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In this article, based on the half-Cauchy distribution, we propose a new distribution called Kumaraswamy-

Half-Cauchy distribution. Various explicit expressions for it’s moments, generating and quantile functions,

mean deviations, reliability parameter, density function of the order statistics and their moments are provided.

We consider the method of maximum likelihood to estimate the model parameters. For illustrative purposes, a

real life data set is considered as an application of our new distribution.
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1. Introduction

Half-Cauchy distribution (hereafter HC distribution) provides an alternative to inverse-Gamma

distribution as a default prior for a scale parameter in Bayesian hierarchical models, in particular,

when a proper prior is necessary (Poloon et al., 2011). It is obtained from the standard Cauchy

distribution by folding the curve on the origin so that only positive values can be observed. As a

heavy tailed distribution, the HC distribution has been used as an alternative to exponential distribu-

tion to model dispensal distances (Shaw, 1995) as the former predicts more frequent long distance

dispersed events than the other. The distribution introduced by Kumaraswamy (1980) is quite new

among statisticians and has been little explored in the literature. We consider the term ”KW” dis-

tribution to denote the Kumaraswamy distribution. It’s cumulative distribution distribution function

(c.d.f.) has a simple form

F(x) = 1− (1− xa)b−1, 0 < x < 1, (1.1)
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where a > 0 and b > 0 are the two shape parameters. The corresponding density function is given

by

f (x) = abxa−1(1− xa)b−1, 0 < x < 1, (1.2)

which can be unimodal, increasing, decreasing or constant, depending on the parameter values.

Jones (2009) advocated the KW distribution as a generator since its quantile function takes a sim-

ple form. In his paper Jones (2009) highlighted several advantages over beta distribution: simple

normalizing constant, simple explicit formula for the distribution and quantile formula for the dis-

tribution and quantile functions for the distribution and quantile functions that do not involve any

special functions and a simple formula for random variate generation. If G denotes the c.d.f. of a

random variable, Cordeiro and Castro (2011) defined the KW-G distribution given by

F(x) = 1− (1−G(x)a)b, (1.3)

where a > 0 and b > 0 are two additional parameters whose role is to introduce skewness and to

vary tail weights. Because of its tractable distribution function (1.2), the KW-G distribution can be

used quite effectively even if the data are censored. Correspondingly, the density function of this

family of distributions has a very simple form

f (x) = abg(x)G(x)a−1(1−G(x)a)b−1. (1.4)

So, the KW-G distribution is obtained by adding two shape parameters a and b to the G distribu-

tion. It contains distributions with unimodal and bathtub shaped hazard rate functions. Clearly, the

KW density function in (1.2) is a particular case of (1.4) with G(x)= x. In this paper, we combine the

works of Kumaraswamy and Cordeiro and Castro (2011) to study mathematical properties of a new

distribution referred to as the KW-Half-Cauchy (hereafter KW-HC) distribution. The new model

contains a large number of sub-models such as Half-Cauchy, folded t-distribution with degrees of

freedom=1, among others. The new model is suitable for testing goodness of fit of these sub-models

and for defining a regression model. If X follows a Half-Cauchy distribution with parameter δ with

the c.d.f Gδ (x) =
2
π arctan(x/δ ) x > 0, with the p.d.f.

g(x) =
2

πδ
(1+(

x

δ
)2)−1, x > 0, (1.5)

then (4) reduces to

f (x) =
ab2a

δπa
(arctan(x/δ ))a−1 (1− (arctan(x/δ ))a)

b−1 (
1+(x/δ )2

)−1
,x > 0. (1.6)

From (6), the c.d.f of the KW-Half-Cauchy can be written as

F(x) = 1−

(

1−

(

2

π
arctan(x/δ )

)a)b

,x > 0. (1.7)

A random variable X with the p.d.f f (x) in (1.6) is said to follow the KW-Half-Cauchy distri-

bution with parameters δ , a and b. When a = 1 and b = 1, then the KW-Half-Cauchy distribution

reduces to the Half-Cauchy distribution with parameter δ .

