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Abstract

Synchronization phenomena in large populations of interacting elements are the

subject of intense research efforts in physical, biological, chemical, and social sys-

tems. A successful approach to the problem of synchronization consists of modeling

each member of the population as a phase oscillator. In this review, synchronization

is analyzed in one of the most representative models of coupled phase oscillators, the

Kuramoto model. A rigorous mathematical treatment, specific numerical methods,

and many variations and extensions of the original model that have appeared in the

last years are presented. Relevant applications of the model in different contexts

are also included.

∗Electronic address: acebron@dei.unipd.it

1



†Electronic address: bonilla@ing.uc3m.es
‡Electronic address: conrad@ffn.ub.es
§Electronic address: ritort@ffn.ub.es
¶Electronic address: spigler@mat.uniroma3.it

2



Contents

I. Introduction 5

II. The Kuramoto model 8

A. Stationary synchronization for mean-field coupling 9

B. Stability of solutions and open problems 13

1. Synchronization in the limit N = ∞ 13

2. Finite size effects 16

III. The mean field model including white noise forces 18

A. The nonlinear Fokker-Planck equation 18

B. Linear stability analysis of incoherence 19

C. The role of g(ω): Phase diagram of the Kuramoto model 20

D. Synchronized phases as bifurcations from incoherence, D 6= 0 22

1. Bifurcation of a synchronized stationary phase 24

2. Bifurcation of synchronized oscillatory phases 27

3. Bifurcation at the tricritical point 29

IV. Variations of the Kuramoto model 32

A. Short-range models 32

B. Models with disorder 38

1. Disorder in the coupling: the oscillator glass model 39

2. The oscillator gauge glass model 41

C. Time-delayed couplings 42

D. External fields 44

E. Multiplicative noise 45

V. Beyond the Kuramoto model 46

A. More general periodic coupling functions 47

B. Tops models 50

C. Synchronization of amplitude oscillators 53

D. Kuramoto model with inertia 55

3



VI. Numerical methods 60

A. Simulating finite size oscillator populations 60

1. Numerical treatment of stochastic differential equations 60

2. The Kuramoto model 62

B. Simulating infinitely many oscillators 63

1. Finite differences 63

2. Spectral method 64

3. Tracking bifurcating solutions 67

C. The moments approach 67

VII. Applications 70

A. Neural networks 70

1. Biologically oriented models 71

2. Associative memory models 73

B. Josephson junctions and laser arrays 78

1. Josephson junctions arrays 78

2. Laser arrays 82

C. Charge density waves 84

D. Chemical oscillators 85

VIII. Conclusions and future work 87

Acknowledgments 89

A. Path integral derivation of the nonlinear Fokker-Planck equation 89

B. Calculating bifurcations for the NLFPE by the method of multiple scales 92

C. Calculation of the degenerate bifurcation to stationary states near ω0 = D/
√

2 94

D. Calculation of the bifurcation at the tricritical point 95

E. Stationary solutions of the Kuramoto model are not equilibrium states 97

F. Derivation of the KM for an array of Josephson junctions 98

4



References 99

Figures 107

I. INTRODUCTION

Time plays a key role for all living beings. Their activity is governed by cycles of differ-

ent duration which determine their individual and social behavior. Some of these cycles are

crucial for their survival. There are biological processes and specific actions which require a

precise timing. Some of these actions demand a level of expertise that only can be acquired

after a long period of training but others take place spontaneously. How do these actions

occur? Possibly through synchronization of individual actions in a population. A few exam-

ples follow. Suppose we attend a concert. Each member of the orchestra plays a sequence

of notes that, properly combined according to a musical composition, elicit a deep feeling

in our senses. The effect can be astonishing or a fiasco (apart from other technical details)

simply depending on the exact moment when the sound was emitted. In the meantime,

our heart is beating rhythmically because thousands of cells synchronize their activity. The

emotional character of the music can accelerate or decelerate our heartbeat. We are not

aware of the process, but the cells themselves manage to change coherently, almost in uni-

son. How? We see the conductor moving harmoniously his arms. Musicians know perfectly

how to interpret these movements and respond with the appropriate action. Thousands of

neurons in the visual cortex, sensitive to specific space orientations, synchronize their activ-

ity almost immediately when the baton describes a trajectory in space. This information

is transmitted and processed through some outstandingly fast mechanisms. What more?

Just a few seconds after the last bar, the crowds filling completely the auditorium start to

applaud. At the beginning the rhythm may be incoherent, but the wish to get an encore can

transform incoherent applause in a perfectly synchronized one, despite the different strength

in beating or the location of individuals inside the concert hall.

These examples illustrate synchronization, one of the most captivating cooperative phe-

nomena in nature. Synchronization is observed in biological, chemical, physical, and social

systems and it has attracted the interest of scientists for centuries. A paradigmatic example

is the synchronous flashing of fireflies observed in some South Asia forests. At night, a
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myriad of fireflies lay over the trees. Suddenly, several fireflies start emitting flashes of light.

Initially they flash incoherently, but after a short period of time the whole swarm is flashing

in unison creating one of the most striking visual effects ever seen. The relevance of syn-

chronization has been stressed frequently although it has not always been fully understood.

In the case of the fireflies, synchronous flashing may facilitate the courtship between males

and females. In other cases, the biological role of synchronization is still under discussion.

Thus, imperfect synchronization could lead to disaster and extinction, and therefore differ-

ent species in the same trophic chain may develop different circadian rhythms to enlarge

their probability of survival. Details about these and many other systems, together with

many references, can be found in the recent excellent book by Strogatz (Strogatz, 2003).

Research on synchronization phenomena focusses inevitably on ascertaining the main

mechanisms responsible for collective synchronous behavior among members of a given pop-

ulation. To attain a global coherent activity, interacting oscillatory elements are required.

The rhythmical activity of each element may be due to internal processes or to external

sources (external stimuli or forcing). Even if the internal processes responsible for rhythmic-

ity have different physical or biochemical origins and can be very complex, one may hope

to understand the essence of synchronization in terms of a few basic principles. What may

these principles be?

There are different ways to tackle this problem. Suppose that the rhythmical activity

of each element is described in terms of a physical variable that evolves regularly in time.

When such a variable reaches a certain threshold, the element emits a pulse (action potential

for neurons) which is transmitted to the neighborhood. Later on, a resetting mechanism

initializes the state of this element. Then, a new cycle starts again. Essentially the behavior

of each element is similar to that of an oscillator. Assuming that the rhythm has a certain

period, it is convenient to introduce the concept of phase, a periodic measure of the elapsed

time. The effect of the emitted pulse is to alter the current state of the neighbors by

modifying their periods, lengthening or shortening them. This disturbance depends on the

current state of the oscillator receiving the external impulse, and it can also be studied

in terms of a phase-shift. The analysis of the collective behavior of the system can be

carried out in this way under two conditions: (i) the phase-shift induced by an impulse is

independent of the number of impulses arriving within an interspike interval, and (ii) the

arrival of one impulse affects the period of the current time interval, but memory thereof is
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rapidly lost and the behavior in future intervals is not affected.

There is another scenario in which synchronization effects have been studied extensively.

Let us consider an ensemble of nonlinear oscillators moving in a globally attracting limit-

cycle of constant amplitude. These are phase or limit-cycle oscillators. We now couple them

weakly to ensure that any no disturbance might take any one of them away from the global

limit-cycle. Therefore, only one degree of freedom is necessary to describe the dynamic

evolution of the system. Even at this simple level of description it is not easy to propose

specific models. The first scenario of pulse-coupled oscillators is perhaps more intuitive,

more direct, and easier to model. However, the discrete and nonlinear nature of pulse-

coupling gives rise to important mathematical complications. While the treatment of just

a few pulse-coupled elements can be done within the framework of dynamical systems, the

description becomes much more complicated for a large number of such elements. Proposing

a model within the second scenario of coupled limit-cycle oscillators leaves ample room for

imagination. We are forced to consider models with continuous time and specific nonlinear

interactions between oscillators which are mathematically tractable. Our experience says

that models with the latter property are exceptional. Nevertheless some authors have been

looking for a ‘solvable’ model of this type for years. Winfree was the stereotype of persistent

scientist (Winfree, 1967, 1980). He realized that synchronization can be understood as a

threshold process. When the coupling among oscillators is strong enough, a macroscopic

fraction of them synchronize to a common frequency. The model he proposed was hard to

solve in its full generality, although a solvable version has been recently found (Ariaratnam

and Strogatz, 2001). Hence research on synchronization proceeded along other directions.

The most successful attempt was due to Kuramoto (Kuramoto, 1975), who analyzed a

model of phase oscillators running at arbitrary intrinsic frequencies, and coupled through the

sine of their phase differences. The Kuramoto model is simple enough to be mathematically

tractable, yet sufficiently complex to be non-trivial. The model is rich enough to display

a large variety of synchronization patterns and sufficiently flexible to be adapted to many

different contexts. This little wonder is the object of this review. We have reviewed the

progress made in the analysis of the model and its extensions during the last twenty eight

years. We have also tried to cover the most significant areas where the model has been

applied, although we realize that this is not an easy task because of its ubiquity.

The review is organized as follows. The Kuramoto model with mean field coupling is
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presented in Section II. In the limit of infinitely many oscillators, we discuss the charac-

terization of incoherent, phase-locked, and partially synchronized phases. The stability of

the partially synchronized state, finite-size effects, and open problems are also considered.

Section III concerns the noisy mean-field Kuramoto model, resulting from adding external

white noise sources to the original model. This section deals with the nonlinear Fokker-

Planck equation describing the one-oscillator probability density in the limit of infinitely

many oscillators (which is derived in Appendix A). We study synchronization by first ana-

lyzing the linear stability of the simple non-synchronized state called incoherence, in which

every phase of the oscillators is equally probable. Depending on the distribution of nat-

ural frequencies, different synchronization scenarios can occur in parameter regions where

incoherence is unstable. We present a complete analysis of these scenarios for a bimodal

frequency distribution using bifurcation theory.

Our original presentation of bifurcation calculations exploits the Chapman-Enskog

method to construct the bifurcating solutions, which is alternative to the method of multi-

ple scales for degenerate bifurcations, and is simpler than using center manifold techniques.

Section IV describes the known results for the Kuramoto model with couplings that are

not of the mean-field type. They include short-range and hierarchical couplings, models

with disorder, time-delayed couplings, and models containing external fields or multiplica-

tive noise. Extensions of the original model are discussed in Section V. Section VI discusses

numerical solutions of the noisy Kuramoto model, both for the system of stochastic differ-

ential equations and for the nonlinear Fokker-Planck equation describing the one-oscillator

probability density in the limit of infinitely many oscillators. Applications of the Kuramoto

model are considered in Section VII. They include neural networks, Josephson junctions and

laser arrays, and chemical oscillators. These applications are often directly inspired by the

original model, share its philosophy, and represent an additional step to develop new ideas.

The last Section contains our conclusions and discusses some open problems and hints for

future work. Some technical details are collected in five appendices.

II. THE KURAMOTO MODEL

The Kuramoto model (hereafter called KM) consists of a population of N coupled phase

oscillators, θi(t), having natural frequencies ωi distributed with a given probability density
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g(ω), and whose dynamics is governed by

θ̇i = ωi +

N
∑

j=1

Kij sin(θj − θi), i = 1, . . . , N. (1)

Thus, each oscillator tries to run independently at its own frequency, while the coupling

tends to synchronize it to all the others. By making a suitable choice of a rotating frame,

θi → θi − Ωt, in which Ω is the first moment of g(ω), we can transform Eq. (1) to an

equivalent system of phase oscillators whose natural frequencies have zero mean. When

the coupling is sufficiently weak, the oscillators run incoherently whereas beyond a certain

threshold collective synchronization emerges spontaneously. Many different models for the

coupling matrix Kij have been considered such as nearest-neighbor coupling, hierarchical

coupling, random long-range coupling, or even state dependent interactions. All of them

will be discussed in this review.

In this Section, we introduce the Kuramoto model with mean-field coupling among phase

oscillators. For this model, synchronization is conveniently measured by an order parameter.

In the limit of infinitely many oscillators, N = ∞, the amplitude of the order parameter

vanishes when the oscillators are out of synchrony, and it is positive in synchronized states.

We first present Kuramoto’s calculations for partial synchronization of oscillators and bifur-

cation from incoherence, a state in which the oscillator phase takes values on the interval

[−π, π] with equal probability. The stability of incoherence is then analyzed in the limit

N = ∞. For coupling constant K < Kc, a critical value of the coupling, incoherence is

neutrally stable because the spectrum of the operator governing its linear stability lies on

the imaginary axis. This means that disturbances from incoherence decay similarly to the

Landau damping in plasmas (Strogatz et al., 1992). When K > Kc and unimodal natural

frequency distribution are considered, one positive eigenvalue emerges from the spectrum.

The partially synchronized state bifurcates from incoherence at K = Kc, but a rigorous

proof of its stability is still missing. Finally, finite size effects (N < ∞) on oscillator syn-

chronization are discussed.

A. Stationary synchronization for mean-field coupling

The original analysis of synchronization was accomplished by Kuramoto in the case of

mean-field coupling, that is taking Kij = K/N > 0 in Eq. (1) (Kuramoto, 1975, 1984). The
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model Eq. (1) was then written in a more convenient form, defining the (complex-valued)

order-parameter

reiψ =
1

N

N
∑

j=1

eiθj . (2)

Here r(t) with 0 ≤ r(t) ≤ 1 measures the coherence of the oscillator population, and ψ(t) is

the average phase. With this definition, Eq. (1) becomes

θ̇i = ωi +Kr sin(ψ − θi), i = 1, 2, . . . , N, (3)

and it is clear that each oscillator is coupled to the common average phase ψ(t) with coupling

strength given by Kr. The order parameter (2) can be rewritten as

reiψ =

∫ π

−π

eiθ

(

1

N

N
∑

j=1

δ(θ − θj)

)

dθ. (4)

In the limit of infinitely many oscillators, they may be expected to be distributed with a

probability density ρ(θ, ω, t), so that the arithmetic mean in (2) becomes now an average

over phase and frequency, namely,

reiψ =

∫ π

−π

∫ +∞

−∞

eiθ ρ(θ, ω, t) g(ω) dθdω. (5)

This equation illustrates the use of the order parameter to measure oscillator synchroniza-

tion. In fact, when K → 0, Eq. (3) yields θi ≈ ωit + θi(0), that is the oscillators rotate at

angular frequencies given by their own natural frequencies. Consequently, setting θ ≈ ωt in

Eq. (5), by the Riemann-Lebesgue lemma, we obtain that r → 0 as t → ∞ and the oscilla-

tors are not synchronized. On the other hand, in the limit of strong coupling, K → ∞, the

oscillators become synchronized to their average phase, θi ≈ ψ, and Eq. (5) implies r → 1.

For intermediate couplings, Kc < K < ∞, part of the oscillators are phase-locked (θ̇i = 0),

and part are rotating out of synchrony with the locked oscillators. This state of partial

synchronization yields 0 < r < 1 and will be further explained below. Thus, synchronization

in the mean-field KM (with N = ∞) is revealed by a non-zero value of the order parameter.

The concept of order parameter as a measure of synchronization is less useful for models

with short-range coupling. In these systems, other concepts are more appropriate to describe

oscillator synchronization since more complex situations can happen (Strogatz and Mirollo,

1988a,b). For instance, it could happen that a finite fraction of the oscillators have the same

average frequency ω̃i, defined by
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ω̃i = lim
t→∞

1

t

∫ t

0

θ̇i dt, (6)

while the other oscillators may be out of synchrony or that the phases of a fraction of the

oscillators can change at the same speed (and therefore partial synchronization occurs), while

different oscillator groups have different speeds (and therefore their global order parameter

is zero and incoherence results). See Section IV for details.

A continuity equation for the oscillator density can be found by noting that each oscillator

in Eq. (1) moves with an angular or drift velocity vi = ωi +Kr sin(ψ − θi). Therefore, the

one-oscillator density obeys the continuity equation

∂ρ

∂t
+

∂

∂θ
{[ω +Kr sin(ψ − θ)] ρ} = 0, (7)

to be solved along with (5), with the normalization condition

∫ π

−π

ρ(θ, ω, t) dθ = 1, (8)

and an appropriate initial condition. The system of equations (5) - (8) has the trivial

stationary solution ρ = 1/(2π), r = 0, corresponding to an angular distribution of oscillators

having equal probability in the interval [−π, π]. Then, the oscillators run incoherently, and

hence the trivial solution is called the incoherent solution, or simply incoherence. Let us

now try to find a simple solution corresponding to oscillator synchronization. In the strong

coupling limit, we have global synchronization (phase locking), so that all oscillators have the

same phase, θi = ψ (= ωit+ θi(0)), which yields r = 1. For a finite coupling, a lesser degree

of synchronization with a stationary amplitude, 0 < r < 1, may occur. How can this smaller

value of r obtain? A typical oscillator running with velocity v = ω − Kr sin(θ − ψ), will

become stably locked at an angle such that Kr sin(θ − ψ) = ω and −π/2 ≤ (θ − ψ) ≤ π/2.

All such oscillators are locked in the natural laboratory frame of reference. Oscillators

with frequencies |ω| > Kr cannot be locked. They run out of synchrony with the locked

oscillators, and their stationary density obeys vρ = C (constant), according to Eq. (7). We

have obtained a stationary state of partial synchronization, in which part of the oscillators

are locked at a fixed phase while all others are rotating out of synchrony with them. The

corresponding stationary density is therefore

ρ =







δ
(

θ − ψ − sin−1( ω
Kr

)
)

H(cos θ), |ω| < Kr

C
|ω−Kr sin(θ−ψ)|

elsewhere.
(9)
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Here H(x) = 1 if x > 0 and H(x) = 0 otherwise, that is H(x) is the Heaviside unit

step function. Note that one can write equivalently ρ =
√
K2r2 − ω2 δ(ω − Kr sin(θ −

ψ))H(cos θ) for −Kr < ω < Kr. The normalization condition (8) for each frequency yields

C =
√

ω2 − (Kr)2/(2π). We can now evaluate the order parameter in the state of partial

synchronization by using (5) and (9),

r =

∫ π/2

−π/2

∫ +∞

−∞

ei(θ−ψ)δ
(

θ − ψ − sin−1(
ω

Kr
)
)

g(ω)dθdω

+

∫ π

−π

∫

|ω|>Kr

ei(θ−ψ) C g(ω)

|ω −Kr sin(θ − ψ)|dθdω. (10)

Let us assume that g(ω) = g(−ω). Then, the symmetry relation ρ(θ + π,−ω) = ρ(θ, ω)

implies that the second term in this equation is zero. The first term is simply

r =

∫

|ω|<Kr

cos
(

sin−1(
ω

Kr
)
)

g(ω) dω

=

∫ π/2

−π/2

cos θ g(Kr sin θ)Kr cos θ dθ,

that is,

r = Kr

∫ π/2

−π/2

cos2 θ g(Kr sin θ) dθ. (11)

This equation has always the trivial solution r = 0 corresponding to incoherence, ρ = (2π)−1.

However, it also has a second branch of solutions, corresponding to the partially synchronized

phase (9), satisfying

1 = K

∫ π/2

−π/2

cos2 θ g(Kr sin θ) dθ. (12)

This branch bifurcates continuously from r = 0 at the value K = Kc obtained by setting

r = 0 in (12), which yields Kc = 2/[πg(0)]. Such a formula and the argument leading to it

were first found by Kuramoto (1975). Considering, as an example, the Lorentzian frequency

distribution

g(ω) =
γ/π

γ2 + ω2
, (13)

allows an explicit evaluation of the integrals above can be acomplished, which was already

done by Kuramoto (1975). Using Eq. (13), he found the exact result r =
√

1 − (Kc/K) for
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all K > Kc = 2γ. For a general frequency distribution g(ω), an expansion of the right-hand

side of Eq. (11) in powers of Kr yields the scaling law

r ∼
√

8(K −Kc)

−K3
c g

′′(0)
, (14)

as K → Kc. Throughout this review, we use the following definitions of the symbol ∼
(asymptotic) which compares two functions or one function and an asymptotic series in the

limit as ε→ 0 (Bender and Orszag, 1978):

f(ε) ∼ g(ε) ⇔ lim
ε→0

f(ε)

g(ε)
= 1, (15)

f(ε) ∼
∞
∑

k=0

εkfk ⇔ [f(ε) −
m
∑

k=0

εkfk] � εm, ∀m. (16)

According to (14), the partially synchronized phase bifurcates supercritically for K > Kc if

g′′(0) < 0, and subcritically for K < Kc if g′′(0) > 0, see Figs. 1(a) and (b). Notice that

Kuramoto’s calculation of the partially synchronized phase does not indicate whether this

phase is stable, either globally or even locally.

B. Stability of solutions and open problems

1. Synchronization in the limit N = ∞

Kuramoto’s original construction of incoherent and partially synchronized phases con-

cerns purely stationary states. Moreover, he did not establish any of their stability proper-

ties. The linear stability theory of incoherence was published by Strogatz et al. (1992) and

interesting work on the unsolved problems of nonlinear stability theory has been carried out

by Balmforth and Sassi (2000). To ascertain the stability properties of the incoherent and

partially synchronized solutions, it is better to work with the probability density ρ(θ, ω, t).

Let us explain first what is known in the limit of infinitely many oscillators described by

Equations (5) - (7). The linearized stability problem for this case is obtained by inserting

ρ = 1/(2π)+ µ̃(θ, t;ω) with µ̃(θ, t;ω) = exp(λt)µ(θ, ω) in (5) - (8), and then ignoring terms

nonlinear in µ:

−ω∂µ
∂θ

+
K

2π
Re e−iθ

∫ π

−π

∫ +∞

−∞

eiθ
′

µ(θ′, ω′)
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×g(ω′)dθ′dω′ = λµ, (17)
∫ π

−π

µ(θ, ω) dθ = 0. (18)

If Reλ < 0 for all possible λ, incoherence is linearly stable, while it is unstable if some

admissible λ has positive real part. The periodicity condition implies µ =
∑∞

n=−∞ bn(ω)einθ,

which, inserted in Eq. (17), yields

(λ+ inω) bn =
K

2
(δn,1 + δn,−1) 〈1, bn〉. (19)

Here we have used b−n = bn (a bar over a symbol denoting taking its complex conjugate),

and defined the scalar product

〈ϕ, ψ〉 =
1

2π

∫ π

−π

∫ +∞

−∞

ϕ(θ, ω)ψ(θ, ω) g(ω) dω dθ. (20)

Eq. (19) shows that λn(ω) = −inω, n = ±1,±2, . . ., belong to the continuous spectrum

describing the linear stability problem, provided ω is in the support of g(ω). When g(ω)

is a unimodal natural frequency distribution (being even and non-increasing for ω > 0),

Strogatz et al. (1992) have shown that the incoherent solution is neutrally stable for K <

Kc = 2/[πg(0)]. In fact, the aforementioned continuous spectrum lies on the imaginary

axis, in this case. For K > Kc, a positive eigenvalue appears (Strogatz et al., 1992).

Although incoherence is neutrally stable for K < Kc, the linearized order parameter R(t) =

〈e−iθ, µ̃(θ, t;ω)〉 decays with time. Due to phase mixing of integral superposition of modes

in the continuous spectrum, such a decay is reminiscent of the Landau damping observed in

plasmas (Strogatz et al., 1992). This can be understood by solving the linearized problem

with the initial condition µ̃(θ, 0;ω) = 2eiθ/[π(ω2 + 4)]+cc for g(ω) = [π(1 + ω2)]−1 and

K = 1. The calculations can be carried out as indicated by Strogatz et al. (1992), and the

result is

µ̃(θ, t;ω) =

(

18

ω2 + 4
− 5

2iω − 1
+

1

2 − iω

)

ei(θ−ωt)

9π

+
5eiθ−t/2

9π(2iω − 1)
+

eiθ−2t

9π(2 − iω)
+ cc, (21)

R(t) =
10

9
e−t/2 − 4

9
e−2t (22)

(Balmforth and Sassi, 2000). The function µ̃ contains a term proportional to e−iωt, which

is non-decaying and non-separable, and does not correspond to a normal mode. As time
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elapses, this term becomes progressively more crenellated, and through increasing cancella-

tions, integral averages of µ̃ decay. Besides this, Eq. (21) contain two exponentially decaying

terms which contribute to the order parameter (22). If g(ω) has bounded support, the order

parameter may decay more slowly, algebraically with time (Strogatz et al., 1992).

Numerical calculations for K < Kc show that the order parameter r(t) of the full KM

behaves similarly to that of the linearized equation (Balmforth and Sassi, 2000). However,

the probability density ρ may develop peaks in the (θ, ω) plane for intermediate times before

decaying to incoherence as t→ ∞. See Fig. 6 of (Balmforth and Sassi, 2000). For K > Kc,

Balmforth and Sassi (2000) show that the probability density evolves to a distribution that

corresponds to Kuramoto’s partially synchronized phase given by Eq. (9). Balmforth and

Sassi (2000) obtained this result by numerically simulating the full KM with K > Kc. They

also carried out different incomplete exact and perturbation calculations :

• Exact solution of the KM model for g(ω) = δ(ω).

• Attempted approximation of the solution for other frequency distributions near Kc

assuming an unrealistic r that depends on ω.

