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We investigate the dynamo effect generated by an incompressible, helicity-free
flow drawn from the Kraichnan statistical ensemble. The quantum formalism
introduced by Kazantsev [A. P. Kazantsev, Sov. Phys. JETP 26, 1031–1034
(1968)] is shown to yield the growth rate and the spatial structure of the magnetic
field. Their dependences on the magnetic Reynolds number and the Prandtl
number are analyzed. The growth rate is found to be controlled by the largest
between the diffusive and the viscous characteristic times. The same holds for the
magnetic field correlation length and the corresponding spatial scales.

KEY WORDS: Turbulent transport; Magnetohydrodynamics; Dynamo effect;
Kraichnan statistical ensemble.

1. INTRODUCTION

Magnetic fields generated by turbulent motion of conductive fluids are rele-
vant to many astrophysical applications.(1) Two competing mechanisms are at
stake: magnetic field’s amplification by the gradients of the advecting flow and
magnetic energy’s dissipation due to the finite resistivity of the fluid. Which
one prevails, depends on the specific properties of the flow and does not bear a
general answer. There are however some specific models where a complete
analysis can be carried out and those will be the subject of interest of this work.

The evolution of an initially given magnetic field B(r, 0) in an incom-
pressible flow of a conductive fluid is determined by the following equations(2)

˛“tB+(v · N) B=(B · N) v+oN2B
N · B=0

(1)



where v(r, t) denotes the velocity field. The magnetic diffusivity o, assumed
to be uniform and constant, is proportional to the inverse of the electric
conductivity of the fluid.

The dimensionless number which expresses the viscosity-to-diffusivity
ratio is the Prandtl number Pr=n/o, where n indicates the viscosity of the
fluid.

In Eqs. (1) the term (v · N) B is a purely advective contribution that
preserves the magnetic energy. The stretching term (B · N) v acts either as
an energy source or as a sink depending on the local properties of the flow.
Finally, the diffusive term oN2B is responsible for the small-scale ohmic
dissipation and balances the inertial terms at the diffusive scale rd.

The relative importance of the two contributions on the right-hand
side of (1) is given by the magnetic Reynolds number Rm=UL/o, where L
denotes the integral scale of the flow and U the characteristic velocity at
such scale. The number Rm can be regarded as a dimensionless measure of
the fluid conductivity. For Rm Q 0 the diffusion dominates and the magne-
tic energy density (proportional to B2) always decays to zero in time. In the
opposite limit, Rm Q ., the diffusion term is relevant only at very small
scales and the magnetic field is almost frozen in the fluid. At high magnetic
Reynolds numbers we can expect that the flow be able to enhance the
magnetic field, producing a consequent growth in time of B2. The last
process is called dynamo effect, referring to the energy transfer from the
velocity field to the magnetic one.

The field B acts on the velocity via the Lorentz force, which yields a
term proportional to (B · N) B in the Navier–Stokes equations. Generally
speaking, it would be necessary to take into account such feedback action
on v. However, since we are interested in understanding the initial genera-
tion of the magnetic field, we can assume for the initial conditions B2 ° v2

and neglect the Lorentz force contribution. In this kinematic approach
v is a prescribed velocity field and the evolution equations (1) are totally
uncoupled from Navier–Stokes equations. Given the initial condition B(r, 0)
and appropriate boundary conditions, Eqs. (1) completely determine the
magnetic field evolution.

To prescribe the velocity, we use the Kraichnan statistical ensemble, (3)

where v is taken Gaussian, homogeneous, isotropic and d-correlated in
time. The motivation is that it allows an analytical solution of the dynamo
problem.

The flow is assumed to be characterized by two scales: the integral
scale L and the viscous scale g, determined by the balance between dissipa-
tion and transport in Navier–Stokes equations. The velocity is supposed to
be smooth up to the viscous scale g and to scale as rt/2 (0 [ t [ 2) in the
inertial range g ° r ° L. The parameter t/2 is the Hölder exponent of the
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velocity and can be thought of as a measure of the field roughness: for
t=2 the velocity is smooth in space, while the case t=0 corresponds to a
diffusive field.

The magnetic Reynolds number and the Prandtl number are related to
the relative importance of the scales involved in the physical problem by
the relations: Rm 4 L/rd and Pr 4 (g/rd)t.

