity in the absence

of buoyancy forcing. Given this form, the velocity scalew� is larger for unstable surface boundary forcing (i.e.,

negative buoyancy forcing such as when removing heat or adding salt), as well as for stronger mechanical

forcing (i.e., larger friction velocity scale as under strong wind forcing).

The KPP vertical viscosity (used for frictional transfer of momentum in the ocean interior) is specified via a

separate dimensionless flux profile through the Prandtl number

Pr =

(
Kv

K�

)
=

(
��

�m

)
. (B4)

See Appendix B of LMD94 as well as Griffies et al. (2015) for full details of the nondimensional flux profile

functions �� and �m, as well as the Obukhov length scale L.

B1. The Nondimensional Shape Function

In the KPP diffusivity expression (equation (B2)), the nondimensional shape function,G(�), is assumed to take

a polynomial form proposed by O’Brien (1970)

G(�) = c1 + c2� + c3�
2 + c4�

3, (B5)

where c1, c2, c3, and c4 are constants to be specified by the following considerations. First, since the diffusivity,

K� , is assumed to go to 0 at the ocean surface,

c1 = 0. (B6)

Within the surface layer (0 ≤ � ≤ �) (see Figure 1), we can eliminate the gradient of � in equation (B1) using

Monin-Obukhov similarity theory in the form

��

�z
=

(
(w′� ′) sfc


 z u∗

)
�� , (B7)

where w′� ′
sfc is the turbulent boundary flux crossing the ocean surface (e.g., turbulent latent and sensible

heat, turbulent tracer flux, and turbulentmomentumflux). If we combine equations (B1) and (B2) and assume

positive surface buoyancy forcing so that the nonlocal term vanishes (	� = 0) we have

w′� ′ = −hGw�

(
��

�z

)
, (B8)

which returns us to the KPP closure form assumed in equation (B1). Now insert equation (B7) into B8, and

assume G(�) ≈ �(c2 + c3�) (valid in the surface layer where � ≤ � ≪ 1), to yield

w′� ′ = −

(
(w′� ′) sfc


 z u∗

)
�� h � (c2 + �c3)w� . (B9)

Using equations (B3) and (3) brings equation (B9) to the form
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(
w′� ′

(w′� ′) sfc

)
= c2 + �c3. (B10)

Nowwe assume a linear decrease of the turbulent flux within the surface layer (i.e.,w′� ′ � = � w′� ′
sfc, where

� is a constant), so that the surface flux at a position � within the surface layer is given by(
w′� ′

(w′� ′) sfc

)
= 1 +

�

�
(� − 1) = c2 + � c3. (B11)

To be valid at � = 0 requires

c2 = 1. (B12)

To determine the final two shape function coefficients, we require matching across the base of the boundary

layer, at � = 1. Use of equation (B5) and its derivative at the boundary layer base leads to the following

expressions:

c3 = −2 + 3G(1) −
(
�G

��

)
�=1

, (B13a)

c4 = 1 − 2G(1) +
(
�G

��

)
�=1

. (B13b)

Thus, the shape function is dependent on the chosen boundary conditions at the base of the OSBL. We next

consider these boundary conditions.

B2. Diffusivity Matching for the Shape Function at the OSBL Base

LMD94 suggest that the diffusivity and viscosity predicted by KPP, as well as its vertical derivative, should

match that predicted by the sum of all mixing parameterizations in the region below the boundary layer

(the ocean interior). To ensure appropriatematching, the necessary inputs to equations (B13a) and (B13b) are

given by

G(�) =
K INT
�

(h)

hw� (�)
, (B14a)

�G

��
= −

[
�zK

INT
�

(h)

w� (�)
+

K INT
�

(h)��w� (�)

hw2
�
(�)

]
, (B14b)

where �z and �� are the partial derivatives with respect to z and �, respectively, and we evaluate terms on the

right-hand side at the boundary layer base, � = 1. Without diffusivity matching, the shape function takes the

relatively simple cubic form used by Troen and Mahrt (1986):

G(�) = � (1 − �)2 . (B15)

Appendix C: Surface Boundary Fluxes

We detail here the form for vertical turbulent fluxes on the ocean side of the surface boundary. In Large et al.

(1994) these surface boundary conditions were formulated for an ocean with a fixed volume, such as for rigid

lid ocean models (Bryan, 1969). The rigid lid is rarely used today. We thus provide additional considerations

for the nonzero mass flux (Qm) from precipitation, evaporation, river discharge, and melting/freezing of ice.

