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Abstract

The log-logistic distribution is widely used in survival analysis when the failure rate

function presents a unimodal shape. Based on the log-logistic and Kumaraswamy distribu-

tions, we introduce the called Kumaraswamy-log-logistic distribution. The new distribution

contains several important distributions discussed in the literature as sub-models such as

the log-logistic, exponentiated log-logistic and Burr XII distributions, among several others.

The beauty and importance of the new distribution lies in its ability to model non-monotonic

failure rate functions, which are quite common in lifetime data analysis and reliability. Some

of its structural properties are studied. We propose the Kumaraswamy-logistic regression

model which has, as sub-models, various widely-known regression models. We discuss the

method of maximum likelihood to estimate the model parameters and determine the ob-

served information matrix. Two real data sets illustrate the importance and flexibility of

the proposed models.

Keywords: Censored data; Log-logistic distribution; Maximum likelihood estimation; Mo-

ment; Order statistic; Regression model.

∗Department of Exact Sciences, University of São Paulo, Av. Pádua Dias 11, 13418-900 – Piracicaba, SP,
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1 Introduction

The log-logistic distribution is widely used in practice and it is an alternative to the log-

normal distribution since it presents a failure rate function that increases, reaches a peak after

some finite period and then declines gradually. The properties of the log-logistic distribution

make it an attractive alternative to the log-normal and Weibull distributions in the analysis of

survival data (Collet, 2003). This distribution can exhibit a monotonically decreasing failure

rate function for some parameter values. It shares some properties of the log-normal and normal

distributions (Ahmad et al., 1988), i.e., if T has a log-logistic distribution, then Y = log(T )

has a logistic distribution. Some applications of the log-logistic distribution are discussed in

economy to model the wealth and income (Kleiber and Kotz, 2003) and in hydrology to model

stream flow data (Ashkar and Mahdi, 2006). Collet (2003) suggested the log-logistic distribution

for modeling the time following a heart transplantation.

The distribution introduced by Kumaraswamy (1980), also refereed to as the “minimax”

distribution, is not very common among statisticians and has been little explored in the litera-

ture, nor its relative interchangeability with the beta distribution has been widely appreciated.

We use the term “Kum” distribution to denote the Kumaraswamy distribution. Its cumulative

distribution function (cdf) has a simple form

FKum(x) = 1− (1− xa)b−1, 0 < x < 1, (1)

where a > 0 and b > 0. The density function corresponding to (1) is

fKum(x) = a b xa−1 (1− xa)b−1, 0 < x < 1, (2)

which can be unimodal, increasing, decreasing or constant, depending on the parameter values.

Jones (2009) advocated the Kum distribution as a generator instead of the beta generator, since

its quantile function takes a simple form. He explored the background and genesis of the Kum

distribution and, more importantly, made clear some similarities and differences between the

beta and Kum distributions. Jones (2009) highlighted several advantages of the Kum distribu-

tion over the beta distribution: the normalizing constant is very simple, simple explicit formulae

for the distribution and quantile functions which do not involve any special functions and a sim-

ple formula for random variate generation. However, the beta distribution has the following

advantages over the Kum distribution: simpler formulae for moments and moment generat-

ing function (mgf), a one-parameter sub-family of symmetric distributions, simpler moment

estimation and more ways of generating the distribution by means of physical processes.

If G denotes the cdf of a random variable, Cordeiro and de Castro (2011) defined the Kum-G

distribution by

F (t) = 1− [1−Ga(t)]b, t > 0, (3)
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where a > 0 and b > 0 are two additional shape parameters to the G distribution, whose role is

to govern skewness and tail weights. The probability density function (pdf) corresponding to

(3) is

f(t) = a b g(t)G(t)a−1 [1−Ga(t)]b−1, (4)

where g(t) = dG(t)/dt. Equation (4) does not involve any special function, such as the incom-

plete beta function, as is the case of the β-G distribution proposed by Eugene et al. (2002).

So, the Kum-G distribution is obtained by adding two shape parameters a and b to the G

distribution. The generalization (4) contains distributions with unimodal and bathtub shaped

hazard rate functions. It also contemplates a broad class of models with monotonic hazard rate

function. Clearly, the Kum density function (2) is a basic exemplar of (4) for G(t) = t. A

physical interpretation of the Kum-G distribution given by (3) and (4) (for a and b positive

integers) is as follows. Consider a system is formed by b independent components and that

each component is made up of a independent subcomponents. Suppose the system fails if any

of the b components fails and that each component fails if all of the a subcomponents fail. Let

Tj1, . . . , Tja denote the lifetimes of the subcomponents within the jth component, j = 1, . . . , b,

having a common cdf G(t). Let Tj denote the lifetime of the jth component, for j = 1, . . . , b,

and let T denote the lifetime of the entire system. Then, the cdf of T is

Pr(T ≤ t) = 1− Pr (T1 > t, . . . , Tb > t) = 1− Prb (T1 > t)

= 1− {1− Pr (T1 ≤ t)}b = 1− {1− Pr (T11 ≤ t, . . . , T1a ≤ t)}b

= 1− {1− Pra (T11 ≤ t)}b = 1− {1−Ga(t)}b .

So, it follows that the Kum-G distribution given by (3) and (4) is precisely the time to failure

distribution of the entire system.

In this note, we combine the works of Kumaraswamy (1980) and Cordeiro and de Castro

(2011) to study the mathematical properties of a new four-parameter distribution refereed to as

the Kumaraswamy-log-logistic (KumLL) distribution. The new model contains a large number

of sub-models such as the log-logistic, exponentiated log-logistic, Burr XII, among others. The

new distribution is very suitable for testing goodness of fit of these sub-models and for defining

a widely regression model. We hope that this extension will attract wider applications in

reliability, medicine and other areas of research.