It is well known that magnetic dynamo can emerge for a helical flow
due to the a-effect. (1, 5) Here we will restrict to a parity invariant statistical
ensemble so that the a-effect is ruled out. (For recent results on helical
Kraichnan velocity fields see, e.g., ref. 6).

The analysis of kinematic dynamo for a Kraichnan velocity field is
made easier by a simple quantum mechanics formulation, first introduced
by Kazantsev. (4) The d-correlation in time of the flow allows for the single
time correlation function for the magnetic field OBi(x, t) Bi(x+r, t)P to be
expressed in terms of a function that satisfies a one-dimensional Schrödinger-
like equation. The problem of the dynamo effect can thus be mapped into
that of studying the bound states of a quantum particle in a given potential
that only depends on the velocity correlation function. In particular, the
ground state energy E0 will turn out to be the asymptotic magnetic field
rate-of-growth.

In ref. 4 Kazantsev finally restricted himself to the limiting case of
Rm Q . and Pr Q 0. He proved that dynamo can take place only for a
velocity scaling exponent in the range 1 [ t [ 2 and he provided a numerical
evaluation of E0 vs t for 1.25 < t < 2. The rate-of-growth for a smooth field
(t=2) was theoretically estimated on the ground of quantum mechanical
considerations.

The Kazantsev quantum model was extended by Ruzmaı̆kin and
Sokolov (7) to a more realistic velocity field. In particular, the main conse-
quence of finite magnetic Reynolds numbers was found to be the existence
of a threshold value R (cr)

m for the appearance of dynamo. Further, the
magnetic field was shown to be concentrated at small scales (of the order of
R−1/2

m ) and to be always anticorrelated at large scales. The results of ref. 7
were later generalized by Novikov et al. (8) to consider an inertial scaling
behavior with scaling exponent t=2/3.

In more recent years the Kraichnan–Kazantsev dynamo problem was
exactly solved in the special case of a smooth turbulent velocity field. Gruzi-
nov et al. (9) found the formula which determines the rate-of-growth for a
d-dimensional flow and generalized it to a non-d-correlated flow. The exact
analysis of moments and multipoint correlation functions of the magnetic field
was carried out by Chertkov et al. (10) by means of a Lagrangian approach.
They also obtained the expression for the rate-of-growth of the 2nth moment
of the field B in terms of the Lyapunov exponents of the turbulent flow.
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Finally, the last contribution in solving the Kazantsev model is due to
Schekochihin et al., (11) which describe the case of a d-dimensional Kraichnan
velocity field with a generic degree of compressibility in the limiting case of
very large Prandtl numbers (of interest in astrophysical applications).

The aim of this paper is to give a comprehensive description of the
Kraichnan–Kazantsev model, zeroing in on the dependence of the dynamo
effect on the dimensionless numbers Rm and Pr. We have been motivated
by the observation that the literature has provided many results valid in
different limiting cases, while an unified treatment of the problem as a
function of Rm and Pr still lacked.

We find that, while the magnetic Reynolds number determines the
presence of dynamo, the Prandtl number influences the magnetic field
correlation length and its rate-of-growth. More precisely, the correlation
length of the field B is shown to be the largest between rd and g, and its
rate-of-growth is proportional to the largest between the diffusive and the
viscous characteristic time-scale.

At the end of the paper we also point out a non-monotonic depen-
dence of the rate-of-growth on the Prandtl number. This results might be
of relevance to physical applications.

Many of the results appearing in this paper are completed by numerical
computations based on the variation-iteration method described in Appen-
dix A. This algorithm has the advantage of not relying on any assumption on
the functional form of the solution of the Schrödinger-like equation. That
was the case for previous numerical computations and therefore the selected
behavior for the wave function was not always the right one.

The rest of paper is organized as follows. In Section 2 we define more
precisely the Kraichnan model and, following Kazantsev, (4) we describe the
quantum formalism mentioned above. In particular we derive the Schrödinger
equation which is at the core of the quantum approach. In Section 3, we
revisit the case of infinite magnetic Reynolds number and zero Prandtl
number. Starting from these results, we then study how the dynamo effect
is influenced by Rm and Pr. Section 4 is devoted to conclusions.