We frame our discussion by following the finite volume formulation of the tracer equation given by Griffies et

al., 2016 (2016; see their equation (L1)), focusing here on just the surface model grid cell affected by advec-

tive and nonadvective fluxes from boundary transfer. We define advective transfer as that arising from the

transfer of trace matter or heat as part of mass transfer, Qm ≠ 0. A surface mass flux carries tracers with

concentration �m and heat represented by the potential (or conservative) temperature �m. In contrast, non-

advective transfer arises from radiative and turbulent fluxes not directly associated with Qm, thus changing

tracer concentrationwithout changingoceanmass.Webase the formulationof turbulent fluxes on thenatural

boundary conditions described by Huang (1993) and Griffies et al. (2001). For simplicity we assume the seawa-

ter Boussinesq approximation, thus allowing for density factors to be set to the constant reference density �0.

Generalizations to a non-Boussinesq fluid are straightforward.
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C1. Formulating the Surface Boundary Condition

The ocean surface boundary fluxes are consistent with the conservation of matter and heat crossing the

boundary: What leaves the ocean must enter the atmosphere, land, or ice and vice versa. The vertical tracer

flux on the ocean side of the boundary includes the turbulent flux, (w′� ′) sfc. Additionally, there is an advective

flux,Qm � , that arises from the transfer of water across the boundarywith� the ocean tracer concentration at

the boundary. Our sign convention is chosen so that Qm > 0 for water entering the ocean, whereasw′ > 0 for

an upward turbulent fluctuation within the ocean surface layer. Hence, �0 (w
′�)′ sfc −Qm � is the net upward

directed flux at the surface boundary.

The water flux through the ocean surface is continuous. However, it can carry a different tracer concentra-

tion on both sides of the ocean surface interface. For example, the salinity of water vapor is 0 so that salt is

fully retained in the ocean during evaporation. Similarly, salt is only partly incorporated within sea ice upon

transitioning from liquid to solid, with most of the salt returned to the ocean via brine.

C1.1. Boundary Condition for Matter

The above considerations lead to the expression of matter conservation at the ocean surface boundary

�0 (w
′� ′) sfc − Qm � = Q nonadv

�
− Qm �m, (C1)

where Q nonadv
�

is the flux of � not associated with the water flux Qm. We choose signs so that Q nonadv
�

> 0 is

a vertically upward transfer of matter away from the ocean. Rearrangement renders the expression for the

ocean vertical turbulent tracer flux at the surface

�0 (w
′� ′) sfc = Q nonadv

�
− Qm

(
�m − �

)
. (C2)

All water flux components (precipitation, evaporation, ice melting and formation, and ice or river discharge)

can carry a different tracer concentration �m,i. So a more general form of the boundary condition takes the

form

�0 (w
′� ′) sfc = Q nonadv

�
−
∑
i

Qm,i

(
�m,i − �

)
, (C3)

where
∑

i Qm,i = Qm with the index i running over the different water flux contributions. Wemake use of the

boundary condition C3 for the nonlocal KPP redistribution (section 2.6).

C1.2. Boundary Condition for Heat

Although formulated formatter, a boundary condition similar to equation (C3) also holds for heat. Eachwater

flux component can have a distinct temperature contributing to the advective heat flux contribution. The

nonadvective heat flux, Q nonadv
�

, is comprised of latent, sensible, and radiative heat fluxes. There are different

latent heat contributions, L lat
�
, due tophase transitionsbetween liquid andvapor aswell as between liquid and

ice. The radiative heat flux consists of two components. Thermal radiationQ ther
�

is absorbed in the surface layer

and thus contributes to the surface heat flux. In contrast, shortwave radiation Q sw
�

penetrates through the

surface layer and is absorbedwithin thewater column. Shortwave radiation thus forms a vertically distributed

heat source as determined by the vertical radiation extinction profile (e.g., Paulson & Simpson, 1977).

Bringing all terms together leads to the turbulent temperature flux at the ocean surface

�0 (w
′�′) sfc = Q sens

�
+ Q ther

�
−
∑
i

Qm,i L
lat
�,i

−
∑
i

Qm,i

(
�m,i − �

)
. (C4)

Our sign convention is such that (w′�′) sfc > 0 for surface cooling, so that Q sens
�

> 0 and Q ther
�

> 0 cools the

ocean surface.

C1.3. Shortwave Radiation and the Nonlocal Parameterization

Of particular interest is how to use the boundary condition C4 for the KPP nonlocal redistribution. As written

this boundary flux excludes penetrative shortwave radiation. However, some portion of shortwave radiation

is absorbed near the ocean surface and thus may need to be nonlocally redistributed within the OSBL. The

amount of shortwave radiation to include in the surface buoyancy forcing is a choice left to the callingmodel.