The rest of the article is organized as follows. In Section 2, we define the new distribution.

Some of its properties are presented in Section 3 including general expansions for the moments

and mgf. Mean deviations and Bonferroni and Lorenz curves are addressed in Section 4. Max-

imum likelihood estimation of the model parameters is investigated in Section 5. In Section 6,

we define another new model called the Kum-logistic (KumL) distribution and derive formal

expansions for its moments and mgf. Further, we define the KumL regression model and use

the method of maximum likelihood to estimate the model parameters. Two real lifetime data
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sets are analyzed in Section 7 to illustrate the usefulness of the KumLL and KumL models.

Finally, concluding remarks are addressed in Section 8.

2 The Kumaraswamy-log-logistic distribution

The cdf and pdf of the log-logistic (LL) distribution are (for t > 0)

Gα,γ(t) = 1−
[
1 +

( t

α

)γ]−1
and gα,γ(t) =

γ

αγ
tγ−1

[
1 +

( t

α

)γ]−2
, (5)

respectively, where α > 0 is scale parameter and γ > 0 is a shape parameter. Basic properties of

the log-logistic distribution are given, for example, by Kleiber and Kotz (2003), Lawless (2003)

and Ashkar and Mahdi (2006). The moments are easily derived as (Tadikamalla, 1980)

E(T r) = αr B(1− rγ−1, 1 + rγ−1) =
r π αr γ−1

sin(r π γ−1)
, r < γ,

where B(a, b) =
∫ 1
0 ωa−1 (1− ω)b−1dω is the beta function. Hence,

E(T ) =
π α γ−1

sin(π γ−1)
, γ > 1 and Var(T ) =

2π α2 γ−1

sin(2π γ−1)
−
[

π α γ−1

sin(π γ−1)

]2
, γ > 2.

By substituting (5) in (4), the KumLL density function with four parameters (a > 0, b > 0,

α > 0 and γ > 0) can be defined by

f(t) =
a b γ

αaγ
taγ−1

[
1 +

( t

α

)γ]−(a+1)
{
1−

[
1− 1

1 + ( t
α)

γ

]a}b−1

, t > 0, (6)

where α is a scale parameter and the shape parameters a, b and γ govern the skewness of (6).

The KumLL density is straightforward to compute using any statistical software with numerical

facilities. The new distribution due to its flexibility in accommodating non-monotonic failure

rate function may be an important distribution that can be used in a variety of problems in

modeling survival data. The log-logistic and exponentiated log-logistic distributions are clearly

the most important sub-models of (6) for a = b = 1 and b = 1, respectively. If a = 1, we

obtain the Burr XII distribution. If T is a random variable with density function (6), we write

T ∼KumLL(a, b, α, γ).

The survival and hazard rate functions corresponding to (6) are

S(t) = 1− F (t) =

{
1−

[
1− 1

1 + ( t
α)

γ

]a}b

(7)
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and

h(t) =
a b γ

αaγ
taγ−1

[
1 +

( t

α

)]−(a+1)
{
1−

[
1− 1

1 + ( t
α)

γ

]a}−1

,

respectively.

Plots of the KumLL density function for some parameter values are displayed in Figure

1. A characteristic of the proposed distribution is that its failure rate function accommodates

increasing, decreasing, unimodal and bathtub shaped forms, that depend basically on the values

of the shape parameters. Moreover, it is quite flexible for modeling survival data.

Alternatively, other works had introduced new distributions for modeling bathtub shaped

failure rate. For example, the exponentiated Weibull (EW) distribution introduced by Mud-

holkar et al. (1995, 1996), the additive Weibull distribution presented by Xie and Lai (1995),

the extended Weibull distribution (Xie et al. 2002), the modified Weibull (MW) distribution

proposed by Lai et al. (2003), the beta exponential (BE) distribution introduced by Nadara-

jah and Kotz (2006), the extended flexible Weibull distribution defined by Bebbington et al.

(2007), the beta Weibull (BW) distribution studied by Lee et al. (2007), the generalized mod-

ified Weibull (GMW) distribution proposed by Carrasco et al. (2008) and, more recently, the

beta modified Weibull (BMW) distribution investigated by Silva et al. (2010).

Plots of the KumLL hazard rate function for selected parameter values are given in Figure

2.

The KumLL quantile function is determined by inverting F (t) in (7)

t = Q(u) = α
{[

1− {1− (1− u)1/b}1/a
]−1/γ − 1

}
. (8)

Thus, the new distribution is easily simulated as T = Q(U), where U has the uniform U(0, 1)

distribution. This compares extremely favorably with the sophisticated algorithms preferred to

simulate random variates from the beta generated distributions.

3 Basic Properties

We provide simple expansions for the KumLL density function depending on whether the

parameter b (or a) is real non-integer or integer. Further, we derive infinite sums for its moments

and mgf.

3.1 Expansions for the KumLL density function

Using the binomial expansion in (4), the KumLL density function can be expressed as

f(t) = gα,γ(t)
∞∑

i=0

wiGα,γ(t)
a(i+1)−1 (9)
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Figure 1: The KumLL density function for some parameter values. (a) For different values of
a and α with b = 1.5 and γ = 1.5. (b) For different values of a, b and γ with α = 1.5. (c) For
different values of a, α γ with b = 1.5.
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Figure 2: The KumLL hazard rate function. (a) Increasing and decreasing shapes. (b) Unimodal
shaped. (c) Bathtub shaped.

where wi = wi(a, b) = (−1)i a b
(
b−1
i

)
. If b is an integer, the index i in the previous sum stops

at b − 1. If a is an integer, equation (9) reveals that the KumLL density function equals the
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LL density function multiplied by an infinite weighted power series of Gα,γ(t). Otherwise, if a

is real non-integer, we can use the expansion

G(t)a =
∞∑

r=0

sr(a)Gα,γ(t)
r, (10)

where

sr(a) =
∞∑

j=r

(−1)r+j

(
a

j

)(
j

r

)
. (11)

So, we can write

f(t) = gα,γ(t)
∞∑

r=0

tr Gα,γ(t)
r, (12)

where the coefficients are tr = tr(a, b) =
∑∞

i=0wi sr(a(i+1)−1) and the quantity sr(a(i+1)−1)

can be calculated from (11).