Again, using the generalized binomial expansion (1.3) can be written as
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F(x) =
∞

∑
j=0

(−1) j

(

b

j

)

(1−Ga(x)) j

=
∞

∑
j=0

(−1) j

(

b

j

)

(

∞

∑
k=0

(−1)k

(

a

k

)

Gk(x)

) j

=
∞

∑
j=0

∞

∑
k1=0

· · ·
∞

∑
k j=0

(−1) j+sk PkG
sk

δ (x), (1.8)

where sk = k1 + k2 + · · ·+ k j and Pk = ∏
j
i=1

(

a
ki

)

. By simple differentiation, it is immediate from

(1.8),

f (x) =
∞

∑
j=0

∞

∑
k1=0

· · ·
∞

∑
k j=0

(−1) j+sk PkskGsk−1δ (x)g(x). (1.9)

Next, using the expansion arctanx = ∑
∞
i=0 ai

x2i+1

(1+x2)i+1 , where ai =
22i(i!)2

(2i+1)! , Gδ (x) can be written as

Gδ (x) =
x

δ 2+x2 ∑
∞
i=0 bi

(

x2

δ 2+x2

)i

, where bi =
2δai

π . By application of an equation from Gradshteyn

and Ryznik (2007) for a power series raised to a positive integer sk, we obtain

G
sk

δ (x) =

(

x

δ 2 + x2

)sk ∞

∑
i=0

csk,i

(

x2

δ 2 + x2

)i

, (1.10)

where the coefficients csk,i, for i = 1,2, · · · can be determined from the recursive equation csk,i =

(ib0)
−1 ∑

i
m=1[(sk +1)m− i]bmcsk,i−m,. The coefficients csk,i follows recursively csk,0, · · · ,csk,i−1 and

then from b0, · · · ,bi. So, we can rewrite (1.9) as

f (x) =
∞

∑
j=0

∞

∑
k1=0

· · ·
∞

∑
k j=0

(−1) j+sk Pkskcsk,i
xsk+2i−1

(δ 2 + x2)sk+i
,x > 0. (1.11)

2. Properties of the KW-Half-Cauchy distribution

We provide below a characterization of the KW-Half-Cauchy distribution which establishes the

relation between KW-Half-Cauch and uniform distribution.

Lemma 1.(Transformation): If a random variable U follows a uniform (0,1) distribution with

parameters then X = δ tan
(

π
2
(1−

(

1− (1−U)1/b
)1/a

)
)

follows the KW-Half-Cauchy with param-

eters δ , a and b.

Proof. The result follows immediately using the transformation technique.

The hazard function associated with the KW-Half-Cauchy distribution is

h f (x) =
g(x)

1−G(x)
=

ab2a

δπa (arctan(x/δ ))a−1
(

1+(x/δ )2
)−1

(

1−
(

2
π arctan(x/δ )

)a
)b

,x > 0. (2.1)
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The limiting behaviors of the KW-Half-Cauchy and the hazard function are given in the follow-

ing theorem.

Theorem 1. The limit of the KW-Half-Cauchy density function and the hazard function is given by

lim
x→0+

f (x) = lim
x→0+

h f (x) =

{

0, a > 1,b > 1

∞, max(a,b)< 1.
(2.2)

lim
x→∞

f (x) = lim
x→∞

h f (x) =

{

0, b > 1

∞, max(a,b)< 1.
(2.3)

Proof. Straightforward and hence omitted. �

In Figures 1 and 2, various graphs of g(x), and hg(x) are provided for different parameter values.

The plots indicate that the KW-Half-Cauchy can be approximately symmetric, right-skewed or left-

skewed. Also, the KW-Half-Cauchy hazard function can be a decreasing failure rate or upside down

bathtub shapes.
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Fig. 1. Graphs of the KW-HC p.d.f for various choices of δ , a and b.

Let X and Y be two random variables. X is said to be stochastically greater than or equal to Y,

denoted by X >
st

Y if P(X > x)≥ P(Y > x) for all x in the support set of X .

Theorem 2. Suppose X ∼ KW−HC(δ1,a1,b1) and Y ∼ KW−HC(δ2,a2,b2). If δ1 > δ2, a1 < a2

and b1 > b2 Then X >
st

Y .
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Fig. 2. Graphs of the KW-HC hazard function for various choices of δ , a and b.

Proof. For any real number x ∈ R
+, α1 > α2, δ1 > δ2, a1 < a2 and b1 > b2, we have

(

1−

(

2

π
arctan(x/δ1)

)a1
)b1

≥

(

1−

(

2

π
arctan(x/δ1)

)a2
)b2

,

which implies that P(X > x)≥ P(Y > x) and this completes the proof. �

The asymptotes of Equations (1.6) and (1.11) are given by

• As x → 0, f (x)∼ ab2a

δπa (arctan(x/δ ))a−1
(

1+(x/δ )2
)−1

.