CVMix returns a nondimensional nonlocal transport and the calling model scales this by the appropriate

surface tracer flux.
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LMD94 propose to include that portion of shortwave radiation absorbed within the OSBL and thus to add

it to the right-hand side of equation (C4). This approach represents an upper limit and, if the OSBL is thick

enough, it results in the full deposition of shortwave radiationwithin the boundary layer, which in turnmeans

that all of the shortwave radiation is redistributed through the nonlocal term. However, a thought experiment

with a realistic density equation of state can demonstrate a pitfall to choosing the upper bound suggested

by LMD94. Assume brackish surface waters, for example, Baltic Sea, with a sea surface temperature below

the temperature of maximum density so that the thermal expansion coefficient is negative. Further, assume

that local vertical mixing is small and shortwave radiation is the dominating heat flux. Finally, assume a deep

OSBL. In this circumstance solar heating leads to an unstable OSBL, and thus, the nonlocal parameterization

is active. With a deepOSBL, all of the incident shortwave radiation is included in the nonlocal tracer transport,

which results in a solar heat flux and nonlocal heat flux that exceeds the surface heat flux. Thus, new cold

water masses would be generated near the surface that were not present in the water column. In a realistic

configuration, this process could lead to the artificial generation of sea ice.

A possible solution to the above problem is to make the strength of the nonlocal flux have a depth depen-

dence and to only include the portion of the shortwave radiation absorbed between the sea surface and a

given depth in the nonlocal temperature transport. This approach ensures that the redistributed heat flux is

smaller than the total shortwave radiation entering the ocean. It is used in Baltic Sea models based on MOM,

Fennel et al. (2010), and Neumann et al. (2017).

Testing this approach in CVMix would require new LES test cases with a realistic equation of state.

C2. Example Turbulent Fluxes

We now consider some examples encountered in ocean and climate modeling.

C2.1. Salinity and Nutrients Away From Sea Ice

The air-sea interface generally has zero transfer of salt (salt transfer from aerosols requires separate consider-

ation), so that the nonadvective salt flux is 0, Q nonadv
S

= 0. The salt content of evaporation, precipitation, and

river discharge is commonly assumed to be 0, Sm = 0, in which case

�0 (w
′S′) sfc = Qm S = (P − E + R) S. (C5)

For ocean models, the surface salinity, S, is generally assumed equal to its value in the top model grid cell.

When freshwater is added to the ocean (P − E + R> 0), the turbulent salinity flux is positive, (w′S′) sfc > 0,

corresponding to a reduction (dilution) of surface ocean salinity.

As noted by Huang (1993), Griffies et al. (2001), and Olbers et al. (2012), the flux (C5) is the turbulent salinity

flux within the ocean surface layer arising from the transfer of freshwater across the ocean surface boundary.

It furthermore changes ocean buoyancy through its impact on density. Although it is analogous to the virtual

salt flux used in rigid lid models, it is conceptually distinct and thus considered an equivalent salinity flux (see

equation (2.25) of Olbers et al. (2012)). Namely, the virtual salt flux represents a transfer of salt across the ocean

surface rather than a turbulent ocean salinity flux induced by a surface freshwater flux.

For dissolved or suspended tracers, such as nutrients or plankton, a surface boundary condition similar to

equation (C5) applies for the KPP nonlocal redistribution. Additionally, for nutrients a nonadvective flux,

Q nonadv
�

, can be added to encompass entrainment of, for example, desert dust.

C2.2. Salinity in the Presence of Sea Ice

A mass flux related to sea ice formation, Q freeze, carries salinity, S freeze, due to the inclusion of salt within the

sea icematrix. Likewise, ameltwater flux,Qmelt, has a nonzero salinity, Smelt. Another salt flux is brine released

from ice cavities upon the formation of sea ice, which can destabilize the water column due to its impact on

surface density. The brine release mass flux is Q brine, and brine salinity is S brine. In the presence of sea ice, the

complete salinity boundary condition becomes

�0 (w
′S′) sfc = (P + R − E) S − Q freeze

(
S freeze − S

)
− Qmelt

(
Smelt − S

)
− Q brine

(
S brine − S

)
. (C6)

