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Let R be a commutative ring, I an ideal in R and A an
R-module. We always have 0C{a€ A|(1-i)a=03i
ENCIN: I"'ACM_,I"A. In this paper we inyestigate
conditions under which certain of these containments may or
may not be replaced by equality.

1. Introduction. This paper is a continuation of [1]. In §2
we show that for a nonminimal principal prime (p), J = M., (p)" is a
prime ideal and pJ = J. An example is given to show that the condition
that (p) be nonminimal is necessary. We also consider the question of
when a prime ideal minimal over a principal ideal has rank one. Of
particular interest is the example of a domain D with a doubly generated
ideal I such that M;_, I"# I N, I". In §3 we prove that N;_, ["A =
IMN;_,I"A for any finitely generated module A over a valuation
ring. In §4 we consider certain converses to the usual Krull Intersection
Theorem for Noetherian rings. It is shown that for (R, M) a quasi-local
ring whose maximal ideal M is finitely generated, many classical results
for local rings are actually equivalent to the ring R being Noetherian.

2. Some examples and counterexamples. In [1] we
remarked that for a ring R the following statements are equivalent: (1)
dmR =0, Nz, I"A=TMN;_ I"A for all finitely generated ideals I
and all R-modules A, 3) Mz, x"A =x MN3_,x"A for x € R and all
R-modules A. This raises the question: For which ideals I in a ring R
do we have I M=_, I"A = MNz_, I"A for all R-modules A? A modifica-
tion of the example on page 11 of [1] yields

THEOREM 2.1.  For a quasi-local ring (R, M) and an ideal I the
following statements are equivalent:

(1) I"=1"" for some n,

(2) for every R-module A, I (., I"A =N I"A.

Proof. The implication (1) = (2) is clear. Suppose that (2) holds
but I"2I"" for all n>0. Choose i,€I"—I"". Let F=
Rx @ (P =71 Ry,) be the free R-module on {x, y,, y», - - -} and let G be
the sub-module of F generated by the set {x —i,y;, x — i,y,, - - -} and let
A =F/G. One can then verify that I N5, I"A# M., I"A.

15



16 D. D. ANDERSON, J. MATUJEVIC AND W. NICHOLS

It is well-known [7, page 74] that if P is an invertible prime ideal in a
domain, then J = M;_, P" is a prime ideal, J = PJ and any prime ideal
properly contained in P is actually contained in J. We generalize this
result. Recall that an ideal I is finitely generated and locally principal if
and only if it is a multiplication ideal (i.e., any ideal contained in I is a
multiple of I) and a weak-cancellation ideal (for two ideals A and B,
AI C BI implies A C B +(0: I)). (For example, see [2] or [8].)

THEOREM 2.2. Let R be a ring and P a nonminimal finitely gener-
ated locally-principal prime ideal of R and set J = (\;_, P". Then

(1) J is prime,

2) PJ=1J, and

(3) any prime ideal properly contained in P is contained in J.

Proof. Let a,bER 3 a, b&J. We show that abZJ. Choose
n,m suchthat a € P*— P*""' and b € P" — P"*'. Then since P" and P"
are multiplication ideals, we get (a) = P"A, and (b) = P"B, where A, Z P
and B,Z P. Now (a)(b)C P""*' implies A,B,P™™ C P™"*'. Since
P"*" is a weak-cancellation ideal, A,B,C P+ (0: P"*™). Let Q%P be
a prime ideal, then (0: P"*™)P"*™ =0% Q gives (0: P""")C Q%P and
hence A/B,C P. Thus A, or B,C P, a contradiction. Hence J is
prime. Let j&€J, then jE€ P so (j)= PA. Since P is a nonminimal
prime, PZ J, hence A CJ, so j € PJ. For (3), let Q be a prime ideal
properly contained in P and let ¢ € Q. Then (q)=PQ,C Q and PZ O
implies Q,C Q CP. Continuing we get (q)C J.

CoroLLARY 2.3. Let (p) be a nonminimal principal prime
ideal. Then J = (\;_,(p)" is prime, pJ = J and prime ideal Q E(p) is
contained in J.

The above corollary is false if (p) is a minimal prime ideal. For
example, in Z/(4) M;_,(2)" is not prime. However, in this example
condition (2) still holds. In the following example we show that
condition (2) may also fail.

ExampLE 2.4. Let k be a field and let R = k[X,Z,Y,, Y, - - -] be
the polynomial ring over k in indeterminants X,Z Y, Y, ---. Let
A=(X-2ZY,X~-2Z"Y,X~2ZY,---) and put R =R/A. Then
(X,Z) is a prime ideal of R minimal over A and hence (X, 2) is a
minimal prime ideal of R (- denotes passage to R) Moreover,
(X, 2)=(2), so (Z) is a minimal principal prime ideal of R. However,
N (Z)"#(Z)Nio (Z) because X € N, (Z) but X& (Z) Nz, (Z)".