• Regularizing the KM by adding a diffusive term to Eq. (7), and constructing the

stationary probability density in the limit of vanishing diffusivity by means of boundary

layer methods. This regularization corresponds to adding white noise forcing terms

to the KM (1). The corresponding equation for the probability density is (7) with

a diffusive term in its right hand side, which is called the nonlinear Fokker-Planck

equation (NLFPE). The NLFPE will be studied in Section III.

• A mixture of multiple scales and boundary layer ideas in the same limit of vanishing

diffusivity of the NLFPE but for K near values corresponding to the bifurcation of

synchronized states from incoherence.

In the small diffusivity limit of the NLFPE, D → 0+, the calculations by Balmforth

and Sassi (2000) indicate that the probability density with unimodal frequency distribu-

tion and K > Kc tends toward a stationary phase which is concentrated around the curve

ω = Kr sin θ for ω2 < K2r2. The peak of the probability density is attained at
√

Kr/(2πD).

It would be useful to have consistent perturbation results for the evolution of the proba-

bility density near bifurcation points, in the small noise limit D → 0+ of the NLFPE, and
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also for the KM with D = 0. Both cases are clearly different as shown by the fact that

the synchronized phase is a generalized function (a distribution) when D = 0, while it is

a smooth function for D > 0. In particular, it is clear that Kuramoto’s partial synchro-

nization solution (9) (involving a delta function) cannot be obtained by small amplitude

bifurcation calculations about incoherence, the laborious attempt by Crawford and Davies

(1999) notwithstanding.

Thus understanding synchronization in the hyperbolic limit of the mean-field KM (with

N → ∞) requires the following. Firstly, a fully consistent asymptotic description of the

synchronized phase and the synchronization transition as D → 0+ should be found. As

indicated by Balmforth and Sassi (2000), the necessary technical work involves boundary

layers and matching. These calculations could be easier if one works directly with the

equations for ln ρ, as suggested in the early paper (Bonilla, 1987). Secondly and most likely

harder, the same problems should be tackled for D = 0, where the stable synchronized

phase is expected to be Kuramoto’s partially synchronized state (which is a distribution,

not a smooth function). Thirdly, as pointed out by Strogatz (2000), the problem of proving

stability of the partially synchronized state as a solution of the KM remains open.

2. Finite size effects

Another way to regularize the hyperbolic equation (7) is to study a large population of

finitely many phase oscillators, which are globally coupled. The analysis of this large system

may shed some light on the stability properties of the partially synchronized state. The

question can be posed as follows. What is the influence of finite size effects on Kuramoto’s

partially synchronized state as N → ∞?

One issue with kinetic equations describing populations of infinitely many elements is

always that of finite size effects. This issue was already raised by Zermelo’s paradox, namely

that a system of finitely many particles governed by reversible classical Hamiltonian me-

chanics was bound to have recurrences according to Poincare’s recurrence theorem. Then,

this system would come back arbitrarily close to its initial condition infinitely many times.

Boltzmann’s answer to this paradox was that the recurrence times would become infinite as

the number of particles tend to infinite. Simple model calculations illustrate the following

fact. A non-recurrent kinetic description for a system of infinitely many particles approxi-
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mates the behavior of a system with a large but finite number of particles during finite time

intervals, after which recurrences set in (Keller and Bonilla, 1986).

The same behavior, denoting the non-commutativity of the limits N → ∞ and t → ∞,

is also present in the KM. For instance, Hemmen and Wreszinski (1993) used a Lyapunov

function argument to point out that a population of finitely many Kuramoto oscillators

would reach a stationary state as t → ∞. Our derivation of the NLFPE in Appendix A

suggests that fluctuations scale as N− 1

2 as N → ∞, a scaling that, for the order parameter,

is confirmed by numerical simulations (Daido, 1990; Kuramoto and Nishikawa, 1987).

More precise theoretical results are given by DaiPra and den Hollander (1996), for rather

general mean-field models that include Kuramoto’s and also spin systems. DaiPra and den

Hollander (1996) obtained a central limit theorem which characterizes fluctuations about

the one-oscillator probability density for N = ∞, as Gaussian fields having a certain co-

variance matrix and scaling as N− 1

2 . Near bifurcation points, a different scaling is to be

expected, similarly to Dawson’s results for related mean-field models (Dawson, 1983). Daido

(1987b, 1989) explored this issue by dividing the oscillator phase and the order parameter

in Eq. (2) in two parts, their limits achieved when N → ∞, and their fluctuating part

(which were regarded as small). In the equations for the phase fluctuations, only terms

linear in the fluctuation of the order parameter were retained. The result was then inserted

in (2), and then a self-consistent equation for the fluctuation of the order parameter was

found. For unimodal frequency distributions, Daido found the scaling [(Kc−K)N ]−
1

2 for the

rms fluctuation of the order parameter as K → K−
c (from below). For coupling strengths

larger than Kc, he found that the fluctuation of the order parameter was consistent with

the scaling (K −Kc)
− 1

8N− 1

2 as K → K+
c (Daido, 1989). Balmforth and Sassi (2000) carried

out numerical simulations to investigate finite size effects, and discussed how sampling the

natural frequency distribution affects the one-oscillator probability density. In particular,

they found that sampling may give rise to unexpected effects, such as time-periodic syn-

chronization, even for populations with unimodal frequency distribution, g(ω). Note that

such effects do not appear in the limit N = ∞. Further work in this subject would be

interesting, in particular finding a formulation similar to Daido’s fluctuation theory for the

order parameter but for the one-oscillator probability density instead.
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III. THE MEAN FIELD MODEL INCLUDING WHITE NOISE FORCES

In this Section, we analyze the mean-field KM with white noise forcing terms. This gen-

eralization renders more physical the model, in that unavoidable random imperfections can

be taking into account. At the same time, the ensuing model turns out to be mathematically

more tractable. In fact, in the limit of infinitely many oscillators, the one-oscillator proba-

bility density obeys a parabolic equation (the NLFPE), instead of the hyperbolic equation

in (7), which is harder to analyze. The NLFPE is derived in Appendix A. The simplest so-

lution of the NLFPE is also ρ = (2π)−1, corresponding to incoherence. First, we shall study

its linear stability properties. When K < Kc the incoherence turns out to be linearly stable,

unlike what happens in the KM for which incoherence is neutrally stable. When the coupling

strength is greater than the critical coupling, incoherence becomes linearly unstable, since

the real part of one of the eigenvalues in the discrete spectrum of the linearized problem

becomes positive. Then, different bifurcation scenarios and phase diagrams will occur, de-

pending on the distribution of natural frequencies, g(ω). Synchronized phases branching off

from incoherence have been constructed by using different singular perturbation techniques.

In particular, a powerful technique, the Chapman-Enskog method, has been used to study

in detail these synchronization transitions for a bimodal frequency distribution which has a

very rich phase diagram.

A. The nonlinear Fokker-Planck equation

The result of adding white noise forcing terms to the mean-field KM, is the system of

stochastic differential equations

θ̇i = ωi + ξi(t) +
K

N

N
∑

j=1

sin(θj − θi), i = 1, . . . , N. (23)

Here the ξi’s are independent white noise stochastic processes with expected values

〈ξi(t)〉 = 0, 〈ξi(t)ξj(t′)〉 = 2Dδ(t− t′) δij. (24)

Introducing the order parameter (4), the model equations (23)-(24) can be written as

θ̇i = ωi +Kr sin(ψ − θi) + ξi(t), i = 1, 2, . . . , N. (25)
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The Fokker-Planck equation for the one-oscillator probability density ρ(θ, ω, t) corre-

sponding to this stochastic equation is

∂ρ

∂t
= D

∂2ρ

∂θ2
− ∂

∂θ
(vρ), (26)

v(θ, ω, t) = ω +Kr sin(ψ − θ), (27)

provided the order parameter reiψ is a known function of time and we ignore the subscript

i. In the limit N → ∞ and provided all oscillators are initially independent, we can derive

Eq. (5):

reiψ =

∫ π

−π

∫ +∞

−∞

eiθρ(θ, ω, t)g(ω) dθ dω, (28)

which together with (26) constitute the NLFPE (see Appendix A for details). Notice that

Equation (26) becomes (7) if D = 0. The system (26) - (28) is to be solved with the

normalization condition
∫ π

−π

ρ(θ, ω, t)dθ = 1, (29)

the periodicity condition, ρ(θ + 2π, ω, t) = ρ(θ, ω, t), and an appropriate initial condition

for ρ(θ, ω, 0). In most works (an exception is (Acebrón et al., 1998)), the natural frequency

distribution g(ω) is a non-negative even function to be considered later.

B. Linear stability analysis of incoherence

The trivial solution of the NLFPE, ρ0 = 1/(2π), with order parameter r = 0, represents

incoherent or non-synchronized motion of all oscillators. A natural method to study how

synchronized phases with r > 0 may branch off from incoherence is to analyze its linear

stability as a function of the parameters of the model, and then construct the possible

solutions bifurcating from it. The first results was obtained by Strogatz and Mirollo (1991).

They studied the linear stability problem setting ρ = 1/(2π) + µ̃(θ, t;ω) with µ̃(θ, t;ω) =

exp(λt)µ(θ, ω) in (26) and (8), and then neglecting terms nonlinear in µ,

D
∂2µ

∂θ2
− ω

∂µ

∂θ
+ K Re

{

e−iθ〈e−iθ′, µ〉
}

= λµ, (30)
∫ π

−π

µ(θ, ω) dθ = 0. (31)

Incoherence is linearly stable as long as Reλ < 0, and it becomes unstable if some admissible

λ has positive real part. The periodicity condition implies µ =
∑∞

n=−∞ bn(ω)einθ, which,
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inserted in Eq. (30), yields

(λ+ inω + n2D) bn =
K

2
(δn,1 + δn,−1) 〈1, bn〉. (32)

Here we have used the relation b−n = bn, and the scalar product defined in Eq. (20). As in

the KM, the numbers

λn(ω) = −Dn2 − inω, n = ±1,±2, . . . , (33)

with ω belonging to the support of g(ω), form the continuous spectrum relevant to the linear

stability problem. Note that the continuous spectrum lies to the left side of the imaginary

axis when D > 0 (b0 = 0 because of the normalization condition (31)). Then the eigenvalues

(33) have negative real parts, and therefore correspond to stable modes.

The case n = ±1 is special for two reasons. Firstly, the right-hand side of Eq. (32) does

not vanish, and thus b1 = (K/2)〈1, b1〉/(λ + iω + D). Then, provided 〈1, b1〉 6= 0, we find

the following equation for λ (Strogatz and Mirollo, 1991)

K

2

∫ +∞

−∞

g(ν)

λ+D + iν
dν = 1. (34)

The solutions of this equation are the eigenvalues for the linear stability problem in (30).

Clearly, they are independent of ω. Since the continuous spectrum lies on the left half-

plane, the discrete spectrum determines the linear stability of the incoherence. Secondly,

the NLFPE and therefore the linear stability equation (30) are invariant under the reflection

symmetry, θ → −θ, ω → −ω, assuming g(ω) to be even. This implies that two independent

eigenfunctions exist, correspondingly to each simple solution λ of Eq. (34),

µ1(θ, ω) =
K
2
eiθ

D + λ+ iω
, µ2(θ, ω) =

K
2
e−iθ

D + λ− iω
. (35)

Note that these two linearly independent eigenfunctions are related by the reflection sym-

metry. When λ is real, these eigenfunctions are complex conjugate of each other. When λ is

a multiple solution of Eq. (34), the eigenvalue λ is no longer semisimple (Crawford, 1994).

C. The role of g(ω): Phase diagram of the Kuramoto model

The mean-field KM for infinitely many oscillators may have different stable solutions

(also called phases) depending on the natural frequency distribution g(ω), the values of the
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coupling strength K, and the diffusion constant D. Many phases appear as stable solutions

bifurcating from known particular solutions, which lose their stability at a critical value of

some parameter. The trivial solution of the NLFPE is incoherence, and therefore much

effort has been devoted to studying its stability properties, as a function of K, D and

parameters characterizing g(ω). As explained in Section II, we can always consider the first

moment of g(ω) equal to zero, shifting the oscillator phases if necessary. Most of the work

reported in the literature refers to an even function, g(ω), g(−ω) = g(ω). In addition, if

g(ω) has a single maximum at ω = 0, we call it a unimodal frequency distribution. For

general even unimodal frequency distributions, Strogatz and Mirollo (1991) proved that the

eigenvalue equation (34) has at most one solution, which is necessarily real and it satisfies

λ+D > 0. Explicit calculations can be carried out for discrete (g(ω) = δ(ω)) and Lorentzian

(g(ω) = (γ/π)/(ω2+γ2)) frequency distributions. We find λ = −D−γ+K/2, with γ = 0 for

the discrete distribution. Clearly, incoherence is linearly stable for points (K,D) above the

critical line D = −γ +K/2, and unstable for points below this line, see Fig. 1(c). In terms

of the coupling strength, incoherence is linearly stable provided that K < Kc ≡ 2D + 2γ,

and unstable otherwise. This conclusion also holds for D = 0 in the general unimodal case,

for which Strogatz and Mirollo (1991) recovered Kuramoto’s result Kc = 2/[πg(0)] (Kc = 2γ

in the Lorentzian case). When D = 0, the stability analysis is complicated by the fact that

the continuous spectrum lies on the imaginary axis.

For even or asymmetric multimodal frequency distributions, the eigenvalues may be

complex (Acebrón et al., 1998; Bonilla et al., 1992). The simple discrete bimodal distri-

bution g(ω) = [δ(ω−ω0) + δ(ω+ω0)]/2 has been studied extensively (Acebrón and Bonilla,

1998; Bonilla et al., 1992, 1998b; Crawford, 1994). In this case, Eq. (34) has two solutions

λ± = −D + [K ±
√

K2 − 16ω2
0]/4. The stability boundaries for the incoherent solution

can be calculated by equating to zero the greatest of Reλ+ and Reλ−. The resulting phase

diagram on the plane (K,D) is depicted in Fig. 2 (Bonilla et al., 1992). When the coupling

is small enough (K < 2D), incoherence is linearly stable for all ω0, whereas it is always

unstable when the coupling is sufficiently strong, K > 4D. For intermediate couplings,

2D < K < 4D, incoherence may become unstable in two different ways. For ω0 < D, λ±

are real and incoherence is linearly stable provided that K < Kc = 2D [1 + (ω0/D)2], and

unstable when K > Kc. For ω0 > D, λ± are complex conjugate and have zero real parts at

Kc = 4D.
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What happens in regions of the phase diagram where incoherence is unstable? Typically

there appear stable solutions with r > 0, which correspond to synchronized phases. As

discussed below, their study has been based on bifurcation theory, for parameter values

close to critical lines of the phase diagram where incoherence is neutrally stable. These

analytical results are supplemented by numerical simulations of the NLFPE far from critical

lines, or by numerical continuation of synchronized solutions bifurcating from incoherence

(Acebrón et al., 2001a). Besides this, Acebrón and Bonilla (1998) have developed a singular

perturbation description of synchronization for multimodal g(ω), arbitrarily far from critical

lines. Their idea is to consider a g(ω) with m maxima located at ω0Ωl, where ω0 → ∞,

g(ω)dω ≈
∑m

l=1 αlδ(Ω − Ωl)dΩ, and then to use a method of multiple scales. The main

result is that the solution of the NLFPE splits (at lowest order) in l phases, each obeying

a NLFPE with a discrete unimodal distribution centered at Ωl and a coupling strength

αlK. Depending on the value of αlK, the lth phase turns out to be either synchronized

or incoherent. The overall order parameter is the weighted sum (with weight αl) of the

order parameters of the corresponding phases. Including also first order terms, the method

of multiple scales describes rather well incoherence as well as oscillator synchronization for

multimodal frequency distributions. These results holds for general frequency distributions

(both with or without reflection symmetry), and for relatively low values of ω0 (Acebrón

and Bonilla, 1998). Related work on multimodal frequency distributions include (Acebrón

et al., 1998, 2001a). An interesting open problem is to generalize the method of Acebrón

and Bonilla (1998) so that both the location and the width of the peaks in g(ω) are taken

into account.

D. Synchronized phases as bifurcations from incoherence, D 6= 0

At the parameter values for which incoherence ceases to be linearly stable, synchronized

phases (stable solutions of the NLFPE, ρ(θ, ω, t), with r > 0) may bifurcate from it. In

this rather technical subsection, branches of these bifurcating solution will be constructed in

the vicinity of the bifurcation point by means of the Chapman-Enskog method, see Bonilla

(2000). We shall study the KM model with the discrete bimodal natural frequency distribu-

tion, whose phase diagram is depicted in Fig. 2. The stability boundaries in this rich phase

diagram separate regions where incoherence becomes unstable, undergoing a transition to

22



either a stationary state, when ω0 < D and K > Kc = 2D [1+(ω0/D)2], or to an oscillatory

state, when ω0 > D and K > Kc = 4D. The bifurcating solutions are as follows:

1. When ω0 < D/
√

2, the synchronized phases bifurcating from incoherence are station-

ary and stable. The bifurcation is supercritical, hence the synchronized phases exist

for K > Kc.

2. When D/
√

2 < ω0 < D, the bifurcation is subcritical. An unstable branch of synchro-

nized stationary solutions bifurcates for K < Kc, reaches a limit point at a smaller

coupling constant, and there it coalesces with a branch of stable stationary stationary

solutions having larger r.

3. When ω0 > D, the synchronized phases bifurcating from incoherence are oscillatory

and the corresponding order parameter is time-periodic. Two branches of solutions

bifurcate supercritically at Kc = 4D, a branch of unstable rotating waves and a branch

of stable standing waves.

4. At the special point ω0 = D/
√

2 and Kc = 3D, the bifurcation to stationary solutions

changes from supercritical to subcritical. Near this point, the bifurcation analysis can

be extended to describe analytically how the subcritical branch of stationary solutions

turns into a branch of stable solutions at a limit point.

5. At the special point ω0 = D and Kc = 4D, that can be called the tricritical point, a

line of Hopf bifurcations coalesces with a line of stationary bifurcations and a line of

homoclinic orbits. The study of the corresponding O(2)-symmetric Takens-Bogdanov

bifurcation shows how the oscillatory branches die at a homoclinic orbit of an unstable

stationary solution.

The Chapman-Enskog method is flexible enough to analyze all these bifurcations and, at the

same time, simpler than alternatives such as constructing the center manifold (Crawford,

1994). Except than at the two special bifurcation points, the simpler method of multiple

scales explained in Appendix B yields the same results (Bonilla et al., 1992, 1998b). The

Chapman-Enskog method (Chapman and Cowling, 1970) was originally employed by Enskog

(1917) in the study of the hydrodynamic limit of the Boltzmann equation. It becomes the

averaging method for nonlinear oscillations (Bogoliubov and Mitropolsky, 1961), and is

equivalent to assuming a center manifold in bifurcation calculations (Crawford, 1994).
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1. Bifurcation of a synchronized stationary phase

Let ω0 < D and consider K close to its critical value Kc = 2D [1 + (ω0/D)2]. The largest

eigenvalue satisfies λ ∼ (K−Kc)/[2(1−ω2/D2)] as K → Kc. As indicated in Eq. (35), there

are two eigenfunctions associated to this eigenvalue, eiθ/(D+ iω) and its complex conjugate.

Except for terms decaying exponentially fast in time, the solution of the linearized stability

problem at K = Kc is therefore Aeiθ/(D + iω)+cc, where A is a constant and cc means

complex conjugate of the preceding term. Let us suppose now (and justify later) that K =

Kc + ε2K2, where ε is a small positive parameter. The probability density corresponding to

initial conditions close to incoherence, will have the form ρ ∼ (2π)−1+εA(τ) eiθ/(D+iω)+cc.

The correction to incoherence will be close to the solution of the linearized stability problem,

but now we can assume that the complex constant A varies slowly with time. How slowly?

The linearized solution depends on time through the factor eλt, and λ = O(K−Kc) = O(ε2),

thus we assume τ = ε2t. The probability density can then be written as

ρ(θ, ω, t; ε) ∼ 1

2π

{

1 + ε
A(τ ; ε)eiθ

D + iω
+ cc

+

∞
∑

n=2

εn ρn(θ, t, ω;A,A)

}

∼ 1

2π
exp

{

ε
A(τ ; ε)eiθ

D + iω
+ cc

+

∞
∑

n=2

εn σn(θ, t, ω;A,A)

}

. (36)

The corrections to 1/(2π) can be telescoped in an exponential with a small argument, which

ensures that the probability density is always positive. Typically, by the exponential ansatz,

the parameter region, where the asymptotic expansion is a good approximation to the prob-

ability density, is widened. The functions σn and ρn are linked by the relations

ρ1 = σ1 =
A(τ ; ε)eiθ

D + iω
+ cc, ρ2 = σ2 +

σ2
1

2
,

ρ3 = σ3 + σ1σ2 +
σ3

1

3!
,

ρ4 = σ4 + σ1σ3 +
σ2

2

2
+
σ2

1σ2

2
+
σ4

1

4!
, (37)

and so on. They depend on a fast scale t corresponding to stable exponentially decaying

modes, and on a slow time scale through their dependence on A. All terms in (36) which
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decrease exponentially in time will be omitted. In (36), the slowly varying amplitude A

obeys the equation

dA

dτ
=

∞
∑

n=0

εn F (n)(A,A). (38)

The functions F (n)(A,A) are determined from the conditions that ρn or σn be bounded as

t→ ∞ (on the fast time scale), for fixed A, and periodic in θ. Moreover, they cannot contain

terms proportional to the solution of the linearized homogeneous problem, e±iθ/(D ± iω),

because all such terms can be absorbed in the amplitudes A or A (Bonilla, 2000). These

two conditions imply that

〈e−iθ, ρn〉 = 0, n > 1. (39)

The normalization condition together with (36) yield

∫ π

−π

ρn(θ, t, ω;A,A) dθ = 0, n ≥ 2. (40)

To find ρn, we substitute (36) and (38) in (26) and use (39) to simplify the result. This

yields the following hierarchy of linear nonhomogeneous equations

Lρ2 ≡ (∂t −D∂2
θ + ω∂θ)ρ2 +Kc∂θ

{

Ime−iθ〈e−iθ′, ρ2〉
}

= −Kc∂θ

{

ρ1Im e−iθ〈e−iθ′, ρ1〉
}

+ cc, (41)

Lρ3 = − Kc ∂θ

{

ρ2Im e−iθ〈eiθ′, ρ1〉
}

− K2∂θIm e−iθ〈e−iθ′, ρ1〉

− F (0) ∂Aρ1 + cc, (42)

and so on. Clearly, ρ1 = A(t) eiθ/(D + iω)+cc obeys the linearized stability problem (30)

with λ = 0, Lρ1 = 0 up to terms of order ε. Thus it is not obvious that each linear

nonhomogeneous equation of the hierarchy has a bounded periodic solution. What is the

necessary solvability condition to ensure that the linear nonhomogeneous equation,

Lρn = h(θ; ρ1, . . . , ρn−1) = Qeiθ + . . . (43)
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has a solution of the required features? To answer this question, we assume that in fact (43)

has a bounded periodic solution of the form ρn = Peiθ + . . .. Then P is given by

P =
Kc〈1, P 〉
2(D + iω)

+
Q

D + iω
, (44)

wherefrom we obtain the nonresonance condition

〈1, Q

D + iω
〉 = 0, (45)

first found by Bonilla et al. (1992). Note that we obtain (45) even when 〈1, P 〉 6= 0. eiθ

times the term proportional to 〈1, P 〉 in (44) is a solution of Lρ = 0 and should therefore

be absorbed in the definitions of A and A. This implies (39).

Inserting ρ1 in the right side of (41), we find

Lρ2 =
2A2

D + iω
e2iθ + cc, (46)

whose solution is

ρ2 =
A2

(D + iω)(2D + iω)
e2iθ + cc. (47)

We see that ρ1 contains odd harmonics and ρ2 contains even harmonics (a possible θ-

independent term is omitted in ρ2 because of the normalization condition). This is actually

true in general: ρ2n contains harmonics ei2jθ, j = 0,±1, . . . ,±n, and ρ2n+1 contains har-

monics ei(2j+1)θ, j = −(n + 1), . . . , n. The nonlinearity of the NLFPE is responsible for the

appearing of resonant terms in the equations for ρ2n+1, which should be eliminated through

the terms containing F (2n). Then, we can set F (2n+1) = 0 and we only need the scaling

K − Kc = O(ε2). The ultimate reason for these cancellations is of course the O(2) sym-

metry of our problem, i.e. reflection symmetry and invariance under constant rotations,

θ → θ + α (Crawford, 1994).

Similarly, the nonresonance condition for (42) yields

F (0) = 〈1, 1

(D + iω)2
〉−1

[

2K2A

K2
c

−〈1, 1

(D + iω)2(2D + iω)
〉A |A|2

]

=
K2A

2
(

1 − ω2

0

D2

) −
2
(

1 − 2ω2

0

D2

)

A |A|2
(

1 − ω2

0

D2

) (

4 +
ω2

0

D2

)

D
. (48)

26



Keeping this term in (38), we obtain dA/dτ ∼ F (0), which is a reduced equation with

the stationary solution |A| =
√

(K2D/4)[4 + (ω0/D)2]/[1 − 2(ω0/D)2]. The corresponding

order parameter is

r ∼





(K −Kc)D
(

4 +
ω2

0

D2

)

K2
c

(

1 − 2ω2

0

D2

)





1/2

, (49)

which was obtained by Bonilla et al. (1992) using a different procedure. The solution (49)

exists for K > Kc (supercritical bifurcation) provided that ω0 < D/
√

2, whereas it exists

for K < Kc (subcritical bifurcation) when ω0 > D/
√

2. The amplitude equation (38)

implies that the supercritical bifurcating solution is stable and that the subcritical solution

is unstable.

