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Abstract. The Kronecker product of two Schur functions sµ and sν , denoted by sµ ∗ sν , is the Frobenius
characteristic of the tensor product of the irreducible representations of the symmetric group corresponding to the
partitions µ and ν. The coefficient of sλ in this product is denoted by γ λ

µν , and corresponds to the multiplicity of
the irreducible character χλ in χµχν .

We use Sergeev’s Formula for a Schur function of a difference of two alphabets and the comultiplication
expansion for sλ[XY ] to find closed formulas for the Kronecker coefficients γ λ

µν when λ is an arbitrary shape and
µ and ν are hook shapes or two-row shapes.

Remmel (J.B. Remmel, J. Algebra 120 (1989), 100–118; Discrete Math. 99 (1992), 265–287) and Remmel and
Whitehead (J.B. Remmel and T. Whitehead, Bull. Belg. Math. Soc. Simon Stiven 1 (1994), 649–683) derived some
closed formulas for the Kronecker product of Schur functions indexed by two-row shapes or hook shapes using a
different approach. We believe that the approach of this paper is more natural. The formulas obtained are simpler
and reflect the symmetry of the Kronecker product.

Keywords: Kronecker product internal product, Sergeev’s formula

1. Introduction

The aim of this paper is to derive an explicit formula for the Kronecker coefficients cor-
responding to partitions of certain shapes. The Kronecker coefficients, γ λ

µν , arise when
expressing a Kronecker product (also called inner or internal product), sµ ∗ sν , of Schur
functions in the Schur basis,

sµ ∗ sν =
∑

λ

γ λ
µνsλ. (1)

These coefficients can also be defined as the multiplicities of the irreducible representations
in the tensor product of two irreducible representations of the symmetric group. A third way
to define them is by the comultiplication expansion. Given two alphabets X = x1 + x2 + · · ·
and Y = y1 + y2 + · · · , expressed as the sum of its elements, the comultiplication expansion
is given by

sλ[XY ] =
∑
µ,ν

γ λ
µνsµ[X ]sν[Y ], (2)
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where sλ[X ] means sλ(x1, x1, . . .) and sλ[XY ] means sλ(x1 y1, x1 y2, . . . , xi y j , . . .).
Remmel [9, 10] and Remmel and Whitehead [11] have studied the Kronecker product
of Schur functions corresponding to two two-row shapes, two hook shapes, and a
hook shape and a two-row shape. We will use the comultiplication expansion (2) for the
Kronecker coefficients, and a formula for expanding a Schur function of a difference of
two alphabets due to Sergeev [1, 14] to obtain similar results in a simpler way. We believe
that the formulas obtained using this approach are elegant and reflect the symmetry of the
Kronecker product. In the three cases we found a way to express the Kronecker coefficients
in terms of regions and paths in N2.

2. Basic definitions

A partition λ of a positive integer n, written as λ � n, is an unordered sequence of natural
numbers adding to n. We write λ as λ = (λ1, λ2, . . . , λn), where λ1 ≥ λ2 ≥ . . . , and consider
two such strings equal if they differ by a string of trailing zeroes. The nonzero numbers λi

are called the parts of λ, and the number of parts is called the length of λ, denoted by l(λ).
In some cases, it is convenient to write λ = (1d1 2d2 · · · ndn ) for the partition of n that has di

equals to i . Using this notation, we define the integer zλ to be 1d1 d1! 2d2 d2! · · · ndn dn!.
We identify λ with the set of points (i, j) in N2 defined by 1 ≤ j ≤ λi , and refer to them as

the Young diagram of λ. The Young diagram of a partition λ is thought of as a collection of
boxes arranged using matrix coordinates. For instance, the Young diagram corrresponding
to λ = (4, 3, 1) is

To any partition λ we associate the partition λ′, its conjugate partition, defined by λ′
i = |{ j :

λ j ≥ i}|. Geometrically,λ′ can be obtained fromλby flipping the Young diagram ofλ around
its main diagonal. For instance, the conjugate partition of λ = (4, 3, 1) is λ′ = (3, 2, 2, 1),
and the corresponding Young diagram is

We recall some facts about the theory of representations of the symmetric group, and
about symmetric functions. See [7] or [13] for proofs and details.

Let R(Sn) be the space of class function in Sn , the symmetric group on n letters, and let
�n be the space of homogeneous symmetric functions of degree n. A basis for R(Sn) is
given by the characters of the irreducible representations of Sn . Let χµ be the irreducible
character of Sn corresponding to the partition µ. There is a scalar product 〈 , 〉Sn on R(Sn)
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defined by

〈χµ, χν〉Sn = 1

n!

∑
σ∈Sn

χµ(σ)χν(σ ),

and extended by linearity.
A basis for the space of symmetric functions is given by the Schur functions. There exists

a scalar product 〈 , 〉�n on �n defined by

〈sλ, sµ〉�n = δλµ,

where δλµ is the Kronecker delta, and extended by linearity.
Let pµ be the power sum symmetric function corresponding to µ, where µ is a partition

of n. There is an isometry chn : R(Sn) �→ �n , given by the characteristic map,

chn(χ) =
∑
µ�n

z−1
µ χ(µ)pµ.

This map has the remarkable property that if χλ is the irreducible character of Sn indexed
by λ, then chn(χλ) = sλ, the Schur function corresponding to λ. In particular, we obtain
that sλ = ∑

µ�n z−1
µ χλ(µ)pµ.

Finally, we use the fact that the power sum symmetric functions form an orthogonal basis
satisfying that 〈pλ, pµ〉�n = zµδλµ to obtain

χλ(µ) = 〈sλ, pµ〉. (3)

Let λ, µ, and ν be partitions of n. The Kronecker coefficients γ λ
µν are defined by

γ λ
µν = 〈χλ, χµχν〉Sn

= 1

n!

∑
σ∈Sn

χλ(σ )χµ(σ )χν(σ ). (4)

Equation (4) shows that the Kronecker coefficients γ λ
µν are symmetric in λ, µ, and ν. The

relevance of the Kronecker coefficients comes from the following fact: Let Xµ be the
representation of the symmetric group corresponding to the character χµ. Then χµχν is
the character of Xµ ⊗ X ν , the representation obtained by taking the tensor product of Xµ

and X ν . Moreover, γ λ
µν is the multiplicity of Xλ in Xµ ⊗ X ν .