2. THE KRAICHNAN–KAZANTSEV MODEL

In this section we recall in detail the quantum formalism introduced by
Kazantsev in ref. 4. The random velocity field is assumed to be incompressible,
Gaussian, homogeneous, isotropic, parity invariant, and d-correlated in time.
Under these hypotheses it is completely defined by its correlation matrix

Ovi(x, t) vj(xŒ, t)P=d(t − tŒ) Dij(r)

=d(t − tŒ)[Dij(0) − Sij(r)] (r=x − xŒ) (2)
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where Sij(r) denotes the structure function of the field v.
The d-correlation in time of v is an essential property in order to write

a closed equation for the magnetic field correlation function, which (under
a suitable transformation) reduces to a Schrödinger-like equation.

We impose homogeneous and isotropic initial conditions for B. There-
fore, on account of the translational and rotational invariance of Eqs. (1),
the magnetic field maintains homogeneous and isotropic statistics at every
time t. Its correlation tensor has thus the form (see, e.g., ref. 14)

OBi(x, t) Bj(xŒ, t)P=G1(r, t) dij+G2(r, t)
rirj

r2 (3)

Because of the solenoidality condition N · B=0, the functions G1 and G2 are
related by the following differential equation

“G1

“r
=−

1
r2

“

“r
(G2r2) (4)

The covariance of B is then completely described by a single scalar function,
e.g., its trace H(r, t)=3G1(r, t)+G2(r, t). Obviously, the dynamo effect will
correspond to an unbounded growth in time of H(r, t).

The correlation function H(r, t) can be transformed into another
function Y(r, t) that solves the imaginary time Schrödinger equation

−
“Y

“t
+5 1

m(r)
“

2

“r2 − U(r)6 Y=0 (5)

in which the mass and the potential depend on r only through Sii(r). (For
the details see Appendix B and ref. 4).

To study the dynamo effect it is useful to put in evidence the time
dependence of Y. As usual in quantum mechanics, we thus expand the
‘‘wave function’’ Y in terms of the ‘‘energy’’ eigenfunctions Y(r, t)=
> kE(r) e−Et+(E) dE [or Y(r, t)=;E kE(r) e−Et for discrete energy levels]
and obtain the ‘‘stationary’’ equation

1
m(r)

d2kE

dr2 +[E − U(r)] kE=0 (6)

Referring to the meaning of Y, it is clear that an unbounded growth of the
magnetic field corresponds to the existence of negative energies in Eq. (6).
In particular, it is the sign of the ground state energy E0 that determines
the presence of dynamo and its value eventually represents the asymptotic
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growth rate of the magnetic field. Indeed, in this case it is the ground state
kE0

e−E0 t that dominates the growth in time. (Recall that the negative energy
levels of a Schrödinger equation are always discrete).

By looking at the variational expression for the eigenvalues derived
from Eq. (6)

E=
> mUk2

E dr+> (k −

E)2 dr
> mk2

E dr
(7)

one can easily conclude that the presence of dynamo effect is equivalent to
the existence of bound states for a quantum particle of unit (r-independent)
mass in the potential V(r)=m(r) U(r). (12) Therefore, in order to state if
dynamo can take place for a given velocity field, it is sufficient to study the
properties of V.

Having summarized the quantum mechanics formalism for a magnetic
field transported by a Kraichnan turbulent flow, in the next section we
study the dynamo effect for a velocity correlation function that mimics the
real physical situation. In particular, we numerically compute E0 and
describe the properties of the ground state eigenfunction as Rm and Pr are
varied. From this analysis we are able to obtain information about the
critical magnetic Reynolds number, the correlation length of the magnetic
field, the asymptotic behaviors of its correlation function, and the charac-
teristic time-scale of the magnetic field growth.

3. TURBULENT DYNAMO

We consider the realistic situation of a structure function Sii(r) that
scales as r2 for r ° g (as expected in the viscous range), as rt (0 [ t [ 2) in
the inertial range g ° r ° L, and that tends to a constant value Dii(0) for
r ± L.

The case t=0 corresponds to the diffusive behavior, while the other
limit t=2 describes a velocity field that is smooth at all scales below the
integral scale L. For the other values of t, the field v is only a Hölder
continuous function of r with exponent t/2 (in the inertial range). The
parameter t thus represents a measure of the field roughness.