3.2 Moments and Generating function

The probability weighted moments (PWMs) of a random variable T with cdf G(t) are defined

by τk,n = E[T k G(T )n] for k and n positive integers. Here, the PWMs of the LL distribution

are used to compute the ordinary moments of the KumLL distribution.

Theorem 1: If T ∼LL(α, γ), for k < γ, we obtain

τk,n =
γ

αγ

∫ ∞

0
tk+γ−1

[
1 +

(
t

α

)γ]−2
{
1−

[
1 +

(
t

α

)γ]−1
}n

dt

= αk

∫ 1

0
w−kγ−1

(1− w)n+kγ−1

dw = αk B(n+ 1 + k γ−1, 1− k γ−1).

Theorem 2: If T ∼KumLL(a, b, α, γ), for k < γ, the kth moment of T can be expressed as:

• For a > 0 integer,

µ′
k = αk

∞∑

i=0

wiB(a(i+ 1) + k γ−1, 1− kγ−1). (13)

• For a > 0 real non-integer,

µ′
k = αk

∞∑

r=0

tr B(r + 1 + k γ−1, 1− k γ−1). (14)

The proof is given in Appendix A. The skewness and kurtosis measures can be calculated from

the ordinary moments using well-known relationships. Plots of the skewness and kurtosis for
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some choices of the parameter b as function of a, and for some choices of the parameter a as

function of b, are displayed in Figures 3 and 4, respectively. These plots immediately reveal

that the skewness and kurtosis depend on both parameters a and b.

The mgf of T can be expressed as

M(−s) =

∫ ∞

0
exp(−st) f(t)dt =

∞∑

k=0

(−s)k

k!

∫ ∞

0
tkf(t)dt =

∞∑

k=0

µ′
k (−s)k

k!
.

Now, we provide an alternative representation for M(−s). Let A(t) = (tα−1)γ . We can write

M(−s) =
a b γ

αaγ

∫ ∞

0
exp(−st) taγ−1 [1 +A(t)]−(a+1) {1− [1− [1 +A(t)]−1]a}b−1dt

Since 0 < [1 +A(t)]−1 < 1, we obtain

{1− [1− [1 +A(t)]−1]a}b−1 =
∞∑

i,j=0

(−1)i+j

(
b− 1

i

)(
ai

j

)
[1 +A(t)]−j

and then

M(−s) =
a b γ

αaγ

∞∑

i,j=0

(−1)i+j

(
b− 1

i

)(
ai

j

)∫ ∞

0
exp(−st) taγ−1 [1 +A(t)]−jdt,

where the integral Ij(s) reduces to

Ij(s) = αaγ

∫ ∞

0

xaγ−1 exp(−sαx)

(1 + xγ)j
dx.

The quantity Ij(s) can be calculated provided that γ = p/q, where p and q are co-primes natural

numbers. In this case, using integral (2.3.1) in Prudnikov et al. (1986), we obtain

Ij(s) = αaγ (P +Q).

Here,

P =

p−1∑

h=0

(−sα)h

h!γ
B(a1, 1− ρ− a1) q+1Fq+p(1,∆(q, a1);∆(p, 1 + h),∆(q, b1); z),

Q =

q−1∑

k=1

(−1)k j

(k − 1)!
(sα)v1 Γ(aγ − 2kγ) q+1Fq+p(1,∆(q, j + k);∆(p, b2),∆(q, 1 + k); z),

where v1 = γ[j+k−a], a1 = (aγ+h)/γ, b1 = a1+1−j, b2 = 1+γ(j+k−a), z = (−1)p+q
(
sα
q

)p
,
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∆(k, a) = (a/k, (a+ 1)/k, · · · , (a+ k − 1)/k),

pFq(a1, a2, · · · , ap; b1, b2, · · · , bq; z) =
∞∑

k=0

(a1)k(a2)k . . . (ap)kz
k

(b1)k(b2)k . . . (bp)kk!

is the generalized hypergeometric function and (f)k = f(f + 1) . . . (f + k − 1) denotes the

ascending factorial. The condition γ = p/q is not restrictive since every real number can be

approximated by a rational number.
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Figure 3: Skewness and kurtosis of the KumLL distribution as a function of a for some values
of b and α = 2 and γ = 1.

A second alternative expansion for the mgf follows by expanding the binomial terms in the

quantile function (8). We have

Q(u) = α

(
∞∑

k=0

qk u
k − 1

)
,

where

qk = (−1)k
(
j/b

k

) ∞∑

i,j=0

(−1)i+j

(−γ−1

i

)(
i/a

j

)
.

Hence, the mgf of T reduces to

M(s) =

∫ 1

0
exp

{
s α

(
∞∑

k=0

qk u
k − 1

)}
du =

∞∑

m=0

sm αm

m!

∫ 1

0

(
∞∑

k=0

qk u
k − 1

)m

du.
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Figure 4: Skewness and kurtosis of the KumLL distribution as a function of b for some values
of a and α = γ = 2.

We have

M(s) =
∞∑

m=0

m∑

r=0

(
m

r

)
(−1)m−rsm αm

m!

∫ 1

0

(
∞∑

k=0

qk u
k

)r

du.