• As x → ∞, f (x)∼ ab2
δπ

(

1+(x/δ )2
)−1
(

1−
(

2
π arctan(x/δ )

)a
)b−1

.

• As x → 0, h f (x)∼
ab2a

δπa (arctan(x/δ ))a−1
(

1+(x/δ )2
)−1

.

• As x → ∞, h f (x)∼
ab2
δπ (1+(x/δ )2)

−1

1−( 2
π arctan(x/δ ))

a .

2.1. Simulation

We present two different methods for simulation from the KW-Half-Cauchy distribution. The first

method uses the inversion method. The quantile function corresponding to the density in (4) is given

by

ξ = F−1(U) = δ tan

(

π

2

(

1− (1−U)1/b
)1/a

)

, (2.4)

where U is a uniform variate on the unit interval [0,1].
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The next method for simulation from the KW-Half-Cauchy distribution is based on the rejection

method. The rejection method is based upon a theorem (see Arnold et al. (1999)) that assumes that

the density of X can be written in the following form:

f (x) =Cg(x)h(x),

where C > 1, 0 < h(x) < 1 and g(x) is also a probability density function. This method will be

applicable in our case if a ≥ 1 and b ≥ 1. Define a constant C by C = abb(a−1)1−1/b(b−1)b−1

(ab−1)b−1/a .

Then the following scheme holds for simulating KW-Half-Cauchy:

(1) generate X = x from the pdf g(x) in (1.5);

(2) generate Y =UCg(x), where U is a uniform variate on the unit interval [0,1];

(3) accept X = x as a KW-Half-Cauchy variate if Y < f (x). If Y > f (x) return to step 2.

Skewness and kurtosis of a distribution can be measured by β1 = µ3/σ3 and β2 = µ4/σ4, respec-

tively. However the expression for the third and fourth moments of KW-HC(δ ,a,b) are difficult to

obtain. Since the quantile function of KW-HC(δ ,a,b) are in closed form, alternatively we can define

the measure of skewness and kurtosis based on quantile function. The Galton’ skewness S defined

by Galton (1883) and the Moors’ kurtosis K defined by Moors (1988) are given by

S =
Q(6/8)−2Q(4/8)+Q(2/4)

Q(6/8)−Q(2/8)
. (2.5)

K =
Q(7/8)−Q(5/8)+Q(3/8)−Q(1/8)

Q(6/8)−Q(2/8)
. (2.6)

When the distribution is symmetric, S = 0 and when the distribution is right (or left) skew, S > 0

(or S < 0). As K increases the tail of the distribution becomes heavier. To investigate the effect of

the two shape parameters α and λ on the KW-HC(δ ,a,b) distribution, equation (2.5) and (2.6) are

used to obtain the Galtons’ skewness and Moors’ kurtosis where the quantile function is defined in

(2.4). Figure 3 displays the Galton’s skewness and Moors’ kurtosis for the KW-Half-Cauchy. From

Figure 3, the KW-Half-Cauchy distribution can be left skewed, right skewed and symmetric.

3. Moments and Mean deviations

3.1. Moments

The moment of X ∼ KW−HC(δ ,a,b) can be expressed as

E(X r) =
∞

∑
j=0

∞

∑
k1=0

· · ·
∞

∑
k j=0

(−1) j+sk Pkskcsk,i.
∫ ∞

0

xsk+2i+r−1

(δ 2 + x2)sk+i
dx. (3.1)

For 0 < α < 2ρ , the above integral can be calculated from Prudnikov et al. (1986, vol 1,

page 309, integral 7) as
∫ ∞

0
xα−1

(c2+x2)ρ dx = cα−2ρB(α,2ρ −α)2F1(α/2,ρ −α/2;ρ + 1/2;1), where

2F1(p,q;c;z) = ∑
∞
j=0

(p) j(q) jz
j

(c) j j!
is the hypergeometric function and (p)i = p(p+ 1) · · ·(p+ i− 1) is
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Fig. 3. Graphs of Skewness and Kurtosis for the KW-Half-Cauchy for different choices of δ , a and b.

the ascending factorial. Hence, for positive integer a and r < a, one can get the following expression

for the r-th order raw moments of X which is as follows:

E(X r) =
∞

∑
j=0

∞

∑
k1=0

· · ·
∞

∑
k j=0

∞

∑
i=0

(−1) j+sk Pkskcsk,iδ
r−sk

×B(r+ sk +2i,sk − r)2F1

(

sk + r

2
+ i,

sk − r

2
;sk2i+1/2;1

)

. (3.2)

3.2. Mean deviations

One can derive the KW-Half-Cauchy mean deviations about the mean µ = E(X) and the median

M = F−1(1/2) using the relations ξ1 = 2µF(µ)− 2H(µ) and ξ2 = E(X)− 2H(M), where µ can

be computed from (19), with r = 1, and

H(r) =
∫ s

0
x f (x)dx

=
∫ F(s)

0
(Q(u))sdu

=
∫ F(s)

0

(

δ tan

(

π

2

(

1− (1−u)1/b
)1/a

))s

du. (3.3)

Next, on using the expression tanx = ∑
∞
n=0

B2n(−4)n(1−4n)
2n!

x2n−1, |x| < π/2, where Bk’s are

Bernoulli numbers, we get from (3.3)

H(r) = δ s(π/2)s
∞

∑
n1=0

· · ·
∞

∑
ns=0

As

∫ F(s)

0

(

1− (1−u)1/b
)s/a

du, (3.4)
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where As = ∏
s
k=1

B2nk
(−4)nk (1−4nk )

2knk!
. Next, consider the integral

∫ F(s)

0

(

1− (1−u)1/b
)s/a

du =
∞

∑
j=0

(−1) j

(

(s/a)

j

)

∫ F(s)

0
(1−u) j/bdu

=
∞

∑
j=0

(−1) j

(

(s/a)

j

)

1− (1−F(s)) j/b+1

j/b+1
, (3.5)

if s/a is an integer, then the summation in (3.5) will stop at s/a.

Hence, on substitution (3.5) in (3.4),

H(r) = δ s(π/2)s
∞

∑
n1=0

· · ·
∞

∑
ns=0

∞

∑
j=0

(−1) jAs

(

(s/a)

j

)

1− (1−F(s)) j/b+1

j/b+1
. (3.6)

An application of the mean deviations is to the Lorenz and Bonferroni curves that are impor-

tant in fields like economics, reliability, demography, insurance and medicine. They are defined

for a given probability ψ by L(ψ) = H(q)
µ and B(ψ) = H(q)

πµ , respectively, where q = Q(ψ) =

δ tan
(

π
2

(

1− (1−ψ)1/b
)1/a

)

. In economics, if ψ = F(q) is the proportion of units whose income

is lower than or equal to q, L(ψ) gives the proportion of total income volume accumulated by the

set of units with an income lower than or equal to q. On substitution ψ in (3.6), one can get an

expression for L(ψ).

4. Reliability parameter

The reliability parameter R is defined as R = P(Y > X), where X and Y are independent random

variables. Numerous applications of the reliability parameter have appeared in the literature such as

the area of classical stress-strength model and the break down of a system having two components.

Other applications of the reliability parameter can be found in Hall (1984) and Weerahandi and

Johnson (1992).

If X and Y are two continuous and independent random variables with the c.d.f’s F1(x) and F2(y)

and their p.d.fs f1(x) and f2(y) respectively, then the reliability parameter R can be written as

R = P(Y > X) =
∫ ∞

−∞
F1(t) f2(t)dt.

Theorem 3. Suppose that X ∼ KW −HC(δ ,a1,b1) and Y ∼ KW −HC(δ ,a2,b2) , then

R =
∞

∑
j=0

(−1) j

(

b1

j

)

B( j
a1

a2

+1,b2).

Proof: From (1.6) and (1.7), we have

P(Y > X) =
∫ ∞

0

(

1−

(

2

π
arctan(y/δ )

)a1
)b1 a2b22a2

δπa2
(arctan(y/δ ))a2−1

×(1− (arctan(y/δ ))a2)
b2−1 (

1+(y/δ )2
)−1

. (4.1)

On using the substitution (arctan(y/δ ))a2 = u, (4.1), reduces to

Published by Atlantis Press 

Copyright: the authors 

129



Kumaraswamy-Half-Cauchy distribution

P(Y > X) = b2

∫ 1

0

(

1−ua1/a2

)b1

(1−u)b2−1

=
∞

∑
j=0

(−1) j

(

b1

j

)