An explicit expression for the velocity correlation tensor, which has
the desired scaling properties, is, for example,

Dij(r)=F e ik · rD1 ij(k) d3k (8)
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with

D1 ij(k)=D0
e−gk

(k2+L−2) (t+3)/2 Pij(k) (9)

The solenoidal projector Pij(k)=(dij − kikj/k2) ensures the incompressi-
bility of the velocity field.

In what follows we refer to Eq. (9) whenever we show numerical
computations that exemplify our conclusions. However, it should be noted
that our results are general: they depend only on the qualitative properties
of Sii(r) and not on its explicit form.

3.1. Fully Developed Turbulent Dynamo

We first consider the limiting case of Rm Q . and Pr Q 0. Under these
conditions the diffusive scale rd is in the inertial range and the presence of
the cutoffs L and g is neglected: only the scaling behavior rt (0 [ t [ 2) is
considered for the velocity structure function.

The general expression of Sij(r) for an homogeneous, isotropic, parity
invariant, incompressible field that scales as rt is (14)

lim
g Q 0

L Q .

Sij(r)=D1rt 5(2+t) dij − t
rirj

r2
6 (10)

where the coefficient D1 has the dimensions of length(2 − t)/time.
In this limit the total energyDii(0) diverges with the infrared cutoff as Lt.
In order to analyze the existence of dynamo, let us turn to the quantum

formulation described above. The potential V has the following asymptotic
behaviors (see Appendix B and ref. 4 for the complete expression)

V(r) ’ 32/r2 r ° rd

(2 − 3
2 t − 3

4 t2)/r2 rd ° r
(11)

For sufficiently small t the potential is positive for all r, it does not
generate bound states and therefore the dynamo can not take place. For
larger t, V is repulsive up to r 4 rd and becomes attractive at infinity
(Fig. 2). A quantum mechanical analysis based on asymptotic behaviors
(11) allows to establish that t=1 is the exact threshold for the dynamo
effect. (4, 12)

If 0 [ t [ 1 the turbulent flow alone is unable to increase the magnetic
field and B2 finally decays in time. For those values of t, the presence of a
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forcing term in Eq. (1) is necessary to obtain a statistically stationary state. (12)

A forcing term can represent boundary conditions on the field B, or it can
be due to the presence of a large-scale mean magnetic field (see, e.g.,
ref. 13). This is, for example, the case of the solar corona, in which small-
scale turbulent fluctuations and large-scale magnetic fields coexist.

From now on we restrict to the values 1 [ t [ 2, for which the
dynamo is present.

If Eq. (6) is rewritten in a rescaled form by means of the transforma-
tion r Q r/rd, rd=(o/D)1/t, it is easy to see that the eigenvalues of the
energy must take the form

E=E(t) t−1
d (12)

where E(t) depends only on the scaling exponent t and td=r2
d/o is the

characteristic time of magnetic diffusion.
We have already noted that the ground state eigenfunction dominates

the evolution in time and that E0 is the asymptotic magnetic growth rate.
We numerically compute E0(t) as a function of t by the variation-iteration
method described in Appendix A. The quantity E0 grows with t as shown
in Fig. 1. When t tends to one, E0 approaches zero and the bound states
disappear. In the other limit, E0 reaches the value 15/2 according to the
known theoretical predictions. (4, 9, 10)

Fig. 1. The dependence of the magnetic growth rate E0=E0t−1
d on the scaling exponent t in

the limit of infinite Rm and zero Pr, as computed by the variation-iteration method described
in Appendix A.
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Fig. 2. The shape of the quantum potential V in the limit Rm Q . and Pr Q 0 for t > 1
(dynamo effect) and for t < 1 (no dynamo effect).

An estimation for E0 vs t already appears in ref. 4, but there the results
are limited to the values 1.25 < t < 2. Moreover, the numerical computa-
tions in that paper are performed by a variational method based on the
particular guess r2e−br for the eigenfunction kE0

. This ansatz is correct for
r ° rd, but it fails to capture the right behavior for r ± rd. Indeed, if we
insert the asymptotic behaviors (11) in Eq. (6), we find that (for 1 < t < 2)
kE(r) shows a stretched exponential decay with characteristic scale rd and
stretching exponent (2 − t)/2 (Fig. 3). The variation-iteration method we
used (see Appendix A) presents the big advantage of not requiring an explicit
form for kE0

. The algorithm provides as results both the eigenvalue and the
corresponding eigenfunction.