We can describe the transition from supercritical to subcritical bifurcation at ω0 = D/
√

2,

Kc = 3D, by evaluating F (4) and adding it to the right-hand side of (38). The result is

dA

dτ
= K2

(

1 − ε2K2 − 2
√

2ω2

D

)

A

−4(7K2 − 4
√

2ω2)ε
2

9D2
A |A|2 − 272ε2

171D3
A |A|4, (50)

see Appendix C. The stationary solutions of this equation are the stationary synchronized

phases. We see that stable phases bifurcate supercritically for K2 > 0 if K2 > 2
√

2ω2,

whereas a branch of unstable stationary solutions bifurcates subcritically for K2 < 0 if

K2 < 2
√

2ω2. This branch of unstable solutions coalesces with a branch of stable stationary

synchronized phases at the limit point K2 ≈ −19ε2(7K2 − 4
√

2ω2)
2/612.

2. Bifurcation of synchronized oscillatory phases

The bifurcation in case of complex eigenvalues can be easily described by the same

method. The main difference is that the solution to the linearized problem is now

ρ1 =
A+(t)

D + i(Ω + ω)
ei(Ωt+θ) + cc

+
A−(t)

D + i(Ω − ω)
ei(Ωt−θ) + cc, (51)

where Ω2 = ω2
0 −D2, Kc = 4D, the eigenvalues with zero real part being λ(Kc) = ±iΩ. For

the two slowly varying amplitudes, A+, A−, we assume that equations of the form
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dA±

dτ
∼

∞
∑

n=0

ε2n F
(2n)
± (A+, A−, A+, A−), (52)

hold. Following the previous method, the nonresonance conditions for Eq. (42), with σ1

given by Eq. (51), yield F
(0)
+ and F

(0)
− . The corresponding amplitude equations are (Bonilla

et al., 1998b)

Ȧ+ = αA+ − (β|A−|2 + γ|A+|2)A+,

Ȧ− = αA− − (β|A+|2 + γ|A−|2)A−, (53)

where ˙= d/dτ , and

α =
1

4
− iD

4Ω
, β =

D + i
D2+ω2

0

Ω

K2 (4D2 + ω2
0)
,

γ =
2(3D2 + 4ω2

0) + iD
3D2+2ω2

0

Ω

DK2 (9D2 + 16ω2
0)

. (54)

To analyze the amplitude equations (53), we define the new variables

u = |A+|2 + |A−|2, v = |A+|2 − |A−|2. (55)

By using (53), we obtain for u and v the system

u̇ = 2 Re α u− Re(γ + β) u2 − Re(γ − β) v2,

v̇ = 2 Re α v − 2 Re γ uv. (56)

Clearly, u = v or u = −v correspond to travelling wave (TW) solutions with only one of the

amplitudes A± being nonzero. The case v ≡ 0 corresponds to standing wave (SW) solutions,

which are a combination of rotating and counter-rotating travelling waves with the same

amplitude. We can easily find the phase portrait of Eqs. (56) corresponding to α, β and γ

given by Eqs. (54) (see Fig. 3). Up to, possibly, a constant phase shift, the explicit solutions

A+(τ) =

√

Re α

Re γ
eiµτ , A−(τ) ≡ 0,

µ = Im α− Im γ

Re γ
Re α (57)
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(or A+(τ) ≡ 0 and A−(τ) as A+(τ) above) are obtained in the case of TW solutions, while

A+(τ) = A−(τ) =

√

2Re α

Re (γ + β)
eiντ ,

ν = Im α− Im (γ + β)

Re (γ + β)
Re α (58)

in the case of SW solutions. Note that both SW and TW bifurcate supercritically with

‖rSW‖/rTW > 1. Re(β + γ) and Reγ are both positive when K2 = 1, whereas the square

roots in (57) and (58) become pure imaginary when K2 = −1. This indicates that the

bifurcating branches cannot be subcritical. An analysis of the phase portrait corresponding

to (56) shows that the SWs are always globally stable, while the TWs are unstable. Such

result was first pointed out by Crawford (1994).

3. Bifurcation at the tricritical point

At the tricritical point, K = 4D, ω0 = D, a branch of oscillatory bifurcating phases

coalesces with a branch of stationary bifurcating phases and a branch of homoclinic orbits,

in a O(2)-symmetric Takens-Bogdanov bifurcation point. Studying the bifurcations in the

vicinity of such a point shows how the stable and unstable branches of oscillatory phases,

SW and TW respectively, end as the coupling is changed. Analyzing transitions at the

tricritical point is a little more complicated because it requires changing the assumptions on

the amplitude equation (Bonilla, 2000; Bonilla et al., 1998b). First of all, at the tricritical

point, 〈1, (D + iω)−2〉 = Re(D + iD)−2 = 0. This innocent-looking fact implies that the

term −F (0)∂Aρ1 on the right-hand side of (42) dissapears in the nonresonance condition, and

therefore, using the same Ansatz as in Eqs. (36) and (38), will not deliver any amplitude

equation. Secondly, the oscillatory Ansatz (51) breaks down too, because Ω = 0 at the

tricritical point, and the factor multiplying A− is simply the complex conjugate of the factor

multiplying A+. Therefore, only one independent complex amplitude exists, and we are

brought back to Eq. (36). How should one proceed?

In order to succeed, one should recognize that a basic slow time scale different from τ

does exist near the tricritical point. The eigenvalues with largest real part are

λ = −D +
K

4
+ i

√

ω2
0 −

(

K

4

)2
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= iε

√

2D

(

ω2 −
K2

4

)

+
K2ε

2

4
+O(ε3)

along with their complex conjugate, provided that K − 4D = K2ε
2, ω0 − D = ω2ε

2 with

ω2 > K2/4. Therefore, the time-dependent factors eλt appearing in the solution of the

linearized problem, indicate that the perturbation about incoherence vary on a slow time

scale T = εt near the tricritical point. This leads to the Chapman-Enskog Ansatz

ρ(θ, ω, t; ε) =
1

2π

{

1 + ε
A(T ; ε)

D + iΩ
eiθ + cc

+

4
∑

j=2

εjρj(θ, t, T ;A,A) +O(ε5)

}

, (59)

d2A

dT 2
= F (0)(A,A) + εF (1)(A,A) +O(ε2). (60)

The equation for A is second-order [rather than first-order as in Eq. (38)] because resonant

terms appear at O(ε3) for the first time. This are proportional to ATT = d2A/dT 2. The

quantities F (0) and F (1) are evaluated in Appendix D. The resulting amplitude equation is

ATT − D

2
(K2 − 4Ω2)A− 2

5
|A|2A =

ε

(

K2

2
AT − 23

25D
|A|2AT − 1

5D
(|A|2A)T

)

+O(ε2). (61)

Equation (61) is in the scaled normal form studied by Dangelmayr and Knobloch (1987)

[cf. their equations (3.3), p. 2480]. Following these authors, we substitute

A(T ; ε) = R(T ; ε)eiφ(T ;ε) (62)

in Eq. (61), separate real and imaginary parts, and obtain the perturbed Hamiltonian system

RTT +
∂V

∂R
= ε

(

K2

2
− 38

25D
R2

)

RT ,

LT = ε

(

K2

2
− 28

25D
R2

)

L. (63)

Here L = R2φT is the angular momentum, and

V ≡ V (R) =
L2

2R2
− D

4
(K2 − 4ω2)R

2 − R4

10
(64)

is the potential. This system has the following special solutions:
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(i) The trivial solution, L = 0, R = 0, which corresponds to the incoherent probability

density, ρ = 1/2π. Such solution is stable for K2 < 0 if ω2 > 0 and for (K2 − 4ω2) < 0

if ω2 < 0.

(ii) The steady-state (SS) solution, L = 0, R = R0 =
√

5D
(

ω2 − K2

4

)

> 0, which exists

provided that ω2 > K2/4. This solution is always unstable.

(iii) The travelling wave (TW) solutions, L = L0 = R2
0

√

2D
(

ω2 − 19
56
K2

)

> 0, R = R0 =

5
2

√

DK2

14
> 0, which exist provided that K2 > 0 and ω2 > 19K2/56. These solutions

bifurcate from the trivial solution at K2 = ω2 = 0. When ω2 = 19K2/56, the branch of

TWs merges with the steady-state solution branch. This solution is always unstable.

(iv) The standing wave (SW) solutions, L = 0, R = R(T ) periodic. Such solutions have

been found explicitly in Section 5.1 of (Dangelmayr and Knobloch, 1987). The SWs

branch off the trivial solution at K2 = ω2 = 0, exist for ω2 > 11K2/19 > 0, and

terminate by merging with a homoclinic orbit of the steady-state (ii) on the line

ω2 = 11K2/19 [see equation (5.8) of (Dangelmayr and Knobloch, 1987)]. This solution

is always stable.

All these results are depicted in Fig. 4 below, which corresponds to Fig. 4, IV- in the

general classification of stability diagrams reported in (Dangelmayr and Knobloch, 1987),

p.267. For fixed ω0 > D, the bifurcation diagram near the tricritical point is depicted in

Fig. 5. Note that equation (59) yields, to leading order,

ρ(θ, ω, t; ε) ∼ 1

2π

[

1 + ε
Rei(φ+θ)

D + iω
+ cc

]

, (65)

and hence, reiψ ∼ εRe−iφ/(2D). It follows that r ∼ R/(2D) and ψ ∼ −φ, which shows that,

essentially, the solution A(T ; ε) to equation (61) coincides with the conjugate of the complex

order parameter. For this reason, in Fig. 5 the ordinate can be either R or r. In Fig. 6,

we have depicted the global bifurcation diagram which completes that shown in Fig. 5 of

(Bonilla et al., 1992).

In closing, the Chapman-Enskog method can be used to calculate any bifurcations ap-

pearing for other frequency distributions and related NLFPEs. As discussed in Section II.B,

nontrivial extensions are needed in the case of the hyperbolic limit, D → 0+.
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IV. VARIATIONS OF THE KURAMOTO MODEL

We have seen in the preceding section how the long-range character of the coupling

interaction in the KM allows to obtain many analytical results. Yet, one might ask how far

the results obtained there do extend beyond the mean-field limit in finite dimensions. Also,

one might ask how synchronization effects in the KM are modified by keeping long-range

interactions but including additional sources of quenched disorder, multiplicative noise, or

time-delayed couplings. Unfortunately, many of the analytical techniques developed in the

preceding section hardly cover such new topics. In particular, the treatment of short-range

couplings (oscillators embedded in a lattice with nearest-neighbor interactions) presents

formidable difficulties both at the analytical and numerical level. This challenges our current

understanding of the mechanisms lying behind the appearance of synchronization. The next

sections are devoted to discuss a number of these cases. The present knowledge of such cases

is still quite modest, and major work remains to be done.

A. Short-range models

A natural extension of the KM discussed in Sec. III includes short-range interaction

effects (Daido, 1988; Sakaguchi et al., 1987; Strogatz and Mirollo, 1988a,b). Kuramoto and

coworkers (Sakaguchi et al., 1987) have considered the case where oscillators occupy the sites

of a d-dimensional cubic lattice and interactions occur between nearest-neighbors,

θ̇i = ωi +K
∑

(i,j)

sin(θj − θi), (66)

where the pair (i, j) stands for nearest-neighbor oscillators and the ωi’s are independent

random variables chosen according to the distribution g(ω). Compared to the KM (23), the

coupling strength K does not need to be scaled by the total number of oscillators. However,

convergence of the model (66) in the limit of large d requires thatK scales like 1/d. Although

this model can be extended so to include stochastic noise, i.e. finite temperature T , most

of the work on this type of models has been done at T = 0. Solving the short-range version

of the KM is a hopeless task (except for special cases such as one dimensional models – see

below – or Cayley-tree structures) due to the difficulty to incorporate the randomness in

any sort of renormalization-group analysis. In short-range systems, one usually distinguishes
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among different synchronization regimes. Global synchronization, which implies that all the

oscillators are in phase, is rarely seen except for K ∝ N → ∞. Phase locking or partial

synchronization is observed more frequently. This is the case when a local ensemble of

oscillators verify the condition θ̇i =const., for every i. A weaker situation concerns clustering

or entrainment. Usually this term refers (although sometimes it has been used in the sense

of phase locking) to the case where a finite fraction of the oscillators have the same average

frequency ω̃i defined by,

ω̃i = lim
t→∞

θi(t)

t
(67)

There is no proof that such a limit exists. However, if it does not exist, synchronization is

not possible whatsoever. The condition of clustering is less stringent than phase locking,

therefore it is expected that its absence precludes the existence of phase locking. Note,

that the previous definitions do not exhaust all possible types of synchronized stationary

solutions, such as for instance, the existence of moving traveling wave structures. The

concept of synchronization (either global or partial) is different from the concept of phase

coherence introduced in the context of the KM in Section 2, see equation (2). Phase

coherence is a stronger condition than synchronization as it assumes that all phases θi

are clustered around a given unique value and so are their velocities θ̇i. The contrary

is not necessarily true, as phases can change at the same speed (synchronization takes

place) while having completely different values (incoherence). Coherence seems less general

than synchronization as the former bears connection to the type of ferromagnetic ordering

present in the KM. Although this type of ordering is expected to prevail in finite dimensions

synchronization seems more appropriate to discuss oscillator models with structural disorder

built in.

For short-range systems one would like to understand several questions such as:

• The existence of a lower critical dimension above which any kind of entrainment is

possible. In particular, it is relevant to prove the existence of phase locking and

clustering for large enough dimensionality and the differences between both types of

synchronization.

• The topological properties of the entrained clusters and the possibility to define a

dynamical correlation length describing the typical length scale of these clusters.
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• The existence of an upper critical dimension above which the synchronization transi-

tion is of the mean-field type.

• The resulting phase diagram in the presence of thermal noise.

In (Sakaguchi et al., 1987), the authors have proposed some heuristic arguments showing

that any type of entrainment (global or local) can occur only for d ≥ 2. This conjecture is

supported by the absence of entrainment in one dimension. Strogatz and Mirollo (1988a,b),

however, have shown that no phase locking can occur at any finite dimension. As phase

locking occurs in mean-field theory, this result suggests that the upper critical dimension in

the model is infinite. Particularly interesting results were obtained in one dimension (chains

of oscillators). In this case, and for the case of a normal distribution of natural frequencies ωi,

it can be proven that the probability of phase locking vanishes as N → ∞, while it is finite

whenever K ≈
√
N . The same result can be obtained for any distribution (not necessarily

Gaussian) of independently distributed natural frequencies. The proof consists of showing

that the probability of phase locking is related to the probability that the height of a certain

Brownian bridge is not larger than some given value which depends on K and the mean of

g(ω). Recall that by Brownian bridge it is meant a random walk described by n moves of

length xi extracted from a given probability distribution, and where the end-to-end distance

l(n) =
∑n

i=1 xi is constrained to have a fixed value for a given number n of steps. However,

one of the most interesting results in these studies is the use of block renormalization group

tecniques to show whether clustering can occur in finite dimension. Nearly at the same time,

Strogatz and Mirollo (1988a,b) and Daido (1988) have presented a similar argument but

leading to slightly different yet compatible conclusions. In (Strogatz and Mirollo, 1988a,b)

the goal was to calculate the probability P (N,K) that a cube S containing a finite fraction

αN (α < 1) of the oscillators can be entrained to have a single common frequency. Following

(Strogatz and Mirollo, 1988a,b), let us assume the macroscopic cluster S to be divided into

cubic subclusters Sk of side l, the total number of subclusters being Ns = αN/ld which is of

order N . For each subcluster k, the average frequency Ωk and phase Θk are defined as

Ωk =
1

ld

∑

i∈Sk

ωi, Θk =
1

ld

∑

i∈Sk

θi. (68)
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Summing (66) over all oscillators contained in each subcluster Sk we get,

Θ̇k = Ωk +
K

ld

∑

(i,j)∈∂Sk

sin(θj − θi) (69)

where the sum in the right-hand side runs over all links (i, j) crossing the surface ∂Sk

delimiting the region Sk. Considering that there are 2dld−1 terms in the surface (and hence

in the sum in (69)), this implies that

|Θ̇k − Ωk| ≤
2dK

l
. (70)

If S is a region of clustered oscillators around the frequency ω̃, then, after time averaging,

the limit (67) gives |ω̃ − Ωk| ≤ 2dK
l

for all 1 ≤ k ≤ Ns. Since the Ωk are uncorrelated

random variables, the probability that such a condition is simultaneously satisfied for all Ns

oscillators is pNs , p being the typical probability value such that |ω̃ − Ωk| ≤ 2dK
l

is satisfied

for a given oscillator. This probability is therefore exponentially small when the number of

subclusters Ns is of order O(N),

P (N,K) ∼ N exp(−cN). (71)

Here c is a constant, and the factor N in front of the exponential is due to the number of

all possible ways the cluster S can be embedded in the lattice. Therefore, the probability

vanishes in any dimension in the limit of large population. This proof assumes that entrained

clusters have a compact structure such as a cubical shape. However, this must not be

necessarily true. Had the clusters a non-compact shape (such as space filling sponges or

lattice animal -tree like- structures), the proof would not hold anymore, since the number

of subclusters Ns does not have to scale necessarily as 1/ld. Therefore, such result does not

prevent the existence of a macroscopic entrainment in non-compact clusters.

This finding does not appear to contradict necessarily that reported by Daido (1988),

who has shown the existence of a lower critical dimension, dl, depending on the tails of a

class of frequency distributions, g(ω). When

g(ω) ∼ |ω|−α−1, |ω| � 1, (72)

then normalization requires α > 0. Moreover, Daido considers that α ≤ 2 for distributions

with an infinite variance, the limiting case α = 2 corresponding to the case of a distribution

with finite variance (such as the Gaussian distribution). The argument put forth by Daido
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resorts to a similar block decimation procedure as that outlined in eqs. (68,69). However he

reports different conclusions compared to those by Strogatz and Mirollo (1988a,b). Having

defined the subcluster or block frequencies Ωk and phases Θk in (68), Daido shows that

only for d < α/(α− 1), and in the limit when l → ∞, (70) yields the fixed point dynamical

equation

Θ̇k = Ωk, (73)

for every k, which shows that no clustering can occur for 0 < α ≤ 1 in any dimension.

However, for 1 < α ≤ 2 macroscopic entrainment should be observed for dimensions above

dl = α
α−1

. For the Gaussian case, α = 2, entrainment occurs above dl = 2 as suggested also

in (Sakaguchi et al., 1987). Numerical evidence in favor of a synchronization transition in

dimension d = 3 (Daido, 1988) is not much convincing. Anyway, the overall issue concerning

the correct value of the upper critical dimension remains still unsolved.

The KM in an ultrametric tree has also been studied (Lumer and Huberman, 1991, 1992).

The authors considered a general version of the model in (66), where N oscillators sit in

the leaves of a hierarchical tree of branching ratio b and L levels, see Figure 7. The coupling

among the oscillators, Kij, is not uniform but depends on their ultrametric distance lij , i.e.

the number of levels in the tree separating the leaves from its common ancestor,

Kij = Kd(lij), (74)

where d(x) is a monotonically decreasing function of the distance. The existence of a proper

thermodynamic limit requires, for d(x) in the limit of large L,N ,

N
∑

i=1

Kij = K, (75)

for all j. For a given value of K, as the ultrametric distance lij increases, entrainment

fades away. However as K increases more and more levels tend to synchronize. Therefore,

this model introduces in a simple way the clusterization of synchronization, thought to be

relevant in the perception problem at the neural level (see Sec. VII.A). The simplest function

d(x) that incorporates such effects is that having an exponential decay d(x) ∼ 1/ax, where

the coupling strength decreases by a factor a at consecutive levels. It can be shown (Lumer

and Huberman, 1992) that a cascade of synchronization events occurs whenever b ≥ a
α

α−1 ,

where α is defined by (72). In such regime the model displays a nice devil staircase behavior
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when plotting the synchronization parameter as a function of K. This is characteristic of

the emergent differentiation observed in response of the system to external perturbations.

Other topologies beyond the simple cubic lattice structure have been also considered. In

(Niebur et al., 1991b), the authors analyze spatial correlation functions in a square lattice

of oscillators with nearest-neighbor, Gaussian (the intensity of the interaction between two

sites decays with their distance according to a Gaussian law), and sparse connections (each

oscillator is coupled to a small and randomly selected subset of neighbors). Overall, they

find that entrainment is greatly enhanced with sparse connections. Whether this result is

linked to the supposed non-compact nature of the clusters is yet to be checked.

An intermediate case between the long range KM and its short-range version (66) occurs

when the coupling among oscillators decays as a power law, 1/rα, r denoting their mutual

distance. The intensity of the coupling is then properly normalized in such a way that the

interaction term in (66) remains finite in the limit of large population. For the normalized

case, in one dimension, it has been shown (Rogers and Wille, 1996) that a synchronization

transition occurs when α < αc(K) with αc(Kc) = 2/[πg(ω = 0)]), corresponding to the

KM (see paragraph just after formula (11)). It is found that α < 2 is required for a

synchronizing transition to occur at finite K. Note that the same condition is found for

one-dimensional Ising and XY models in order to have a finite-temperature transition. For

the non-normalized case results are more interesting (Marodi et al., 2002) as they show a

transition in the population size (rather than in the coupling constant K) for α < d. In such

a case, synchronization occurs provided that the population is allowed to grow above some

critical value Nc(K,α < d). The relevance of such result stems from the fact that sufficiently

large three-dimensional populations, interacting through a signal whose intensity decays as

1/r2, such as sound or light, can synchronize whatever the value of the coupling K might

be.

Before ending the present overview of short-range models it is worth mentioning that the

complexity of the synchronization phenomenon in two dimensions has been emphasized in

another investigation conducted by Kuramoto and coworkers (Sakaguchi et al., 1988). Here

they studied a model where the coupling function was slightly modified to account for an

enhancement of the oscillator frequencies due to their interaction,

θ̇i = ωi +K
∑

(i,j)

[(sin(θj − θi − α) + sin(α)] , (76)
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with −π
2
≤ α ≤ π

2
. This is a non-variational model, since the interaction term does not

correspond to the gradient of a two-body potential. The effect of the parameter α is to

decrease the entrainment among oscillators which have different natural frequencies, giving

rise to a higher value of the critical coupling. Notably this model has been found to describe

synchronization of Josephson junctions arrays (see (155) and the ensuing discussion). The

parameter α has an interesting effect already in the non-disordered model ωi = 0 (for α = 0

this is the XY model), where neighboring phases inside a vortex can differ a lot, thereby

inducing an increase in the local frequency. The vortex acts as a pacemaker enhancing

entrainment in the surrounding medium.

B. Models with disorder

The standard KM has already disorder built in. However, one can include additional

disorder in the coupling among the oscillators. Daido has considered the general mean-field

model (Daido, 1992b)

θ̇i = ωi +
∑

(i,j)

Kij sin(θj − θi + Aij) + ξi(t), (77)

where the couplings Kij are Gaussian distributed,

P (Kij) =
N√
2πK2

exp
(

−
NK2

ij

2K2

)

, (78)

the natural frequencies being distributed according to a distribution g(ω) and ξ is a Gaussian

noise. The Aij are real-valued numbers lying in the range [−π, π] and stand for potential

vector differences between sites which amount to random phase shifts. The interest of this

model lies in the fact that frustration, a new ingredient beyond disorder, is introduced. Frus-

tration implies that the reference oscillator configuration, which makes vanish the coupling

term in (77), is incoherent, i.e. θi − θj 6= 0. This is due to the competing nature of the dif-

ferent terms involved in that sum which contribute with either a positive or a negative sign.

This makes the reference configuration extremely hard to find using standard optimization

algorithms. Compared to the models without disorder, few studies have been devoted to the

disordered case so far, yet they are very interesting as they seem to display synchronization

to a glassy phase rather than to a ferromagnetic-like one. Moreover, as structural disorder

tends to be widespread in many physical systems, disordered models seems to be not less

relevant to realistic oscillator systems than their ordered counterparts.
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1. Disorder in the coupling: the oscillator glass model

The model (77) with disorder in the coupling parameter Kij and Aij = 0 has been the

subject of some recent works (Daido, 1987a, 1992b, 2000; Stiller and Radons, 1998, 2000).

