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Let R be a commutative ring, / an ideal in R and A an
R -module. We always have 0 C { α E Λ | ( l - / ) α = 03i
e /} C / Π ; . , ΓA C Π : = 1 ΓA. In this paper we investigate
conditions under which certain of these containments may or
may not be replaced by equality.

1. Introduction. This paper is a continuation of [1]. In §2
we show that for a nonminimal principal prime (p), / = Π*= 1(p)" is a
prime ideal and pJ = /. An example is given to show that the condition
that (p) be nonminimal is necessary. We also consider the question of
when a prime ideal minimal over a principal ideal has rank one. Of
particular interest is the example of a domain D with a doubly generated
ideal / such that Π;= 1 Γ ϊ l Π ; β l Γ. In §3 we prove that Π: = 1 ΓA =
lΓ\™=ιΓA for any finitely generated module A over a valuation
ring. In §4 we consider certain converses to the usual Krull Intersection
Theorem for Noetherian rings. It is shown that for (R, M) a quasi-local
ring whose maximal ideal M is finitely generated, many classical results
for local rings are actually equivalent to the ring R being Noetherian.

2. Some examples and counterexamples. In [1] we
remarked that for a ring R the following statements are equivalent: (1)
dim R = 0, (2) Π;= 1 PA = I Π; = 1 ΓA for all finitely generated ideals /
and all R-modules A, (3) Πx

n=ιx
nA =x Π:=ιx

nA forxGR and all
R -modules A. This raises the question: For which ideals / in a ring R
do we have / Π~=1 ΓA = Π~=1 ΓA for all R-modules A ? A modifica-
tion of the example on page 11 of [1] yields

THEOREM 2.1. For a quasi-local ring (R,M) and an ideal I the
following statements are equivalent:

(1) Γ = Γ+ι for some n,
(2) for every R-module A, / Π; = 1 ΓA = Π; = 1 ΓA.

Proof. The implication (1) φ (2) is clear. Suppose that (2) holds
but Γ?Γ+ί for all n >0 . Choose inEΓ-Γ+ι. Let F =
Λjc0(0ΣΓ=i-Ry,) be the free R-module on {JC, yu y2, •} and let G be
the sub-module of F generated by the set {JC - iλyu x - i2y2,' * •} and let
A = FIG. One can then verify that / Π; = 1 ΓA ϊ Π: = 1 ΓA.
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It is well-known [7, page 74] that if P is an invertible prime ideal in a
domain, then / = Π ^ Pn is a prime ideal, J = PJ and any prime ideal
properly contained in P is actually contained in /. We generalize this
result. Recall that an ideal / is finitely generated and locally principal if
and only if it is a multiplication ideal (i.e., any ideal contained in / is a
multiple of /) and a weak-cancellation ideal (for two ideals A and B,
AI C BI implies A C B + (0: /)). (For example, see [2] or [8].)

THEOREM 2.2. Let R be a ring and P a nonminimal finitely gener-
ated locally-principal prime ideal of R and set J = d™=ιPn. Then

(1) J is prime,
(2) PJ = /, and
(3) any prime ideal properly contained in P is contained in J.

Proof Let a,b E R3 a,b£J. We show that ab&J. Choose
n, m such that α E Γ - P"+1 and b E P m - Pm + 1 . Then since P" and Pm

are multiplication ideals, we get (a) = PnAλ and (b) = PmB1 where Aλ£P
and B ^ F . Now (a)(b)CPn + f f l + 1 implies A,B,P B + "CP" + m + 1 . Since
PΛ + m is a weak-cancellation ideal, A ^ C P - f (0: P Λ + m ). Let Q^P be
a prime ideal, then (0: pn+m)pn+m = 0 £ Q gives (0: P n + m ) C Q £ P and
hence AXBXQP. Thus Λi or BλQP, a contradiction. Hence J is
prime. Let / E/, then / 6 P so (j)=PA. Since P is a nonminimal
prime, P £ /, hence A C J, so / E PJ. For (3), let Q be a prime ideal
properly contained in P and let q E Q. Then (g) = PQi C O and P £ O
implies O , C Q C P . Continuing we get (q)CJ.