We use an equation in Section 0.314 of Gradshteyn and Ryzhik (2000) for a power series

raised to a positive integer j given by

(
∞∑

k=0

qk u
k

)r

=
∞∑

k=0

cr,k u
k, (15)

where the coefficients cr,k can be obtained from the recurrence equation (for k = 1, 2, . . .)

cr,k = (k q0)
−1

k∑

t=1

[t (r + 1)− k] qt cr,k−t (16)

and cr,0 = qr0. Hence, the coefficients cr,k are directly determined from cr,0, . . . , cr,k−1 and,

then, from the quantities q0, . . . , qk. They can be given explicitly in terms of the qk’s, although

it is not necessary for programming numerically our expansions in any algebraic or numerical

software. Hence, we obtain

M(s) =
∞∑

m=0

bm
sm

m!
, (17)
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where

bm = αm
∞∑

k=0

m∑

r=0

(
m

r

)
(−1)m−r cr,k

(k + 1)
.

Clearly, the moments of T follow by simple differentiation of (17) as µ′
m = E(Tm) = bm.

4 Other Measures

Here, we compute the means deviations, Bonferroni and Lorenz curves. The amount of

scatter in a population is evidently measured to some extent by the totality of deviations from

the mean and median. If T has the KumLL distribution with density function (6), we can derive

the mean deviations about the mean µ′
1 = E(T ) (which follows from Theorem 2) and about the

median m from the relations

δ1 = 2µ′
1 F (µ′

1)− 2T (µ′
1) and δ2 = µ′

1 − 2T (m),

where T (z) =
∫ z
0 t f(t). The median is m = α

{[
1 − {1 − 2−1/b}1/a

]−1/γ − 1
}
. From equation

(4) and by integration by parts, we have

T (z) = a b γ α−1
∞∑

k=0

(−1)k
(
b− 1

k

) ∫ z

0
t

(
t

α

)−γ−1
[
1 +

(
t

α

)−γ
]−1−a(k+1)

dt.

Using Theorem 1, we obtain

T (z) = a bα
∞∑

k=0

(−1)k
(
b− 1

k

)
BGα,γ(z)

(
a(k + 1) + γ−1, 1− γ−1

)
, (18)

where Bw(a, b) =
∫ w
0 xa−1 (1− x)b−1dx is the incomplete beta ratio function and γ > 1. From

equation (18), we can obtain δ1 and δ2.

An application of T (z) refers to the Bonferroni and Lorenz curves. These curves have

applications in fields like reliability, demography, economics, insurance and medicine. They are

defined by

B(π) =
T (q)

π µ′
1

and L(π) =
T (q)

µ′
1

,

respectively, where the quantile function q = Q(π) is determined from (8) to yield q for a given

probability π.
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5 Maximum Likelihood Estimation

Let Ti be a random variable following (6) with the vector of parameters θ = (a, b, α, γ)T .

The data encountered in survival analysis and reliability studies are often censored. A very

simple random censoring mechanism that is often realistic is one in which each individual i

is assumed to have a lifetime Ti and a censoring time Ci, where Ti and Ci are independent

random variables. Suppose that the data consist of n independent observations ti = min(Ti, Ci)

for i = 1, . . . , n. The distribution of Ci does not depend on any of the unknown parameters

of Ti. Parametric inference for such data are usually based on likelihood methods and their

asymptotic theory. The censored log-likelihood l(θ) for the model parameters is

l(θ) = r log
(a b γ
αaγ

)
+ (aγ − 1)

∑

i∈F

log(ti)− (a+ 1)
∑

i∈F

log
[
1 +

( ti
α

)γ]
+

(b− 1)
∑

i∈F

log

{
1−

[
1− 1

1 + ( tiα )
γ

]a}
+ b

∑

i∈C

log

{
1−

[
1− 1

1 + ( tiα )
γ

]a}
, (19)

where r is the number of failures and F and C denote the uncensored and censored sets of

observations, respectively. The score functions corresponding to the components in θ are

Ua(θ) =
r

a
[1− aγ log(α)] + γ

∑

i∈F

log(ti)−
∑

i∈F

log
[
1 +

( ti
α

)γ]
− (b− 1)

∑

i∈F

uai log(ui)

(1− uai )

−b
∑

i∈C

uai log(ui)

(1− uai )
,

Ub(θ) =
r

b
+
∑

i∈F

log(1− uai ) +
∑

i∈C

log(1− uai ),

Uα(θ) = −r a γ

α
+

(a+ 1)γ

α

∑

i∈F

( tiα )
γ

(1 + ti
α )

γ
+

(b− 1)aγ

α

∑

i∈F

uai (
ti
α )

γ

[1 + ( tiα )
γ ]2ui(1− uai )

+
b a γ

α

∑

i∈C

uai (
ti
α )

γ

[1 + ( tiα )
γ ]2ui(1− uai )

and

Uγ(θ) =
r

γ
[1− aγ log(α)] + a

∑

i∈F

log(ti)− (a+ 1)
∑

i∈F

( tiα )
γ log( tiα )

1 + ( tiα )
γ

−(b− 1)a
∑

i∈F

uai (
ti
α )

γ log( tiα )

[1 + ( tiα )
γ ]2ui(1− uai )

− ba
∑

i∈C

uai (
ti
α )

γ log( tiα )

[1 + ( tiα )
γ ]2ui(1− uai )

,
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where ui = 1− [1 + ( tiα )
γ ]−1.

For interval estimation and hypothesis tests on the model parameters, we require the 4× 4

unit observed information matrix

J = J(θ) =




Jaa Jab Jaα Jaγ

Jbb Jbα Jbγ

Jαα Jαγ

Jγγ




,

where the elements are defined in Appendix B. Consequently, the MLE θ̂ of θ can be obtained

numerically from the nonlinear equations Ua(θ) = 0, Ub(θ) = 0, Uα(θ) = 0 and Uγ(θ) = 0.