Fig. 3. The asymptotic behaviours of the ‘‘stationary wave function’’ kE0
in the limit of infinite

Rm and zero Pr. The maximum at r 4 rd determines the magnetic field correlation length.
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From the expressions of kE0
(r) we can recover the behavior of H(r, ·) (see

the definition (B2) in Appendix B). We have that, for r ° rd, the magnetic field
correlation function is approximately constant, while, if 1 < t < 2, H(r, ·)
decays for r ± rd as a stretched exponential with characteristic scale rd

H(r, ·) 3 − e−b (r/rd)(2 − t)/2
(rd ° r ° L) (13)

where the prefactor

b=
`2 |E0(t)|

2 − t
(14)

depends on the growth rate E0(t). We can thus conclude that, for 1 < t < 2,
the magnetic field has a spatial distribution characterized by structures
whose scales are of order rd.

Observe that, as pointed out in refs. 7 and 8, the magnetic field has
always anticorrelated tails in the large scale, due to the solenoidality con-
dition. Formally, this is a consequence of the exponential decay of kE0

(r),
which implies >.

0 H(r, · ) r2 dr=0 (see Eq. (B2) and ref. 7).
The cases t=2 and t=1 have to be treated separately. Indeed, the

asymptotic properties cannot be deduced directly from Eq. (6).
The smooth case is solved by Chertkov et al. in ref. 10 by a Lagran-

gian approach that relates the growth rate to the Lyapunov exponents.
There is a big difference between the situation of a smooth velocity field
and one that is just Hölder continuous. In the former case the correlation
function is found to depend on the spatial coordinate as H(r, t) 3 r−5/2

(equivalent to kE0
(r) 3 r1/2), which implies the presence of structures with

at least one dimension of inertial range size. Actually the magnetic field in
the smooth case has been shown to be characterized by strip-like objects.

The case t=1 can be solved exactly. Indeed, the appropriate ground
state eigenfunction of Eq. (6) is (recall that t=1 is the threshold for
dynamo and hence E0=0)

k0(x)=C
`1+x (− 2x+(2+x) ln(1+x))

x
, (x=r/rd) (15)

where the constant C is related to the value of H(0, ·) by the relation C=
3 `o r2

dH(0, ·).
If we neglect logarithmic corrections, the asymptotic behavior of k0

for r ± rd is k0(r) 3 r1/2, which yields again H(r, ·) 3 r−5/2 for r ± rd.
The results we have outlined in this section will be useful in the following

to describe the general case where the velocity energy spectrum has an
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infrared and an ultraviolet cutoff. Indeed, we will study a structure func-
tion that for r ° g scales as r2 and so takes the t=2 behavior, while for
r ± L tends to a constant value like in the diffusive case t=0.

3.2. Finite Reynolds Effect

Let us analyze the situation of finite Rm (and zero Prandtl number). The
principal fact is that a large-scale cutoff L appears for velocity field correla-
tions. The diffusive scale rd is again within the inertial range of the velocity
fluctuations, and the presence of the viscous cutoff can be neglected. The
velocity structure function therefore scales as rt for r ° L and tends to Dii(0)
for r ± L.

The potential V behaves as in the previous case for r ° L, while it
takes the t=0 behavior for r ± L

V(r) ’ ˛2/r2 r ° rd

(2 − 3
2 t − 3

4 t2)/r2 rd ° r ° L

2/r2 L ° r

(16)

The main consequence of a finite Rm is that V is repulsive also at large
scales. It is thus clear that, for sufficiently high Rm, a potential well is
present at scales of order rd. On the contrary, if Rm is too small, the well
can be absent or anyway not deep enough to generate bound states (7, 8) (see
Fig. 4). Therefore, for sufficiently small Rm, the dynamo does not take
place, even for 1 < t < 2.