COROLLARY 2.3. Let (p) be a nonminimal principal prime
ideal. Then J = Π*=ι(p)n is prime, pJ = J and prime ideal Q$(p) is
contained in J.

The above corollary is false if (p) is a minimal prime ideal. For
example, in Z/(4) Π^=1(2)n is not prime. However, in this example
condition (2) still holds. In the following example we show that
condition (2) may also fail.

EXAMPLE 2.4. Let k be a field and let R = k[X, Z, Y,, Y2, •] be
the polynomial ring over k in indeterminants X, Z, Y,, Y2, . Let
A = (X - ZY,, X-Z2Y2,X~ Z3Y3, - •) and put R = jg/A. Then
(X, Z) is a prime ideal of R minimal over A and hence (X, Z) is a
minimal prime ideal of R (-denotes passage to R)^ Moreover,
(X, Z) = (Z), so (Z) is a minimal principal prime ideal of R. However,
Π:= 1 (Z)n ϊ (Z) ΠU (Z) because X E Πu (Z)n but X ^ (Z) ( Ί : = 1 (Z)-.

The Principal Ideal Theorem states that a prime ideal in a Noe-
therian domain minimal over a principal ideal has rank one. In general
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a prime ideal minimal over a principal ideal need not have rank one. In
fact, a principal prime (p) has rank one if and only if Π " = 1 (p)n = 0. More
generally, if P is a rank one prime, any a ELP must satisfy Π* = 1 (α)n = 0
(see Corollary 1.4 [9] or Theorem 1 [1]). This raises the question: In a
domain, does a prime P minimal over a principal ideal (a) with
ΓΊ^= 1(α)π = 0 imply that rankP = 1? This question is answered in the
negative by Example 5.2 [9]. Finally we ask the question: In a
domain, does a finitely generated prime P satisfying Π ^ = 1 P n = 0 ,
minimal over a principal ideal, have rank 1? While we are not able to
answer this question, we do show that there can not be "too many"
primes below P.

THEOREM 2.5. Let R be a domain and let P be a finitely generated
prime ideal minimal over a principal ideal Rx. Then rankP = 1 if and
only if Π{Q£ Spec(JR) | Q is directly below P} = 0.

Proof. The implication ( φ ) is clear. Conversely, let {Qa} be the
set of prime ideals directly below P (this set is nonempty by Zorn's
Lemma). The hypothesis of the theorem is preserved by passage to Rp,
so we may assume that R is quasi-local. Thus (JR, P) is quasi-local, P is
finitely generated, and JRx is P-primary. By Theorem 1 [1], Ω ^ = 1 P n C
Π {Q I Q directly below P} = 0. Let (JR, P) be the P-adic completion of
JR. Then (R, P) is a complete (Noetherian) local ring. Now Rx is still
P-primary, so by the Principal Ideal Theorem, dim R ^ 1. If dim R = 0,
then Pn = 0 for some n and hence P n = 0. This contradiction shows
that diml? = 1. Let Pu- -,Pn be the minimal primes of JR and let
Qι=PιΠR. Now Π{O\Q directly below P} = 0 implies that there
exist infinitely many primes directly below P. Hence 3y E Qo- U"=1 Q,
where Qo is a prime directly below P. Now Ry £ UΓ=iJP,, so JRy is
P-primary. Hence Ry Π R is P-primary. But by Theorem 1[1] we see
that Oo is closed in the P-adic topology, and hence Ry Π R C Oo This
is a contradiction because Ry Π R is P-primary.

The proof of Theorem 2.5 does yield the following result. Let P be
a finitely generated prime ideal in a domain minimal over a principal
ideal. Then rankP = 1 if and only if C\Z=λP

n

P = 0 (or equivalently, if
Π : = 1 P ( n ) = 0 where P ( n ) is the n-symbolic power of P).

We end this section with an example of a domain D and a doubly
generated ideal I in D satisfying / Π^=ιI

n^ Π^= 1/ n . This is the best
possible counterexample as Π^ = 1 (x) π = (JC) Γ\™-_λ(x)n for all principal
ideals in a domain.