Under conditions that are fulfilled for parameters in the interior of the parameter space but

not on the boundary, the asymptotic distribution of
√
n(θ̂ − θ) is N4(0, I(θ)

−1), where I(θ)

is the unit expected information matrix. This approximated distribution holds when I(θ) is

replaced by J(θ̂), i.e., the observed information matrix evaluated at θ̂. The multivariate normal

N4(0, J(θ̂)
−1) distribution for

√
n(θ̂ − θ) can be used to construct approximate confidence

intervals for the individual parameters and for the hazard and survival functions. In fact, an

asymptotic confidence interval with significance level γ for each parameter θr is given by

ACI(θr, 100(1− γ)%) =

(
θ̂r − zγ/2

√
ˆ̈Jθr,θr , θ̂r + zγ/2

√
ˆ̈Jθr,θr

)
,

where ˆ̈Jr,r is the estimated rth diagonal element of J(θ̂)−1 for r = 1, . . . , 4 and zγ/2 is the

quantile 1− γ/2 of the standard normal distribution.

The likelihood ratio (LR) statistic is useful for testing the goodness-of-fit of the KumLL

distribution and for comparing it with some of its sub-models (see Section 2). We can compute

the maximum values of the unrestricted and restricted log-likelihoods to construct LR statistics.

For example, we may use the LR statistic to check if the fit using the KumLL distribution is sta-

tistically “superior” to the fits using the exponentiated-log-logistic and log-logistic distributions

for a given data set. In any case, hypothesis tests of the type H0 : θ = θ0 versus H : θ 6= θ0,

where θ0 is a specified vector, can be performed using LR statistics. For example, the test of

H0 : b = 1 versus H : H0 not true is equivalent to compare the exponentiated-log-logistic and

KumLL distributions, for which the LR statistic is w = 2
[
ℓ(â, b̂, α̂, γ̂) − ℓ(ã, 1, α̃, γ̃)

]
, where â,

b̂, α̂ and γ̂ are the MLEs under H and ã, α̃ and γ̃ are the estimates under H0.

6 The Kumaraswamy-Logistic Regression Model

In many practical applications, lifetimes are affected by variables, which are referred to

as explanatory variables or covariates, such as the cholesterol level, blood pressure and many
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others. So it is important to explore the relationship between the lifetime and explanatory

variables. An approach based on a regression model can be used. The vector of explanatory

variables is denoted by x = (x1, . . . , xp)
T , which is related to response variable Y = log(T )

through a regression model. We require the distribution of Y = log(T ) referred to as the

Kum-logistic (KumL) distribution.

6.1 The KumL distribution

Let T be a random variable having the KumLL density function (6). The random variable

Y = log(T ) has a KumL density function, parameterized in terms of γ = σ−1 and α = exp(µ),

given by

f(y) =
a b

σ
exp

[
a
(y − µ

σ

)][
1 + exp

(y − µ

σ

)]−(a+1)
{
1−

[
1− 1

1 + exp(y−µ
σ )

]a}b−1

, (20)

where −∞ < y, µ < ∞, a > 0, b > 0 and σ > 0. A random variable Y following (20) is denoted

by Y ∼KumL(a, b, µ, σ), where µ is the location parameter, σ is the dispersion parameter and

a and b are shape parameters. Thus,

if T ∼ KumLL(a, b, α, γ) then Y = log(T ) ∼ KumL(a, b, µ, σ).

An important characteristic of this distribution is that it contains some important sub-models.

It becomes the logistic distribution when a = b = 1. If b = 1, it gives the exponentiated logistic

(exp-logistic) distribution. If σ = γ−1, a = α and x = y + µ, it leads to the generalized logistic

distribution (Alkasasbeh and Raqab, 2009). Further, if a = 2 and b = 1, it reduces to the skew

logistic distribution, see, for example, Nadarajah (2009).

The plots of the density function (20) for selected parameter values are given in Figure 5.

These plots show great flexibility of the new parameters a and b, which can be useful in several

practical situations. The associated survival function is

S(y) =

{
1−

[
1− 1

1− exp(y−µ
σ )

]a}b

.

The random variable Z = (Y − µ)/σ has density function

π(z) = a b exp(az) [1 + exp(z)]−(a+1)

{
1−

[
1− 1

1 + exp(z)

]a}b−1

, −∞ < z < ∞. (21)
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Figure 5: Plots of the KumL density function for some parameter values. (a) For b = 1, µ = 0
and σ = 1. (b) For a = 1, µ = 0 and σ = 1. (c) For values different of a, b, µ and σ.

Now, we can expand the binomial term in (21) to obtain

{
1−

∞∑

i=0

(−1)i
(
a

i

)
{1 + exp(z)}−i

}b−1

=
∞∑

j=0

(−1)j
(
b− 1

j

) { ∞∑

i=0

fi [1 + exp(z)]−i

}j

,

where fi = (−1)i
(
a
i

)
. Then, using (15) and (16), we can obtain

π(z) = a b
∞∑

i,j=0

(−1)j
(
b− 1

j

)
dj,i exp(az) [1 + exp(z)]−(a+i+1). (22)

where the quantities dj,i can be followed from the recurrence equation (for j = 1, 2, . . .)

dj,i = (i f0)
−1

i∑

t=1

[(j + 1) t− i] ft dj,i−t.

The kth moment of Z is given by

E(Zk) = a b
∞∑

i,j=0

(−1)j
(
b− 1

j

)
dj,i

∫ ∞

−∞

zk exp(az) [1 + exp(z)]−(a+i+1)dz.
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Setting x = exp(z), we obtain

E(Zk) = a b

∞∑

i,j=0

(−1)j
(
b− 1

j

)
dj,i

∫ ∞

0
xa−1 (1 + x)−(a+i+1) logk(x)dx.