C2.3. A Neutral Boundary Condition for Temperature

In the absence of information regarding the temperature of the various freshwater flux components, we con-

sider a neutral assumption whereby the heat content of the freshwater boundary flux does not alter the sea
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surface temperature (i.e., the top model grid cell temperature). More generally, a neutral tracer flux changes

the tracer content (or heat) of the surface ocean but not its surface concentration. We thus consider the tem-

perature of river runoff, precipitation, and evaporation to be the same as that of the top model grid cell. This

choice reduces the temperature boundary condition (C4) to

�0 (w
′�′) sfc = Q sens

�
+ Q ther

�
−
∑
i

Qm,i L
lat
�,i
. (C7)

This neutral assumption does not always hold, such as in regions where the temperature in the boundary

freshwater flux is different from the sea surface, for example, cold rain over a warm ocean. Furthermore, the

neutral approximationmust not be applied to nutrient fluxes in ecosystemmodel applications given the need

to avoid spurious nutrient sources.

C3. Buoyancy Boundary Condition

We define buoyancy as

b = −
g (� − �0)

�0
, (C8)

with buoyancy changes arising from change in temperature and salinity

g−1
Db
Dt

= ��
D�
Dt

− �S
DS
Dt

, (C9)

where �� is the thermal expansion coefficient and �S the haline contraction coefficient. At the ocean surface

the turbulent vertical flux of buoyancy is given by

g−1 (w′ b′) sfc = �� (w
′ �′) sfc − �S (w

′ S′) sfc. (C10)

The signs are chosen so that (w′ b′) sfc > 0 corresponds to a vertically upward turbulent fluxof buoyancy,which

acts to destabilize the the surface ocean (see Figure 2). In most parts of the ocean, the thermal expansion

coefficient is positive, �� > 0, with the seasonally fresh and cold Baltic Sea a counterexample. For positive ther-

mal expansion coefficient regions, a destabilizing buoyancy flux arises from surface cooling ((w′ �′) sfc > 0). A

destabilizing buoyancy flux also arises from surface salinification ((w′ S′) sfc < 0) with the haline contraction

coefficient positive, �S > 0.

In CVMix, only the surface buoyancy flux is required to determine the Obukhov length (equation (B3)). The

surface salt and heat fluxes, as well as �� and �S, are determined by the calling circulation model. The non-

local tracer transport computed by CVMix is nondimensional and must be scaled by the surface tracer flux

computed by the calling model (see section 2.6).

Appendix D: Salinity Testing in the NCAR LES

To simulate the influence of salinity in the National Center for Atmospheric Research (NCAR) LES model

(McWilliams et al., 1997; Sullivan et al., 2007), the influence of salinity on the resolved buoyancy is included via

a linear equation of state. Thus, the modified buoyancy term in the vertical momentum equation becomes

b = −g
[
1 − ��

(
� − �̄

)
+ �S

(
S − S̄

)]
, (D1)

where the overline indicates a horizontal average. Buoyancy terms in the subgrid TKE scheme are modified

in a similar fashion. To test this implementation two buoyant bubble tests were conducted. In both tests, the

buoyancy perturbation is initialized via

b(x, y, z) = min

[
0,Δb cos

(
π r(x, y, z)

2

)]
, (D2)

whereΔb is themaximumbuoyancyperturbationand r(x, y, z) is thedistance fromthebubble center.One test

is initialized by a temperature perturbation. For the second test, the salinity is initialized such that in buoyancy

the perturbation is identical to the temperature test. The results from this test are shown in Figure D1. The
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Figure D1. Results from a buoyant bubble test. The thin solid lines are the buoyancy bubble dependent on temperature
only. The thicker dashed lines are results from the buoyant bubble dependent on salinity alone. The respective
perturbations in temperature and salinity have equivalent buoyancy perturbations. Labels in panels (a)–(d) are the time
in minutes from the start of the simulation.

thin solid lines are for the temperature perturbation, and the thick dashed lines are the salinity perturbations.

As the two bubbles have identical buoyancy they should fall on top of each other. Following from a to d in

Figure D1, the bubbles stay together.

The buoyancy changes and the corresponding salinity flux implementation are validated in a free convection

simulation due to surface evaporation (CEW; Table 3). The agreement in the location of the buoyancy flux

minimumdiagnosed from the LESmodel and the analytic solution (seeAppendix F) is quite good (not shown).

Given these results, we have confidence in the comparison of salinity from CVMix to LES for the simulations

described in Tables 3 and 4 and sections 4–7.