The model equation is

θ̇i = ωi +
∑

(i,j)

Kij sin(θj − θi) + ξi(t), (79)

where the Kij ’s are given by (78). When ωi = 0 this corresponds to the XY spin-glass

model (Kirkpatrick and Sherrington, 1978; Sherrington and Kirkpatrick, 1975), introduced

to mimic the behavior of frustrated magnets. It is well known that the XY spin-glass model

has a transition at a critical noise intensity Dc = 1 from a paramagnetic phase (D > Dc) to

a spin-glass phase (D < Dc). When natural frequencies exist, a synchronization transition

is expected to occur from an incoherent to a synchronized glassy phase. The most complete

study (yet with contradictory results, see below) has been done without noise and for a

Gaussian frequency distribution g(ω) in two different works. One of these was done by

Daido (1992b), the other by Stiller and Radons (1998). Daido (1992b) has conducted a

detailed numerical analysis of the distribution p(h) of the local field hj acting on each

oscillator defined by

p(h) =
1

N

N
∑

j=1

δ(h− hj), (80)

hj =
1

K

N
∑

l=1

Kjl exp(iθl). (81)

Daido showed how, as the value of K is increased, p(h) changes from a pure Gaussian

distribution, whose maximum, h∗, is located at 0, to a non-Gaussian function where h∗

becomes positive. This establishes the value of the critical coupling as Kc ≈ 8.

Glassy systems are known for their characteristic slow relaxational dynamics, which leads

to phenomena such as aging in correlations and response functions and violations of the

fluctuation-dissipation theorem (Crisanti and Ritort, 2003). Synchronization models are

expected to show similar non-equilibrium relaxation phenomena, albeit aging is not expected

to occur in the stationary state. In particular, Daido also considered the order parameter

Z(t) =
1

N

N
∑

j=1

exp(iθj(t)), (82)
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showing that Z(t) decays exponentially with time in the incoherent phase case (K < Kc),

and as a power law in time in the synchronized phase case. These results have been crit-

icized in a subsequent work by Stiller and Radons (1998). These authors considered the

analytical solution of the dynamics of the same model, using the path integral formalism of

Martin-Siggia-Rose to reduce the N -oscillator problem to a single oscillator problem with a

correlated noise. The resulting dynamical equations can be solved self-consistently by using

the approach developed by Eisfeller and Opper for the Sherrington-Kirkpatrick model (Eiss-

feller and Opper, 1978). The advantage of such method is that it yields directly dynamical

results in the infinite-size limit. The drawback is that the time required to solve the dy-

namics up to M time steps grows as M2, so that tipically no more than M = 1000 time

steps can be considered. Stiller and Radons (1998) have claimed that a power law for Z(t)

could not be observed for values of Kc approximatly above 8. However, the results they

reported in favor of their claim were questionable. In particular, Stiller and Radons’ dy-

namic computations reached only time scales much smaller than those attained by Daido

using numerical simulations (see Sec. VI.A) who reaches times of order of 100 Monte Carlo

steps. It is difficult to sustain a discussion on the asymptotic behavior of Z(t) with the

short timescales considered in both works. This issue has raised some controversy (Daido,

2000; Stiller and Radons, 2000) which has not been yet settled. Although Stiller and Radons

conclude that, after all, theirs and Daido’s results might be compatible, the discrepancies

turn out to be serious enough to question the validity of either one’s results. Indeed, there is

a discrepancy between the critical value Kc derived in these two works from measurements

made in the stationary regime. Stiller and Radons have introduced the equivalent of the

Edwards-Anderson parameter q̃ for the XY case,

q̃ = lim
t→∞

lim
N→∞

lim
t0→∞

ReC(t0, t0 + t), (83)

where C(t, s) is the two-times complex-valued correlation function

C(t, s) =
1

N

N
∑

j=1

exp(i(θ(t) − θ(s))). (84)

The order of the limits in (83) is important: the t0 → ∞ limit assures that the stationary

regime is attained first, the N → ∞ limit ensures ergodicity breaking, and the t→ ∞ limit

measures the equilibrium order within one ergodic component. Measurements of q̃ reveal a

neat transition across Kc = 24 (see Fig.3 in (Stiller and Radons, 1998)), nearly three times
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larger than the value reported by Daido (see Fig. 2 in (Daido, 1992b)). The origin of such

a discrepancy is so far unknown. Further work is needed to resolve this question.

Before finishing this section, let us mention that the study of the model in (79) with

site disordered couplings, has been considered by Bonilla et al. (1993) for the KM with

the van Hemmen-type interactions. Such interactions are characterized by the coupling

parameters Kij = K0

N
+ K1

N
(ξiηj + ηiξj), where ξi, ηi are random independent identically

distributed quenched variables which take values ±1 with probability 1/2. Such a model

is exactly solvable so that the resulting phase diagram can be obtained analytically. These

authors found several phases, depending on the ratio between K0 and K1, i.e. incoherence,

synchronization, spin-glass phase, and mixed phase (where oscillators are partially coherently

synchronized and partially in phase opposition).

2. The oscillator gauge glass model

The oscillator gauge glass model has been seldom studied, and is quoted here for com-

pleteness. It corresponds to the model in (77), where Kij = K/N and frustration arises

solely from the random phase shifts Aij ∈ [−π, π]. Note that this term by itself is enough

to induce frustration. For instance, when Aij = 0 or π with probability 1/2, such a model

coincides with the previous oscillator glass model where Kij = ±1 with identical probabil-

ity. In general, for non-disordered models (in the absence of natural frequencies), and in the

absence of an external magnetic field, the vector potential components around a plaquette

add to zero. In the presence of a field, this term is an integer number times the value of the

quantized flux, therefore the present oscillator gauge glass model in two-dimensions can be

seen as a simplified version of overdamped Josephson junctions arrays. Let just mention a

study (Park et al., 1998) of the phase diagram of the oscillator gauge glass model, where the

stationary states are taken as the equilibrium states of the corresponding Boltzmann system.

The key technique was to map such a model into an equilibrium gauge glass model. However,

as already explained in Sec. VI.C, this approach does not guarantee a full characterization

of the stationary solutions.
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C. Time-delayed couplings

One of the most natural and well motivated extensions of the KM concerns the analysis

of time-delayed coupling among oscillators. In biological networks, electric signals propagate

along neural axons at a finite speed. Thus, delays due to transmission are natural elements in

any theoretical approach to information processing. Time delays can change substantially

the dynamical properties of coupled systems. In general, the dynamic behavior becomes

much richer and, on occasion, even surprising. One might think that time delays tend to

break or to make difficult coherence in populations of interacting units, but this is not always

the rule of thumb. An important example has been the focus of intense research in the last

years: synchronization in chaotic systems. It has been proved that a delayed coupling is the

key-element to anticipate and control the time evolution of chaotic coupled oscillators by

synchronizing their dynamics (Pikovski et al., 2001; Voss, 2001). In excitable systems the

situation is quite similar. It has been reported that delayed couplings may favor the existence

of rapid phase-locked behavior in networks of integrate-and-fire oscillators (Gerstner, 1996).

How important are time delays for a population of coupled phase oscillators? This de-

pends on the ratio of the time delay to the natural period of a typical oscillator. In general,

the delay should be kept whenever the transmission time lag is much longer than the oscilla-

tion period of a given unit (Izhikevich, 1998). On the other hand, the delay can be neglected

whenever it is comparable to the period of the oscillators.

Let start discussing the dynamic properties of short-range coupled Kuramoto models with

time delayed couplings (Nakamura et al., 1994; Niebur et al., 1991a; Schuster and Wagner,

1989):

θ̇i(t) = ωi + ξi(t) +
K

N

∑

j

sin(θj(t− τ) − θi(t)). (85)

Here the sum is restricted to nearest-neighbors, and τ is a constant time delay. In this

model, each oscillator interacts with its neighbors in terms of the phase that they had at

the time they sent a synchronizing signal.

In a simple system of two oscillators, Schuster and Wagner (1989) found the typical

fingerprint of delays in several relevant differences between this model and the standard

KM. When τ = 0, one synchronization state is stable. However, for non zero delays and

given values of τ and K, there are multiple stable solutions of Eq. (85) with more than one
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synchronization frequency and different basins of attraction. In a remarkable application,

this model has been used recently to explain the experimentally observed oscillatory behavior

of a unicellular organism (Takamatsu et al., 2000).

Keeping in mind these results, it is not difficult to imagine what will happen for large

ensembles of oscillators. In a 1D system, Nakamura et al. (1994) have shown that com-

plex structures emerge spontaneously for N → ∞ . They are characterized by many stable

coexisting clusters, each formed by a large number of entrained units, oscillating at differ-

ent frequencies. Such structures have also been observed for a distribution of time delays

(Zanette, 2000). Another peculiarity of the model has been observed for large coupling

intensities and large delays. In this regime, the system exhibits frequency suppression re-

sulting from the existence of a large number of metastable states. In two dimensions, Niebur

et al. (1991a) have shown that the system evolves towards a state with the lowest possible

frequency, selected from all the possible solutions of Eq. (85), for given values of K and τ .

More recently, Jeong et al. (2002) have shown that distance-dependent time delays induce

various spatial structures such as spirals, traveling rolls, or more complex patterns. They

also analyzed their stability and the relevance of initial conditions to select these structures.

The mean-field model has been studied theoretically by analyzing the corresponding

NLFPE (Choi et al., 2000; Luzyanina, 1995; Yeung and Strogatz, 1999). Similarly to the

case of short-range couplings, the delay gives rise to multistability even for identical oscil-

lators and without external white noise. The phase diagram (K, τ) contains regions where

synchronization is a stable solution of the dynamic equations, other regions where coherence

is strictly forbidden, and still others where coherent and incoherent states coexist. The ex-

istence of all these regimes has been corroborated by simulations (Kim et al., 1997b; Yeung

and Strogatz, 1999). The same qualitative behavior has been found for non trivial distri-

butions of frequencies. As in the standard KM, in noisy systems there is a critical value of

the coupling Kc, above which the incoherent solution is unstable. The value of Kc depends

on the natural frequency distribution, the noise strength as well as the delay. Choi et al.

(2000); Yeung and Strogatz (1999) have carried out a detailed analysis of the bifurcation at

Kc for the NLFPE corresponding to Eq. (85). Kori and Kuramoto (2001) have studied the

same problem for more general phase oscillator models.
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D. External fields

A natural extension of the original KM is to add external fields, which gives rise to a

much richer dynamical behavior. External fields can model the external current applied to a

neuron so as to describe the collective properties of excitable systems with planar symmetry.

For other physical devices, such as Josephson junctions, a periodic external force can model

an oscillating current across the junctions. The Langevin equation governing the dynamics

of the extended model is

θ̇i = ωi + ξi(t) +
K

N

N
∑

j=1

sin(θj − θi) + hi sin θi. (86)

Shinomoto and Kuramoto (1986) studied the case hi = h, for every i. They analyzed

the NLFPE associated to (86) and found two different regions of the phase diagram: a

region of time-periodic physical observables, and a region of stable stationary synchronized

states. Sakaguchi (1988) replaced the last term in Eq. (86) by h sin(θi − ωf t), where ωf

is the frequency of the external force. Note that by defining ψi = θi − ωf t, we obtain

again Eq. (86) for ψi, but with natural frequencies ωi − ωf . Therefore, introducing a time-

periodic external force amounts to modify the statistical properties of the natural frequency

distribution g(ω). In general, there will be a competition between forced entrainment and

mutual entrainment. When h is large, the oscillators tend to be entrained with the external

force. On the other hand, when h is small there will be a macroscopic fraction of the

population mutually entrained displaying a synchronous collective motion. Such a motion

occurs with a frequency equal to the mean natural frequency of the population.

Arenas and Pérez-Vicente (1994a) studied the phase diagram of a KM with a distribution

of random fields, f(h). They solved the NLFPE through a generating functional of the order

parameters, and found analytical expressions thereof, which fully agreed with the numerical

simulations. When f(h) is centered at h = 0, they found a phase transition between an

incoherent state with r = 0 and a synchronized state, which is similar to the transition in

the static model as well as in the model of identical oscillators (Arenas and Pérez-Vicente,

1993)). The only difference here is that the critical value Kc is larger. This is reasonable

because larger values of the coupling strength are needed to counteract the effect of rotation

due to the frequency distribution. When the field distribution is not centered at the origin,

an effective force arises. This makes r 6= 0 for any value of the ratio K/D (r ∝ 〈h〉 for small
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K/D and for 〈h〉 � 1), thereby precluding phase transitions, as in the static case.

Densities having time-dependent solutions with nonzero order parameters (Arenas and

Pérez-Vicente, 1994a; Sakaguchi, 1988; Shinomoto and Kuramoto, 1986) exist, provided

that
∫

hf(h)dh 6= 0. Acebrón and Bonilla (1998) studied these solutions using the two-

timescale asymptotic method mentioned in Section III.C. The probability density splits

into independent components corresponding to different peaks in the multimodal frequency

distribution. Each density component evolves toward a stationary distribution in a comoving

frame, rotating at a frequency corresponding to the appropriate peak in g(ω). Therefore,

the overall synchronous behavior can be determined by studying synchronization of each

density component (Acebrón and Bonilla, 1998).

Inspired by biological applications, Frank et al. (2000) analyzed the behavior of phase

oscillators in presence of forces derived from a potential with various Fourier modes. They

studied in detail the transition from incoherence to phase locking. Finally, Coolen and

Pérez-Vicente (2003) have studied the case of identical oscillators with disordered couplings

and subject to random pinning fields. This system is extremely frustrated and several spin-

glass phases can be found in it. The equilibrium properties of such a model depend on the

symmetries of the pinning field distribution and on the level of frustration due to the random

interactions among oscillators.

E. Multiplicative noise

To end this section, let discuss the effect of multiplicative noise on the collective properties

of phase oscillators. As far as it is known, there have been two different approaches to this

problem. Park and Kim (1996) studied the following rather complex version of the KM:

θ̇i = ωi +
K + σηi(t)

N

N
∑

j=1

sin(θj − θi) + h sin(νθi). (87)

Here ηi is a zero-mean delta-correlated Gaussian noise with unit variance, σ measures the

intensity of the noise, and ν is an integer. In this model, the phase oscillators are subject

to an external pinning force and therefore they represent excitable units. Thus Eq. (87)

describes the effect of multiplicative noise on a population of excitable units. Through

analytical and numerical studies of the NLFPE, Park and Kim (1996) found the phase
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diagram of the model (h, σ) for different values of ν. For identical oscillators, there are new

phases in which two o more stable clusters of synchronized oscillators can coexist. This

phenomenology is strictly induced by the multiplicative noise, without requiring time delays

or high Fourier modes in the coupling.

Kim et al. (1997a, 1996) have supplemented Eq. (87) with additive noise. Rather surpris-

ingly, the additive noise tends to suppress the effects triggered by the multiplicative noise,

such as the bifurcation from one-cluster phase to the two-cluster state. The new phase

diagram exhibits a very rich behavior, with interesting nonequilibrium phenomena such as,

reentrant transitions between different phases. The interesting physics induced by the com-

bination of both types of noise suggested Kim et al. (1997c) to propose a new mechanism

for noise-induced current in systems under symmetric periodic potentials.

Reimann et al. (1999) tackled the problem from a different standpoint. They considered

the standard mean-field equation (23) with a non-equilibrium Gaussian noise, characterized

by

< ξi(t) >= 0, < ξi(t)ξj(t
′) >= 2D(θi)δijδ(t− t′), (88)

where D(θ) = D0 +D1 cos(θ) and D0 ≥ D1 ≥ 0. The authors considered only one Fourier

mode to make their analysis simpler, and studied the particular case D0 = D1 = Q/2. Under

such conditions, for identical oscillators and for arbitrarily weak couplings, time-dependent

oscillatory synchronization appears for a certain value of the ratio K/Q, via spontaneous

symmetry breaking. By means of numerical simulations, the authors also studied the effect

of multiplicative noise in systems with short-range couplings. In such a case, an even more

complex behavior, including hysteretic phenomena and negative mobility, were found.

Recently, and only for identical oscillators, Kostur et al. (2002) have studied Eq. (86)

with hi = −1 for every i, with both additive and symmetric dichotomic noise. For the

latter noise, they found a complex phase diagram with five different regions: incoherence,

bistability, phase locking, hysteretic phenomena, and an oscillatory regime.

V. BEYOND THE KURAMOTO MODEL

Many generalizations of the KM have been proposed to analyze synchronization phe-

nomena in more complex situations. First of all, periodic coupling functions, which contain

more harmonics than the simple sine function considered by Kuramoto, have been proposed.
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Moreover, there are oscillator models described by two angles (tops models), or by phase

and amplitude (amplitude oscillators). At last, the dynamical behavior described by the

KM changes if phase oscillators possess inertia, which makes synchronization harder but the

emergence of spontaneous phase oscillations easier.

A. More general periodic coupling functions

An immediate generalization of the mean-field KM is given by

θ̇i = ωi +
K

N

N
∑

j=1

h(θj − θi), (89)

where h(θ) is a general 2π periodic coupling function, and the natural frequencies ωi are

distributed with probability density g(ω), as usual. By shifting all phases, θ → θ + Ωt,

and selecting Ω appropriately, we can set
∫ +∞

−∞
ωg(ω)dω =

∫ π

−π
h(θ)dθ = 0, without loss of

generality. What can we say about oscillator synchronization in this more general context?

A particularly successful theoretical approach is due to Daido (1992a, 1993a,b, 1994,

1995, 1996a,b), who generalized Kuramoto’s idea on the order parameter and the partially

synchronized state. Let assume that the oscillators are phase-locked at a common frequency

ωe(t) = ψ̇. Suppose that there exist the following order parameters

Zj ≡ Xj + i Yj = lim
t→∞

1

N

∑

k

exp{i j[θk(t) − ψe(t)]}. (90)

If the coupling function is expanded in Fourier series as

h(θ) =

∞
∑

j=1

(

hsj sin(jθ) + hcj cos(jθ)
)

(91)

=
∞
∑

j=−∞

hje
i jθ,

then a simple calculation shows that we can write Eq. (89) in the following form:

θ̇i = ωi −KH(θi − ψe(t)), (92)

provided we define the order function H as

H(ψ) ≡ −
∞
∑

j=−∞

hjZje
−i jθ
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=
∞
∑

j=1

{

(hsjXj − hcjYj) sin(jψ)

−(hcjXj + hsjYj) cos(jψ)
}

. (93)

Note the similarity between Eq. (92) and Kuramoto’s expression in (3). Daido (Daido,

1992a) derived a self-consistent functional equation for H(ψ), assuming that H(ψ) possesses

only one maximum and one minimum inside the interval −π ≤ ψ ≤ π. This equation always

has the trivial solution H(ψ) = 0, which corresponds to incoherence. Nontrivial solutions

describe synchronized states of the oscillator population. Furthermore, one expects that, for

K sufficiently large, the onset of mutual entrainment is a bifurcation of a non trivial order

function from incoherence.

Keeping this in mind Daido considered several special cases (Daido, 1992a, 1993a,b).

When the Fourier series of the coupling function contains only odd harmonics, there is

spontaneous synchrony above the critical value of the coupling constant

Kc =
2

πg(ωe)hs1
(94)

This shows that Kc depends on the first harmonic but not on the higher modes. Notice

that the KM belongs to this family of models (in fact h(θ) = sin θ) and the value given by

(94) is consistent with the results given in Section II. The bifurcation to the synchronized

state is supercritical provided that g′′(ωe) < 0 and hs1 > 0. These results were confirmed by

numerical simulations.

Daido (1994) worked out a bifurcation theory for the order function whose L2 norm

‖H‖ ≡
(

∫ π

−π
H2(ψ)dψ

)1/2

, can be represented in a bifurcation diagram, as a function of the

coupling strength K. Near the critical coupling, ‖H‖ ∝ (K−Kc)
β, which defines the critical

exponent β. It turns out that the KM describes the scaling behavior of a reduced family of

phase oscillators for which β = 1/2, whereas β = 1 for the vast majority of coupling functions

(Daido, 1994, 1996b). This fact suggests the existence of different classes of universality.

Crawford (1995) confirmed most of these findings by means of standard bifurcation theory,

while Balmforth and Sassi (2000) gave a simple mode-coupling explanation for the different

scalings in an example, where the only non zero harmonics are hs1 = 1 and hs2 = σ.

The previous theory can be generalized to order functions with several peaks in the

interval (−π, π) (Daido, 1995, 1996a). In this case, the oscillators may choose among different

coexisting phase-locking states, and their resulting dynamical behavior is more complex than
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the standard case, where only one type of entrainment is possible (Daido, 1996a). When the

order function has more than one local maximum and a local minimum, there is an overlap

region with at least two branches where H ′(ψ) > 0. Oscillators whose frequency lies in the

overlap region, may synchronize to the phase of one stable branch, depending on their initial

condition. The number of such states is exponentially large and the entropy per oscillator

is an appropriate order parameter which characterizes the corresponding macroscopic state

(Daido, 1996a).

Works carried out by other authors confirm the predictions made by means of the order

function formalism. For instance, Hansel et al. (1993b) considered coupling functions with

two Fourier modes and a free parameter which controls the attractive/repulsive character of

the interaction among oscillators. Besides the usual states typical of the KM, the incoherent

state and the synchronized state, they found more complex dynamical ocurrences, according

to suitable values of the control parameter. For instance, there were switching between

two-cluster states connected by heteroclinic orbits. Each cluster contained a group of phase-

locked oscillators running at a common frequency. Other studies discussing a large variety

of clustering behavior for coupling functions having a large number of Fourier modes are

conducted by (Golomb et al., 1992; Okuda, 1993; Tass, 1997).

Bonilla et al. (1998a) studied singular coupling functions such as h(θ) = δ′(θ), δ(θ),

sign(θ), etc. which possesses infinitely many nonvanishing Fourier modes. They showed that

the dynamics of these models can be exactly solved using the moment approach discussed

in Section VI.C. Considering the generating function for the moments,

ρ̂(x, y, t) =
1

2π

∞
∑

k=−∞

∞
∑

m=0

exp(−ikx)y
m

m!
Hm
k (t), (95)

Hm
k (t) =

1

N

N
∑

j=1

exp[ikθj(t)]ω
m
j ,

its time evolution satisfies

∂ρ̂

∂t
= − ∂

∂x

[

v(x, t) ρ̂
]

+D
∂2ρ̂

∂x2
− ∂2ρ̂

∂x∂y
, (96)

where the drift velocity v(x, t) is defined by

v(x, t) = −K
∞
∑

n=−∞

hnH
0
−n exp(inx). (97)
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The moment-generating function and the one-oscillator probability density are related by

ρ̂(x, y, t) =

∫ +∞

−∞

eyωρ(x, ω, t)g(ω) dω (98)

Bonilla et al. (1998a) noticed that, for special couplings and for g(ω) = δ(ω) (so that

ρ̂ = ρ(x, t)), it is possible to map synchronization into other physical problems. For instance,

for h(θ) = δ′(θ), Eq. (96) becomes

∂ρ

∂t
= K

∂

∂x

(

ρ
∂ρ

∂x

)

+ D
∂2ρ

∂x2
, (99)

which in the literature is used to describe porous media. It can be shown that, in this

case, the incoherent solution is stable and therefore entrainment among oscillators is not

allowed. When h(θ) = δ(θ), Eq. (96) becomes the viscous Burgers equation,

∂ρ

∂t
= 2Kρ

∂ρ

∂x
+ D

∂2ρ

∂x2
(100)

and synchronization is possible only at zero temperature (D = 0). Finally when h(θ) =

sign(θ), the equation for ρ can be recast into a pair of coupled nonlinear partial differential

equations. Their stationary solutions can be evaluated explicitly in terms of elliptic func-

tions, and therefore the associated bifurcation diagram can be constructed analytically for

all K’s. In this case, multiple solutions bifurcate from incoherence for different values of

the coupling strength. It should be mentioned that these authors established a link between

their approach and Daido’s order function method.

One-dimensional chains of phase oscillators with nearest-neighbor interactions (and also

beyond nearest-neighbors) and arbitrary coupling function have also been studied recently

(Ren and Ermentrout, 2000). Given the complexity of such a problem these authors studied

general properties of the model such as the conditions required to ensure existence of phase

locking solutions. Numerical examples were provided to confirm their theoretical predictions.

B. Tops models

The KM deals with interacting units which behave as oscillators that are described by

only one variable, i.e. their phase. However, it is not difficult to imagine other cases where

the mutually interacting variables are not oscillators, but rather, classical spins described

by azimuthal and polar angles. In Ritort (1998), a tops model (TM) has been introduced,

and the associated phase diagram solved in the mean-field case.
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Although the name “top” is a misnomer (tops are described by three Euler angles, rather

than only two) it is perhaps more appropriate word than the more correct term “spin”. This

choice may avoid some confusion in view of the overwhelming variety of spin models existing

in the literature. The TM might have experimental relevance whenever precession motion

is induced by an external perturbation acting upon the orientational degrees of freedom of

a given system. It can describe the synchronized response of living beings, such as bacteria,

endowed with orientational magnetic properties, or complex resonance effects in random

magnets or NMR.

The model consists of a population of N Heisenberg spins or tops {~σi, 1 ≤ i ≤ N (of unit

length) which precess around a given orientation n̂i at a given angular velocity ωi. Larmor

precession of the ith top is therefore described by a vector ~ωi = ωin̂i. Moreover, the tops in

the population mutually interact trying to align in the same direction. The TM equations

of motion are,

~̇σi = ~ωi × ~σi −
K

N

N
∑

j=1

∂E(~σi, ~σj)

∂σi
+ ~ηi(t) (101)

where K is the coupling strength and E(~σi, ~σj) is the two-body energy term. Rotational in-

variance symmetry requires E to be a function of the scalar product ~σi ~σj , the simplest case

being the bilinear form E(~σi, ~σj) = ~σi ~σj . Natural frequencies ~ωi are chosen from a distribu-

tion P (~ωi). The term ~ηi(t) is a Gaussian noise of zero mean and variance equal to 6D, the

factor 6 arising from the three degrees of freedom. As it stands, (101) is not yet well defined

as the unit length of the vector ~σi is not constant, as it can be seen by multiplying both sides

of such equation by ~σi. In order to avoid such a problem it is convenient to project the tops

onto the surface of a unit radius sphere. This requires to introduce the azymuthal angles

θi ∈ [0, π] and the polar angles φi ∈ [0, 2π), ~σi = (cos(φi) sin(θi), sin(φi) sin(θi), cos(θi)).