Using equation (2.6.4.6) in Prudnikov et al.(1986), we calculate the integral as

∫ ∞

0
xa−1 (1 + x)−(a+i+1) logk(x)dx =

(
∂

∂a

)k

[B(a, i+ 1)]

and then

E(Zk) = a b
∞∑

i,j=0

(−1)j
(
b− 1

j

)
dj,i

(
∂

∂a

)k

[B(a, i+ 1)] . (23)

The skewness and kurtosis measures can be calculated from the ordinary moments (23) using

well-known relationships. Plots of these measures for some choices of b as function of a, and

for some choices of a as function of b, with µ = 1 and σ = 2, are displayed in Figures 6 and 7,

respectively.
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Figure 6: Skewness and kurtosis of the KumL distribution as a function of a for some values of
b.

6.2 Model and Estimation

Let xi = (xi1, . . . , xip)
T be the explanatory variable vector associated with the ith response

variable yi for i = 1, . . . , n. Consider a sample (y1,x1), . . . , (yn,xn) of n independent observa-

tions, where each random response is defined by yi = min{log(ti), log(ci)}. We assume non-
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Figure 7: Skewness and kurtosis of the KumL distribution as a function of b for some values of
a.

informative censoring and that the observed lifetimes and censoring times are independent. We

propose a log-linear regression model for the response variable yi based on the KumL density

function given by

yi = xT
i β + σzi, i = 1, . . . , n, (24)

where the random error zi follows the distribution (21), β = (β1, . . . , βp)
T , σ > 0, a > 0 and

b > 0 are unknown scale parameters and xi is the explanatory variable vector modeling the

location parameter µi = xT
i β. Hence, the location parameter vector µ = (µ1, . . . , µn)

T of the

KumL model has a linear structure µ = Xβ, where X = (x1, . . . ,xn)
T is a known model matrix.

The logistic regression model can be defined by equation (24) with a = b = 1.

Let F and C be the sets of individuals for which yi is the log-lifetime or log-censoring,

respectively. The total log-likelihood function for the model parameters θ = (a, b, σ,βT )T can

be expressed from equations (21) and (24) as

l(θ) = r log
(a b
σ

)
+ a

∑

i∈F

zi − (a+ 1)
∑

i∈F

log[1 + exp(zi)]

+(b− 1)
∑

i∈F

log
{
1−

[
1− 1

1 + exp(zi)

]a}
+ b

∑

i∈C

log
{
1−

[
1− 1

1− exp(zi)

]a}
,(25)

where zi = (yi − xT
i β)/σ and r is the observed number of failures. The maximum likelihood

estimate (MLE) θ̂ of θ can be obtained by maximizing the log-likelihood function (25) using

the procedure NLMixed in SAS. From the fitted model (24), the survival function for yi can be
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estimated by

S(yi; â, b̂, σ̂, β̂
T
) =

{
1−

[
1− 1

1− exp
(
yi−x

T ̂β
σ̂

)
]â}b̂

(26)

or

S(ti; â, b̂, α̂, γ̂) =

{
1−

[
1− 1

1 + ( tiα̂ )
γ̂

]â}b̂

, (27)

where γ̂ = σ̂−1 and α̂ = exp(xT β̂).

Under general regularity conditions, the asymptotic distribution of
√
n(θ̂−θ) is multivariate

normal Np+3(0,K(θ)−1), where K(θ) is the expected information matrix. The asymptotic cova-

riance matrix K(θ)−1 of θ̂ can be approximated by the inverse of the (p+3)× (p+3) observed

information matrix J(θ) and then the asymptotic inference for the parameter vector θ can be

based on the normal approximation Np+3(0, J(θ)
−1) for θ̂. The observed information matrix is

J(θ) =




Jaa Jab Jaσ Jaβj

. Jbb Jbσ Jbβj

. . Jσσ Jσβj

. . . Jβjβs




,

whose elements can be computed numerically.

The asymptotic multivariate normal Np+3(0, J(θ)
−1) distribution can be used to construct

approximate confidence regions for some parameters in θ. In fact, an 100(1− α)% asymptotic

confidence interval for each parameter θr is given by

ACIr =

(
θ̂r − zα/2

√
̂̈J
r,r

, θ̂r + zα/2

√
̂̈J
r,r
)
,

where ̂̈J
r,r

denotes the rth diagonal element of the inverse of the estimated observed information

matrix J(θ̂)−1 and zα/2 is the quantile 1− α/2 of the standard normal distribution.

The interpretation of the estimated coefficients could be based on the ratio of median times

(see Hosmer and Lemeshow, 1999) which holds for continuous or categorical explanatory vari-

ables. When the explanatory variable is binary (0 or 1), and considering the ratio of median

times with x = 1 in the numerator, if β̂ is negative (positive), it implies that the individuals

with x = 1 present reduced (increased) median survival time in [exp(β̂) × 100%] as compared

to those individuals in the group with x = 0, assuming that the other explanatory variables are

fixed.

We are also interested to investigate if the KumL model is a good model to fit the data under
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investigation. Clearly, the LR statistic can be used to discriminate between the exponentiated

logistic and KumL models since they are nested models. In this case, the hypotheses to be

tested are H0 : b = 1 versus H1 : b 6= 1 and the LR statistic reduces to w = 2{l(θ̂) − l(θ̃)},
where θ̃ is the MLE of θ under H0. The null hypothesis is rejected if w > χ2

1(1 − α), where

χ2
1(1− α) is the quantile of the chi-square distribution with one degree of freedom.