Fig. 4. A qualitative picture of the quantum potential shape for Rm respectively above and
below the critical value R (cr)

m (1 < t < 2).
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The effect of a large-scale cutoff on the velocity energy spectrum is
thus the presence of a critical Reynolds number R (cr)

m . For Rm smaller than
that value the potential V has not bound states or equivalently, on account
of our quantum mechanic interpretation, the velocity field is unable to
favor the magnetic field growth and the ohmic dissipation eventually pre-
vails on stretching.

The dependence of the dimensionless rate-of-growth |E0 | t−1
d on Rm is

shown in Fig. 5 for Rm > R (cr)
m in the case of the scaling t=4/3. (Observe

that, as a consequence of the velocity field d-correlation in time, the value
t=4/3 corresponds to the Kolmogorov scaling). It should be noted that, for
Rm ± R (cr)

m , E0 takes the inertial range behavior E0 4 E0(t) t−1
d . A numerical

estimation of R (cr)
m was already given in ref. 8 for a different velocity structure

function by a reverse iterations method. Once more we note that such
numerical algorithm is based on a particular choice for the wave function,
which does not take into account the stretched exponential decay typical of
the inertial range.

We can again deduce from Eq. (6) some properties of the function
H(r, ·). The correlation length of the magnetic field is again of order rd

and, at r ± L, H(r, ·) shows an exponential decay

H(r, ·) 3 − e−c(r/L) (L ° r) (17)

with c=E0[L2/(2ō)]−1, ō=o+Dii(0)/6. (The negative exponential decay
of the wave function at scales much larger than L was already pointed out
in refs. 7 and 8).

Fig. 5. The dependence of the magnetic growth rate on the magnetic Reynolds number for
Pr Q 0 and t=4/3. The numerical computation is performed using expression (9) for the
correlation tensor of the magnetic field.
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3.3. Nonzero Prandtl Effect

Finally, we consider the situation of nonzero Prandtl number (at infi-
nite Reynolds number). This is equivalent to look at the influence of the
viscous scale on the dynamo effect.

If Pr < 1, the diffusive scale rd is in the inertial range, while, if Pr > 1,
it lies within the viscous range. The structure function Sii(r) scales as r2 for
r ° g and as rt for r ± g.

From the previous considerations we can expect for the potential V
the same asymptotic behaviors for r Q . as in the case of Pr=0. Therefore,
if Rm Q ., the Prandtl number does not affect the presence of dynamo. (Note
however that, if the magnetic Reynolds number is finite, a critical Prandtl
number exists (8, 11)). What is sensitive to Pr is the correlation length of the
magnetic field, that approximately corresponds to the scale at which the
function kE0

begin its exponential-like decay. When Pr < 1, the potential has
nearly the same shape as in the case Pr=0

V(r) ’ 32/r2 r ° rd

(2 − 3
2 t − 3

4 t2)/r2 rd ° r
(18)

and the correlation length is of order rd.
On the contrary, when Pr > 1, the potential well is modified by an

attractive t=2 contribution

V(r) ’ ˛2/r2 r ° rd

− 4/r2 rd ° r ° g

(2 − 3
2 t − 3

4 t2)/r2 g ° r

(19)

For these Pr the function kE0
(r) grows as r2 for r ° rd, as r1/2 in the range

rd ° r ° g and has a stretched exponential decay for g ° r. We can thus
conclude that, when Pr > 1, the magnetic field correlation length is of order g.

In consequence, the correlation length of B is always the largest
between the diffusive scale rd and the viscous scale g, their ratio being
controlled by the Prandtl number Pr 4 (g/rd)t.

On account of what we have just seen, we expect that for Pr ° 1 the
ground state energy will be proportional to the diffusive time: E0 4 E0(t) t−1

d .
In the other limit, Pr ± 1, we can predict an approximate expression for
E0 by a simple scaling argument. Indeed, for large Pr the potential V
behaves like in the case t=2 and we can expect E0 3 D1 (see ref. 10 for the
discussion of the smooth case). Knowing that Sii(r) 3 r2 for r ° g and
Sii(r) 3 D1rt in the inertial range, we can match the previous behaviors to
obtain D1 3 gt − 2. Finally, we recall that from dimensional arguments we
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Fig. 6. The dependence of the magnetic growth rate on the Prandtl number for t=4/3 and
in the limit Rm Q .. The numerical computation is performed using expression (9) for the
correlation tensor of the magnetic field.

have g 4 (n/D1)1/t. Summarizing the previous considerations, it is easily
seen that, for Pr ± 1, the relation E0 3 t−1

v holds (the time tv=g2/n is the
characteristic one for the velocity diffusion).