EXAMPLE 2.6. Let k be a field, S = k[W, W\ W\ W% •], and
R0=S[X, U2, U3, U5, C/7, ]. Then RO[Y,1/Y] is a graded domain,
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with degree Ro = 0, degree Y = 1 and degree 1/Y = - 1. Let R be the
graded subdomain R0[Y,(W>-XU2)/Y,(W>-XU3)/Y, •]. Then 1 =
(X, Y) is a homogeneous ideal of R. Put / = Πζ=ι I" so that / is also a
homogeneous ideal. We show that J^ IJ.

Write Zp = W1/p - Xl/P. Then Ko = k [ W, Z2, Z3, Z5, , X, t/2, l/3,
t/5, •]. We have the relation (Zp + XUP)

P = W and hence

z; = w-; ^

Note that i?0 is spanned as a k -vector space by the monomials
Ze

p\-'Ze

p\W^X^Uf

q\'-U%, where 0<el<pi. We show that these
monomials are k -independent, and thus form a k -basis. To see this,
define the degree of the monomial We^+•"w"BX^ί- U%
(0<β l <p f ) to be (β^pi+ + ̂ /pΓ + ncn^O^ sOJ^O^ s O ^ O )
where /, appears in the s,-th position after nx if ,̂ is the 5,-th
prime. Order the degrees lexicographically. Then define the degree of
a polynomial to be the degree of the largest term. We find that the
degree of Zp\ -Z% -Z%W^Xn^Uf

q\ U% (0< et <p.) to be (ejpι +
• -f er/pr + n0, Mi, 0, , /i, , /s, 0, •) as above. Each such mono-
mial has a different degree, and hence these monomials are k-
independent. Let us write T = fc[X, W, ί/2, t/3, Yi, *' •]• We see that
Ro= TφROz as a 7"-module, where ROz is generated as a Γ-module by
the Z\\ Z£, 0 < e, < pl? r g 1. Let // be the ideal of i?0 generated by
the Zp's. Since HDROz, we have H = (HΠT)φRQz as a Γ-
module. Now

[Γ ]0 = [(X, Y)m ]0 = XmRo + Xm~λ YR-i + • • + YmRm

= XmR0 + XmΉ + • • XHm = (X, H)m

as an ideal of Ro. Notice that since W = (Zp + XUP)
P, we have

W E (X, H)m for all m. Now H Γ) T is generated as a Γ-module by the
W-X"UP

P. T h u s (X,H) is g e n e r a t e d b y X,W, a n d t h e Z%---Z^
(r g 1) and (X, H)m is generated by Xm, W, the Z£ Z'PW (r ^ 1), and
the Z'p\ Z%X"° with e, + + er + n 0 ^ m. It follows that Jo =

We claim that W£ [//]0= XJQ+ YJ-ι. In fact, we claim that
XJ0 + YR-i = XWR0 + H. Since H D ROz, the ideal

(XWRo + H)Γ)T = (XW, W - X2Ul, W-X3UiW- X5U5

5, •).

Suppose that WE XJ0+ YR.U then
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W = aXW + b2(W - X2Uί) + + bp(W - XPU%

α, bt E T Write 6, = c, + A, where A, E k and c , 6 T with no constant

term. Cancelling W, we get

λ2X
2Ul+ + λpX't/J = αXW- c2X

2*72

2 c^U*.

But this is a contradiction since none of the terms on the left appear on

the right.

3. Valuation rings. We call a ring R a valuation ring if any
two ideals of R are comparable. In Theorem 2 [1] we proved that for R
a Prϋfer domain, / an ideal in R and A a torsion-free R -module,
/ Π"= 11"A = Π; = 1 7

nA. In this section we prove that for R a valuation
ring, / an ideal in R and A a finitely generated R -module, / Π*= 1 FA =
C\Z=ιΓA. We begin with the ring case.

THEOREM 3.1. Let V be a valuation ring and I a nonzero ideal in
V. Then exactly one of the following occurs:

(1) I = I2 is prime,
(2) Γ ?/n + 1 for all n, Π ; β l Γ is a prime ideal in V, and Π: = 1 /" =

Π: = 1 (/)" for any i e i - I2. In particular, Π: = 1 1" = I Π: = 1 Γ.
(3) Γ = 0 for some n.