7 Applications

We provide two applications to real data with right censored to demonstrate the usefulness of

the KumLL distribution. We consider an application with no covariates to AIDS data reported

by Silva (2004) and other application to malanoma data (Ibrahim et al., 2001) using the new

regression model.

7.1 AIDS data

Aids is a pathology that mobilizes the sufferers because of the implications for their interper-

sonal relationships and reproduction. Therapeutic advances have enabled seropositive women

to bear children safely. In this respect, the pediatric immunology outpatient service and social

service of the Hospital das Cĺınicas have a special program for care of newborns of seropositive

mothers, to provide orientation and support for antiretroviral therapy to allow these women

and their babies to live as normally as possible. We analyze a data set on the time to serum

reversal of 143 children exposed to HIV by vertical transmission, born at Hospital das Cĺınicas

(associated with the Ribeirão Preto School of Medicine) from 1995 to 2001, where the mothers

were not treated (Silva, 2004; Perdoná, 2006). Vertical HIV transmission can occur during

gestation in around 35% of cases, during labor and birth itself in some 65% of cases, or during

breast feeding, varying from 7% to 22% of cases. Serum reversal or serological reversal can occur

in children of HIV-contaminated mothers. It is the process by which HIV antibodies disappear

from the blood in an individual who tested positive for HIV infection. As the months pass,

the maternal antibodies are eliminated and the child ceases to be HIV positive. The exposed

newborns were monitored until definition of their serological condition, after administration of

Zidovudin (AZT) in the first 24 hours and for the following 6 weeks.

Table 1 displays the MLEs (and the corresponding standard errors in parentheses) of the

model parameters and the values for some models of the following statistics: AIC (Akaike

Information Criterion), BIC (Bayesian Information Criterion) and CAIC (Consistent Akaike

Information Criterion). The computations were done using the subroutine NLMixed in SAS.

These results indicate that the KumLL model has the lowest AIC, BIC and CAIC values among

those values of the fitted models, and therefore it could be chosen as the best model.

The LR statistic for testing the hypotheses H0: a = b = 1 versus H1: H0 is not true, i.e.

to compare the log-logistic and KumLL models, is w = 37.9 (p-value <0.0001), which yields
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Table 1: MLEs of the model parameters for the the AIDS data, the corresponding SE (given in
parentheses) and the measures AIC, BIC and CAIC.

Modelo a b α γ AIC CAIC BIC

KumLL 0.08 0.28 499.37 15.46 1616.5 1616.8 1628.4
(0.02) (0.07) (29.34) (3.78)

Log-logistic 1 1 454.87 3.29 1650.4 1650.5 1656.4
(20.58) (0.26)

α1 γ2

Weibull - - 537.46 2.35 1630.6 1630.7 1636.5
(21.41) (0.16)

µ σ

Log-normal - - 6.03 0.71 1704.1 1704.2 1710.0
(0.05) (0.05)

favorable indications toward to the KumLL model. In order to assess if the model is appropriate,

the estimated survival function for the KumLL distribution and some of its sub-models and the

empirical survival function are given in Figure 8. These plots indicate that the KumLL model

provides a good fit for the current data.
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Figure 8: Estimated survival functions and the empirical survival function for AIDS data.
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7.2 Melanoma Data

Here, the application of the regression model to a real data set on cancer recurrence is

discussed. The data are part of a study on cutaneous melanoma (a type of malignant cancer)

for the evaluation of postoperative treatment performance with a high dose of a certain drug

(interferon alfa-2b) in order to prevent recurrence. Patients were included in the study from

1991 to 1995 and follow-up was conducted until 1998. These data (Ibrahim et al., 2001) present

the survival times, T , defined as the time until the patient’s death. The original sample size

was n = 427 patients, 10 of whom did not present a value for the explanatory variable tumor

thickness. When such cases were removed, a sample of size n = 417 patients was retained. The

percentage of censored observations was 56%. The following variables were associated with each

participant, i = 1, . . . , 417: yi: observed time (in years); ci: censoring indicator (0=censoring,

1=lifetime observed); xi1: nodule (nodule category: 1 to 4). The variable nodule category from

1 to 4 is coded from the number of lymph nodes involved in the disease (0, 1, 2− 3, and ≥ 4).

We analyze these data using the KumL regression model. First, we consider the structure

yi = β0 + β1xi1 + σzi, i = 1, . . . , 417, (28)

where the errors z1, . . . , z417 are independent random variables having the density function (21).

Table 2 lists the MLEs of the parameters for the KumL and logistic regression models fitted

to the melanoma data (using the procedure NLMixed in SAS) and the values of the AIC, BIC

and CAIC statistics to compare the KumL and logistic regression models. The KumL regression

model outperforms the logistic model irrespective of the criteria and can be used effectively in

the analysis of these data. The new model involves two extra parameters which gives more

flexibility to fit these data.

Table 2: MLEs of the parameters from the KumL regression model fitted to the melanoma
data, the corresponding SEs (given in parentheses), p-values in [.] and the AIC, CAIC and BIC
measures.

Model a b σ β0 β1 AIC CAIC BIC

KumL 0.53 0.11 0.26 0.87 -0.33 892.3 892.4 912.5
(0.39) (0.05) (0.12) (0.19) (0.06)

[<0.0001] [<0.0001]

logistic 1 1 0.75 2.43 -0.37 918.5 918.7 930.7
(-) (-) (0.04) (0.19) (0.07)

[<0.0001] [<0.0001]

The LR statistic for testing the hypotheses H0: a = b = 1 versus H1: H0 is not true,

i.e. to compare the logistic and KumL regression models, is w = 30.30 (p-value <0.0001)

supporting the KumL model. Further, we note from the fitted KumL regression model that
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x1 is significant at 1% and that there is a significant difference between the nodule levels 1, 2,

3 and 4 for the failure times. A graphical comparison between the KumL and logistic models

(see Figure 9) reveals that the larger model provides a superior fit. The plots of the estimated

survival function (27) for the KumL and logistic regression models and the empirical survival

function are displayed in Figure 9.
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Figure 9: Estimated survival functions for the fitted KumL and logistic models and the empirical
survival function for each level of the melanoma data.