Let f and g be homogeneous symmetric functions of degree n. The Kronecker product,
f ∗ g, is defined by

f ∗ g = chn(uv), (5)

where u = (chn)−1( f ), and v = (chn)−1(g), and uv(σ ) = u(σ )v(σ ). To obtain (1) from
this definition, we set f = sµ, g = sν , u = χµ, and v = χν in (5).
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The Kronecker product has the following symmetries:

sµ ∗ sν = sν ∗ sµ.

sµ ∗ sν = sµ′ ∗ sν ′ .

Moreover, if λ is a one-row shape

γ λ
µν = δµ,ν .

We introduce the operation of substitution or plethysm into a symmetric function. Let f be
a symmetric function, and let X = x1 + x2 + · · · be an alphabet expressed as the sum of its
elements. We define f [X ] by

f [X ] = f (x1, x2, . . .).

In general, if u is any element of Q[[x1, x2, . . .]], we write u as
∑

α cαuα where uα is a
monomial with coefficient 1. Then pλ[u] is defined by setting

pn[u] =
∑

α

cαun
α

pλ[u] = pλ1 [u] · · · pλn [u]

for λ = (λ1, . . . , λn). We define f [u] for all symmetric functions f by saying that f [u] is
linear in f .

Let X = x1 + x2 + · · · and Y = y1 + y2 + · · · be two alphabets as the sum of their
elements. We define their sum by X + Y = x1 + x2 + · · · + y1 + y2 + · · ·, and the product
by XY = x1 y1 + · · · + xi y j + · · ·. Then

pn[X + Y ] = pn[X ] + pn[Y ],
(6)

pn[XY ] = pn[X ]pn[Y ].

The inner product of function in the space of symmetric functions in two infinite alphabets
is defined by

〈 , 〉XY = 〈 , 〉X 〈 , 〉Y ,

where for any given alphabet Z , 〈 , 〉Z denotes the inner product of the space of symmetric
functions in Z .

For all partitions ρ, we have that pρ[XY ] = pρ[X ]pρ[Y ]. If we rewrite (3) as pρ =∑
λ χλ(ρ)sλ, then

∑
λ

χλsλ[XY ] =
∑
µ,ν

χµχνsµ[X ]sν[Y ]. (7)
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Taking the coefficient of χλ on both sides of the previous equation we obtain

sλ[XY ] =
∑

〈χλ, χµχν〉sµ[X ]sν[Y ].

Finally, using the definition of Kronecker coefficients (4) we obtain the comultiplication
expansion (2).

Notation 1 Let p be a point in N2. We say that (i, j) can be reached from p, written
p ❀ (i, j), if (i, j) can be reached from p by moving any number of steps south west or
north west, when we use the coordinate axes as it is usually done in the cartesian plane. We
define the weight function ω by

ωp(i, j) =
{

xi y j , if p ❀ (i, j),

0, otherwise.

Notation 2 We denote by �x� the largest integer less than or equal to x and by �x� the
smallest integer greater than or equal to x .

If f is a formal power series, then [xα] f denotes the coefficient of xα in f .
Following Donald Knuth we denote the characteristic function applied to a proposition

P by enclosing P with brackets,

((P)) =
{

1, if proposition P is true,

0, otherwise.

We use double brackets to distinguish between the Knuth’s brackets and the standard ones.

3. The case of two two-row shapes

The object of this section is to find a closed formula for the Kronecker coefficients when
µ = (µ1, µ2) and ν = (ν1, ν2) are two-row shapes, and when we do not have any restriction
on the partition λ. We describe the Kronecker coefficients γ λ

µν in terms of paths in N2. More
precisely, we define two rectangular regions in N2 using the parts of λ. Then we count the
number of points in N2 inside each of these rectangles that can be reached from (ν2, µ2 +1),
if we are allowed to move any number of steps south west or north west. Finally, we subtract
these two numbers.

We begin by introducing two lemmas that allow us to state Theorem 1 in a concise form.
Note that we use the coordinate axes as it is usually done in the cartesian plane.

Lemma 1 Let k and l be positive numbers. Let R be the rectangle with width k, height l,
and lower–left square (0, 0). Define

σk,l(h) = |{(u, v) ∈ R ∩ N2 : (h, 0) ❀ (u, v)}|
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◦ ◦ ◦ • •
◦ ◦ • •

◦ ◦ • •
◦ • •

◦ • •
Figure 1. The definition of σ .

Then

σk,l(h) =




0, if h < 0⌊(
h

2
+ 1

)2⌋
, if 0 ≤ h < min(k, l)

σk,l(s) +
(

h − s

2

)
min(k, l), if min(k, l) ≤ h < max(k, l)⌈

kl

2

⌉
− σk,l(k + l − h − 4), if h is even and max(k, l) ≤ h⌊

kl

2

⌋
− σk,l(k + l − h − 4), if h is odd and max(k, l) ≤ h

where s is defined as follows: If h − min(k, l) is even, then s = min(k, l) − 2; otherwise
s = min(k, l) − 1.

Example 1
By definition σ9,5(4) counts the points in N2 in figure 1 marked with ◦. Then σ9,5(4) = 9.

Similarly, σ9,5(8) counts the points in N2 in figure 1 marked either with the symbol ◦ or
with the symbol •. Then σ9,5(8) = 19.

Proof: If h is to the left of the 0th column, then we cannot reach any of the points in N2

inside R. Hence, σk,l(h) should be equal to zero.
If 0 ≤ h ≤ min(k, l), then we are counting the number of points of N2 that can be reached

from (h, 0) inside the square S of side min(k, l). We have to consider two cases. If h is odd,
then we are summing 2 + 4 + · · · + (h + 1) = �( h

2 + 1)2�. On the other hand, if h is even,
then we are summing 1 + 3 + · · · + (h + 1) = ( h

2 + 1)2.
If min(k, l) ≤ h < max(k, l), then we subdivide our problem into two parts. First, we

count the number of points of N2 that can be reached from (h, 0) inside the square S by
σk,l(s). Then we count those points of N2 that are in R but not in S. Since h < max(k, l)
all diagonals have length min(k, l) and there are h−s

2 of them. See figure 1 for an example.
If max(k, l) ≤ h, then it is easier to count the total number of points of N2 that can be

reached from (h, 0) inside R by choosing another parameter ĥ big enough and with the
same parity as h. Then we subtract those points of N2 in R that are not reachable from
(h, 0) because h is too close.