The main technical difficulty in this approach arises from the noise term, which should be

described by a Brownian motion constrained on a spherical surface (see for instance (Coffey

et al., 1996)). In spherical coordinates requires also that the natural frequency vectors ~ωi

are specified in terms of their modulus ωi, and their azymuthal and polar angles (µi, λi).

Note at this point that three parameters enter into the description of the disordered units,

rather than only one (i.e. the natural frequency ωi) in the KM. The ensuing equations of

motion are

θ̇i = −KFθ(θi, φi, ~m) + ωiGθ(θi, φi, λi, µi) + ξθi , (102)
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φ̇i sin θi = −KFφ(θi, φi, ~m) + ωiGφ(θi, φi, λi, µi) (103)

+ξφi ,

where the functions Fθ, Fφ, Gθ, Gφ can be easily obtained transforming the first two terms

in the right-hand side of Eq. (101) to spherical coordinates, and ~m = 1
N

∑N
i=1 ~σi is the

average magnetization. The latter plays the role of the order parameter in the TM, as the

parameter r in the KM (see equation (2) in Sec. II). The noise terms ξθi , ξ
φ
i are Gaussian

correlated with variance 2D and average D cot θi and 0, respectively.

The solution of the TM poses additional mathematical difficulties compared to the KM,

however most of calculations can be done for the simplest disordered cases. In (Ritort,

1998), calculations were accomplished in the presence of only orientational disorder, where

ωi = ω for every i. The natural frequency distribution being here given by a function

p(µ, λ). Perhaps, the easiest approach to solve such a model is that of using the moment

representation (see Sec. VI.C), by introducing the set of moments

Mpq
lm =

1

N

N
∑

i=1

Ylm(θi, φi)Ypq(µi, λi). (104)

This formulation allows for a simple analysis of both, the stationary solutions and their

stability, in the (K̃ = K/D, ω̃ = ω/D) plane, as well as providing an efficient method for

the numerical integration of the model in the limit N → ∞. In (Ritort, 1998), several

axially symmetric disorder distributions where p(µ, λ) ≡ p(µ) have been investigated: (a)

antiferromagnetically oriented precessing frequencies with p(µ) = 1
4π
δ(µ − 0) + 1

4π
δ(µ − π),

(b) precessing orientations lying in the XY plane, p(µ) = 1
2π
δ(µ − π

2
), and (c) isotropic

disorder p(µ) = 1
4π

. While case (a) corresponds to a purely relaxational model (the mean-

field antiferromagnet), displaying a single synchronization transition at K̃ = 3, models (b)

and (c) show more a complex dynamical behavior. In fact, in case (c) it was found that

the incoherent solution is stable for K̃ < 3, unstable for K̃ > 9, and stable in the region

3 < K̃ < 9 whenever ω̃2 > (12K̃−36)/(9−K̃) yielding a rich pattern of dynamical behavior.

More work needs yet to be done on the TM. Especially interesting would be an experi-

mental verification of the orientational entrainment in magnetic systems or in magnetized

living cells. Here nonlinear effects are introduced by the inertial effects induced by the

Larmor precession of magnetic moments in a magnetic field.
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C. Synchronization of amplitude oscillators

As long as the attraction in each oscillator to its limit-cycle dominates over the coupling

among the members of the population, a phase model suffices to account for a number of

phenomena. This is the case of the classical KM. On the other hand, when the coupling is

strong enough, the amplitude of each oscillator may be affected, and hence a more compre-

hensive model is required, where the dynamics of the amplitudes besides that of the phases

is included.

Similarly to the case of the KM, one can consider several interactions among the os-

cillators, most important nearest neighbors [also called diffusive] coupling (Bar-Eli, 1985),

random coupling between each oscillator and an arbitrary number of neighbors (Satoh, 1989)

, and “all-to-all” [global] coupling (Ermentrout, 1990; Matthews et al., 1991; Matthews and

Strogatz, 1990). Incidentally, it should be observed that in several papers the term “dif-

fusive coupling” is used to refer to an “all-to-all” coupling instead of to nearest-neighbor

interaction. It is the latter, in fact, that corresponds to the Laplace operator in a discretized

form.

In this Section, only amplitude models subject to a global interaction are discussed,

which, due to their simplicity, have been more extensively investigated so far. For instance,

a case widely studied is given by the system of linearly coupled oscillators, each near a Hopf

bifurcation,

żj = (1 − |zj|2 + i ωj) zj +
K

N

N
∑

i=1

(zi − zj),

j = 1, . . . , N. (105)

Here zj is the position of the jth oscillator in the complex plane, ωj its natural frequency,

picked up from a given frequency distribution, g(ω), and K the coupling strength. One

should notice that, when the coupling is small, Eq. (105) describes at the same time the

behavior of a general dynamical system close to a Hopf bifurcation. In fact, strictly speaking,

Eq.(105) with K = 0 represents a dynamical system in the Hopf normal form, whenever the

frequency does not depend on the amplitude (Crawford, 1991).

The oscillators in Eq. (105) are characterized by two degrees of freedom (e.g., amplitude

and phase). Thus, the behavior is richer than that of phase oscillators governed by the

KM. In particular, amplitude death and chaos may appear in some range of parameters
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characterizing the oscillator populations, such as coupling strength and natural frequency

spread (Matthews and Strogatz, 1990). When amplitudes besides phases are allowed to

vary in time, it may happen that all the oscillator amplitudes die out, that is |zj| = 0 for

every j. Such a behavior is referred to as “amplitude death” or “oscillator death”, and this

phenomenon occurs when: (a) the coupling strength is of the same order as the attraction

to the limit-cycle, and (b) the frequency spread is sufficiently large (Ermentrout, 1990). In

biological systems, this may be responsible for rhythmical loss.

Apparently, Yamaguchi and Shimizu (1984) were the first to derive the model equation

(105). They considered a system of weakly globally coupled Van der Pol oscillators, that

included white noise sources. Bonilla et al. (1987) also analyzed Eq. (105) (with noise) for

a population of identical oscillators. They studied the nonlinear Fokker-Planck equation for

the one-oscillator probability density, and found a transition from incoherence to a time-

periodic state via a supercritical Hopf bifurcation (Bonilla et al., 1988).

A comprehensive analysis for Eq. (105) can be found in (Matthews et al., 1991; Matthews

and Strogatz, 1990; Mirollo and Strogatz, 1990). The phenomenon of amplitude death

and its stability regions have been analyzed in (Mirollo and Strogatz, 1990), in terms of

the coupling strength and the spread of natural frequencies. In the same paper it was

also shown that an infinite system gives a good description of large finite systems. In

(Matthews et al., 1991; Matthews and Strogatz, 1990), a detailed study of all possible

bifurcations occurring in Eq. (105) has been presented, discussing locking, amplitude death,

incoherence, and unsteady behavior (Hopf oscillations, large oscillations, quasiperiodicity,

and chaos). In (Matthews et al., 1991), some of the previous work was surveyed, namely the

contributions of (Ermentrout, 1990; Shiino and Francowicz, 1989). Shiino and Frankowicz,

using a self-consistent equation, established the existence of partially locked solutions as

well as of amplitude death states, but no analytical results about stability were given there.

On the other hand, Ermentrout was probably the first to point out the amplitude death

phenomenon, and to study analytically its stability for certain frequency distributions and

values of the coupling.

Recently, in (Monte and D’ovidio, 2002) the dynamical behavior of this model has been

revisited, focusing on the time evolution of the order parameter. This was done by a suitable

expansion, valid for any population size, but only for strong couplings and narrow frequency

distributions. Even though the truncation of the hierarchy yielding the order parameter was
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arbitrary, several known features of such systems were recovered qualitatively. Due to the

limitation on the frequency spread, however, no amplitude death could be detected.

D. Kuramoto model with inertia

Considering that the KM is merely a phase oscillator model, and ignores the dynamical

behavior of the corresponding frequencies, one may think to generalize the original model

to cast such features in it. The simplest way to accomplish such a task is to include inertial

effects into the model. This leads to the system

m θ̈i + θ̇i = Ωi +K r sin(ψ − θi) + ξi(t), (106)

i = 1, . . . , N,

of second-order stochastic differential equations. Here Ωi represents the natural frequency

of the ith oscillator, while θ̇i = ωi is the instantaneous frequency.

These ideas have been developed in (Acebrón and Spigler, 1998, 2000), also on the base of

the bivariate NLFPE, corresponding to Eq. (107), in the limit of infinitely many oscillators.

Such an NLFPE is again a nonlinear integrodifferential Fokker-Planck type equation, and

generalizes somehow the NLFPE describing the KM. In an earlier paper, Ermentrout (1991)

revisited the special problem of self-synchronization in populations of certain types of fireflies,

as well as certain alterations in circadian cycles in mammalians. The point was that the

KM yields a too fast approach to the synchronized state in comparison to the experimental

observations and, moreover, an infinite value is needed for the coupling parameter in order

to obtain a full synchronization. Consequently, an adaptive frequency model was proposed

for N nonlinearly coupled second order differential equations for the phases. In such a

formulation, the striking difference with the KM rests in that the natural frequency of

each oscillator may vary in time. Moreover, a nonlinear, in general non sinusoidal coupling

function, was considered, in a noiseless framework. On the other hand, in (Tanaka et al.,

1997a,b), about the same problem described by Ermentrout was considered, but under

the mean-field coupling assumption and with a sinusoidal nonlinearity, and still without

any noise term. They observed hysteretic phenomena (bistability between incoherence and

partially synchronized state), due to a first-order phase transition, also referred to as a

subcritical bifurcation. Such phenomena, however, may occur also within the KM when it
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is governed by bimodal frequency distributions (Bonilla et al., 1992).

Recently, the interplay between inertia and time-delay and their combined effect on syn-

chronization within the KM has been investigated both analytically and numerically in

(Hong et al., 2002). The main feature here was the emergence of spontaneous phase os-

cillations (without any external driving). Such an oscillation was also found to suppress

synchronization, whereas its frequency was shown to decrease when inertia and delay de-

crease. They also obtained the phase diagram, which shows the stationary and oscillatory

regimes as a function of delay, inertia, and coupling strength. It appears clearly that, for

any finite value of inertia and time delay, the system undergoes a transition from stationary

to oscillatory state when the coupling is sufficiently large. Further investigation, however,

seems desirable, because in the strong coupling limit the phase model itself breaks down.

Another research line that should be put forth, concerns the emergence of stochastic

resonance phenomena (see for instance (Bulsara and Gammaitoni, 1996; Gammaitoni et al.,

1998)), in oscillator systems characterized by many degrees of freedom. An investigation

in this direction has been started in (Hong and Choi, 2000), where synchronization as well

as noise-induced resonance phenomena and synchronization in systems of globally coupled

oscillators, each having finite inertia, has been studied. Hong et al. (1999a) considered

synchronization phenomena described by Eq. (107), in absence of noise, but under an

external periodic driving force, that is in systems governed by

m θ̈i + θ̇i = Ωi +K r sin(ψ − θi) + Ai cos(Ωt), (107)

i = 1, . . . , N,

where Ω is the frequency of external driving, and Ai is the amplitude of the ith force

term. They found that in system with inertia, unlocked oscillators besides those locked to

the external driving contribute to the collective synchronization, whereas in the absence of

inertia, only oscillators locked to the external driving do contribute (Choi et al., 1994).

Going back to the model equations in Eq. (107), it was established in (Acebrón et al.,

2000; Acebrón and Spigler, 1998) that such a model is also capable to overcome the impossi-

bility of synchronizing simultaneously both phase and frequency, which fact can be observed

within the KM (Acebrón and Spigler, 2000). Proceeding formally as in section III to derive

a nonlinear Fokker-Planck equation for the one-oscillator probability density, in the limit of
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infinitely many oscillators, the new NLFPE equation

∂ρ

∂t
= D

∂2ρ

∂ω2
(108)

− 1

m

∂

∂ω
[( − ω + Ω +Kr sin(ψ − θ))ρ] − ω

∂ρ

∂θ

was obtained (Acebrón and Spigler, 1998). Here the order parameter is given by,

reiψ =

∫ +∞

−∞

∫ 2π

0

∫ +∞

−∞

eiθρ(θ, ω,Ω, t) g(Ω) dΩ dθ dω,

(109)

where g(Ω) is the natural frequency distribution. As in the NLFPE for the KM, initial value

and 2π-periodic boundary conditions with respect to θ should be prescribed. Moreover,

a suitable decay of ρ(θ, ω,Ω, t) as ω → ±∞ is required. The initial profile ρ(θ, ω,Ω, 0)

should be normalized according to
∫ +∞

−∞

∫ 2π

0
ρ(θ, ω,Ω, 0)dθ dω = 1. Setting m = 0 in Eq.

(107), the Kuramoto model is recovered. On the other hand, the effects of a small inertia

on synchronization can be ascertained by analyzing Eq. (109) in the hyperbolic limit as

m → 0. In this limit, the first two terms on the right hand side of Eq. (109) are of

the same order and dominate the others. Scaling accordingly the equation, the leading

order approximation to the probability density, ρ, is a shifted Maxwellian function of the

frequency ω times a slowly varying density function of time and of the other variables. By

using the Chapman-Enskog procedure, the Kuramoto NLFPE is recovered as the zeroth-

order approximation for the slowly varying density (Bonilla, 2000). More interestingly, the

first-order correction to this equation contains m and therefore includes the effects of a

small inertia consistently. Similar results were obtained earlier by Hong et al. (1999b) who

used an arbitrary closure assumption, thereby omitting relevant terms that the systematic

Chapman-Enskog procedure provides (Bonilla, 2000).

The incoherent solution to Eq. (109) is a θ-independent stationary solution to it. Ac-

cording to the definition of the order parameter in Eq. (109), in this case the result r = 0

is obtained. Such a solution is given by

ρ0(ω,Ω) =
1

2π

√

m

2πD
e−

m
2D

(ω−Ω)2 . (110)
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Following a procedure similar to that adopted to study the linear stability in the KM

(see section III), the solution ρ can be perturbed with a small term, which can be assumed

depending on time as eλt, around the incoherent solution ρ0. Technical difficulties, heavier

than in case of the KM, beset the general procedure. First of all, the equation satisfied by

the perturbative term is now itself a nonlinear partial integrodifferential equation. After

rather lengthy and cumbersome calculations, the equation

1 =
K emD

2

∞
∑

p=0

(−mD)p
(

1 + p
mD

)

p!

×
∫ +∞

−∞

g(Ω) dΩ

λ+D + iΩ + p
m

. (111)

was obtained for the eigenvalues λ (Acebrón et al., 2000). Note that this equation reduces

to the eigenvalue equation for the KM in the limit of vanishing inertia m→ 0. The critical

coupling, K = Kc, can be found setting Re(λ) = 0.

A surprising feature that can be established from such a relation, is that, when g(Ω) =

δ(Ω), the critical coupling turns out to be Kc = 2D, exactly as in the KM (m = 0). For the

lorentzian frequency distribution g(Ω) = (ε/π)/(ε2 + Ω2), the critical coupling was found to

be

Kc = 2ε(mε+ 1) +
2(2 + 3mε)

2 +mε
D +O

(

D2
)

, (112)

for small values of noise. Note that in the limit of vanishing mass, the result Kc = 2(D +

ε), occurring in the KM is recovered. It should also be noted that when the population

is characterized by several frequencies, the inertia does play a role, making it harder to

synchronize the oscillator populations. In fact, the critical coupling in Eq. (112) increases

with m. Finally, for the bimodal frequency distribution g(Ω) = [δ(Ω − Ω0) + δ(Ω + Ω0)]/2,

see the stability diagram in Fig. 8.

Therefore, increasing each of the quantities m, D, ε (inertia, noise, frequency spread),

makes it more difficult to synchronize the oscillator population.

As for the stationary solutions, in the simplest case of a unimodal frequency distribution,

g(Ω) = δ(Ω), one can find analytically

ρ0(θ, ω) =

√

m

2πD
e−

m
2D
ω2 e

K
D
r cos(ψ−θ)

∫ 2π

0
e

K
D
r cos(ψ−θ)dθ

, (113)
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where

r ei ψ =

∫ 2π

0

∫ +∞

−∞

ei θ ρ0(θ, ω) dω dθ. (114)

Despite the fact that ρ0 depends on m, one can check that actually the order parameter

in Eq. (114) does not depend on the inertia. Furthermore, it coincides with the order

parameter of the KM.

For a general frequency distribution one can extract some information from an expansion

like

ρ(θ, ω,Ω, t) =

(

2πD

m

)− 1

4

e−
mω2

4D

×
∞
∑

n=0

cn(θ,Ω, t)ψn(ω). (115)

where the ψn’s are given in terms of parabolic cylinder functions (or, equivalently, Hermite

polynomials), and the cn’s obey a certain system of coupled partial differential equations

(Acebrón et al., 2000). Retaining a suitable number of such coefficients, one can analyze the

type of bifurcations branching off the incoherence. It can be found that both supercritical

and subcritical bifurcations may occur, depending on the value of the inertia (see (Tanaka

et al., 1997a,b) concerning the subcritical behavior). For instance, in case of a lorentzian

frequency distribution, this behavior differs from that observed in the KM, where only the

supercritical bifurcation appears. Indeed, others than in the KM, Fig. 9 shows that a

transition to a subcritical bifurcation takes place for any given spread ε when the inertia is

sufficiently large (the smaller ε, the larger m). Summarizing, it has been found that inertial

effects favor the subcritical character of bifurcations in the transition from incoherence to a

partially synchronized state.

Concerning the numerical simulations, a number of tools have been used. The problem

is clearly harder than treating the KM, due to the double dimensionality of the system.

Extensive brownian simulations was conducted on the system in Eq. (107), and a Fourier-

Hermite spectral method has been implemented to solve the new NLFPE (Acebrón et al.,

2000). The latter approach was suggested by the fact that the distribution, ρ, is required to

be 2π-periodic in θ and decaying to zero as ω → ±∞, with a natural weight e−mω
2/4D.
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VI. NUMERICAL METHODS

A. Simulating finite size oscillator populations

1. Numerical treatment of stochastic differential equations

In this Section we review only some general ideas about the numerical treatment of

stochastic differential equations. The reader is referred to the review papers (Higham, 2001;

Platen, 1999), and the book (Kloeden and Platen, 1999) for more details. An autonomous

stochastic differential equation (SDE) has the form

dX(t) = f(X(t))dt+ g(X(t))dW(t), (116)

X(0) = X0, 0 < t ≤ T,

which should be considered as an abbreviation of the integral equation

X(t) = X0 +

∫ t

0

f(X(s))ds+

∫ t

0

g(X(s))dW(s), (117)

for 0 < t ≤ T . Here f is a given n−dimensional vector function, g is a given n×n matrix

valued function, and X0 represents the initial condition. W(t) denotes an m−dimensional

vector whose entries are independent standard scalar brownian motions (Wiener processes),

and the second integral on the right-hand side of Eq. (117) should be intended as a stochastic

integral in the sense of Itô. Recall that the formal derivative, dW/dt, of the brownian motion

is the so-called white noise. The solution X(t) to Eq. (116) or (117) is an n−dimensional

stochastic process, that is an n−dimensional random variable vector for each t. When g = 0

the problem becomes deterministic and then Eq. (116) is an ordinary differential equation.

The simplest numerical scheme to compute the solution to Eq. (116) is the natural

generalization of the Euler method, that here takes on the form

Xj = Xj−1 + f(Xj−1)∆t+ g(Xj−1)∆Wj, (118)

for j = 1, . . . ,M . Here ∆Wj = (Wj − Wj−1), and Xj represents an approximation of

X(tj), tj = j∆t, and ∆t = T/M . As it is well known, the brownian increments Wj −Wj−1

are random variables distributed according to a Gaussian distribution with zero mean and
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variance ∆t. Therefore, Eq. (116) can be solved generating suitable sequences of random

numbers. As for the error one encounters in approximating solutions to Eq. (116), there are

two different types, depending on whether one is interested in obtaining either the paths or

the moments. In the literature, these are referred to as “strong” and “weak” approximations,

respectively. In the strong schemes, one should estimate the error

εs = E(|X(T ) − XM |), (119)

which provides a measure of the closeness of the paths at the end of the interval. In the

weak schemes, instead, one is interested only in computing moments or other functionals of

the process X(t). For instance, in case of the first moment the error is given by

εw = E(X(T )) − E(XM). (120)

Note that estimating the latter is less demanding. It can be shown that the Euler scheme

is of order 1/2, that is εs = O(∆t1/2) as a strong method, but of order 1, (εw = O(∆t))

as a weak method. Higher order methods, however, do exist, for instance the stochastic

generalization of the Heun method,

Xj = Xj−1 + f(Xj−1)∆t+ g(Xj−1)∆Wj, (121)

Xj = Xj−1 +
1

2

[

f(Xj−1) + f(Xj)
]

∆t

+
1

2

[

g(Xj−1) + g(Xj)
]

∆Wj , j = 1, . . . ,M,

Others are based on the stochastic Taylor formula, e.g. the Taylor formula of order 3/2,

which for the scalar case, reads (Kloeden and Platen, 1999),

Xj = Xj−1 + f(Xj−1)∆t+ g(Xj−1)∆Wj (122)

+
1

2
g(Xj−1)g

′(Xj−1)
[

(∆Wj)
2 − ∆t

]

+
(∆t)2

2

[

f(Xj−1)f
′(Xj−1) +

1

2
(g(Xj−1))

2f ′′(Xj−1)

]

+ f ′(Xj−1)g(Xj−1)∆Zj + [f(Xj−1)g
′(Xj−1)

+
1

2
(g(Xj−1))

2g′′(Xj−1)

]

[∆t∆Wj − ∆Zj ]
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+
1

2

[

g(Xj−1)(g
′(Xj−1))

2 + (g(Xj−1))
2g′′(Xj−1)

]

×
[

1

3
(∆Wj)

2 − ∆t

]

∆Wj ,

where ∆Zj are random variables, distributed according to a Gaussian distribution with

zero mean, variance (∆t)3/3, and correlation E(∆Wj∆Zj) = (∆t)2/2. Using the Heun

method to compute paths (strong scheme), the error can be shown to be εs = O(∆t), while

the corresponding weak scheme is O(∆t2). It can be proved that computing paths by such

a formula the inherent error is εs = O(∆t3/2), while it is of order O(∆t3) when computing

moments.

2. The Kuramoto model

The KM for N globally coupled nonlinear oscillators is given by the system

θ̇i = ωi +
K

N

N
∑

j=1

sin(θj − θi) + ξi(t), i = 1, . . . , N, (123)

of stochastic differential equations (23),(24). System (23) can be solved numerically by

the methods described in the previous subsection (Acebrón and Spigler, 2000; Sartoretto

et al., 1998). In Fig. 10, plots of the amplitude of the order parameter as a function of

time, obtained using Euler, Heun, and Taylor of order 3/2, are compared. The reference

solution was provided solving the nonlinear Fokker-Planck equation (26) with a spectral

(thus extremely accurate) method (Acebrón et al., 2001b). Experiments were conducted for

increasing values of N , showing that results stabilize already for N = 500.

The mean-field coupling assumption implies that in the thermodynamic limit (N → ∞),

averaging each single path, θi(t), over all the noise realizations, yields the same results

as averaging over the entire oscillator populations. In practice, the population size, N , is

assumed to be sufficiently large. Indeed, numerical simulations showed that populations of

few hundreds oscillators behave, in many instances, qualitatively almost as the population

would consist of infinitely many members, see Fig. 11. In Fig. 12, the discrepancy between

the order parameter amplitude, rN , computed with N oscillators, and that obtained when

N → ∞, in the long-time regime, was plotted versus N . The slope of log10 ∆rN , where

∆rN = |rN − r|, versus log10N , shows that ∆rN ∼ N−1/2, as N grows.
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B. Simulating infinitely many oscillators

In this Section, the focus is on the numerical solution of the NLFPE (26), which represents

the thermodynamic limit N → ∞, either by finite differences or by a spectral method. Let

rewrite the NLFPE as

∂ρ

∂t
= D

∂2

∂θ2
− ω

∂ρ

∂θ
− I[ρ]

∂ρ

∂θ
+ J [ρ] ρ, (124)

where

I[ρ] =

∫ +∞

−∞

∫ 2π

0

g(ω) sin(φ− θ)ρ(φ, ω, t) dφdω,

J [ρ] =

∫ +∞

−∞

∫ 2π

0

g(ω) cos(φ− θ)ρ(φ, ω, t) dφdω. (125)

1. Finite differences

Explicit finite differences are easy to implement, and yield

ρn+1
i = ρni +D

∆t

∆θ2

(

ρni+1 − 2ρni + ρni−1

)

−ω ∆t

2∆θ

(

ρni+1 − ρni−1

)

− ∆t

2∆θ
I[ρni ]

(

ρni+1 − ρni−1

)

+ J [ρni ] ρ
n
i , (126)

where ρni is an approximation to ρ(i∆θ, n∆t, ω), and initial and boundary data are pre-

scribed. In (126), forward time differences and space-centered finite differences have been

used. The parameter ω in (126) should be picked up from the support of the natural fre-

quency distribution, g(ω). In general, the integral terms I[ρni ] and J [ρni ] involve a quadrature

over the frequencies, which in fact requires a suitable numerical treatment whenever g(ω) is

a continuous function. For instance, when g(ω) is a lorentzian frequency distribution, the

Gauss-Laguerre quadrature has been successfully used (Acebrón et al., 2000).