The Principal Ideal Theorem states that a prime ideal in a Noe-
therian domain minimal over a principal ideal has rank one. In general
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a prime ideal minimal over a principal ideal need not have rank one. In
fact, a principal prime (p) has rank one if and only if M, (p)" = 0. More
generally, if P is a rank one prime, any a € P must satisfy (;_;(a)" =0
(see Corollary 1.4 [9] or Theorem 1 [1]). This raises the question: Ina
domain, does a prime P minimal over a principal ideal (a) with
N (a)"=0 imply that rank P = 1? This question is answered in the
negative by Example 5.2 [9]. Finally we ask the question: In a
domain, does a finitely generated prime P satisfying M., P" =0,
minimal over a principal ideal, have rank 1? While we are not able to
answer this question, we do show that there can not be “too many”
primes below P.

THEOREM 2.5. Let R be a domain and let P be a finitely generated
prime ideal minimal over a principal ideal Rx. Then rank P =1 if and
only if N{Q € Spec(R)| Q is directly below P}=0.

Proof. The implication (=) is clear. Conversely, let {Q,} be the
set of prime ideals directly below P (this set is nonempty by Zorn’s
Lemma). The hypothesis of the theorem is preserved by passage to R,
so we may assume that R is quasi-local. Thus (R, P) is quasi-local, P is
finitely generated, and Rx is P-primary. By Theorem 1 [1], Nz, P C
N{Q | Q directly below P} =0. Let (R, P) be the P-adic completion of
R. Then (R, P) is a complete (Noetherian) local ring. Now Rx is still
P- primary, so by the Principal Ideal Theorem, dim R=1. IfdimR =0,
then P" =0 for some n and hence P" =0. This contradiction shows
that dimR =1. Let P,---, P, be the minimal primes of R and let
Q. =PNR. Now N{Q|Q directly below P}=0 implies that there
exist infinitely many primes directly below P. Hence 3y € Q,— U, 1 Q;
where Q, is a prime directly below P. Now Ry U, P, so Ry is
P-primary. Hence Ry N R is P-primary. But by Theorem 1[1] we see
that Q, is closed in the P-adic topology, and hence Ry "R C Q,. This
is a contradiction because Ry N R is P-primary.

The proof of Theorem 2.5 does yield the following result. Let P be
a finitely generated prime ideal in a domain minimal over a principal
ideal. Then rank P =1 if and only if Nz, Pp=0 (or equivalently, if
M;_, P™ =0 where P™ is the n-symbolic power of P).

We end this section with an example of a domain D and a doubly
generated ideal I in D satisfying I M;_, I"# MN;_,1". This is the best
possible counterexample as ;- (x)" = (x) M-, (x)" for all principal
ideals in a domain.

EXAMPLE 2.6. Let k be a field, S = k[W, W W} W% -], and
=S[X, U, U;, Us, Us,--+]. Then R([Y,1/Y] is a graded domain,
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with degree R, =0, degree Y =1 and degree 1/Y = —1. Let R be the
graded subdomain R, [Y,(Wi- XU,)Y,(W?— XU,)/Y,--]. Then I=
(X, Y) is a homogeneous ideal of R. Put J = (1;_, I" so that J is also a
homogeneous ideal. We show that J# IJ.

Write Zp = Wl/p - XUp. Then R() = k[W, Zz, Z3, Zs, ce ey X, Uz, U3,
Us,*--]. We have the relation (Z, + XU,)’ = W and hence

Zp=W-X"U3 - (’l’)sz”"U;-‘ e (p P I)Z';“XU,,.

Note that R, is spanned as a k-vector space by the monomials
Zyp - ZgWreXmUl - UL, where 0<e <p. We show that these
monomials are k-independent, and thus form a k-basis. To see this,
define the degree of the monomial We/preprmXmyyh ... Uk
(0<e <p) to be (e,)/p,+ -+ e/p +ne,n,0,---,0,f,0,---,0,£,0--)
where f, appears in the s-th position after n, if q is the s-th
prime. Order the degrees lexicographically. Then define the degree of
a polynomial to be the degree of the largest term. We find that the
degree of Zpi---Z4---ZgWrXnUL -+ UL (0<e <p:) to be (e/p:+
~++e/p+n,n,0,--, f,-- -, f,0,---) as above. Each such mono-
mial has a different degree, and hence these monomials are k-
independent. Let us write T = k[X, W, U,, U;, Ys,---]. We see that
R,= T R,, as a T-module, where R,, is generated as a T-module by
the Z5---Z%,0<e <p,r=1. Let H be the ideal of R, generated by
the Z,’s. Since HDR,,, we have H=HNT)PR,, as a T-
module. Now

[I"]Jo=[(X, Y)"}o=X"Ry+ X" 'YR_,+ -+ Y"R_,
= X"R,+ X" 'H+ ---XH™ = (X, H)"

as an ideal of R, Notice that since W =(Z, + XU,), we have
W e (X, H)" for all m. Now H N T is generated as a T-module by the
W —-X*Uj. Thus (X, H) is generated by X, W, and the Z;---Zg
(r=z1)and (X, H)" is generated by X™, W, the Z¢1---ZzW (r = 1), and
the Zp---ZyX™ with e, +---+e tn,=2m. It follows that J,=
n=1(X, H)" = WR,.