So, if ĥ is even this number is �kl/2�. If ĥ is odd this number is �kl/2�. Then we subtract
those points that we should not have counted. We express this number in terms of the
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function σ . The line y = −x + h + 2 intersects the line y = l − 1 at x = h − l + 3. This is
the x coordinate of the first point on the last row that is not reachable from (h, 0). Then to
obtain the number of points that can be reached from this point by moving south west or
north west, but that were not supposed to be counted, we subtract h − l + 3 to k − 1. We
have obtained that are σk,l(k + l − h − 4) points that we should not have counted. ✷

Note that σk,l is symmetrical on k and l

Lemma 2 Let a, b, c, and d be nonnegative integers. Let R be the rectangle with vertices
(a, c), (a + b, c), (a, c + d), and (a + b, c + d). We define

�(a, b, c, d)(x, y) = |{(u, v) ∈ R ∩ N2 : (x, y) ❀ (u, v)}|.

Then

�(a, b, c, d)(x, y)

=




σb + 1,d + 1(x + y − a − c), 0 ≤ y ≤ c

σb + 1,y − c + 1(x − a) + σb + 1,c + d − y + 1(x − a) − δ, c < y < c + d

σb + 1,d + 1(x − y + c + d − a), c + d ≤ y

where δ is defined as follows If x < a, then δ = 0. If a ≤ x ≤ a + b, then δ = � x−a+1
2 �.

Finally, if x > a + b then we consider two cases: If x − a − b is even then δ = � b+1
2 �;

otherwise, δ = � b+1
2 �.

Proof: We consider three cases. Note that the letter c indicates the height of the base of
the rectangle. If 0 ≤ y ≤ c then the first position inside R that we reach is (x + y −a −c, c).
Therefore, we assume that we are starting at this point. Similarly, if y ≥ c + d, then the
first position inside R that we reach is (x − y + c + d − a, c). Again, we can assume that
we are starting at this point.

On the other hand, if c < y < c + d, we are at a point whose height meets the rectangle.
We subdevide the problem in two parts. The number of positions to the north of us is
counted by σb+1,y−c+1(x − a). The number of positions to the south of us is counted by
σb+1,c+d−y+1(x − a). We define δ to be the number of points of N2 that we counted twice
during this process. Then it is easy to see that δ is given by the previous definition. ✷

To compute the coefficient uν in the expansion f [X ] = ∑
η uηsη[X ] for f ∈ �, it is

enough to expand f [x1 + · · · + xn] = ∑
η uηsη[x1 + · · · + xn] for any n ≥ l(ν). (See

[7, Section I.3], for proofs and details.) Therefore, in this section we work with symmetric
functions in a finite number of variables.

Jacobi’s definition of a Schur function on a finite alphabet X = x1 + x2 + · · · + xn as a
quotient of alternants says that

sλ[X ] = sλ(x1, . . . , xn) =
det

(
x

λ j +n− j
i

)
1≤i, j≤n∏

i< j (xi − x j )
. (8)
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By the symmetry properties of the Kronecker product it is enough to compute the
Kronecker coefficients γ λ

µν when ν2 ≤ µ2.

Theorem 1 Let µ, ν, and λ be partitions of n, where µ = (µ1, µ2) and ν = (ν1, ν2) are
two two-row partitions and let λ = (λ1, λ2, λ3, λ4) be a partition of length less than or
equal to 4. Assume that ν2 ≤ µ2. Then

γ λ
µν = (�(a, b, a + b + 1, c) − �(a, b, a + b + c + d + 2, c))(ν2, µ2 + 1).

where a = λ3 + λ4, b = λ2 − λ3, c = min(λ1 − λ2, λ3 − λ4) and d = |λ1 + λ4 − λ2 − λ3|.

Proof: Set X = 1 + x and Y = 1 + y in the comultiplication expansion (2) to obtain

sλ[(1 + y)(1 + x)] =
∑

γ λ
µνsµ[1 + y]sν[1 + x]. (9)

Note that the Kronecker coefficients are zero when l(λ) > 4.
The idea of the proof is to use Jacobi’s definition of a Schur function as a quotient

of alternants to expand both sides of the previous equation, and then get the Kronecker
coefficients by looking at the resulting expansions.

Let ϕ be the polynomial defined by ϕ = (1− x)(1− y)sλ[(1+ y)(1+ x)] = (1− x)(1−
y)sλ(1, y, x, xy). Using Jacobi’s definition of a Schur function we obtain

ϕ =

∣∣∣∣∣∣∣∣
1 1 1 1

yλ1+3 yλ2+2 yλ3+1 yλ4

xλ1+3 xλ2+2 xλ3+1 xλ4

(xy)λ1+3 (xy)λ2+2 (xy)λ3+1 (xy)λ4

∣∣∣∣∣∣∣∣
xy(1 − xy)(y − x)(1 − x)(1 − y)

. (10)

On the other hand, we may use Jacobi’s definition to expand sµ[1 + y] and sν[1 + x].
Substitute this results into (9):

sλ[(1 + y)(1 + x)] =
∑

µ=(µ1,µ2)
ν=(ν1,ν2)

γ λ
µν

(
yµ2 − yµ1+1

1 − y

)(
xν2 − xν1+1

1 − x

)

=
∑

µ=(µ1,µ2)
ν=(ν1,ν2)

γ λ
µν

xν2 yµ2 − xν2 yµ1+1 − xν1+1 yµ2 + xν1+1 yµ1+1

(1 − x)(1 − y)
.

(11)

Since ν1 + 1 and µ1 + 1 are both greater than � n
2 �, Eq. (11) implies that the coefficient of

xν2 yµ2 in ϕ is γ λ
µν .