Proof. First suppose that I = I2 and let ab E I. Suppose that
a,bfέl, so that I$(a) and 15(6). Hence / = / 2 C (α)(ft)C / so / =
(ab). Thus / = 72 implies / = 0, a contradiction. Next suppose that
7 ^ I2, but /n ?/ n + 1 = In+2. Let / E /" - Γ+1. Then for m > 1, Jπ + 1 =
7mπ D (i)m D Imin+1) = 7n+1, in particular (if = (if, so (if = 0. Hence
0 = ( i ) 2 D/ 2 ( n + 1 ) =/" + 1 . Finally, suppose that 7"?7 n + 1 for all n. For
/ E 7 - 7 2 , 7D(/)D7 2 , so that 7" D (i)n D 72n and hence Π: = 1 7 n =
Π: = 1 (i)n. Suppose that xy E Π; = 1 7 n . If x, y £ Π;=i 7n, then there exist
integers 5 and t such that 7s £(JC) and 7 f ^(y). Hence 7 s + 'C(jcy)C
Π; = 1 7n so 7s+ί = J s+I+1. This contradiction shows that Π; = 1 7" must be
prime. Suppose that JC E Π*= 17

n. Then JC = 5i2 for some s E V and
/ £ / . Hence si or / 6 Π ; = 1 7 " because Π; = 1 7" is prime. Thus

THEOREM 3.2. Lei V be a valuation ring, I an ideal in V and A a
finitely generated V-module. Then Π:= 17 nΛ = 7 Π:= 17"A.

Proof By the previous theorem we are reduced to the case where
7 = (1) is a principal ideal and Π^=1 (i)n is prime. Put B = (Π*=1 (i)n)A,
so that BCΠ; = 1 (/)"A. It suffices to show that Π~=ι(i)n(A/B) =
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(/)Π:=1(/)π(Λ/β). But as ann(A/£)D (Ί:= 1(i)n, we may assume that
Γ\"=o(i)n = 0, so that V is a valuation domain. Let A = Vaλ + + Vαs

and assume that ann(αi)D O ann(a5). We may assume that (/)" D
ann(αi) (for otherwise inaι = 0 for large n and hence we may assume that
A = Va2 + + Vα5). Thus 0 = (Ί; = 1 (/)" D a n n ^ ) , so that Λ is actu-
ally torsion-free. The result now follows from Lemma 1 [1].

4. "Almost" Noetherian rings. Let R be a Noetherian
ring, / an ideal in R, and Λ a finitely generated i? -module. One version
of the Krull Intersection Theorem states that Π™=ιI

nA =
{JC G A I (1 - i)x = 0 3/ G /}. In fact, by Theorem 3 [1] this holds for R
locally Noetherian and A locally finitely generated. In this section we
consider to what extent the converse is true. We begin with the
quasi-local case.

THEOREM 4.1. Let (R,M) be a quasi-local ring whose maximal
ideal M is finitely generated. Then the following statements are
equivalent:

(1) R is Noetherian,
(2) Dn=ι MnN = 0 for all finitely generated R-modules N,
(3) every finitely generated ideal of R has a primary decomposition,
(4) for finitely generated ideals A and B of R, there exists an integer

n such that (A + Bι) Γ)(A: Bι) = A for I ̂  n,
(5) Π^=1 (Mn + A) = A for all finitely generated ideals A of R,
(6) B = A + MB with A a finitely generated ideal of R implies

A=B.