The Prandtl number Pr 4 (tv/td)t/(t − 2) thus influences also the mag-
netic field rate-of-growth: in the presence of dynamo, B2 increases with a
characteristic time-scale determined by the largest between the viscous and
the diffusive time (see Fig. 6).

To conclude this section, we discuss a result that emerges from
numerical computations: the magnetic rate-of-growth has a non-monotonic
dependence on the Prandtl number and it reaches a maximum for Pr 4 1
(Fig. 6). We can explain this behavior referring once more to the Kazantsev
quantum formalism. For Pr < 1 the t=2 behavior is practically absent in
the potential V, while, when Pr approaches the value 1, the scale g begins
to come into play yielding a strongly attractive − 4/r2 contribution at
scales rd ° r ° g. The t=2 potential is more attractive than that of t < 2
and the ground state energy increases in absolute value. Then, as Pr
becomes larger, |E0 | decreases as explained above. In other words as long
as the viscous behavior affects only the potential shape around rd, its only
effect is to make the well deeper and so to favor the dynamo. When visco-
sity becomes very large, the level of velocity fluctuations lowers signifi-
cantly, inducing eventually the depletion of the rate-of-growth.

4. CONCLUSIONS

We have presented a unified treatment of the kinematic dynamo problem
in the framework of the Kraichnan–Kazantsev model. Much attention has been
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paid to highlighting the influence of the magnetic Reynolds number and
of the Prandtl number on the dynamo effect. As already noted, the pre-
vious analysis depends only on the qualitative properties of the velocity
structure function. We thus expect that our conclusions hold for a generic
turbulent flow with the same statistical symmetries and be relevant for real
applications.

APPENDIX A. VARIATION-ITERATION METHOD

For the numerical analysis of Schrödinger equation (6) we make the
transformation y=a−r (a > 1) which maps (0, .) on the finite interval
(0, 1). (The constant a should be chosen to properly resolve this interval).
Equation (6) can thus be rewritten in the form

Lk=lMk (A1)

where

L=−(ln a)2 1y
d2

dy2+
d

dy
2+

m(y)
y

(U(y) − Umin)

M=
m(y)

y
, l=E − Umin

(A2)

and Umin denotes the minimum value of U. L and M are positive-definite
self-adjoint operators defining a spectrum of eigenvalues l bounded from
below and which extends to infinity. Moreover, L is invertible on all func-
tions twice differentiable on (0, 1) and vanishing at the boundaries of the
interval. Under these hypotheses the variation-iteration method described
in ref. 15 provides a valuable tool to compute the lowest eigenvalue l0 of
Eq. (A1) and the corresponding eigenfunction k0. Indeed, let j0 be an
initial trial function such that >1

0 k0Mj0 dy ] 0 and define the nth iterate
jn as

jn — L−1Mjn − 1=(L−1M)n j0 (A3)

Then, as n is increased, the sequence jn converges to the eigenfunction j0.
The nth approximation to l0 is given by the following variational expres-
sion employing jn as trial function

l (n)
0 =

>1
0 jnLjn dy

>1
0 jnMjn dy

(A4)

The Kraichnan–Kazantsev Dynamo 1087



The set l (n)
0 form a monotonic sequence of decreasing values, approaching

l0 from the above. The advantage of the variation-iteration technique is
that no expression is required a priori for the function k0. We only have to
choose any guess for initial function j0 and then improve the result by
iterating the method for sufficiently large n. The convergence is more rapid
the smaller is the ratio between l0 and the following eigenvalue.

Finally, for the numerical implementation of the method, we exploited
the first order discrete expression of L preserving the boundary conditions
on k. If (0, 1) is divided in intervals of length D and yi=iD, we have

Lij=
m(yi)

yi
(U(yi) − Umin)+

(ln a)2

2D2 ×˛
(−yi − 1 − yi) if i=j+1

(yi − 1+2yi+yi+1) if i=j

(−yi − yi+1) if i=j − 1
(A5)

APPENDIX B. THE SCHRÖDINGER EQUATION IN THE

DYNAMO THEORY

In the present appendix we refer to the notation adopted in the body
of the paper. So, the trace of the correlation tensor OBi(x, t) Bj(x+r, t)P
will be denoted by H(r, t).