It is convenient to define an auxiliary polynomial by

ζ = (1 − xy)(y − x)ϕ. (12)
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Let ξ be the polynomial defined by expanding the determinant appearing in (10).
Equations (10) and (12) imply

ζ = ξ

xy(1 − x)(1 − y)
.

Let ξi, j be the coefficient of xi y j in ξ . (Note that ξi, j is zero if i < 1 or j < 1, because
ξ is a polynomial divisible by xy.) Let ζi, j be the coefficient of xi y j in ζ . Then

∑
i, j≥0

ζi, j x
i y j = 1

xy(1 − x)(1 − y)

∑
i, j≥0

ξi, j x
i y j =

∑
i, j,k,l≥0

ξi−k, j−l x
i−1 y j−1. (13)

Comparing the coefficient of xi y j on both sides of Eq. (13) we obtain that

ζi, j =
∑
k,l≥0

ξi+1−k, j+1−l =
i∑

k=0

j∑
l=0

ξk+1,l+1 (14)

We compute ζi, j from (14) by expanding the determinant appearing on (10). We consider
two cases.

Case 1. Suppose that λ1 + λ4 > λ2 + λ3. Then

λ1 + λ2 + 4 > λ1 + λ3 + 3 > λ1 + λ4 + 2 ≥ λ2 + λ3 + 2 > λ2 + λ4 + 1 > λ3 + λ4.

We record the values of ξ j+1,i+1 in Table 1. We use the convention that ξi+1, j+1 is zero
whenever the (i, j) entry is not in Table 1.

Equation (14) shows that the value of ζi, j can be obtained by adding the entries north
west of the point (i, j) in Table 1. In Table 2 we record the values of ζi, j .

Table 1. The values of ξ j+1,i+1 when λ1 + λ4 ≥ λ2 + λ3.

i\ j λ3 + λ4 λ2 + λ4 + 1 λ2 + λ3 + 2 λ1 + λ4 + 2 λ1 + λ3 + 3 λ1 + λ2 + 4

λ3 + λ4 0 −1 +1 +1 −1 0

λ2 + λ4 + 1 +1 0 −1 −1 0 +1

λ2 + λ3 + 2 −1 +1 0 0 +1 −1

λ1 + λ4 + 2 −1 +1 0 0 +1 −1

λ1 + λ3 + 3 +1 0 −1 −1 0 +1

λ1 + λ2 + 4 0 −1 +1 +1 −1 0
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Table 2. The values of ζi, j when λ1 + λ4 ≥ λ2 + λ3.

i\ j I1 I2 I3 I4 I5 I6 I7

I1 0 0 0 0 0 0 0

I2 0 0 −1 0 +1 0 0

I3 0 +1 0 0 0 −1 0

I4 0 0 0 0 0 0 0

I5 0 −1 0 0 0 +1 0

I6 0 0 +1 0 −1 0 0

I7 0 0 0 0 0 0 0

Where

I1 = [0, λ3 + λ4),

I2 = [λ3 + λ4, λ2 + λ4],

I3 = [λ2 + λ4 + 1, λ2 + λ3 + 1],

I4 = [λ2 + λ3 + 2, λ1 + λ4 + 1],

I5 = [λ1 + λ4 + 2, λ1 + λ3 + 2],

I6 = [λ1 + λ3 + 3, λ1 + λ2 + 3],

I7 = [λ1 + λ2 + 4, ∞].

Case 2. Suppose that λ1 + λ4 ≤ λ2 + λ3. Then

λ1 + λ2 + 4 > λ1 + λ3 + 3 > λ2 + λ3 + 2 > λ1 + λ4 + 2 > λ2 + λ4 + 1 > λ3 + λ4.

Note that in Table 2, the rows and columns corresponding to λ1 +λ4 + 2 and λ2 +λ3 + 2
are the same. Therefore, the values of ξi, j for λ1 + λ4 ≤ λ2 + λ3 are recorded in Table 2, if
we set

I3 = [λ2 + λ4 + 1, λ1 + λ4 + 1]

I4 = [λ2 + λ4 + 2, λ2 + λ3 + 1]

I5 = [λ2 + λ3 + 2, λ1 + λ3 + 2],

and define the other intervals as before.
In both cases, let ϕi, j be the coefficient of xi y j in ϕ. Using (12) we obtain that

ϕ = 1

(1 − xy)(y − x)

∑
i, j≥0

ζi, j x
i y j

= 1

y − x

∑
i, j,l≥0

ζi−l, j−l x
i y j

=
∑

i, j,k,l≥0

ζi−k−l, j+k−l+1xi y j . (15)
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◦
◦

◦ ◦
◦

◦
Figure 2. The right-most point in figure 2 has coordinates (2, 2).

(Note: We can divide by y − x because ϕ = 0 when x = y.) Comparing the coefficients of
xi y j on both sides of Eq. (15), we obtain ϕi, j = ∑

k,l≥0 ζi−k−l, j+k−l+1. Therefore,

ϕν2,µ2 =
ν2∑

i, j=0

ζν2−i− j,µ2+i− j+1. (16)

We have concluded that the coefficient of xν2 yµ2 in ϕ is γ λ
µ,ν . Hence γ λ

µν = ϕν2,µ2 can
be obtained by adding the entries in Table 1 at all points of N2 that can be reached from
(ν2, µ2 + 1). after we flip Table 2 around the horizontal axis. See figure 2.

By hypothesis ν2 ≤ µ2 ≤ �n/2�. Then, if we start at (ν2, µ2 +1) and move as previously
described, the only points of N2 that we can possibly reach and that are nonzero in Table 2
are those in I2 × I3 or I2 × I5. Hence, we have that ϕν2,µ2 is the number of points of N2

inside I2 × I3 that can be reached from (ν2, µ2 + 1) minus the ones that can be reached in
I2 × I5. All other entries that are reachable from (ν2, µ2 + 1) are equal to zero.

Case 1. The inequality λ1 + λ4 > λ2 + λ3 implies that λ1 + λ4 + 1 > t� n
2 �. Moreover,

µ2 ≥ ν2 implies that we are only considering the region of N2 given by 0 ≤ i ≤ j ≤ � n
2 �.