Appendix E: Form of Solar Radiation

In the LES and single column tests, the shortwave radiation is assumed to obey a Jerlov type IB extinction

profile (Paulson & Simpson, 1977). The time variation of incident shortwave radiation (Wm−2; Fsw(t)) is given

as

F sw(t) = Qmax
sw max

{
cos

[
2π

(
t

T
−

1
2

)]
, 0
}
, (E1)

where t is the time in seconds and T = 86, 400 are the number of seconds in 1 day. The peak incoming

shortwave radiation (Qmax
sw ) is determined by forcing a balance between the daily integrated buoyancy gain

and the daily integrated buoyancy loss (m2/s3), that is,
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∫
T

0

g ��

� cp
F sw(t)dt = −∫

T

0

w′ b′ sfc dt, (E2)

where this equation has beenmultiplied by the gravitational acceleration, g, and the thermal expansion coef-

ficient,�� (equation (29)), anddividedby the referencedensity and cp ≡ 4, 200J⋅kg−1⋅°C−1 to ensure consistent

units. Upon integration, and using equation (E1), the maximum surface shortwave radiation is given as

Qmax
sw = −π

(
� cpw

′b′ sfc

g ��

)
. (E3)

The units of equation (E3) arem ⋅ °C ⋅ s−1 given the division by g �� .

Appendix F: Analytic Boundary Layer Solution

The derivation in this appendix closely follows previous work (Haine & Marshall, 1998; Turner, 1973), but here

we do not assume the entrainment of fluid into the boundary layer is negligible. Assuming that entrainment

into the boundary layer is negligible is equivalent to assuming that h = he = hm in KPP (Figure 2). In our

derivation we slightly relax this assumption by assuming the buoyancy jump between the boundary layer

and interior is large but not a discontinuity (i.e., h ≈ he ≈ hm).

We begin by assuming that a model is forced with a horizontally uniform, constant in time, buoyancy flux,

which simplifies the buoyancy equation to

�b

�t
= −

�w′b′

�z
. (F1)

Next, equation (F1) is integrated from the surface (z = 0) to a depth −H below the boundary layer (h) that

does not change in time, that is,

∫
0

−H

�b

�t
dz = −∫

0

−H

�w′b′

�z
dz. (F2)

Assumingw′b′ is small at a depth H below the boundary layer, equation (F2) can be written as

�

�t ∫
0

−H

b(z) dz = −(w′b′)z=0. (F3)

We now assume a buoyancy profile for the upper ocean. The assumed form is shown in Figure F1. The buoy-

ancy is uniform in the boundary layer, the stratification is constant below the boundary layer, and there is a

sharp (but not discontinuous) buoyancy change between the well-mixed layer and the interior ocean simi-

lar to VanZanten et al., 1999 (1999). The strength of the buoyancy jump is assumed to be equal to the deep

ocean buoyancy at the boundary layer base (i.e., N2|h|) multiplied by a small constant (a), which is assumed

to be less than 1. With this assumption, the boundary layer buoyancy is

b(h) = Δb − N2|h| = (a − 1)N2|h|. (F4)

equation (F4) then brings equation (F3) into the form

�

�t

[
∫

−h(t)

−H

N2 z dz + ∫
0

−h(t)

(a − 1)N2 |h|dz
]
= (w′b′) sfc. (F5)

equation (F5) can be integrated to find

(1 − 2a)N2 �

�t

[
h2

2

]
= (w′b′) sfc. (F6)

The constant a is determined by using the formula for the boundary layer heat flux from Lilly (1968) and the

empirical rule of convection
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Figure F1. Schematic illustrating the analytic buoyancy solution. The dashed line is the initial stratification, and the solid
line is the profile after some time (t). The buoyancy change across the entrainment layer is assumed to be a small
fraction of the interior stratification (a << 1). Thus, this case does not assume a jump discontinuity between the
well-mixed layer and the interior ocean. Yet given that the buoyancy change is large, he ≈ h (Figure 2).

(w′b′)(he)

(w′b′) sfc

≈ 0.2. (F7)

Since the buoyancy change is sharp, he ≈ h, and (w′b′)(h) ≈ (w′b′)(he). Equating the empirical rule of

convection and the boundary layer heat flux formula from Lilly (1968) yields

(w′b′)(h) = Δb
�h

�t
= 0.2 (w′b′) sfc. (F8)

Using the assumed form of the entrainment layer buoyancy change, equation (F8) becomes

aN2 |h| �h
�t

= aN2 �

�t

(
h2

2

)
= 0.2 (w′b′) sfc. (F9)

Dividing equation (F9) by equation (F6) gives

a

1 − 2a
= 0.2. (F10)

Equation (F10) gives a ≈ 0.143. Inserting this result into equation (F6), the final expression for boundary layer

depth is

h(t) =

(
2.8 (w′b′) sfc t

N2

)1∕2

. (F11)
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