If we use an explicit scheme, the size of the time step ∆t has to be kept sufficiently small

due to stability reasons: ∆tD/(∆θ)2 < 1/2. Using an implicit finite-difference scheme, such

as Crank-Nicholson’s (Acebrón and Bonilla, 1998; Bonilla et al., 1998b), we can in principle

increase the time step (for a given ∆θ). The trouble is that our problem is nonlinear, and

therefore we need to implement an additional iterative procedure at each time step to find
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ρn+1
i . This reduces in practice the time step to rather small values, as illustrated by numerical

experiments. In Fig. 13, the stationary solution corresponding to the case g(ω) = δ(ω),

ρ0(θ) =
eK r0 cos(ψ0−θ)

∫ 2π

0
dθ eK r0 cos(ψ0−θ)

, (127)

where

r0 e
i ψ0 =

∫ 2π

0

dθ eziθρ0. (128)

is compared with the results of the numerical solution of the NLFPE evaluated by either

implicit finite differences or by a spectral method. Note that inserting Eq. (127) into (128)

yields a nonlinear equation for r0 and ψ0, whose solution can be computed with very high

accuracy by the Brent method (Press et al., 1992).

2. Spectral method

The θ-periodicity of the distribution, ρ, in the NLFPE, suggests that a suitable numerical

method to solve such a partial differential equation could be based on expanding ρ in a

Fourier series with respect to θ (Sartoretto et al., 1998; Shinomoto and Kuramoto, 1986).

Such a spectral method is known to be very efficient, in that convergence is expected to be

achieved exponentially fast with the number of harmonics (Fornberg, 1996). Expanding

ρ =

∞
∑

n=−∞

ρn(t, ω) ein θ,

ρn(t, ω) =
1

2π

∫ π

−π

ρ e−i n θ dθ, (129)

in the NLFPE, leads to the system of infinitely many ordinary differential equations

ρ̇n = −n2D ρn − i n ω ρn

−nK
2

[

ρn+1

∫ ∞

−∞

ρ−1g(ω)dω − ρn−1

∫ ∞

−∞

ρ1g(ω) dω

]

,

n = 0,±1,± . . . . (130)

which should be truncated to a suitable number of harmonics ρn, for each frequency ω in the

support of g(ω). Such a system can be solved numerically by one of the numerous extremely
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sophisticated available packages. In (Acebrón et al., 2001a), a variable-step Runge-Kutta-

Felhberg routine (Press et al., 1992) was used.

When one is only interested, as it often occurs, in evaluating the order parameter, a

variant of the spectral method can been developed (Acebrón and Bonilla, 1998). The main

difference consists in centering the phase in the bases functions around the mean (unknown)

phase, ψ. The probability density ρ is first expanded in a Fourier series around the mean

phase,

ρ(θ, t, ω) =
1

2π

N
∑

j=1

[Rj cos(j(ψ − θ)) + Ψj sin(j(ψ − θ))] , (131)

where

Rn(ω, t) =

∫ π

−π

cos(n(ψ − θ)) ρ dθ,

Ψn(ω, t) =

∫ π

−π

sin(n(ψ − θ)) ρ dθ. (132)

Then, differentiating Rn and Ψn with respect to t, using the NLFPE, integrating by parts,

and exploiting the 2π-periodicity of ρ, the hierarchy

Ṙn = −n2DRn + nωΨn +
nKr

2
(Rn−1 −Rn+1)

−ndψ
dt

Ψn,

Ψ̇n = −n2DΨn − nωRn +
nKr

2
(Ψn−1 − Ψn+1)

+n
dψ

dt
Rn,

r
dψ

dt
=

∫ +∞

−∞

ωR1(ω, t)g(ω) dω, (133)

is obtained. Here,

r(t) =

∫ +∞

−∞

R1(ω, t) g(ω) dω,

0 =

∫ +∞

−∞

Ψ1(ω, t) g(ω) dω. (134)
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In many instances, for example when g(ω) is an even function, R1 turns out to be also

even as a function of ω, and thus the last equation in (133) yields dψ/dt = 0. In order to

compare this approach with that in Eq. (130), let write Eq. (130) in terms of real quantities.

Setting ρn = cn + i sn, we obtain,

ṡn = −n2Dsn + nω cn + nK
π

2
[C (sn−1 − sn+1)

+ S (cn+1 + cn−1)] ,

ċn = −n2Dcn − nω sn + nK
π

2
[C (cn−1 − cn+1)

− S (sn+1 + sn−1)] , (135)

where

S =

∫ +∞

−∞

s1(t, ω) g(ω) dω, C =

∫ +∞

−∞

c1(t, ω)g(ω) dω. (136)

Note that

Rn = 2π (cn cos(nψ) − sn sin(nψ)) , (137)

Ψn = 2π (sn cos(nψ) + cn sin(nψ)) . (138)

Comparing the two hierarchies, it is now clear that (133) is simpler, and in fact the

corresponding numerical treatment was observed to be faster.

The spectral method in Eq. (130) has been analyzed in (Acebrón et al., 2001b), where

explicit bounds for the space derivatives were obtained. Such bounds play a role in estimating

the error term in the Fourier series expansion. The number N of harmonics required to

achieve a given numerical error, has been investigated as a function of the nonlinearity

parameter K, the noise strength D, and
∫ +∞

−∞
g(ω) dω. Indeed, the L2 norm (with respect

to θ) of the error can be estimated as

‖εN(θ, t, ω)‖ ≤
√

Cp

(N + 1)p
, (139)

where Cp is an estimate for the pth-derivative of ρ with respect to θ. In practice, Cp

depends on the initial data and on the parameter (K/D)
∫ +∞

−∞
g(ω) dω. Since Cp grows

rapidly with such a parameter, larger nonlinearities as well as lower noise levels require
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a higher number of harmonics. In Fig. 14, the harmonics amplitude |ρn| is plotted as a

function of n for several values of K.

The performance of the spectral method is illustrated in Fig. 13, where a comparison

with the result of finite difference simulations is shown. In the latter, a mesh-size ∆θ = 0.04

was used, while the former algorithm was run with N = 2, 4, 8 harmonics. In Fig. 15, the

global L2-error as a function of N , with N = 1/∆θ, is plotted in logarithmic scales, which

shows that the spectral method outperforms the finite difference method. The CPU time

needed implementing N = 12 harmonics in the spectral method was approximately 25 times

smaller than using finite differences with ∆θ = 0.04, ∆t = 10−4.

3. Tracking bifurcating solutions

A powerful numerical code does exist capable of tracking bifurcating solutions in general

system of ordinary differential equations. Such a code, called AUTO (Doedel, 1997), is

based on continuing a given solution up to and beyond several bifurcating branches. In this

way, one is able to assess the stability properties of each branch.

The code AUTO was applied to the system of nonlinear deterministic ordinary differential

equations obtained through the spectral method described in the previous section (Acebrón

et al., 2001a). Hence, the bifurcations occurring in infinite populations of globally coupled

oscillators described by the noisy KM in Eq. (23) could be analyzed. In particular, the

stability issue could be examined for the synchronized stationary states.

In Fig. 16, a bifurcation diagram for a unimodal frequency distribution is shown. The

reader is referred to (Acebrón et al., 2001a) for other more elaborate pictures corresponding

to multimodal frequency distributions. Global stability of (partially) synchronized station-

ary solutions was conjectured and investigated for a rather long time (Strogatz, 2000). Here

a numerical evidence for such a stability has been provided.

C. The moments approach

Pérez-Vicente and Ritort (1997) have proposed an alternative derivation of the NLFPE

for the mean-field KM to that reported in Appendix A. The advantage of this approach is

threefold: (1) it provides an efficient way to numerically solve the mean-field equations in the
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limit of large N ’s, free of finite-size effects; (2) it provides a simple proof that the stationary

solutions of the dynamics are not gibbsian, and therefore they cannot be derived within a

Hamiltonian formalism (Park and Choi, 1995); and (3) it can be used as a basis to include

fluctuations beyond mean-field, in the framework of certain approximate closure schemes.

The idea of such an approach relies on the rotational symmetry of the KM, θi → θi + 2π.

The most general set of observables, invariant under these local transformations, are

Hm
k (t) =

1

N

N
∑

j=1

exp(ikθj(t))ω
m
j , (140)

where k,m are integers with m ≥ 0. Note that Hm
k (t) = (Hm

−k(t))
∗. Under the dynamics

described by Eq. (23), these observables do not fluctuate in the limit of large N ’s, i.e. they

are both reproducible (independent of the realization of noise) and self-averaging (indepen-

dent of the realization of the random set of ωi).
1 After averaging over the noise, the set of

observables in Eq. (140) closes the dynamics in the limit N → ∞,

∂Hm
k

∂t
= −kK

2
(Hm

k+1H
0
−1 −Hm

k−1H
0
1 ) − k2DHm

k + ikHm+1
k . (141)

The order parameter in Eq. (4) has been introduced in (141) through the relation

H0
1 = r exp(iψ). Equation (141) leads immediately to the NLFPE (26), in terms of the

one-oscillator probability density,

ρ(θ, ω, t) g(ω) =
1

N

N
∑

j=1

δ(θj(t) − θ)δ(ωj − ω)

=
1

2π

∫ +∞

−∞

ρ̂(θ, is, t) e−isωds, (142)

where

ρ̂(θ, s, t) ≡ 1

2π

∞
∑

k=−∞

∞
∑

m=0

exp(−ikθ)s
m

m!
Hm
k (t). (143)

Solving the hierarchy in (141) requires the specification of the initial conditions Hm
k (t =

0), where the values of Hm
0 = ωm =

∫

ωmg(ω)dω are solely determined by the natural fre-

quency distribution g(ω). The equations can be solved using standard numerical integration

1 Of course the specific set of natural frequencies for the realization must be considered as typical (atypical

realizations such as the non-disordered choice ωi = ω are excluded).
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schemes. For many purposes a Heun scheme suffices. Obviously, the number of moments

to be included must be finite, and in general a few tens of them has been shown to suffice.

The method is particularly suited to models where m takes a finite number of values. For

instance, in the bimodal case (section III.C), m = 2, and the set of moments Hm
k splits into

two subsets H+
k and H−

k corresponding to the case, where m is even or odd, respectively.

In this case, the number of equations that have to be integrated is considerably reduced.

Moreover, to limit “boundary effects”, periodic boundary conditions within the set of mo-

ments should be implemented. If k runs from −L up to L then, there are 2L + 1 possible

values for the integer k. For periodic conditions we have Hm
L+1 = Hm

−L and Hm
−L−1 = Hm

L .

At any time H0
1 = r exp(iψ) sets the time evolution of the synchronization parameter r. In

Figures 17, 18 and 19, we show results obtained for the simple discrete bimodal distribution

with L = 100, and only two values of m: H+
k and H−

k . The initial condition was θi = 0

in all cases. Figs. 17 and 18 show the evolution of the real and imaginary parts of the

order parameter H0
1 = r exp(iψ) for parameter values corresponding to the incoherent and

synchronized regimes, respectively. Fig. 19 depicts the parameter r(t) corresponding to

the oscillatory synchronized phase, after the transients have died out. In this figure, the

results obtained by the method of moments are compared with those given by Brownian

simulations.

The moment formalism allows to prove that the stationary distribution is not Gibbsian.

It has been shown (Hemmen and Wreszinski, 1993) that the Hamiltonian

H = −K
N

∑

1≤i<j≤N

[cos(θi − θj) − ωiθi] (144)

is a Lyapunov functional for finite N , whose minima describe completely phase-locked states

at D = 0. Subsequently, resorting to standard arguments of equilibrium statistical mechan-

ics, such a Lyapunov functional was employed to characterize stationary states of the KM

in the thermodynamic limit, either at zero or finite “temperature”D, see (Park and Choi,

1995). Pérez-Vicente and Ritort (1997) have objected that the latter result applies to gibb-

sian states, but not to general stationary states. In (144), it was neccesary to assume

−π < θi < π in order that H be a univalued function. As the Langevin equation

θ̇i = −∂H
∂θi

+ ξi (145)

69



leads to the NLFPE (see Appendix A), this may suggest that indeed H in (144) possesses all

properties of an energy functional. In fact, it is well known that the stationary distribution

of the quantities in (145) will be Gibbsian, only when the probability currents across the

boundaries θi = −π, π vanish. Only in this case, the stationary one-oscillator probability

density is described by the equilibrium distribution obtained from (144). In the general

case (Appendix E), it is shown that the moments of the Gibbsian equilibrium distribution

function are not stationary (Pérez-Vicente and Ritort, 1997). Moreover, the Hamiltonian

in (144) is not a Lyapunov functional, because it is not bounded from below, although

it decays in time. Only at D = 0 and for finite N , the local minima of H correspond to

globally synchronized solutions.

The moment approach has been also applied to other models, such as random tops

(Sec. V.B), and synchronization models without disorder (Sec. V.A). Such an approach

provides an alternative and equivalent way to describe certain dynamical features of syn-

chronization models (Aonishi and Okada, 2002).

VII. APPLICATIONS

The outstanding adaptability and remarkable applicability of the KM, makes it suitable

to be studied in many different contexts ranging from physics to chemistry. Here, we present

some of the most relevant examples discussed in the literature over the last years, but its

potential use is certainly still growing, and new applications will appear in the future.

A. Neural networks

Perception: an old fascinating and unsolved neuro-physiological problem that has at-

tracted the attention of many neuroscientists for decades. The basic and fundamental task

of sensory processing is to integrate stimuli across multiple and separate receptive fields.

Such a binding process is necessary to create a complete representation of a given object.

Perhaps, the most illustrative example is the visual cortex. Neurons that detect features

are distributed over different areas of the visual cortex. These neurons process information

from a restricted region of the visual field, and integrate it through a complex dynamical

process that allow us to detect objects, separate them from the background, identify their
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characteristics, etc. All these tasks give rise to cognition as their combined result.

What kind of mechanisms might be responsible for the integration of distributed neu-

ronal activity? There is a certain controversy around this point. It is difficult to find a

good explanation using exclusively models which encode information only from the levels of

activity of individual neurons (Softky and Koch, 1993). There are theories which suggest

that the exact timing in a sequence of firing events is crucial for certain perception tasks

(Abeles, 1991). On the other hand it has been argued (Tovee and Rolls, 1992) that long-

time oscillations are irrelevant for object recognition. Notice that oscillations and synchrony

need to be distinguished. Cells can synchronize their responses without experimenting os-

cillatory discharges and conversely responses can be oscillatory without being synchronized.

The important point is the correlation between the firing pattern of simultaneously recorded

neurons. In this context, the idea that global properties of stimuli are identified through

correlations in the temporal firing of different neurons, has gained support from experiments

in the cat primary visual cortex, showing oscillatory responses coherent over long distances

and sensitive to global properties of stimuli (Eckhorn et al., 1988; Gray et al., 1989). Oscilla-

tory response patterns reflect organized temporal structured activity that is often associated

with synchronous firing.

These experimental evidences have motivated an intense theoretical research, looking

for models capable to display stimulus dependent synchronization in neuronal assemblies.

It would be a formidable task to enumerate and discuss all of them because they mainly

concern populations of integrate-and-fire neurons, which are beyond the scope of this review.

Here we will focus exclusively on studies where the processing units are modeled as phase

oscillators. At this point, let mention that there are two different theoretical approaches.

The first line of reasoning is very much biologically oriented, trying as a main goal to

reproduce, at least qualitatively, experimental results. The second one is more formal and

is connected with associative memory models of attractor neural networks, which have been

matter of extensive studies in the last years.

1. Biologically oriented models

Phase oscillators can be used as elementary units in models of neural information process-

ing. This fact can be accepted as a natural consequence of the previous discussion, but it is
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desirable to look for sound arguments supporting this choice. In order to describe the emer-

gence of oscillations in a single column of the visual cortex, Schuster and Wagner (1990a,b)

have proposed a model of excitatory and inhibitory neurons. The main ingredients of the

model are: (a) a inhomogeneous spatial distribution of connections. Neurons are densely

connected at a local scale but sparsely connected on a larger scale. This combination of

short and long range couplings gives rise to the existence of local clusters of activity. (b)

The activity of the neurons is measured in terms of their mean firing rate. For sufficiently

weak couplings, it is possible to describe the dynamics of the whole population in terms of a

single mean-field equation. Except for a more complex form of the effective coupling among

units, this equation is analogous to that governing the evolution of the phases for a limit-

cycle oscillator. In the case of the model proposed by Schuster and Wagner (1990a,b), the

coupling strength depends on the activity of the two coupled clusters, and this remarkable

feature is the key to reproduce stimulus-dependent coherent oscillations.

Sompolinsky and coworkers refined and extended the previous idea in a series of papers

(Grannan et al., 1993; Sompolinsky et al., 1990, 1991). They proposed a similar model

with more elaborated inter-neuron coupling (synapses), in which many calculations can be

performed analytically. They considered a KM with effective coupling among oscillators,

given by Kij(r, r
′) = V (r) W (r, r′) V (r′), where V denotes the average level of activity of

the pre- and post-synaptic cell and W (r, r′) the specific architecture of the connections. To

be more precise, W (r, r′) has two terms, one describing strong interactions among neurons

in the same cluster (with large overlapping receptive fields), and another describing the weak

coupling among neurons in different clusters (without common receptive fields). In addition,

neurons respond to a preferred orientation as they do in certain regions of the visual cortex.

With all these ingredients, the model displays an extremely rich range of behaviors. Their

results agree remarkably well with experiments, even for small dynamic details, to the point

that they have made this research a reference for similar studies. It provides a mechanism

to link and segment stimuli that span multiple receptive fields through coherent activity of

neurons.

The idea of reducing the complexity of neuron dynamics to simplified phase-oscillator

equations has been very fruitful in different contexts. For instance, in order to model the

interaction of the septo-hippocampal region and cortical columns, Kazanovich and Borisyuk

(1994) analyzed a system of peripheral oscillators coupled to a central oscillator. Their goal
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was to understand the problem of focusing attention. Depending on the parameters of the

model, they found different patterns of entrainment between groups of oscillators. Hansel

et al. (1993a) studied phase-locking in populations of Hodgkin-Huxley neurons, interacting

through weak excitatory couplings. They used the phase reduction technique to show that in

order to understand synchronization phenomena, one must analyze the effective interaction

among oscillators. They found that, under certain conditions, a weak excitatory coupling

leads to an effective inhibition among neurons due to a decrease in their firing rates. A

little earlier, Abbott (1990) had carried out a similar program using a piecewise linear

FitzHugh-Nagumo dynamics (Fitzhugh, 1961), instead of the Hodgkin-Huxley equations.

As in previous models, a convenient reduction of the original dynamical evolution led to a

simplified model where neurons can be treated as phase oscillators.

More recently, Seliger et al. (2002) have discussed mechanisms of learning and plasticity

in networks of phase oscillators. They studied the long time properties of the system by

assuming a Hebbian-like principle. Neurons with coherent mutual activity strengthen their

synaptic connections (long-term potentiation), while they weaken their connections (long-

term depression) in the opposite situation. The slow dynamics associated to the synaptic

evolution gives rise to multistability, i.e, coexistence of multiple clusters of different sizes

and frequencies. The work by Seliger et al. (2002) is essentially numerical. More elaborate

theoretical work can be carried out provided neurons and couplings evolve on widely sep-

arated times scales, fast for neurons and slow for couplings. An example is the formalism

developed by Jongen et al. (2001) for a XY spin-glass model. Further work in this direction

is desirable.

2. Associative memory models

The field of neural networks has experienced a remarkable advance during the last fifteen

years of the last century. One of the main contributions is the seminal paper published by

Hopfield (1982), which is the precursor of the current studies in computational neuroscience.

He discovered that a spin system endowed with suitable couplings, can exhibit an appealing

collective behavior which mimics some basic functions of the brain. To be more precise,

Hopfield considered a system of formal neurons, modelled as two-state units, representing

the active and passive states of real neurons. The interactions among units (synaptic effica-
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cies) followed Hebbian learning (Hebb, 1949). The resulting model exhibits an interesting

phase diagram with paramagnetic, spin-glass, and ferromagnetic phases, the latter having

effective associative-memory properties. The dynamics of the Hopfield model is a heat-bath

Montecarlo process, governed by the Hamiltonian

H = −
∑

i<j

JijSiSj , (146)

where S represents the two states of the neuron (±1), and the couplings Jij represent the

synaptic strength between pairs of neurons. The latter is given by a Hebbian prescription,

Jij =
1

N

p
∑

µ=1

ξµi ξ
µ
j , (147)

where each set ξµi represents a pattern to be learned. Hopfield showed that the configurations

ξµi are attractors of the dynamics: when the initial state is in the basin of attraction of a

given pattern (partial information about a given memory), the system evolves toward a final

state having a large overlap with this learned configuration. This evolution mimics a typical

associative memory process.

Typical questions concern the number of patterns that can be stored into the system (in

other words, the amount of information that can be processed by the model), the size of

the basin of attraction of the memories, the robustness of the patterns in front of noise, as

well as other minor aspects. Usually, all these issues are tackled analytically by means of a

standard method in the theory of spin glasses, namely the replica approach (Mezard et al.,

1987). It is not the goal of this review to discuss such a technique, but simply to give the

main results. The number of patterns p that can be stored, scales with the size of the system

(number of neurons N) as p ≈ 0.138N . Therefore, the storage capacity defined as the ratio

α = p
N

is 0.138. A detailed analysis of the whole phase diagram α−T can be found in many

textbooks (Amit, 1989; Hertz et al., 1991; Peretto, 1992).

The conventional models of attractor neural networks (ANNs) characterize the activity of

the neurons through binary values, corresponding to the active and non-active state of each

neuron. However, in order to reproduce synchronization between members of a population,

it is convenient to introduce new variables which provide information about the degree of

coherence in the time response of active neurons. This can be done by associating a phase

to each element of the system, thereby modelling neurons as phase oscillators. A natural
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question is whether large populations of coupled oscillators can store information after a

proper choice of the matrix Jij , as in conventional ANNs. Cook (1989) considered a static

approach (no frequencies) where each unit of the system is modelled as a q-state clock, and

the Hebbian learning rule (147) is used as a coupling. Since the Jij’s are symmetric, it is

possible to define a Lyapunov functional whose minima coincide with the stationary states

of (146). Cook solved the model by deriving mean-field equations in the replica-symmetric

approximation. In the limit q → ∞ and zero temperature, she found that the stationary

storage capacity of the network is αc = 0.038, much smaller than the storage capacity of

the Hopfield model (q=2), αc = 0.138, or of the model with q=3 where αc = 0.22. Instead

of fixing the couplings Jij, Gerl et al. (1992) posed the question of estimating the volume

occupied in the space of couplings Jij by those obeying the stability condition ξµi
∑

j Jijξ
µ
j >

κ ≥ 0. By using a standard formalism due to Gardner (1988), they found that, in the

optimal case and for a fixed stability κ, the storage capacity decreases as q increases, and

that the information content per synapse grows when κ scales as q−1. Although this final

result seems promising, it has serious limitations given by the size of the network (since

N > q), and also because the time required to reach the stationary state is proportional to

q, as corroborated by Kohring (1993). Other models with similar features display the same

type of behavior (Noest, 1988).

In the same context, the first model of phase oscillators having an intrinsic frequency

distribution was studied by Arenas and Pérez-Vicente (1994b). These authors considered

the standard KM dynamics discussed in previous sections with coupling strengths given by

Jij =
K

N

p
∑

µ=1

cos(ξµi − ξµj ), (148)

where K is the intensity of the coupling. This form preserves the basic idea of Hebb’s

rule adapted to the symmetry of the problem. Now the state of the system, described

by a N-dimensional vector whose ith component is the phase of ith oscillator, is changing

continuously in time. However, this is not a problem. If there is phase-locking, the differences

between the phases of different oscillators remain constant in time. Then, it is possible to

store information as a difference of phases between pairs of oscillators, which justifies the

choice of the learning rule given in (148). Thus, if the initial state is phase-locked with one

of the embedded patterns, then the final state will also have a macroscopic correlation with
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the same pattern at least for small p.