The number of points of N2 that can be reached from (ν2, µ2 + 1) inside I2× I3 is given by
�(λ3 + λ4, λ2 −λ3, λ2 +λ4 + 1, λ3 −λ4). Similarly, the number of points of N2 that can
be reached from (ν2, µ2 + 1) inside I2 × I5 is given by �(λ3 + λ4, λ2 − λ3, λ1 + λ4 + 2,

λ3 − λ4).

Case 2. The inequality λ2 + λ3 ≥ λ1 + λ4, implies that λ1 + λ4 + 1 > � n
2 �. Moreover,

µ2 ≥ ν2 implies that we are only considering the region of N2 given by 0 ≤ i ≤ j ≤ � n
2 �.

The number of points of N2 that can be reached from (ν2, µ2 + 1) inside I2 × I3 is given
by �(λ3 + λ4, λ2 − λ3, λ2 + λ4 + 1, λ1 − λ2). Similarly, the number of points of N2

that can be reached from (ν2, µ2 + 1) inside I2 × I5 is given by �(λ3 + λ4, λ2 − λ3, λ2 +
λ3 + 2, λ1 − λ2). ✷

Corollary 1 Let µ = (µ1, µ2), ν = (ν1, ν2), and λ = (λ1, λ2) be partitions of n. Assume
that ν2 ≤ µ2 ≤ λ2. Then

γ λ
µν = (y − x)(y ≥ x),

where x = max(0, �µ2+ν2+λ2−n
2 �) and y = �µ2+ν2−λ2+1

2 �.
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Proof: Set λ3 = λ4 = 0 in Theorem 1. Then we notice that the second possibility in the
definition of �, that is, when c < y < c + d, never occurs. Note that ν2 + µ2 − λ2 ≥ ν2 +
µ2 − λ1 − 1 for all partitions µ, ν, and λ. Therefore,

γ λ
µν = σλ2+1,1(ν2 + µ2 − λ2) − σλ2+1,1(ν2 + µ2 − λ1 − 1).

Suppose that ν2 + µ2 − λ2 < 0. By Lemma 1, σλ2+1,1(h) = 0 when h < 0. Hence, we
obtain that γ λ

µν = 0. Therefore, in order to have γ λ
µν not equal to zero, we should assume

that ν2 + µ2 − λ2 ≥ 0.
If 0 ≤ ν2 + µ2 − λ2 < λ2 + 1, then

σλ2+1,1(ν2 + µ2 − λ2) =
⌈

ν2 + µ2 − λ2 + 1

2

⌉

Similarly, if 0 ≤ ν2 + µ2 − λ2 < λ2 + 1, then

σλ2+1,1(ν2 + µ2 − λ1 − 1) =
⌈

ν2 + µ2 + λ2 − n

2

⌉

It is easy to see that all other cases obtained in Lemma 1 for the computation of σk,l can not
occur. Therefore, defining x and y as above, we obtain the desired result. ✷

Example 2 If µ = ν = λ = (l, l) or µ = ν = (2l, 2l) and λ = (3l, l), then from the
previous corollary, we obtain that

γ λ
µν =

⌈
l + 1

2

⌉
−

⌈
l

2

⌉
= ((l is even))

Note that to apply Corollary 1 to the second family of shapes, we should first use the
symmetries of the Kronecker product.

Corollary 2 The Kronecker coefficients γ λ
µν, where µ and ν are two-row partitions, are

unbounded.

Proof: It is enough to construct an unbounded family of Kronecker coefficients. Assume
that µ = ν = λ = (3l, l). Then from the previous corollary we obtain that

γ λ
µν =

⌈
l + 1

2

⌉
✷

4. Sergeev’s formula

The fundamental tool for the study of the Kronecker product on the remaining two cases
is Sergeev’s formula for the difference of two alphabets. See [1, 14], or [7, section I.3]
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for proofs and comments. In order to state Sergeev’s formula we need to introduce some
definitions.

Definition 1 Let Xm = x1 + · · · + xm be a finite alphabet, and let δm = (m − 1, m − 2,

. . . , 1, 0). We define X δm
m by X δm

m = xm−1
1 · · · xm−1.

Definition 2 An inversion of a permutation α1α2 · · · αn is a pair (i, j), with 1 ≤ i < j ≤ n,
such that αi > α j . Let i(α) be the number of inversions of α. We define the alternant to be

Ax
m P =

∑
α∈Sm

(−1)i(α) P
(
xα(1), . . . , xα(m)

)
,

for any polynomial P(x1, . . . , xn).

Definition 3 Let � be the operation of taking the Vandermonde determinant of an
alphabet, i.e.,

�(Xm) = det
(
xm− j

i

)m

i, j=1.

Theorem 2 (Sergeev’s Formula) Let Xm = x1 + · · · + xm, and Yn = y1 + · · · + yn be
two alphabets. Then

sλ[Xm − Yn] = 1

�(Xm)�(Yn)
Ax

m Ay
n X δm

m Y δn
n

∏
(i, j)∈λ

(xi − y j )

The notation (i, j) ∈ λ means that the point (i, j) belongs to the diagram of λ. We set
xi = 0 for i > m and y j = 0 for j > n.

We use Sergeev’s formula as a tool for making some calculations we need for the next
two sections.

1. Let µ = (1e1 m2) be a hook. (We are assuming that e1 ≥ 1 and m2 ≥ 2.) Let X1 = {x1}
and X2 = {x2}.

sµ[x1 − x2] = (−1)e1 xm2−1
1 xe1

2 (x1 − x2). (17)

2. Let ν = (ν1, ν2) be a two-row partition. Let Y = {y1, y2}. Then

sν[y1 + y2] = (y1 y2)
ν2

(
yν1−ν2+1

1 − yν1−ν2+1
2

)
y1 − y2

. (18)

3. We say that a partition λ is a double hook if (2, 2) ∈ λ and it has the form λ =
(1d1 2d2 n3 n4). In particular any two-row shape is a double hook.