We claim that WZ [IJ],= XJ,+ YJ_,. In fact, we claim that

W& XJ,+ YR_, = XWR,+ H. Since HD R,,, the ideal

(XWR,+ H)NT =(XW, W — X*U3, W - X*U3, W - X°U3, - - ).

Suppose that W € XJ,+ YR _,, then



THE KRULL INTERSECTION THEOREM II 19
W = aXW + by(W — X2U2) + - - - + b,(W — X*U?),

a,b€T. Write b, =c; + A, where A, €E k and ¢, € T with no constant
term. Cancelling W, we get

LXU+ -+ LXPUL = aXW — ¢, XUl — -+ - — ¢, X"Ub,

But this is a contradiction since none of the terms on the left appear on
the right.

3. Valuation rings. We call a ring R a valuation ring if any
two ideals of R are comparable. In Theorem 2 [1] we proved that for R
a Priifer domain, I an ideal in R and A a torsion-free R-module,
IMN;_ I"A =N I"A. In this section we prove that for R a valuation
ring, I an idealin R and A a finitely generated R-module, I M;_, ["A =
M., I"A. We begin with the ring case.

THEOREM 3.1. Let V be a valuation ring and I a nonzero ideal in
V. Then exactly one of the following occurs:

(1) I=1 is prime,

Q) I"2I" for all n, N;_, I" is a prime ideal in V, and N;_ 1" =
Nz_ (i) for any i € I - I*. In particular, N 1" =15, I"

3) I"=0 for some n.

Proof. First suppose that I =1° and let ab €1 Suppose that
a,b &1, so that IS(a) and IS(b). Hence I=I°C(a)(b)CI so I=
(ab). Thus I =1I? implies I =0, a contradiction. Next suppose that
I#T% but I"2I""'=I"". Let i€ I"—I""". Then for m >1, I""'=
I™ D ()" 2™V =["" in particular (i)*= (i)}, so (i))=0. Hence
0= ()2 I*"=1"" Finally, suppose that I"2I"*' for all n. For
i€eI-I* ID(i)DI% so that I"D(i)" 2 I* and hence N;., I"=
M., (i)". Suppose that xy € M, I". Ifx,y& M;_, I", then there exist
integers s and ¢ such that I*$(x) and I'G(y). Hence I*"" C(xy)C
Mz_,I" so I*** = [***'. This contradiction shows that (;_, I" must be
prime. Suppose that x € MN;_ I". Then x = si* for some s € V and
i€l Hence si or i€;I" because (;_,I" is prime. Thus
Ao I"=I1MN5,I"

THEOREM 3.2. Let V be a valuation ring, I an ideal in V and A a
finitely generated V-module. Then N;_,I"A =1 M., I"A.

Proof. By the previous theorem we are reduced to the case where
I = (i) is a principal ideal and M, (i) is prime. Put B = (M., (i)")A,
so that BC M., (i)"A. It suffices to show that MN;_,(i)"(A/B)=



20 D. D. ANDERSON, J. MATJEVIC AND W. NICHOLS

(i)N;-.,(i)"(A/B). But as ann(A/B)2D MN;.,(i)", we may assume that
M7, (i) =0, so that V is a valuation domain. Let A = Va,+---+ Va,
and assume that ann(a,)D ---Dann(a,). We may assume that (i)" D
ann(a,) (for otherwise i"a, = 0 for large n and hence we may assume that
A =Va,+---+ Va,). Thus 0=, (i)" Dann(a,), so that A is actu-
ally torsion-free. The result now follows from Lemma 1 [1].

4. <“Almost”’ Noetherian rings. Let R be a Noetherian
ring, I an ideal in R, and A a finitely generated R-module. One version
of the Krull Intersection Theorem states that M, I"A =
{xeA|(1-i)x=03i €I}. In fact, by Theorem 3 [1] this holds for R
locally Noetherian and A locally finitely generated. In this section we
consider to what extent the converse is true. We begin with the
quasi-local case.