As a consequence of the velocity d-correlation in time, H satisfies a
closed equation that, under a suitable transformation, takes on the form of
a one-dimensional Schrödinger-like equation. In order to exploit this fact,
let us denote s(r)=Sii(r) and define the following quantities

s̄(r)=
1
r3 F

r

0

s(r)
2

r2 dr

L(r)=o+s̄(r), L1(r)=L(r)+3o+
s(r)

2

(B1)

Then, the function

Y(r, t)=`o exp 1F
r

0

L1(r)
2rL(r)

dr2 1
r3 F

r

0
H(r, t) r2 dr (B2)

solves the imaginary time Schrödinger equation

−
“Y

“t
+5 1

m(r)
“

2

“r2 − U(r)6 Y=0 (B3)
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where

m=
1

2L
, U=−

1
r

ds
dr

+
1

2r2

L2
1

L
+L

d
dr
1 L1

r L
2 (B4)

(See ref. 4 for the detailed derivation). If we expand Y in terms of the
energy eigenfunctions Y(r, t)=> kE(r) e−Et+(E) dE, we get the stationary
equation

1
m(r)

d2kE

dr2 +[E − U(r)] kE=0 (B5)

The dynamo effect corresponds to the presence of negative eigenvalues in
Eq. (B5).

The correlation function H(r, ·) must tend to a constant value as r Q 0
and decreases to zero as r Q .. From the definition (B2) we have therefore
that Eq. (B5) must be solved with the boundary conditions that kE(r)
vanishes as r Q 0 and increases as r Q . slowly enough to guarantee that
H(r, ·) decreases to zero. In particular, if s(r) tends to a constant as r Q .,
kE(r) cannot increase more rapidly than r.

We consider now the explicit expression

Dij(r)=F e ik · rD1 ij(k) d3k (B6)

with

D1 ij(k)=D0
e−gk

(k2+L−2) (t+3)/2 Pij(k) (B7)

The transverse projector Pij(k)=(dij − kikj/k2) ensures the incompressi-
bility of the velocity field.

In the limits g Q 0 and L Q 0, Sij(r) takes the form

lim
g Q 0

L Q .

Sij(r)=D1rt 5(2+t) dij − t
rirj

r2
6 (B8)

with

D1=
4p cos(pt/2) C(−1 − t)

t+3
D0 (B9)

(The function C is the Euler function).
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If we insert s(r)=2(t+3) D1rt in (B4), the transformation (B2) takes
on the form

Y(r, t)=
(o+D1rt)1/2

r
F

r

0
H(r, t) r2 dr (B10)

while its inverse reads

H(r, t)=
(2o − D1rt(t − 2)) Y(r, t)+2r(o+D1rt) YŒ(r, t)

2r2(o+D1rt) 3
2

(B11)

For the mass and the potential we obtain the following expressions

m(r)=
1

2(o+D1rt)
(B12)

U(r)=
4o2+A(t) oD1rt+B(t) D2

1r2t

r2(o+D1rt)
(B13)

with A(t)=(8 − 3t − t2) and B(t)=(4 − 3t − 3
2 t2).

For the sake of completeness we write also the expressions of the trace
s(r), which we used to compute E0 respectively in the case of finite Rm and
in the case of nonzero Pr

lim
g Q 0

s(r)=
4pD0Lt

C 1a+t+1
2

2

×rC 11+a

2
2 C 1t

2
2− `p

L
r

G2 1
1 3
R r2

4L2
: 1 −

a

2

t+1
2

,
1
2

, 0

Ss (B14)

lim
L Q .

s(r)=8pD0gt 1C(−t)+
g

r
11+

r2

g2
2

1+t

2

C(−1 − t)

× sin 5(1+t) arctan 1 r
g
262 (B15)

(The function G denotes the G-Meijer’s function of argument r2/(4L2). See
ref. 16 for the exact definition). The explicit expressions of the mass and the
potential can be derived from (B4).
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