166 ROSAS

Let λ be a double hook. Let U = {u1, u2} and V = {v1, v2}. If n4 != 0 then sλ[u1 + u2 −
v1 − v2] equals

(u1 − v1)(u2 − v1)(u1 − v2)(u2 − v2)

(u1 − u2)(v1 − v2)
(−1)d1(u1u2)

n3−2(v1v2)
d2

×(
un4−n3+1

2 − un4−n3+1
1

)(
v

d1+1
2 − v

d1+1
1

)
. (19)

On the other hand, if n4 = 0 then to compute sλ[u1 + u2 − v1 − v2] we should write λ

as (1d1 2d2−12 n3).
4. Let λ be a hook shape, λ = (1d1 n2). (We are assuming that d1 ≥ 1 and n2 ≥ 2.) Let

U = {u1, u2} and V = {v1, v2}. Then sλ[u1 + u2 − v1 − v2] equals

(−1)d1−1 1

(u1 − u2)

1

(v1 − v2)

×{
u1v1(u1 − v1)(u1 − v2)(u2 − v1)u

n2−2
1 v

d1−1
1

− u1v2(u1 − v2)(u1 − v1)(u2 − v2)u
n2−2
1 v

d1−1
2

− u2v1(u2 − v1)(u2 − v2)(u1 − v1)u
n2−2
2 v

d1−1
1

+ u2v2(u2 − v2)(u2 − v1)(u1 − v2)u
n2−2
2 v

d1−1
2 .

}
(20)

5. The case of two hook shapes

In this section we derive an explicit formula for the Kronecker coefficients γ λ
µν in the case in

which µ = (1eu), and ν = (1 f v) are both hook shapes. Given a partition λ the Kronecker
coefficient γ λ

µν tells us whether point (u, v) belongs to some regions in N2 determined by
µ, ν and λ.

Lemma 3 Let (u, v) ∈ N2 and let R be the rectangle with vertices (a, b), (b, a), (c, d),

and (d, c), with a ≥ b, c ≥ d, c ≥ a and d ≥ b. (Sometimes, when c = d = e, we denote
this rectangle as (a, b; e).)

Then (u, v) ∈ R if and only if |v − u| ≤ a − b and a + b ≤ u + v ≤ c + d

Proof: Each of the four inequalities corresponds to whether the point (u, v) is in the
proper half-plane formed by two of four edges of the rectangle. ✷

Theorem 3 Let λ, µ and ν be partitions of n, where µ = (1eu) and ν = (1 f v) are hook
shapes. Then the Kronecker coefficients γ λ

µν are given by the following:
1. If λ is a one-row shape, then γ λ

µν = δµ,ν .
2. If λ is not contained in a double hook shape, then γ λ

µν = 0.
3. Let λ = (1d1 2d2 n3n4) be a double hook. Let x = 2d2 + d1. Then

γ λ
µν =

((
n3 − 1 ≤ e + f − x

2
≤ n4

))
((| f − e| ≤ d1))

+
((

n3 ≤ e + f − x + 1

2
≤ n4

))
((| f − e| ≤ d1 + 1)).
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Note that if n4 = 0, then we shall rewrite λ = (1d1 2d2−12 n3) before using the previous
formula.

4. Let λ = (1dw) be a hook shape. Suppose that e ≤ u, f ≤ v, and d ≤ w. Then

γ λ
µν = ((e ≤ d + f ))((d ≤ e + f ))(( f ≤ e + d)).

Proof: Set X = {1, x} and Y = {1, y} in the comultiplication expansion (2) to obtain

sλ[(1 − x)(1 − y)] =
∑
µ,ν

γ λ
µνsµ[1 − x]sν[1 − y], (21)

We use Eq. (17) to replace sµ and sν in the right hand side of (21). Then we divide the
resulting equation by (1 − x)(1 − y) to get

sλ[1 − y − x + xy]

(1 − x)(1 − y)
=

∑
µ,ν

γ λ
µν(−x)e(−y) f .

Therefore,

γ λ
µν = [(−x)e(−y) f ]

sλ[1 − y − x + xy]

(1 − x)(1 − y)
,

when µ and ν are hook shapes.

Case 1. If λ is not contained in any double hook, then the point (3, 3) is in λ, and by
Sergeev’s formula, sλ[1 − y − x + xy] equals zero.

Case 2. Let λ = (1d1 2d2 n3 n4) be a double hook. Set u1 = 1, u2 = xy, v1 = x , and
v2 = y in (19). Then we divide by (1 − x)(1 − y) on both sides of the resulting equation
to obtain

sλ[1 − y − x + xy]

(1 − x)(1 − y)
= (−1)d1(xy)n3+d2−1

×(1 − x)(1 − y)

(
1 − (xy)n4−n3+1

1 − xy

)(
xd1+1 − yd1+1

x − y

)
. (22)

Note: If n4 = 0 then we should write λ = (1d1 2d2−12 n4) in order to use (19).
Let ωp(T ) = ∑

(i, j)∈T ωp(i, j) be the generating function of a region T in N2. Let R be the
rectangle with vertices (0, d1), (d1, 0), (d1+n4−n3, n4−n3) and (n4−n3, d1+n4−n3). Then

ω(d1+n4−n3,n4−n3)(R) =
(

1 − (xy)n4−n3+1

1 − xy

)(
xd1+1 − yd1+1

x − y

)

=
n4−n3∑
k=0

∑
i+ j=d1

(xy)k xi y j .

See figure 3.
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1
1 1

1 1 1
1 1 1 1

1 1 1 1 1
1 1 1 1

1 1 1
1 1

1

Figure 3. d1 = 4 and n3 − n4 = 4.

The four vertices of R in Figure 3 are (0, 4), (4, 0), (8, 4), and (4, 8).
We interpret the right-hand side of (22) as the sum of four different generating functions.

To be more precise, the right-hand side of (22) can be written as
∑4

i=1 ωpi (ri ) where
p1 = (n4 + d2 − 1, n4 + d2 + d1 − 1) and R1 = {n3 + d2 + d1 − 1, n3 + d2 − 1; n4 − n3},
p2 = (n4 + d2, n34 + d2 + d1 − 1) and R2 = {n3 + d2 + d1, n3 + d2 − 1; n4 − n3},
p3 = (n4 + d2 − 1, n4 + d2 + d1) and R3 = {n3 + d2 + d1 − 1, n3 + d2; n4 − n3}, and
p4 = (n4 + d2 + d1, n4 + d2 + d1) and R4 = {n3 + d2 + d1, n3 + d2 + d1; n4 − n3}.