THEOREM 4.1. Let (R, M) be a quasi-local ring whose maximal
ideal M is finitely generated. Then the following statements are
equivalent

(1) R is Noetherian,

(2) Nz, M"N =0 for all finitely generated R-modules N,

(3) every finitely generated ideal of R has a primary decomposition,

(4) for finitely generated ideals A and B of R, there exists an integer
n such that (A + B'YN(A: B")= A for | =z n,

(5) N:.,(M"+ A)= A for all finitely generated ideals A of R,

(6) B=A+ MB with A a finitely generated ideal of R implies
A = B.

Proof. The implications (1)=> (2) and (1)=> (3) are well
known. Assume that (3) holds and let A and B be finitely generated
ideals. Suppose that A = Q,N---N Q, where Q; is P;-primary. As-
sume that B C P, precisely for i >k. For i =k, (Q;: B*)B" C Q, and
B"Z P,implies (Q,: B") = Q, for all n. For i > k, there exists an integer
n, such that B™ C Q, because B is finitely generated. Set n =
max{n;}. Then for [=zn A:B'=Q,N---NQ, and A+ B'C
QnN---NQ, Hence ACA:B)N(A+BYCQO,N---NQ, =
A. Next we show that (4) implies (5). Let A be a finitely generated
ideal of R. Clearly ACMN;_,(M"+A). Suppose that x€
MN;.,(M"+A). Then by (@) A+xM=(A+(x)M+M")
N((A + (x)M): M*) for large k. But xEA +M* so A+ (x)M =
A +(x). Thus x E A by Nakayama’s Lemma. Setting N=R/A we
see that (2) implies (5). As (6) holds in any (Noetherian) local ring, it
remains to prove (5) > (1) and (6) > (1). Suppose that R is not
Noetherian. Then there exists an ideal P# M maximal with respect to
not being finitely generated and P is necessarily prime. Letz € M — P.
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Then P +(z) is finitely generated, say by p,+r,z, - -, p, + r.z where
pi,- -, p. €P. Weclaimthat P=(p,---,p,). LetpE PCP+(z),s0
that

p=a(ptnz)+ --+a,(p.+rz)=
=a1p1+ ...+anpn+(a1rl+ "'+a,.r,.)Z.

Since P is a prime ideal and z& P, a,r,+---+ a,r, € P. Hence P =
(pv, " pn)tPz=(py,---,p.)+ P"Z" for n=1. Thus either (5) or (6)
implies that P = (p,, - - -, pn).

It is necessary to assume that M is finitely generated as is seen by the
example R = k[{X.}.\]/({x.};=,) where k[{x,};-,] is the polynomial ring
over the field k in countably-many indeterminates. If we replace the
quasi-local ring (R, M) with a quasi-semilocal ring (R, M,, - - -, M,)) where
M, - - -, M, are finitely generated and replace M withJ =M, N--- N M,,
then Theorem 4.1 remains true. The equivalence of (1) and (5) is a slight
generalization of Exercise 4 [5, page 246]. Condition (4) has been
studied in [4].

CoROLLARY 4.2. For a ring R the following statements are
equivalent:

(1) R is locally Noetherian,

2 Ni.M"+A)={reER|(1-m)rEA Am EM} for all
finitely generated ideals A of R and all maximal ideals M of R, and for
every maximal ideal M of R, My is a finitely generated ideal in Ry,.

Proof. (1) > (2). The first statement follows from Theorem 3 [1]
applied to the ring R/A which is locally Noetherian. The second
statement is obvious. (2) = (1). Follows from the previous theorem.

THEOREM 4.3. For a ring R the following conditions are equivalent:

(1) R is Noetherian,

(2) the maximal ideals of R are finitely generated and every finitely
generated ideal of R has a primary decomposition.

Proof. That (1) = (2) is well-known. Therefore we may assume
that R satisfies (2). It follows from Theorem 4.1 that R is locally
Noetherian. Theorem 1.4 [3] gives that R is Noetherian.

The results of this section raise the question: Is a locally Noe-
therian ring whose maximal ideals are finitely generated necessarily

Noetherian? The answer is no.

ExaMpPLE 4.4. The ring R = Z[{x/p|p a prime}] is two dimen-
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sional, integrally closed, locally Noetherian with all maximal ideals
finitely generated, but R is not Noetherian. In fact, R is not even a
Krull domain.

This ring is given in [6] as an example of a locally polynomial ring
over Z which is not a polynomial ring over Z. We wish to thank
Professor R. Gilmer for pointing out this example to us.!

First, the ring R is not Noetherian because the ideal ({x/p|p a
prime}) is not finitely generated. The maximal ideals of R have the
form (p, f(x/p)) where p € Z is prime and f(x/p) is an irreducible
polynomial (in x/p) mod p. The remaining statements follow from the
fact that R localized at a maximal ideal M (with M NZ =(p)) is a
localization of the polynomial ring Z,[x/p] at M;_,.
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