B( j
a1

a2

+1,b2),

on using the generalized binomial expansion of
(

1−ua1/a2
)b1

= ∑
∞
j=0(−1) j

(

b1

j

)

u
j

a1
a2 . Note that if b1

is an integer, then the above summation will stop at b1. �

5. Order statistics

The density function of the r-th order statistic is given by

fXr:n
(x)

=
g(x)

B(r,n− r+1)

∞

∑
l=0

(−1)l

(

n− r

l

)

(G(x))r+l−1

= (B(r,n− r+1))−1
∞

∑
j=0

∞

∑
k1=0

· · ·
∞

∑
k j=0

∞

∑
l=0

(−1) j+l+sk Pkskcsk+r+l,i

(

n− r

l

)

xsk+r+l+2i−1

(δ 2 + x2)sk+r+l+i
, (5.1)

using (1.11).

Hence, the m-th order raw moments (for m ≥ 1) will be

E(Xm
r:n)

= (B(r,n− r+1))−1
∞

∑
j=0

∞

∑
k1=0

· · ·
∞

∑
k j=0

∞

∑
l=0

(−1) j+l+sk Pkskcsk+r+l,i

(

n− r

l

)

δ m−(sk+r+l)

×B(m+ sk + r+ l +2i,sk + r+ l −m)2F1

(

sk + r+ l +m

2
+ i,

sk + r+ l −m

2
;sk + r+ l +m+ i+1/2;1

)

.

(5.2)

The L-moments are summary statistics for probability distributions and data samples (Hosking,

1990). It has the advantage that it exists whenever the mean of the distribution exists, although

some higher moments may not exist. It can be expressed as a linear combination of the ordered

data values φr = ∑
r−1
j=0(−1)r−1− j

(

r−1
j

)(

r−1+ j
j

)

η j, where η j = E(XF j(X)) = ( j+1)−1E(X j+1, j+1).

In particular φ1 = η0, φ2 = 2η1 −η0 and φ3 = 6η2 − 6η1 +η0. The L-moments of the KW-Half-

Cauchy distribution can be obtained from (26).

5.1. Entropy

The entropy of a random variable X with the density function f (x) is a measure of variation of the

uncertainty. Renyi entropy is defined as IR(ρ) = (1−ρ)−1 log(
∫

f ρ(x)dx), where ρ > 0 and ρ 6= 1.

If a random variable X has a KW-HC distribution, then, we have,
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f ρ(x)

=

(

ab2a

δπa

(

1+(x/δ )2
)−1
)ρ ∞

∑
j=0

(

(b−1)ρ

j

)

G(a−1)ρ+a j(x)

=

(

ab2a

δπa

(

1+(x/δ )2
)−1
)ρ ∞

∑
j=0

(

(b−1)ρ

j

)

(

(

x

δ 2 + x2

)a( j+ρ)−ρ ∞

∑
i=0

ca( j+ρ)−ρ,i

(

x2

δ 2 + x2

)i
)

=

(

abδ 22a

δπa

)ρ

×
∞

∑
j=0

∞

∑
i=0

(

(b−1)ρ

j

)

ca( j+ρ)−ρ,i

(

xa( j+ρ)−ρ+2i

(δ 2 + x2)a( j+ρ)+i

)

(5.3)

Now, by Prudnikov et al. (1986), the following integral can be evaluated as

∫ ∞

0

xa( j+ρ)−ρ+2i

(δ 2 + x2)a( j+ρ)+i
= δ i+1−ρB(a( j+ρ)−ρ +2i+1,ρ(a+1)+a j−1)

×2F1

(

i+
a( j+ρ)−ρ +1

2
+ i,

a( j+ρ)

2
−

ρ −2i−1

2
;a( j+ρ)+ i+1/2;1

)

.

Hence, the expression for the Renyi entropy in this case will be

IR(ρ) =

(

abδ i+1+ρ2a

δπa

)ρ

×
∞

∑
j=0

∞

∑
i=0

(

(b−1)ρ

j

)

ca( j+ρ)−ρ,iB(a( j+ρ)−ρ +2i+1,ρ(a+1)+a j−1)

×2F1

(

i+
a( j+ρ)−ρ +1

2
+ i,

a( j+ρ)

2
−

ρ −2i−1

2
;a( j+ρ)+ i+1/2;1

)

.