We observe that R1 ∪ R2 (and R3 ∪ R4) are rectangles in N2. Moreover,

γ λ
µν = (((e, f ) ∈ R1 ∪ R2)) + (((e, f ) ∈ R3 ∪ R4)). (23)

The vertices of rectangle R1 ∪ R4 are given (using the notation of Lemma 3) by

a = n3 + d2 + d1 − 1 b = n3 + d2 − 1
c = n4 + d2 + d1 d = n4 + d2

Similarly, the vertices of rectangle R2 ∪ R3 are given by

a = n3 + d2 + d1 b = n3 + d2 − 1
c = n4 + d2 + d1 d = n4 + d2 − 1

Applying Lemma 3 to (23) we obtain

γ λ
µν =

((
n3 − 1 ≤ e + f − x

2
≤ n4

))
((| f − e| ≤ d1))

+
((

n3 ≤ e + f − x + 1

2
≤ n4

))
((| f − e| ≤ d1 + 1)).

Case 3 (λ is a hook). Suppose that λ is a hook, λ = (1dw). Set u1 = 1, u2 = xy, v1 = x ,
and v2 = y in (20). Then we divide by (1 − x)(1 − y) on both sides of the resulting



KRONECKER PRODUCT OF SCHUR FUNCTIONS 169

equation to obtain

sλ[1 − y − x + xy]

(1 − x)(1 − y)
= (−1)d

(
xd+1 − yd+1

x − y

)(
1 − (xy)w

1 − xy

)

+ (−1)d−1xy

(
xd − yd

x − y

)(
1 − (xy)w−1

1 − xy

)
. (24)

We want to interpret this equation as a generating function for a region T using the weight
ω. We proceed as follows:

Let R1 be the rectangle with vertices (d, 0), (0, d), (d + w − 1, w − 1), and (w − 1, d +
w − 1). Then

ω(w−1,d+w−1)(R1) =
(

1 − (xy)w

1 − xy

)(
xd+1 − yd+1

x − y

)
=

w−1∑
k=0

∑
i+ j=d

(xy)k xi y j . (25)

(See figure 3.) Similarly, let R2 be the rectangle with vertices (d, 1), (1, d), (d + w − 2,

w − 1), and (w − 1, d + w − 2). Then

ω(w−1,d+w−2)(R2) = xy

(
1 − (xy)w−1

1 − xy

)(
xd − yd

x − y

)

= xy
w−2∑
k=0

∑
i+ j=d−1

(xy)k xi y j . (26)

Observe that the points of N2 that can be reached from (0, d) in R1 and the points of
N2 that can be reached from (1, d) in R2 are disjoint. Moreover, they completely fill the
rectangle R1 ∪ R2. See figure 4.

Note that R2 is contained in R1. We obtain that

ω(w−1,d+w−1)(R1) + ω(w−1,d+w−2)(R2) = (((e, f ) ∈ R1))

1
1 −1 1

1 −1 1 −1 1
1 −1 1 −1 1 −1 1

1 −1 1 −1 1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1 1

1 −1 1 −1 1 −1 1
1 −1 1 −1 1

1 −1 1
1

Figure 4. d = 4, w = 6.
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We use apply Lemma 3 to the previous equation to obtain:

((|e − f | ≤ d))((d ≤ e + f ≤ d + 2w − 2)).

But, by hypothesis, e ≤ u, f ≤ v, and d ≤ w. Therefore, this system is equivalent to
((d ≤ e + f ))(( f ≤ e + d))((e ≤ d + f )), as desired. ✷

Corollary 3 Let λ, µ, and ν be partitions of n, where µ = (1eu) and ν = (1 f v) are hook
shapes and λ = (λ1, λ2) is a two-row shape. Then the Kronecker coefficients γ λ

µν are given
by

γ λ
µν = ((λ2 − 1 ≤ e ≤ λ1))((e = f )) +

((
λ2 ≤ k

e + f + 1

2
≤ λ1

))
((|e − f | ≤ 1)).

Proof: In Theorem 3, set d1 = d2 = 0, n3 = λ2 and n4 = λ1. ✷

Corollary 4 Let λ, µ and ν be partitions of n, where µ and ν are hook shapes. Then the
Kronecker coefficients are bounded. Moreover, the only possible values for the Kronecker
coefficients are 0, 1 or 2.

6. The case of a hook shape and a two-row shape

In this section we derive an explicit formula for the Kronecker coefficients in the case
µ = (1e1 m2) is a hook and ν = (ν1, ν2) is a two-row shape.

Using the symmetry properties of the Kronecker product, we may assume that if λ =
(1d1 2d2 n3n4) then n4 − n3 ≤ d1. (If n4 = 0 then we should rewrite λ as (1d1 2d2−12 n3).
Moreover, our hypothesis becomes n3 − 2 ≤ d1.)

Theorem 4 Letλ, µandν be partitions of n,whereµ = (1e1 m2) is a hook andν = (ν1, ν2)

is a two-row shape. Then the Kronecker coefficients γ λ
µν are given by the following:

1. If λ is a one-row shape, then γ λ
µν = δµ,ν .

2. If λ is not contained in any double hook, then γ λ
µν = 0.

3. Suppose λ = (1d1 2d2 n3n4) is a double hook. Assume that n4 − n3 ≤ d1. (If n4 = 0, then
we should write λ = (1d1 2d2−12 n3).) Then

γ λ
µν = ((n3 ≤ ν2 − d2 − 1 ≤ n4))((d1 + 2d2 < e1 < d1 + 2d2 + 3))

+ ((n3 ≤ ν2 − d2 ≤ n4))((d1 + 2d2 ≤ e1 ≤ d1 + 2d2 + 3))

+ ((n3 ≤ ν2 − d2 + 1 ≤ n4))((d1 + 2d2 < e1 < d1 + 2d2 + 3))

− ((n3 + d2 + d1 = ν2))((d1 + 2d2 + 1 ≤ e1 ≤ d1 + 2d2 + 2)).