In the limit of α → 0, Arenas and Pérez-Vicente (1994b) showed that the degree of

coherence between the stationary state and the best retrieved pattern is

m = 〈
∑∞

−∞
(−1)n

ω2+D2n2 In(βm)In−1(βm)
∑∞

−∞
(−1)n

ω2+D2n2 I2
n(βm)

〉ω. (149)

Here m is analogous to the order parameter r defined in previous sections, In is the modified

Bessel functions of the first kind and of order n, β = J
2D

and <>ω means taking the average

over the frequency distribution. In contrast with conventional models of ANNs, which, in

the limit α → 0, have a positive overlap below the critical temperature, in this model phase

locking can be destroyed whenever the distribution of frequencies is sufficiently broad. From

a linear analysis of Eq. (149), it is straightforward to show that there is no synchronization

when

∫ +∞

−∞

g(ω)

( ω
2

D2 + 1)
dω < β−1. (150)

Similarly, Hong et al. (2001) found that, for zero temperature and for a gaussian frequency

distribution with spread σ, a retrieval state can only exist above a critical coupling value

Kc/σ. The quality of the retrieval depends on the amount of stored patterns. Their nu-

merical simulations show a rather complex time evolution towards the stationary state. An

analysis of the short-time dynamics of this network was performed in (Pérez-Vicente et al.,

1996) .

The situation is more complex for networks which store an infinite number of patterns

(finite α). There have been some attempts to solve the retrieval problem through a stan-

dard replica-symmetry formalism (Park and Choi, 1995). However, as it has been already

discussed in Section VI.C, there is no Lyapunov functional in such a limit. Therefore,

other theoretical formalisms are required to elucidate the long-time collective properties of

associative memory models of phase oscillators.

The long-time properties of networks of phase oscillators without a Lyapunov functional

have been successfully determined by the so-called self-consistent signal-to-noise analysis

(SCSNA), see (Shiino and Fukai, 1992, 1993). To apply this formalism it is necessary to

have information about the fixed-point equations describing the equilibrium states of the

system. To be more precise, the method relies on the existence of TAP-like equations
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(Thouless et al., 1977), which, derived in the context of spin-glasses, have been very fruitful

in more general scenarios. These equations relate the equilibrium time-average of spins

(phase oscillators) to the effective local field acting on them. In general, the effective and

the time-averaged local fields are different, and their difference coincides with the Onsager

reaction term. Such reaction term can be computed analyzing the free energy of the network.

Once the TAP equations are available, the local field splits into the ‘signal’ and ‘noise’

parts. Then, the SCSNA yields expressions for the order parameters of the problem, and

the (extensive) number of stored patters is determined as a result of this. This method

has been applied by several authors. For the standard Hebbian coupling given in (147),

Aonishi (1998); Aonishi et al. (2002); Uchiyama and Fujisaka (1999); Yamana et al. (1999);

Yoshioka and Shiino (2000) found peculiar associative memory properties for some special

frequency distributions. For instance, in absence of noise and for a discrete three-mode

frequency distribution, Yoshioka and Shiino (2000) observed the existence of two different

retrieval regions separated by a window where retrieval is impossible. In the ω − α phase

diagram, for sufficiently low temperature, a nonmonotonic functional relationship is found.

This remarkable behavior, which is a direct consequence of having non-identical oscillators,

is not observed in standard models of ANNs. In the appropiate limit, the results given by

Arenas and Pérez-Vicente (1994b); Cook (1989) are recovered.

There are complementary aspects of phase-oscillator networks that are worth studying.

For instance, how many patterns can be stored in networks with diluted synapses (Aoyagi

and Kitano, 1997; Kitano and Aoyagi, 1998) or with sparsely coded patterns (Aoyagi, 1995;

Aoyagi and Nomura, 1999)? So far, these analyses have been carried out for systems with

identical oscillators, so that a static approach can be used. The main result is that a network

of phase oscillators is more robust against dilution than the Hopfield model. On the other

hand, for low levels of activity (sparse coded patterns), the storage capacity diverges as 1
a log a

for a→ 0, a being the level of activity, as in conventional models of ANNs. It is also an open

problem to analyze the effect of intrinsic frequency distributions on the retrieval properties

of these networks.
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B. Josephson junctions and laser arrays

Besides the extensive development that synchronization models, in particular the KM,

has undergone, because of their intrinsic interest, another aspect has been considered over

the recent years. Indeed, several applications to Physics and Technology have been explored

in detail, most important the case of superconducting Josephson junctions arrays and that

of laser arrays. Even though a few other physical applications have been found, such as

that to isotropic gas of oscillating neutrinos (Pantaleone, 1998), beam steering in phased

arrays (Heath et al., 2000), and nonlinear antenna technology (Meadows et al., 2002), in

this subsection only the first two subjects mentioned above will be discussed at some length.

The main purpose in these applications is, in fact, synchronizing a large number of single

elements, in order to increase the effective output power. As it is well known, the KM

provides perhaps the simplest way to describe such a collective behavior, and it has been

shown that the dynamics of Josephson junctions arrays (Wiesenfeld, 1996) as well as that of

laser arrays (Kozireff et al., 2000, 2001; Vladimirov et al., 2003) can be conveniently mapped

into it.

1. Josephson junctions arrays

Josephson junctions are superconductive devices capable of generating high frequency

voltage oscillations, typically in the range 1010-1012 Hz (Duzer and Turner, 1999; Josephson,

1964). They are natural voltage-to-frequency transducers. Applications to both analog

and digital electronics have been made, to realize amplifiers and mixers for submillimetric

waves, to detect infrared signals from distant galaxies, and within SQUIDs (Superconducting

Quantum Interference Devices) as very sensitive magnetometers.

A large number N of interconnected Josephson junctions may be let cooperate in such a

way to achieve a large output power. This occurs because the power is proportional to V 2,

which turns out to be proportional to N2, provided that all members oscillate in synchrony.

Moreover, the frequency bandwidth decreases as N−2 (Duzer and Turner, 1999). Networks

of Josephson junction arrays coupled in parallel lead to nearest-neighbors (that is diffusive)

coupling, and more precisely to sine-Gordon discrete equations with soliton solutions. On

the other hand, Josephson junction arrays connected in series through a load exhibit “all-
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to-all” (that is global) coupling (Wiesenfeld et al., 1996). Moreover, the latter configuration

can be transformed into a KM. The model equations are

~Cj
2e

φ̈j +
~

2e rj
φ̇j + Ij sinφj + Q̇ = IB, (151)

j = 1, . . . , N

for the junctions, and

LQ̈+RQ̇+
1

C
Q =

~

2e

N
∑

k=1

φ̇k (152)

for the load circuit, see Fig. 20. Here φ is the difference between the phases of the wave

functions associated with the two superconductors, Q is the charge, Ij the critical current

of the jth junction, and Cj and rj its capacitance and resistance, respectively, and IB is

the “bias current”, while R, L, and C denote resistance, inductance, capacitance of the load

circuit.

Note that the load does provide a global coupling, and when Q̇ = 0 all the junctions work

independently. In such a case, assuming for simplicity Cj = 0 and IB > Ij, the jth element

will undergo oscillations at its natural frequency

ωj =
2erj

~

(

I2
B − I2

j

)1/2
. (153)

By using an averaging procedure Swift et al. (1992); Wiesenfeld (1996); Wiesenfeld et al.

(1996, 1998) have shown that Eqs. (152) and (152) with Cj = 0 can be mapped into the

Kuramoto model provided coupling and disorder are weak. The precise assumptions are

listed in Appendix F. An important step in the derivation is using the “natural” angles θj ’s,

defined by

θj =
2ωj~

2erj

1
√

I2
B − I2

j

arctan





Ij − IB tan
φj

2
√

I2
B − I2

j



 , (154)

instead of the phases φj. These angles are called natural because they describe uniform rota-

tions in the absence of the coupling, Q̇ = 0, while the φj ’s do not. Using the transformation

to natural angles and the averaging procedure, Eq. (152) yields to leading order

θ̇j = ωj +
K

N

N
∑

k=1

sin(θk − θj + α). (155)
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Here K and α depend on the Josephson parameters rj, Ij , IB, R, L, and C. Strictly

speaking, the model equation (155) represents a generalization of the classical KM, because

of the presence of the parameter α 6= 0 (see section IV.B)). This case was studied in

(Sakaguchi and Kuramoto, 1986; Sakaguchi et al., 1987), where it was observed that α > 0

gives rise to a higher value of the critical coupling (for a given frequency spread), and a

lower number of oscillators are involved in the synchronization.

Heath and Wiesenfeld (2000); Sakaguchi and Watanabe (2000) pointed out that the model

equation of the Kuramoto type in Eq. (155) does not explain the operation of Josephson

junction arrays described by Eqs. (152) and (152) in certain regimes with Cj 6= 0. In fact,

both physical and numerical experiments using the latter equations showed the existence of

hysteretic phenomena (Sakaguchi and Watanabe, 2000) which were not found in the model

equations (155). This discrepancy was explained by Heath and Wiesenfeld, who recognized

that a more appropriate averaging procedure needed to be used. Doing that, a model

formally similar to that in Eq. (155) was found, the essential difference being that now K

and α depend on the dynamical state of the system.

When the capacitances are assumed to be nonzero, say Cj = C0 6= 0, in (Sakaguchi and

Watanabe, 2000) hysteresis and multi-stability were found within the framework provided

by equations (152), (152). Proceeding as above and considering a sufficiently small value of

C0, again a Kuramoto-type phase model like that in Eq. (155) was found, where now K

and α depend also on C0. A result is that the nonzero capacitance facilitates the mutual

synchronization. At this point, we should stress that the essential parameter distinguishing

the two regimes of negligible and non negligible capacitance is given by the McCumber

parameter, β = 2eIcr
2C/~. Depending on the properties of the Josephson junction (that is

r, Ic, and C), β can vary in a very broad range, say 10−6-107, see (Duzer and Turner, 1999).

In (Filatrella et al., 2000), a model for a large number of Josephson junctions coupled

to a cavity was considered. These authors were able to reproduce the synchronization

behavior reported in the experiments conducted in (Barbara et al., 1999). Even though

these experiments concerned two-dimensional arrays of Josephson junctions, they found

qualitatively no differences with respect to the case of one-dimensional arrays (Filatrella

et al., 2001). In these studies, the capacitances of the Josephson junctions are nonzero

(underdamped oscillators), and the bias current is taken to be such that each junction is

in the hysteretic regime. Depending on the initial conditions, the junctions may work in
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each of two possible states, characterized by zero or nonzero voltage. When the junctions

work in the latter case, the phases of the oscillators describing them vary with time, and

the oscillators are called “active”. By a suitable averaging method, Filatrella et al. (2001)

derived the modified KM,

θ̇j = ωj +
1

Na

Na
∑

i=1

Na

N
Ki sin(θi − θj + α). (156)

Here Na is the number of the “active oscillators”, and Ki takes on two possible values,

a larger value if the ith oscillator is frequency-locked, and a smaller value if it is not.

These authors also predicted that some overall hysteretic behavior should be observed under

certain circumstances, a feature that could not be observed in the experiments conducted

in (Barbara et al., 1999).

Daniels et al. (Daniels et al., 2003) showed that the RSJ equations describing a ladder

array of Josephson junctions, which are overdamped (zero capacitance) and different (with

disordered critical currents), can be taken into a Kuramoto-type model. Such a model

exhibits the usual sinusoidal coupling, but the coupling mechanism is of the nearest-neighbor

type. This mapping was realized by a suitable averaging method upon which the fast

dynamics of the RSJ equations can be integrated out, the slow scale being that over which

the neighboring junctions synchronize. The effect of thermal noise on the junctions has

also been considered, finding a good quantitative agreement between the RSJ model and

the locally coupled KM, when a noisy term was added. However, the noise term appearing

now in the KM has not been obtained from the RSJ noisy model by the aforementioned

transformation procedure, which fact raises doubt on the general applicability of such result.

Locally coupled KM like this are analyzed in some more details in Sec. IV.A.

In closing, another application should be mentioned, that, strictly speaking, falls within

the topic of the Josephson junctions arrays. In fact, a network of superconducting wires

provides an additional example of exact mean-field systems (Park and Choi, 1997). Such a

network consists of two sets of parallel superconducting wires, mutually coupled by Joseph-

son junctions at each crossing point. It turns out that each wire only interacts with the half

of the others, namely with those perpendicular to it, which fact realizes a semiglobal cou-

pling. It was found that the relevant model equations consist of two sets of coupled phase

oscillator equations and, under special conditions, these equations reduce to the classical

KM equation.
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2. Laser arrays

The idea of synchronizing laser arrays of various kinds, analyzing their collective behavior,

is a sensible subject of investigation, in both respects, technological and theoretical. In

fact, on one hand, entrainment of many lasers results in a large output power from a high

number of low power lasers. When the lasers are phase-locked, a coherent high power can be

concentrated in a single-lobe far-field pattern (Vladimirov et al., 2003). On the other hand,

this setting provides an additional example of a physical realization of the Kuramoto phase

model. Actually, there are few other generalizations of the KM, that have been obtained in

this field.

It has been observed in the literature that solid-state laser arrays and semiconductor

laser arrays behave differently, due to the striking differences in their typical parameters.

In fact, for solid-state lasers the linewidth enhancement factor is about zero, and the upper

level fluorescence lifetime, measured in units of photon lifetime, is about 106, while for

semiconductor lasers they are respectively about 5 and 103. It follows that they exhibit a

quite different dynamical behavior.

Concerning the kind of coupling among lasers, both local and global coupling have been

considered over the years (Li and Erneux, 1993; Silber et al., 1993). As it can be expected,

globally coupled lasers act more efficiently when stationary synchronized (i.e. in-phase)

states are wanted. Global coupling is usually obtained by means of an optical feedback

given by an external mirror.

A widely used model, capable of describing the dynamical behavior of coupled lasers,

is given by the so-called Lang-Kobayashi equations (Lang and Kobayashi, 1980; Wang and

Winful, 1988; Winful and Wang, 1988), which have been obtained using the Lamb’s semi-

classical laser theory. They are

dEj
dt

= iδjEj + (1 + iα)
ZjEj
τp

+ i
κe−iω tD

N

N
∑

k=1

Ek(t− tD), (157)

dZj
dt

=
1

τc

[

Pj − Zj − (1 + 2Zj)|Ej|2
]

, (158)

where Ej denotes the jth laser dimensionless electric field envelope, Zj the excess free
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carrier density (also called gain of the jth laser), ω = N−1
∑

k ωk is the average frequency in

the array, δj = ωj−ω is the frequency mismatch, α is the linewidth enhancement factor, and

κ is the feedback rate. Other parameters are tD, the external cavity roundtrip time (thus,

ωtD is the mean optical phase-shift between emitter and feedback fields), and τp ≈ 10−12

s and τc ≈ 10−9 s which are, respectively, the photon lifetime and the free carrier lifetime.

The parameter Pj represents the excess pump above threshold (Vladimirov et al., 2003).

For instance, assuming that the Zj’s are given, the first equation in Eq. (158) is reminiscent

of the amplitude KM (see section V.C), but with time delay.

When the coupling is realized through an external mirror located at the Talbot distance

of order of 1 mm, the time delay, tD, can be neglected. When, instead, the array and the

feedback mirror is much larger, the time delay is important and should be taken into account.

This was done in (Kozireff et al., 2000, 2001). Here, the synchronization of a semiconductor

laser array with a wide linewidth α was studied, writing out Ej = |Ej|eiΦj , and obtaining

an asymptotic approximation for the Φj ’s from the third-order phase equation

d3Φj

ds3
+ ε

d2Φj

ds2
+ (1 + 2εΩj)

dΦj

ds
= ε∆j

+εK σ(s− sD) sin[ξ(s− sD) − Φj(s)]. (159)

Here the scaled time s = ΩRt (sD = ΩRtD), ΩR =
√

2P/τcτp,P = N−1
∑

j Pj , has

been introduced. The parameters appearing in Eq. (159) are: ε = (2P + 1)
√

τp/2Pτc,

Ωj = (Pj/P − 1)/ε, ∆j = δjτc/(1 + 2P ), and K = ακτc/(1 + 2P ). σ and ξ are amplitude

and phase of the complex-valued order parameter

σ(s) eiξ(s) =
1

N

N
∑

k=1

ei(Φk(s)−ωtD). (160)

More details can be found in (Vladimirov et al., 2003). Note that Eq. (159) represents

a generalization of the KM equation, reducing to it but with delay, when the second- and

third-order derivatives are neglected (see Section IV.C). Neglecting only the third-order

derivative, the Kuramoto model with inertia is recovered (see Section V.D). In (Kozireff

et al., 2000, 2001; Vladimirov et al., 2003), it was shown that the time delay induces phase

synchronization and may be used to control it in all dynamical regimes.

In (Oliva and Strogatz, 2001), where the interested reader can find additional references

concerning this subject, large arrays of globally coupled solid-state lasers with randomly
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distributed natural frequencies have been investigated. Based on previous work on lasers

(Braiman et al., 1995; Jiang and McCall, 1993; Kourtchatov et al., 1995), as well as on

general amplitude oscillator models, Oliva and Strogatz considered a simplified form of the

Lang-Kobayashi equations, where the gain dynamics was adiabatically eliminated. The

resulting model equation is

dEj
dt

=

(

1 + P

1 + |Ej |2
− 1 + iωj

)

Ej

+
K

N

N
∑

k=1

(Ek −Ej), j = 1, . . . , N. (161)

Note that this is indeed an amplitude model, similar to the Kuramoto amplitude model

studied in Section V.C. Analytical results, such as stability boundaries of a number of

dynamical regimes have been obtained, showing the existence of such diverse states as inco-

herence, phase locking, and amplitude death (when the system stops lasing).

C. Charge density waves

Marcus et al. (1989); Strogatz et al. (1988, 1989) have proposed and analyzed a model

(related to the KM) for charge-density-wave (CDW) transport in quasi-one-dimensional met-

als and semiconductors. Charge-density-wave conduction and dynamics have been reviewed

in (Grüner, 1988; Grüner and Zettl, 1985). An important consideration is that CDWs are

pinned by impurities for zero applied electric field and they move for fields above a critical

one. This is called the depinning transition of the CDW. Experiments show hysteresis in

the transition between pinned and sliding CDWs (Grüner and Zettl, 1985). The model by

Strogatz et al. (1988) is the following

θ̇i = E − h sin(θi − αi) +
K

N

N
∑

j=1

sin(θj − θi). (162)

Here the θi are phase oscillators, αi are random pinning angles, E is the applied electric

field and K is the oscillator coupling constant. If the sine function in the coupling term is

linearized, we obtain the mean-field Fukuyama-Lee-Fisher model of CDW dynamics (Grüner,

1988), which has a continuous (non-hysteretic) transition from pinned to sliding CDWs.

The analysis of Eq. (162) is similar to that of the KM. For small values of E/h and

K/h, there are stationary states in which the oscillator phases are locked to the values
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αi. Let us keep K/h fixed. As E/h increases, the stationary state loses stability and

a sliding state with a non-vanishing electric current (proportional to
∑

i θ̇i/N) appears.

This occurs at certain depinning threshold for the electric field, which has been evaluated

analytically in (Strogatz et al., 1989). The bifurcations of the system (162) in terms of

the parameters E/h and K/h have been studied. The pinning transition turns out to be a

subcritical (discontinuous) bifurcation, and therefore hysteretic phenomena and switching

between pinned and sliding CDWs occur. Both, discontinuous and hysteretic behavior have

been observed experimentally in certain CDW materials (Grüner and Zettl, 1985).

We should notice that system (162) can be recast into a KM affected by external field

and disorder at the same time. In fact, setting Θi = θi − αi in Eq. (162), we obtain

Θ̇i = E − h sin Θi +
K

N

N
∑

j=1

sin(Θj − Θi + Aij), (163)

where Aij = αj−αi. Clearly, h sin Θi plays the role of an external field (see Sec. IV.D), and

the Aij ’s represent disorder (see Sec. IV.B). All oscillators have the same natural frequency

E.

D. Chemical oscillators

The existence of oscillations in chemical reactions is well known. The Belousov-

Zhabotinsky reaction is paradigmatic, and models such as the Brusselator and the Oregona-

tor have been invented to understand its properties. These models are described in terms of

few coupled nonlinear reaction-diffusion equations, which may have time-periodic solutions

and give rise to different spatio-temporal patterns for appropriate parameter values.

The relation between chemical oscillators and phase oscillator models has been matter

of discussion for many years. In 1975, Marek and Stuchl (1975) coupled two Belousov-

Zhabotinsky reaction systems with different parameters, and hence observed different peri-

odic oscillations. Each reaction occurred in a separate stirred tank reactor, and both reactors

could exchange matter through the common perforated wall. They observed phase locking

when the oscillation frequencies in the two reactors were close to each other. For large

frequency differences, the solution of the coupled system exhibited long intervals of slow

variation in the phase difference separated by rapid fluctuations over very short intervals.
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These observations were qualitatively explained by Neu (1979). He considered two identical

planar limit-cycle oscillators that were linearly and weakly coupled. In addition, one oscil-

lator had a small imperfection of the same order as the coupling. A singular perturbation

analysis showed that the phase difference between the oscillators evolved according to an

equation reminiscent of the KM. Its analysis revealed phase locking and rhythm splitting

(Neu, 1979). Neu (1980) extended this idea to populations of weakly coupled identical chem-

ical oscillators. Adding small imperfections to the oscillators, the resulting model equations

became

ẋi = F (xi, yi) +
ε

N

∑

j

[K(dij) xj + λi f(xi, yi)],

ẏi = G(xi, yi) +
ε

N

∑

j

[K(dij) yj + λi g(xi, yi)]. (164)

Here dij = qj − qi is the spatial displacement between the oscillators and λi is a random

imperfection parameter. When ε = 0, there are N identical coupled oscillators having a

stable T -periodic limit-cycle given by

xi = X(t+ ψi), yi = Y (t+ ψi), i = 1, . . . , N. (165)

Neu’s analysis yields the following equation for the evolution of the phases in the slow

time scale τ = εt:

dψi
dτ

=
1

N

∑

j

K(dij)P (ψj − ψi) + λiβ, (166)

where P is a T -periodic function determined from the basic limit-cycle solution (165) that

satisfies P ′(0) = 1, and β is a parameter (Neu, 1979). When X = cos(t+ψ), Y = sin(t+ψ),

P (θ) = sin θ, Eq. (166) is essentially the KM. Neu (1980) analyzed synchronization in the

case of identical oscillators (λi = 0) for both mean-field and diffusive coupling, in the limit

of infinitely many oscillators. His method involves finding an evolution equation for the time

integral of the order parameter. This equation can be solved in special cases and provides

information on how the oscillators synchronize as time elapses (Neu, 1980).
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Thus the KM describes weakly coupled chemical oscillators in a natural way, as already

discussed by Bar-Eli (1985); Kuramoto (1984), and worked out by other authors later. Fol-

lowing previous experiments on two-coupled stirred tank reactors, Yoshimoto et al. (1993)

have tried to test frustration due to disorder in oscillation frequencies, in a system of three

coupled chemical reactors. Previous studies in systems of two coupled stirred tank reactors

have shown that, depending on the coupling flow rate, different synchronization modes can

emerge spontaneously: in-phase mode, anti-phase mode and phase-death mode. Yoshimoto

et al. (1993) interpreted their experiment involving three reactors by using the numerical so-

lutions of Kuramoto-type equations for phase oscillators with asymmetric couplings. Their

numerical solutions exhibited different combinations of the previous three modes, as well as

new complex multistable modes whose features depended on the level of asymmetry in the

interaction among oscillators. More recently, Kiss et al. (2002) have confirmed experimen-

tally the existence of all these patterns and a number of other predictions of the KM by

using an array of 64 nickel electrodes in sulfuric acid.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have extensively reviewed the main features of the Kuramoto model,

which has been very successful in understanding and explaining synchronization phenomena

in large populations of phase oscillators. The simplicity of the KM allows for a rigorous

mathematical analysis, at least for the case of mean-field coupling. Still, the long-time be-

havior of the KM is by far non-trivial, displaying a large variety of synchronization patterns.

Furthermore, this model can be adapted so as to explain synchronization behavior in many

different contexts.

Throughout this review we have mentioned a number of open lines deserving a special

attention. Let summarize some of them. For the mean-field KM, the recent work by Balm-

forth and Sassi (2000) raises interesting questions to be tackled in the future. At zero noise

strength D = 0, a stability analysis of the partially synchronized phase as well as rigor-

ous description of the synchronization transition are needed. The necessary work in this

direction is expected to be technically hard.

Much more work is needed to understand synchronization in the KM with nearest-

neighbor coupling. Recent work by Zheng et al. (1998) on the 1D case has shown that
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phase slips and bursting phenomena occur for couplings just below threshold. This fact is

not surprising. It is well-known that spatially discrete equations with (overdamped or un-

derdamped) dynamics are models for dislocations and other defects that can either move or

be pinned. Among these models, we can cite the 1D Frenkel-Kontorova model (Braun and

Kivshar, 1998; Carpio and Bonilla, 2001, 2003b) or the chain oscillator models for 2D edge

dislocations (Carpio and Bonilla, 2003a). The latter is exactly the 2D KM with asymmetric

nearest-neighbor coupling and zero frequency on a finite lattice. A constant external field

acts on the boundary and is responsible for depinning the dislocations if it surpasses a crit-

ical value. For these models, there are analytical theories of the depinning transition, and

the effects of weak disorder on the transition are also understood. Perhaps this methodology

could be useful to understand either synchronization or its failure in the nearest-neighbor

KM. It would be also interesting to analyze the entrainment properties of large populations

of phase oscillators connected in a scale-free network or in a small-world network. Perhaps

new clustering properties or multistability phenomena will come out in a natural way.

Extensions of the KM to new scenarios should be considered. More work is needed to

understand the stability properties of synchronized phases in models with general periodic

couplings, or models with inertia and time delay.