6. Maximum likelihood estimation

Let X1, X2, · · · , Xn be a random sample of size n drawn from the density in (1.6). The log-likelihood

function is given by

ℓ= n log(ab)+na log(2/π)−n logδ +(b−1)
n

∑
i=1

log(1− (2/π arctan(xi/δ ))a)

+(a−1)
n

∑
i=1

arctan(xi/δ )−
n

∑
i=1

log
(

1+(xi/δ )2
)−1

. (6.1)

The derivatives of (6.1) with respect to a, b, and δ are given by

∂

∂a
ℓ =

n

a
+n log(2/π)+

n

∑
i=1

arctan(xi/δ )− (b−1)
n

∑
i=1

(1− (2/π arctan(xi/δ ))a)−1

×(2/π arctan(xi/δ ))a log(2/π arctan(xi/δ )). (6.2)

∂

∂b
ℓ=

n

b
+

n

∑
i=1

log(1− (2/π arctan(xi/δ ))a) . (6.3)
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∂

∂δ
ℓ = a(b−1)

n

∑
i=1

(1− (2/π arctan(xi/δ ))a)−1 (2/π arctan(xi/δ ))a−1 2

π

(

1+(xi/δ )2
)−1

(xi/δ 2)

+(2−a)
n

∑
i=1

(xi/δ 2)
(

1+(xi/δ )2
)−1

. (6.4)

The MLE â, b̂, and δ̂ are obtained by setting (6.2), (6.3) and (6.4) to zero and solving them simul-

taneously.

Since KW-HC distribution reduces to HC distribution when a = 1 b = 1, one can use the

likelihood ratio test to compare if the KW-HC distribution is a better choice for fitting a given data

set than the HC distribution. The likelihood test that tests the hypothesis H0 : a = 1, b = 1 against

Ha : a,b 6= 1 is based on λ = L0(δ̃ )/La(δ̂ , â, b̂) , where L0 and La are the likelihood functions for

the HC and the KW-HC distributions respectively. In this case the quantity −2logλ follows the

chi-square distribution with 2 degree of freedom asymptotically.

7. Application

In this section, one data set is fitted to the KW-HC distribution. The data set in Table 1 resulted

from tests on the endurance of deep-groove ball bearings and they represent the number of millions

revolutions reached by each bearing before fatigue failure (Lieblein and Zelen, 1956). The KW-HC

distribution is fitted to the data set in Table 1 and compared the result with the Half-Cauchy (HC),

Beta-Half-Cauchy (BHC, Cordeiro et al., 2011), and Exponentiated-Half-Cauchy(EHC). These

results are reported in Table 2. The results show that BHC, EHC, and KW-HC distributions pro-

vide adequate fit to the data. Figure 4 displays the empirical and the fitted cumulative distribution

functions. This figure supports the results in Table 2. A close look at Figure 4 indicates that the KW-

HC provides better fit to the left tail than the BHC distributions. This due to the fact that KW-HC

can have longer left tail (see Figure 1).

Table 1. Endurance of deep-groove ball bearings data.

17.88 45.60 54.12 68.88 105.84 28.92

48.40 55.56 84.12 127.92 33.00 51.84

67.80 93.12 128.04 41.52 51.96 68.64

98.64 173.40 42.12 54.12 68.64 105.12

8. Conclusion

A special case of the Kumaraswamy-G family of distributions, the Kumaraswamy-Half-Cauchy

distribution is defined and studied. Various properties of the Kumaraswamy-Half-Cauchy distribu-

tion are investigated, including moments, hazard function, reliability parameter. The new model

includes as special sub-models the Half-Cauchy and the exponentiated Half-Cauchy. It is observed

that the distribution can be symmetric, positively skewed and negatively skewed with a broader

class of monotone hazard rates. An application to a real data set shows that the fit of the new model

is superior to the fits of its main sub-models. Estimation of the model parameters under the bayesian

paradigm is currently underway and will be reported in a separate article elsewhere.
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Table 2. Parameter estimates for endurance of deep-groove ball bearings data.

Distribution HC BHC EHC KW-HC

Parameter Estimates δ̂ = 0.0285

δ̂ = 1.2285 δ̂ = 6.674 δ̂ = 5.0249

â = 12.9784 â = 4.1837 â = 4.1123

b̂ = 2.3629 b̂ = 3.1825 b̂ = 2.8709

Log likelihood -161.39 -146.85 -182.93 -109.25

AIC 316.40 189.44 245.68 117.36

K-S 0.5245 0.09597 0.1315 0.0417

K-S p-value 0.0000 0.8740 0.7564 0.9986
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Fig. 4. CDF for fitted distributions of the endurance of deep-groove ball bearings data.
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