8 Conclusions

A four parameter lifetime distribution called “the Kumaraswamy-log-logistic (KumLL) dis-

tribution” is proposed. It is a simple generalization of the log-logistic distribution. The new

model extends several distributions widely used in the lifetime literature and it is more flexible

than the exponentiated log-logistic and log-logistic distributions. The new distribution could

have increasing, decreasing, bathtub and unimodal hazard rate functions. It is then very ver-

satile to model lifetime data with a bathtub shaped hazard rate function and also to model a

variety of uncertainty situations. Explicit expressions for the moments and moment generating

function are provided. The application of the new distribution is straightforward. We discuss

maximum likelihood estimation and hypothesis tests for the model parameters. Further, we

define the called Kumaraswamy-logistic (KumL) distribution and derive an expansion for its

moments. Based on this new distribution, we define the KumL regression model which is very

suitable for modeling censored and uncensored lifetime data. The new regression model allows
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to test the goodness of fit of some known regression models as special models. Hence, the

proposed regression model serves as a good alternative for lifetime data analysis. We use the

procedure NLMixed in SAS to obtain the maximum likelihood estimates and perform asymp-

totic likelihood ratio tests for the model parameters. We demonstrate in two applications to real

data that the KumLL and KumL distributions can produce better fits than their sub-models.

Appendix A: Proof of Theorem 2

For the KumLL distribution (6), the moments are

µ′
k =

∞∫

0

tkf(t)dt, t > 0.

For a integer, from (9) and (12), we obtain

µ′
k =

∞∑

i=0

wi

∫ ∞

0
tkgα,γ(t)Gα,γ(t)

a(i+1)−1dt.

If a is real non-integer, we have

µ′
k =

∞∑

r=0

tr

∞∫

0

tkgα,γ(t)Gα,γ(t)
rdt

Hence,

µ′
k =





αk
∞∑
i=0

wi B(a(i+ 1) + kγ−1, 1− kγ−1), for a integer,

αk
∞∑
r=0

tr B(r + 1 + kγ−1, 1− kγ−1), for a real non-integer. �

9 *

Appendix B

By differentiating (19), the elements of the observed information matrix J(θ) for the para-

meters (a, b, α, γ) are:

Jaa = − r

a2
− (b− 1)

∑

i∈F

[log(ui)]
2 u

a
i + u2ai

[1− uai ]
2
− b

∑

i∈C

[log(ui)]
2 u

a
i + u2ai

[1− uai ]
2
,

Jab = −
∑

i∈F

uai log(ui)

1− uai
−
∑

i∈C

uai log(ui)

1− uai
,
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Jaα = −rγ

α
+

γ

α

∑

i∈F

(
ti
α

)γ

1 +
(
ti
α

)γ +
(b− 1)γ

α

∑

i∈F

(
ti
α

)γ

[1 +
(
ti
α

)γ
]2

ua−1
i

1− uai

{
1 +

a log(ui)

1− uai

}
+

+
bγ

α

∑

i∈C

(
ti
α

)γ

[1 +
(
ti
α

)γ
]2

ua−1
i

1− uai

{
1 +

a log(ui)

1− uai

}
,

Jaγ = −r log(α) +
∑

i∈F

log(ti)−
∑

i∈F

(
ti
α

)γ

1 +
(
ti
α

)γ log

(
ti
α

)
−

− (b− 1)
∑

i∈F

(
ti
α

)γ

[1 +
(
ti
α

)γ
]2

ua−1
i

1− uai
log

(
ti
α

){
1 +

a log(ui)

1− uai

}
−

− b
∑

i∈C

(
ti
α

)γ

[1 +
(
ti
α

)γ
]2

ua−1
i

1− uai
log

(
ti
α

){
1 +

a log(ui)

1− uai

}
,

Jbb = − r

b2
,

Jbα =
aγ

α

∑

i∈F

(
ti
α

)γ

[1 +
(
ti
α

)γ
]2

ua−1
i

1− uai
+

aγ

α

∑

i∈C

(
ti
α

)γ

[1 +
(
ti
α

)γ
]2

ua−1
i

1− uai
,

Jbγ = −a
∑

i∈F

(
ti
α

)γ

[1 +
(
ti
α

)γ
]2

ua−1
i

1− uai
log

(
ti
α

)
− a

∑

i∈C

(
ti
α

)γ

[1 +
(
ti
α

)γ
]2

ua−1
i

1− uai
log

(
ti
α

)
,

Jαα =
raγ

α2
− (a+ 1)γ

α2

∑

i∈F

(
ti
α

)γ

1 +
(
ti
α

)γ

[
1 +

γ

1 +
(
ti
α

)γ

]
− a(b− 1)γ

α2

∑

i∈F

ua−1
i

1− uai

(
ti
α

)γ

[1 +
(
ti
α

)γ
]2

−

− a(b− 1)γ2

α2

∑

i∈F

{ (
ti
α

)2γ

[1 +
(
ti
α

)γ
]4
(a− 1)ua−2

i + u2a−2
i

[1− uai ]
2

+
ua−1
i
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(
ti
α

)γ 1−
(
ti
α

)γ
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(
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]3

}
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(
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(
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α
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− abγ2
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{ (
ti
α
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(
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i
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2
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+
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(
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α
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(
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(
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}
,
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Jαγ = −ra

α
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.
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