The extensive discussion of the KM in this review is hopefully expected to help finding new

applications of this model. For the applications discussed here, Josephson junctions arrays

with nonzero capacitances need to be understood better given their frequent occurrence in

real systems. More careful singular perturbation methods should yield more general, yet

tractable models of the Kuramoto type. On the other hand, quantum noise in the form of

spontaneous emission and shot noise are important for certain laser systems (Wieczorek and

Lenstra, 2004). Examining the role of the noise in such systems suggests a new research line.

Concerning biological applications, it would be interesting to investigate in depth adaptive

mechanisms that go beyond the standard learning rules discussed in this review.

Finally, models of phase oscillators different from those discussed in this review should

be explored. In this context, recent works on the Winfree model (Ariaratnam and Strogatz,

2001) and on circadian clocks (Daido, 2001) also open paths worth pursuing.

88



Acknowledgments

This work was supported in part by the Italian GNFM-INDAM, by the Spanish MCyT

grants BFM2000-0626, BFM2002-04127-C02-01, and by the European Union under grant

HPRN-CT-2002-00282.

APPENDIX A: Path integral derivation of the nonlinear Fokker-Planck equation

For the sake of completeness, a derivation of the NLFPE (26) satisfied by the one-oscillator

probability density is presented. Such a derivation follows the ideas in (Bonilla, 1987),

adapted to the case of the noisy KM. It is somewhat technical but it has the important

advantage over other derivations. In fact, it shows that, in the limit as N → ∞, the p-

oscillator probability density factorizes in the product of p one-oscillator densities for all

t > 0, provided all oscillators were statistically independent at time t = 0. This result of

“propagation of molecular chaos” is usually assumed in other simpler derivations which close

a hierarchy of equations for p-oscillator densities (Crawford and Davies, 1999).

To derive the NLFPE, let first write down the path integral representation of the N -

oscillator probability density ρN (t, θ, ω) corresponding to the system of stochastic equations

in (23). ρN is equal to a product of δ(θi(t) − Θi(t; ξ)), averaged over the joint Gaussian

distribution for the white noises ξi(t), and over the initial distribution of the oscillators.

Θi(t; ξ)) are the solutions of Eqs. (23) for a given realization of the noises. We have

ρN (t, θ, ω) = 〈
∏

t

N
∏

j=1

δ[θi(t) − Θi(t; ξ)]〉ξ,θ0

= 〈
∏

t

N
∏

j=1

δ

(

ωj + ξj(t)Im
K

N

N
∑

k=1

ei(θk−θj) − θ̇j

)

×det

(

Re
K

N

N
∑

k=1

ei(θk−θj)(δkj − 1) − d

dt

)

〉ξ,θ0. (A1)

This expression is then transformed using the fact that the delta functions are the

Fourier transforms of unity,
∏

t δ(fj) =
∫

exp[
∫ t

0
iΨjfjdt]DΨj(t), and the Gaussian aver-

age 〈exp[
∫ t

0
iΨjξjdt]〉ξ = exp[−2D

∫ t

0
Ψ2
jdt]. It follows that
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ρN (t, θ, ω) =

∫ ∫ ∫ θ(t)=θ

θ(0)=θ
0

exp

{

∫ t

0

N
∑

j=1

[

−2DΨ2
j

+iΨj

(

ωj + Im
K

N

N
∑

k=1

ei(θk−θj) − θ̇j

)

+
1

2
Re
K

N

N
∑

k=1

ei(θk−θj)(δjk − 1)

]

dt

}

DΨ(t)Dθ(t)

N
∏

i=1

[ν(θi0, ωi)dθi0], (A2)

after transforming the functional determinant as indicated in (Bausch et al., 1976; Dominicis

and Peliti, 1978; Phythian, 1977) and averaging over the initial conditions. In (A2), θ =

θ1, . . . , θN are the oscillator angles and Ψ = Ψ1, . . . ,ΨN are their conjugate variables in

phase space. ρN is 2π-periodic in each of its phase arguments θj . Initial data have been

assumed to be independent identically distributed, ρN (0, θ, ω) =
∏N

j=1 ν(θj , ωj) (molecular

chaos assumption). In addition, the normalization constant in the path integral will be

omitted. Since we are interested in one-oscillator averages for systems of infinitely many

oscillators, we should study the one-oscillator probability density ρ(θ, ω, t) such that

ρ(θ1, ω1, t) = lim
N→∞

∫

ρN(t, θ, ω)
N
∏

i=2

[g(ωi)dωidθi]. (A3)

To analyze this function, note that the exponential in (A2) contains double sums such as

N
∑

j=1

Ψ̃j cos θj

N
∑

k=1

sin θk =
1

2





(

N
∑

j=1

(Ψ̃j cos θj + sin θj)

)2

−
(

N
∑

j=1

Ψ̃j cos θj

)2

−
(

N
∑

j=1

sin θj

)2


 , (A4)

and others of a similar form. Here Ψ̃j = iΨj. Note that the squares of the sums in the

previous formulas can be eliminated by using Gaussian path integrals,

∫

exp

{

−
∫ t

0

[

Nϕ2 + i
√

2Kϕ
N
∑

j=1

Aj

]

dt

}

Dϕ(t)

90



= exp







− K

2N

∫ t

0

(

N
∑

j=1

Aj

)2

dt







, (A5)

∫

exp

{

−
∫ t

0

[

Nϕ2 +
√

2Kϕ

N
∑

j=1

Aj

]

dt

}

Dϕ(t)

= exp







K

2N

∫ t

0

(

N
∑

j=1

Aj

)2

dt







. (A6)

Inserting Eqs. (A2) and (A4) - (A6) into (A3) yields

ρ(θ, ω, t) = lim
N→∞

∫

eA(θ,ω,t;ϕ)
(

〈eA〉θ,ω
)N−1

Dϕ(t), (A7)

eA =

∫ ∫ ∫ θ(t)=θ

θ(0)=θ0

exp

{

−
∫ t

0

[

2DΨ2 + Ψ̃(θ̇ − ω)

+ϕ2
1 + i

√
2Kϕ1Ψ̃ cos θ + ϕ2

2 + ϕ2
3 + i

√
2Kϕ2 sin θ

+
√

2Kϕ3(Ψ̃ cos θ + sin θ) + . . .
]

dt
}

DΨ(t)Dθ(t)ν(θ0, ω)dθ0, (A8)

〈eA〉θ,ω =

∫ ∫

eAg(ω)dωdθ. (A9)

In Eq. (A8), + . . . stand for six terms of the same type as the three previous ones. The

integrals over ϕ(t) in Eq. (A7) can be approximated by means of the saddle point method,

resulting in

δ

δϕk
ln〈eA〉θ,ω = 0 (A10)

for k = 1, . . . 9. For the three terms displayed in Eq. (A8), Eq. (A10) yields

ϕ1 = −i
√

K

2
〈Ψ̃ cos θ〉, ϕ2 = −i

√

K

2
〈sin θ〉,

ϕ3 = −i (ϕ1 + ϕ2), (A11)

where

〈A〉 =
∫

A exp(. . .)DΨ(t)Dθ(t)ν(θ0, ω)dθ0g(ω)dωdθ
∫

exp(. . .)DΨ(t)Dθ(t)ν(θ0, ω)dθ0g(ω)dωdθ
. (A12)
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Here the exponential terms coincide with that in the integrand in Eq. (A8). After inserting

(A11) in such exponentials, and substituting the result in (A12), the terms containing ϕk

(k = 1, 2, 3) become −K〈Ψ̃ sin θ〉 cos θ − K〈cos θ〉Ψ̃ sin θ. The denominator in Eq. (A12)

can be set equal to 1, upon definining appropriately the path integral so that 〈1〉 ≡ 1. It

is obtained that 〈Ψ̃ sin θ〉 = δ〈1〉/δ〈cos θ〉 = 0. The other functions ϕk can be determined

similarly and we obtain

ρ(θ, ω, t) =

∫ ∫ ∫ θ(t)=θ

θ(0)=θ0

expA(Ψ, θ;ω, t)

DΨ(t)Dθ(t)ν(θ0, ω)dθ0, (A13)

A(Ψ, θ;ω, t) = −
∫ t

0

{

2DΨ2 + iΨ[θ̇ − ω

−Kr sin(ψ − θ)] +
Kr

2
cos(ψ − θ)

}

dt, (A14)

reiψ = 〈eiθ〉 =

∫ ∫

eiθρ(θ, ω, t)g(ω)dωdθ. (A15)

This is the path integral representation of the solution of the NLFPE satisfying ρ(θ, ω, 0) =

ν(θ, ω). Thus, the one-oscillator density satisfies the NLFPE in the limit as N → ∞
(Bonilla, 1987). The same method can be used to show propagation of molecular chaos: the

p-oscillator probability density is given by

ρp(θ1, ω1, . . . , θp, ωp, t) = lim
N→∞

∫

ρN (t, θ, ω)

×
N
∏

i=p+1

[g(ωi)dωidθi] =

p
∏

j=1

ρ(θj , ωj, t), (A16)

provided that the oscillators are independent and identically distributed initially and (N −
p) → ∞ (Bonilla, 1987).

APPENDIX B: Calculating bifurcations for the NLFPE by the method of multiple

scales

Let explain this method in the simple case of bifurcations to stationary synchronized

phases and comment on its relation to the Chapman-Enskog method. In this case, there

exist two time scales, t (fast time scale) and τ = ε2t ∼ (K−Kc)t/K2 (slow time scale). The

choice of the slowly-varying time scale is motivated as in Section III.D, and (K−Kc) = O(ε2)
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because the equation for ρ3 is the first equation of the hierarchy derived below to display

resonant terms. We assume

ρ(θ, ω, t; ε) ∼ 1

2π

[

1 +
∞
∑

n=1

εnρn(θ, ω, t, τ)

]

, (B1)

and insert this asymptotic expansion in (26), thereby obtaining the hierarchy of linear equa-

tions

Lρ1 = 0,

∫ π

−π

ρ1dθ = 1, (B2)

Lρ2 = −Kc∂θ

{

ρ1Im e−iθ〈e−iθ′, ρ1〉
}

+ cc,
∫ π

−π

ρ2dθ = 0, (B3)

Lρ3 = − Kc ∂θ

{

ρ2Im e−iθ〈e−iθ′, ρ1〉

+ ρ1Im e−iθ〈e−iθ′, ρ2〉
}

− ∂τρ1 + cc −K2∂θIm e−iθ〈e−iθ′ , ρ1〉,
∫ π

−π

ρ3dθ = 0, (B4)

and so on. The solutions of (B1) and of (B2) are

ρ1 =
A(τ) eiθ

D + iω
+ cc, (B5)

ρ2 =
A2

(D + iω)(2D + iω)
e2iθ + cc

+
B(τ) eiθ

D + iω
+ cc, (B6)

respectively. A(τ) and B(τ) are slowly-varying amplitudes to be determined later. Inserting

(B5) and (B6) in (B4) and using the nonresonance condition (45), the relation dA/dτ = F (0)

is obtained, w here F (0) is given by Eq. (48). Thus, to leading order, the method of multiple

scales and the Chapman-Enskog method yield the same amplitude equation. However, for

more complicated bifurcations, such as the degenerate transition described by Eq. (50), the

93



method of multiple scales still yields dA/dτ = F (0), and a linear inhomogeneous equation for

the amplitude B(τ). The reason for these unphysical results is that the method of multiple

scales is severely limited by the fact that all terms in the reduced equations provided by it,

turn out to be of the same order. Eq. (50) can still be derived from these two equations by

an ad hoc Ansatz, as done by Bonilla et al. (1998b) in the case of the tricritical point. Note

that Eq. (39) implies that B(τ) = 0 when the Chapman-Enskog method is used.

APPENDIX C: Calculation of the degenerate bifurcation to stationary states near

ω0 = D/
√

2

In this Appendix, we evaluate the term F (2)(A,A), needed to describe the transition

from supercritical to subcritical bifurcations at the parameters ω0 = D/
√

2, Kc = 3D. The

solution of Eq. (42) is

ρ3 =
eiθ

D + iω

[

K2A

Kc

− F (0)

D + iω
− A |A|2

(D + iω)(2D + iω)

]

+cc +
3A3ei3θ

(D + iω)(2D + iω)(3D + iω)
+ cc. (C1)

The additional equations in the hierarchy that are needed are:

Lρ4 = −Kc∂θ

{

ρ3Im e−iθ〈e−iθ′, σ1〉
}

− K2 ∂θσ1Im e−iθ〈e−iθ′, σ1〉 − F (0) ∂Aρ2 + cc, (C2)

Lρ5 = −Kc∂θ

{

ρ4Im e−iθ〈e−iθ′, σ1〉
}

− F (2) ∂Aσ1 + cc

−F (0) ∂Aρ3 + cc −K2 ∂θ

{

ρ2Im e−iθ〈e−iθ′, σ1〉
}

. (C3)

The solution of Eq. (C2) is

ρ4 =
Aei2θ

(D + iω)(2D + iω)

[

3K2A

Kc

−2F (0)

(

1

D + iω
+

1

2D + iω

)

− 2A |A|2
2D + iω
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×
(

1

D + iω
+

3

3D + iω

)]

+ cc

+
12A4ei4θ

(D + iω)(2D + iω)(3D + iω)(4D + iω)
+ cc. (C4)

The task of finding F (2) becomes simpler by noting that, near the degenerate point, the

relation ω0 = D/
√

2 + ε2ω2 holds. This yields

F (0) = K2

(

1 +
2
√

2ε2ω2

D

)

A+
16
√

2ε2ω2

9D2
A |A|2 (C5)

up to O(ε4) terms. Then, we only need to evaluate F (2) at ω0 = D/
√

2 in order to obtain

an amplitude equation containing terms up to order O(ε4) in Eq. (38). The terms ρn,

n = 1, . . . , 4 should be inserted in the right-hand side of Eq. (C3), and the nonresonance

condition for the resulting equation should be used. In such equation, we can set F (0) = K2A.

The result is

F (2) = −K
2
2

D
A− 28K2

9D2
A |A|2 − 272

171D3
A|A|4. (C6)

Then the amplitude equation (50) is obtained after inserting (C5) and (C6) in (38).

APPENDIX D: Calculation of the bifurcation at the tricritical point

Inserting Eq. (59) in (26) leads to the modified hierarchy

Lρ2 = −Kc∂θ

{

σ1Im e−iθ〈e−iθ′ , σ1〉
}

− AT e
iθ

D + iω
+ cc, (D1)

Lρ3 = −Kc ∂θ

{

ρ2Im e−iθ〈eiθ′ , σ1〉
}

−K2∂θIm e−iθ〈e−iθ′ , σ1〉 − ∂Tρ2 + cc, (D2)

Lρ4 = −Kc∂θ

{

ρ3Im e−iθ〈e−iθ′, σ1〉

+ω2σ1Im eiθ〈eiθ′, σ1〉′
}

−K2 ∂θσ1Im e−iθ〈e−iθ′, σ1〉 − ∂Tρ3 + cc. (D3)
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with Kc = 4D. Here we have defined the “inner product”

〈ϕ, ψ〉′ =
1

2π

∫ π

−π

∫ +∞

−∞

ϕ(θ, ω)ψ(θ, ω) g′0(ω) dω dθ,

g′0(ω) =
1

2
[δ′(ω + ω0) − δ′(ω − ω0)]. (D4)

Eq. (60) has not yet been used. Using it leads to a correction in (D2) and (D3). The second

term in (D1) has the same form as σ1, but it is nonresonant because 〈1, (D+ iω)−2〉 = 0 at

the tricritical point. The solution of (D1) is

ρ2 =

[

A2e2iθ

(D + iω)(2D + iω)
− AT e

iθ

(D + iω)2

]

+ cc. (D5)

We now insert this solution in Eq. (D2), and use the Ansatz (60) because ∂Tρ2 contains a

factor ATT in a truly resonant term. Recall that it is at this point that the routine Chapman-

Enskog Ansatz in Eq. (38) fails to deliver a resonant term. Note that the Ansatz in (60)

adds the term F (1)eiθ/(D + iω)2+cc to the right-hand side of Eq. (D3). The nonresonance

condition for (D2) yields

F (0) =
D

2
(K2 − 4ω2)A+

2

5
|A|2A. (D6)

The solution of Eq. (D2) is

ρ3 =

[

K2 − 4ω2

4D(D + iω)
A+

F (0)

(D + iω)3

− A|A|2
(D + iω)2(2D + iω)

]

eiθ + cc

−
AAT

(

1
D+iω

+ 1
2D+iω

)

(D + iω)(2D + iω)
e2iθ + cc

+
A3e3iθ

(D + iω)(2D + iω)(3D + iω)
+ cc. (D7)

Applying the nonresonance condition to the right-hand side of Eq. (D3), we obtain

F (1) =
K2

2
AT − (|A|2A)T

5D
− 23

25D
|A|2AT . (D8)

Inserting Eqs. (D6) and (D8) into (60) yields the sought amplitude equation (61).
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APPENDIX E: Stationary solutions of the Kuramoto model are not equilibrium

states

In this Appendix, we show how the stationary solutions of the KM are not equilibrium

states for the model defined by the Hamiltonian in (144). Following (Pérez-Vicente and

Ritort, 1997), the equilibrium value of the moments in (140), Em
k , corresponding to Eq.

(144), can be easily evaluated,

Em
k = Fm

k e
ikθ = eikθ

∫ π

−π

dωg(ω)ωm
Jωk (Kr

T
)

Jω0 (Kr
T

)
, (E1)

θ being an arbitrary phase. The functions Jωk (x) are of the Bessel type,

Jωk (x) =

∫ π

−π

dφ exp(ikφ+ x cosφ+ βωφ), (E2)

and β = 1/T (T being the temperature). Inserting the equilibrium values of the moments

Em
k into Eq. (141), yields

(∂Hm
k

∂t

)

Hm
k

=Em
k

= ikvm exp(ikθ), (E3)

where

vm = T exp(
Kr

T
)

∫ π

−π

dωg(ω)
ωm(exp(2πω

T
) − 1)

Jω0 (Kr
T

)
(E4)

Stationarity of the equilibrium solution requires that vm vanishes. In the simple case

of a symmetric frequency distribution g(ω) = g(−ω), it can be proven that v2m = 0, for

every m. However, odd moments do not vanish. The temperature dependence of v2m−1

can be analytically evaluated in the high-temperature limit (v2m−1 = ω2m + O(β3)) as well

as in the low-temperature limit (v2m−1 = ω2m + O(T )). It is worth noting that, even in

the zero-temperature limit (where a stability analysis reveals that the synchronized solution

is neutrally stable, see section Sec. II.B), the absolute minima of H are not stationary

configurations of the dynamics. This shows that the assumption that the stationary solutions

at T = 0 are local minima of H in (144) does not hold. For a symmetric frequency

distribution, where v0 = 0, this result does not guarantee that the Boltzmann distribution

P eq({θi}) ∝ exp(−βH({θi})) (which depends on the whole set of moments Hm
k ) is also
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stationary. In this case, in fact, both H0
k = hk and the synchronization parameter r are

stationary.

APPENDIX F: Derivation of the KM for an array of Josephson junctions

By using an averaging procedure, Swift et al. (1992); Wiesenfeld (1996); Wiesenfeld et al.

(1996, 1998) have shown that Eqs. (152), (152) with Cj = 0 (the resistively shunted junction

or RSJ case) can be mapped into the KM, provided coupling and disorder are weak. The

main steps of the procedure are as follows. Firstly, we change from the angular variables φj

to the natural angles θj , which rotate uniformly in the absence of coupling:

2erj
~

dθj
ωj

=
dφj

IB − Ij sinφj
. (F1)

Direct integration of this equation yields IB − Ij sinφj = (I2
B − I2

j )/(IB − Ij cos θj), which is

equivalent to (154). In terms of the new angular variables, Eq. (152) becomes

θ̇j = ωj −
ωjQ̇ (IB − Ij cos θj)

I2
B − I2

j

. (F2)

Secondly, we want to estimate the orders of magnitude of the terms in our equations.

Eq. (152) yields the characteristic time scale over which the angular variables change, tφ =

~/(2erI), where r and I are the mean values of the resistances and critical currents in the

junctions. Similarly, tQ = (R+Nr)C is the characteristic time scale in the RLC load circuit.

By assuming that tφ/tQ � 1, we can ignore the two first terms in the left side of (152). If

we ignore Q̇ in Eq. (152), and insert the resulting φ̇j in (152), we obtain the following order

of magnitude for the charge, Q = O(NCIr). Then Q̇ = O(NCIr/tφ) = O(eNCI
2
r2/~) in

Eq. (152). Thirdly, we assume that the disorder in rj and Ij is weak. More precisely, we

assume that the fluctuations in the critical current of the junctions are of the same order as

Q̇ = O(eNCI
2
r2/~), and that both are much smaller than I. Thus we assume

eNCIr2

~
� 1,

tφ
tQ

=
~

2eCr(R + r)I
� 1. (F3)

Lastly and according to our assumptions, we proceed to ignore terms Q̇ and Q̈ in Eqs.

(152) and (152). This yields Q as a function of the angular variables. We then insert this

result into Eq. (F2), which is averaged over the fast time scale tφ. We obtain the modified

KM (155).
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Bonilla, L. L., C. J. Pérez-Vicente, F. Ritort, and J. Soler, 1998a, Phys. Rev. Lett. 81, 3643.
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FIG. 5 Bifurcation diagram (K,R) near the tricritical point for ω0 > D fixed. K∗ is the coupling

at which a subcritical branch of stationary solutions bifurcates from incoherence.
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level 1

level 2

level 0

 1       2     3   4   5    6   7     8    9  
FIG. 7 A hierarchical tree with N = 9 two-level (L = 2) oscillators having branching ratio b = 3.

The distance lij between two oscillators is given by the number of levels between them and their

closest common ancestor. In this example, l12 = l46 = l78 = 1 and l15 = l58 = 2.
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FIG. 8 Discrete bimodal frequency distribution: Stability diagram of incoherence in the parameter

space (Ω0, K) for different mass values and D = 1.
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FIG. 9 Stationary solution, lorentzian frequency distribution with spread ε. The line separates the

region in parameter space (m, ε) on which the transition to the synchronized state is either sub-

or a super-critical. The dotted line denotes the analytical solution obtained using cn, n = 0, 1, 2,

while the solid line shows the solution computed numerically.
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FIG. 10 Comparison among the results of numerical simulations based on solving the nonlin-

ear Fokker-Planck equation with the spectral method (40 harmonics), and solving the system of

stochastic differential equations with three different numerical schemes: Euler, Heun, Taylor 3/2.

Here the time step is ∆t = 0.1. The population is N = 50000 oscillators, and they are identical

(ωi = 0); K = 4 and D = 1.
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FIG. 11 Comparison among the results of numerical simulations obtained solving the nonlinear

Fokker-Planck equation with a spectral method with 40 harmonics, and solving the system of

stochastic differential equations for two different population size, N = 500, N = 5000. Simulations

haven been performed with a Taylor 3/2 scheme with a time step ∆t = 0.1. Parameters are the

same as in Fig. 10.
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FIG. 12 Fluctuations of the order parameter computed for a finite number of oscillators, N , around

its limiting value (obtained for N → ∞) are shown as a function of N on logarithmic scales. Dots

are the computed values, while the dashed line is the corresponding mean square regression. The

simulations have been performed using the Taylor 3/2 scheme with ∆t = 0.01. Parameters are the

same as in Fig. 10.
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FIG. 13 Numerical simulations by finite differences (with ∆θ = 0.04, ∆t = 10−4), spectral method

(with 2,4,8 harmonics), and the analytical stationary solution. Parameters are K = 3, D = 1, and

g(ω) = δ(ω).

113



0 1 2 3 4 5 6 7 8 9 10

n

0.00

0.05

0.10

0.15

0.20

|ρ
n
(
∞

,ω
)
|

K=2.1

K=3

K=6

FIG. 14 The coefficients |ρn(∞, ω)| corresponding to the stationary solution are shown for various

coupling strength parameters, K. The frequency distribution here is g(ω) = δ(ω), and the diffusion

constant D = 1.
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FIG. 15 Global L2-error as function of ∆θ, or N , for K = 4, 8. Here g(ω) = δ(ω).
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FIG. 16 Bifurcation diagram for the unimodal frequency distribution, g(ω) = δ(ω). Two different numbers

of harmonics were used, N = 4, and 12. The dotted line refers to the unstable incoherent solution, while

the solid one depicts the stable solution.
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FIG. 17 Dynamical evolution of the order parameter H0
1 = r exp(iψ) for the KM with the discrete

bimodal frequency distribution and D = 1/2 and K = 1. Incoherence is stable for these parameter

values. The trajectory is represented in the complex plane (ReH0
1 , ImH

0
1 ).
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FIG. 18 Same as in Fig. 17 for D = 0.05 and K = 1. A stable oscillatory synchronized phase

exists for these parameter values.
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FIG. 19 Time evolution of r for the parameter values D = 2.5 and K = 1/4, for which the KM

with a discrete bimodal frequency distribution has a stable oscillatory synchronized phase. The

solid line has been obtained by means of the moments method described in the text, and the dots

result from a single run of a Brownian simulation with N = 50000 oscillators.
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FIG. 20 Schematic circuit showing ideal Josephson junctions (each denoted by a cross) connected

in series coupled through an RLC load. IB is the bias current.
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