Proof The implications (1) Φ (2) and (1) Φ (3) are well
known. Assume that (3) holds and let A and B be finitely generated
ideals. Suppose that A = Qi Π Π Qm where Q, is Frprimary. As-
sume that B C Pt precisely for i > k. For i ^ Jk, (Q,: Bn)Bn C O, and
Bn£ P, implies (Q,: Bn) = Q, for all n. For / > fc, there exists an integer
nx such that Bn< C Q, because B is finitely generated. Set n =
max{nj. Then for / g n, A: Bz = Oj Π Π Ok and A + Bι Q
α + i Π Π Qm. Hence A C (A : β ^ Π (A 4- Bι) C d Π Π Om =
A. Next we show that (4) implies (5). Let A be a finitely generated
ideal of R. Clearly A C Π;= 1 (Mn -f A). Suppose that JC G
n ; = 1 ( M n + A ) . Then by (4) A + (x)M = (A + (JC)M + Mfc)
Π((A+(JC)M): M k ) for large fc. But x G A -h Mk so A + ( x ) M =
A + (JC). Thus x G A by Nakayama's Lemma. Setting N = R/A we
see that (2) implies (5). As (6) holds in any (Noetherian) local ring, it
remains to prove (5) => (1) and (6) Φ (1). Suppose that R is not
Noetherian. Then there exists an ideal P/ M maximal with respect to
not being finitely generated and P is necessarily prime. Let z G M - P.
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Then P + (z) is finitely generated, say by pλ + τλz, ,p n + rnz where
pu , pn e P. We claim that P = ( p b ,p n ). Let p G P C P + (z), so
that

p = αi(pi + r !z)+ •• + αn(pn + rnz) =

= axpx + + αnpn 4- ( α ^ 4- + anrn)z.

Since P is a prime ideal and z£ P, a1r1 + + anrn G P. Hence P =
(Pu --',pn) + Pz =(pi, •• ,pn) + P " Z π for n ^ 1. Thus either (5) or (6)
implies that P = (p l5 ,pπ).

It is necessary to assume that M is finitely generated as is seen by the
example R = fc[{X,}Γ=i]/({*«}Γ=i)2 where fc[{jc,}Γ=i] is the polynomial ring
over the field k in countably-many indeterminates. If we replace the
quasi-local ring (R, M) with a quasi-semilocal ring (i?, Mu , Mn) where
Mi, , Mn are finitely generated and replace M with / = Mi Π - - - Π Mn,
then Theorem 4.1 remains true. The equivalence of (1) and (5) is a slight
generalization of Exercise 4 [5, page 246]. Condition (4) has been
studied in [4].

COROLLARY 4.2. For a ring R the following statements are
equivalent:

(1) R is locally Noetherian,
(2) Π:=ι(Mn + A) = {r<ER | ( l - m ) r G Λ 3m EM} for all

finitely generated ideals A of R and all maximal ideals M of R, and for
every maximal ideal M of R, MM is a finitely generated ideal in RM.

Proof (1) => (2). The first statement follows from Theorem 3 [1]
applied to the ring R/A which is locally Noetherian. The second
statement is obvious. (2) φ (1). Follows from the previous theorem.

THEOREM 4.3. For a ring R the following conditions are equivalent:
(1) R is Noetherian,
(2) the maximal ideals of R are finitely generated and every finitely

generated ideal of R has a primary decomposition.

Proof That (1) φ (2) is well-known. Therefore we may assume
that R satisfies (2). It follows from Theorem 4.1 that R is locally
Noetherian. Theorem 1.4 [3] gives that R is Noetherian.

The results of this section raise the question: Is a locally Noe-
therian ring whose maximal ideals are finitely generated necessarily
Noetherian? The answer is no.

EXAMPLE 4.4. The ring R = Z[{x/p\p a prime}] is two dimen-
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sional, integrally closed, locally Noetherian with all maximal ideals
finitely generated, but R is not Noetherian. In fact, R is not even a
Krull domain.

This ring is given in [6] as an example of a locally polynomial ring
over Z which is not a polynomial ring over Z. We wish to thank
Professor R. Gilmer for pointing out this example to us.1

First, the ring R is not Noetherian because the ideal ({x/p\p a
prime}) is not finitely generated. The maximal ideals of R have the
form (p,f(x/p)) where p E Z is prime and f(x/p) is an irreducible
polynomial (in x/p) mod p. The remaining statements follow from the
fact that R localized at a maximal ideal M (with M Π Z = (p)) is a
localization of the polynomial ring Zip)[x/p] at Mz_(p).
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