4. If λ is a hook, see Corollary 3.

Proof: Set X = 1 + x and Y = 1 + y in the comultiplication expansion (2) to obtain

sλ[(1 − x)(1 + y)] =
∑
µ,ν

γ λ
µνsµ[1 − x]sν[1 + y]. (27)
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Use (17) and (18) to replace sµ and sν in the right-hand side of (27), and divide by (1− x)

to obtain

sλ[(1 − x)(1 + y)]

1 − x
=

∑
µ=(1e1 m2)
ν=(ν1,ν2)

γ λ
µν(−x)e1 yν2

(
1 − yν1−ν2+1

1 − y

)
. (28)

If λ is not contained in any double hook, then the point (3, 3) is in λ, and by Sergeev’s
formula, sλ[(1 − x)(1 + y)] equals zero.

Since we already computed the Kronecker coefficients when λ is contained in a hook, we
can assume for the rest of this proof that λ is a double hook. Let λ = (1d1 2d2 n3 n4). (Note:
If n4 = 0 then we should write λ = (1d1 2d2−12 n4).)

Set u1 = 1, u2 = y, v1 = x , and v2 = xy in (19), and multiply by 1−y
1−x on both sides of

the resulting equation.

∑
µ=(1e1 m2)
ν=(ν1,ν2)

γ λ
µν(−x)e1 yν2

(
1 − yν1−ν2+1

) = (y − x)(1 − xy)(1 − x)

×(−x)d1+2d2 yn3+d2−1

((
1 − yn4−n3+1

)(
1 − yd1+1

)
1 − y

)
. (29)

We have that (y − x)(1 − xy)(1 − x) = y − x(1 + y + y2) + x2(1 + y + y2) − x3 y.

Therefore, looking at the coefficient of x on both sides of the equation, we see that γ λ
µν is

zero if e1 is different from d1 + 2d2, d1 + 2d2 + 1, d1 + 2d2 + 2, or d1 + 2d2 + 3.

Let e1 = d1 + 2d2 or e1 = d1 + 2d2 + 3. Since ν2 ≤ n/2, we have that

γ λ
µν = [yν2 ]

∑
µ=(1e1 m2)
ν=(ν1,ν2)

γ λ
µν yν2

= [yν2 ]
∑

µ=(1e1 m2)
ν=(ν1,ν2)

γ λ
µν yν2

(
1 − yν1−ν2+1

)
(ν1 + 1 > n/2)

= [yν2 ]yn3+d2
(
1 − yd1+1

) (
1 − yn4−n3+1

1 − y

)
(Eq. 29)

= [yν2 ]yn3+d2
(
1 − yd1+1

) n4−n3∑
k=0

yk

= [yν2 ]yn3+d2

n4−n3∑
k=0

yk . (n3 + d2 + d1 ≥ n/2)

We have obtained that for e1 = d1 + 2d2 or e1 = d1 + 2d2 + 3

γ λ
µν = ((n3 ≤ ν2 − d2 ≤ n4)).
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Let e1 = d1 + 2d2 + 1 or e1 = d1 + 2d2 + 2. Since ν2 ≤ � n
2 � we have that

γ λ
µν = [yν2 ]

∑
µ=(1e1 m2)
ν=(ν1,ν2)

γ λ
µν yν2

= [yν2 ]
∑

µ=(1e1 m2)
ν=(ν1,ν2)

γ λ
µν

(
1 − yν1−ν2+1

)

= [yν2 ]yn3+d2−1(1 + y + y2)
(
1 − yd1+1

) (
1 − yn4−n3+1

1 − y

)

=
(

[yν2 ]yn3+d2−1(1 + y + y2)

(
1 − yn4−n3+1

1 − y

) )
− ((n3 + d2 + d1 = ν2))

=
(

[yν2 ]yn3+d2−1(1 + y + y2)

n4−n3∑
k=0

yk

)
− ((n3 + d2 + d1 = ν2))

We have obtained that for e1 = d1 + 2d2 + 1 or e1 = d1 + 2d2 + 2

γ λ
µν = ((n3 ≤ ν2 − d2 − 1 ≤ n4)) + ((n3 ≤ ν2 − d2 ≤ n4))

+ ((n3 ≤ ν2 − d2 + 1 ≤ n4)) − ((n3 + d2 + d1 = ν2)). (30)

✷

Corollary 5 The Kronecker cofficients, γ λ
µν , where µ is a hook and ν is a two-row shape

are always 0, 1, 2 or 3.

7. Final comments

The inner product of symmetric functions was discovered by J.H. Redfield [8] in 1927,
together with the scalar product of symmetric functions. He called them cup and cap prod-
ucts, respectively. D.E. Littlewood [5, 6] reinvented the inner product in 1956.

I.M. Gessel [3] and A. Lascoux [4] obtained combinatorial interpretations for the Kro-
necker coefficients in some restricted cases; Lascoux in the case where µ and ν are hooks,
and λ a straight tableaux, and Gessel in the case that µ and ν are zigzag shapes and λ is an
arbitrary skew shape. A.M. Garsia and J.B. Remmel [2] founded a way to relate shuffles
of permutations and Kronecker coefficients. From here they obtained a combinatorial in-
terpretation for the Kronecker coefficients when λ is a product of homogeneous symmetric
functions, and µ and ν are arbitrary skew shapes. They also showed how Gessel’s and
Lascoux’s results are related.

More recently, J.B. Remmel [9, 10], and J.B. Remmel and T. Whitehead [11] have ob-
tained formulas for computing the Kronecker coefficients in the same cases considered in
this paper. Their approach was mainly combinatorial. They expanded the Kronecker prod-
uct sµ ∗ sν in terms of Schur functions using the Garsia-Remmel algorithm [2]. By doing
this, the problem of computing the Kronecker coefficients was reduced to computing signed
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sums of certain products of skew Schur functions. In general, it is not obvious how to go
from the determination of the Kronecker coefficients γ λ

µ,ν when µ and ν are two-row shapes
found in this paper, and the one obtained by J.B. Remmel and T. Whitehead [11]. But, in
some particular cases this is easy to see. For instance, when λ is also a two-row shape, both
formulas are exactly the same.
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