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Abstract. The Kurzweil-Henstock approach has been successful in giving an alternative
definition to the classical Itô integral, and a simpler and more direct proof of the Itô Formula.
The main advantage of this approach lies in its explicitness in defining the integral, thereby
reducing the technicalities of the classical stochastic calculus. In this note, we give a unified
theory of stochastic integration using the Kurzweil-Henstock approach, using the more
general martingale as the integrator. We derive Henstock’s Lemmas, absolute continuity
property of the primitive process, integrability of stochastic processes and convergence
theorems for the Kurzweil-Henstock stochastic integrals. These properties are well-known
in the classical (non-stochastic) integration theory but have not been explicitly derived in
the classical stochastic integration.
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1. Introduction

Stochastic calculus has been well developed in the study of stochastic integrals,

see [3], [8], [14], [18], [19], [20], [21], [22], [32]. In the classical theory of integration

the Riemann integral with uniform mesh is found to be deficient. In the 1950s,

J. Kurzweil and R. Henstock independently modified the Riemann integral by using

non-uniform meshes, that is, meshes that vary from point to point. It turns out that

this integral is more general than the classical Riemann integral and the Lebesgue

integral, see [4], [5], [6], [9], [10], [11].

Along this line of thought, the Henstock approach, also known as the generalized

Riemann aproach, has been used to study stochastic integrals, see [2], [7], [10], [12],

[13], [15], [16], [17], [23], [24], [25], [26], [27], [31], [33]. The advantage of the gen-

eralized Riemann approach is that it gives an explicit and intuitive definition of the
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stochastic integral using L2-convergence. Even for the stochastic integrals, it turns

out that Henstock’s definition encompasses the classical stochastic integrals, see [23],

[24], [25], [26], [27]. The Henstock approach was also used to characterize stochastic

integrable processes in [29] and an integration-by-part formula is also derived for

stochastic integrals, see [28]. The Henstock approach has also been shown to be able

to give an easier and more direct proof of the Itô Formula, see [30].

In this note, we shall establish the results of the theory of stochastic integration

using the Kurzweil-Henstock approach. We shall use an L2-martingale as the in-

tegrator in most of our discussion. The Kurzweil-Henstock approach is well-known

for its explicitness for the classical integration theory. In addition, we also estab-

lish the convergence theorems for the stochastic integrals. As Brownian motions are

special cases of L2-martingales, the results of this paper encompass Itô’s stochastic

integration as well (which consider Brownian motion as the integrator).

2. Setting and definition of the integral

Let (Ω, F , P ) be a probability space, and {Ft} an increasing family of σ-subfields
of F for t ∈ [a, b], that is, Fr ⊂ Fs for a 6 r < s 6 b with Fb = F . The probability

space together with its family of increasing σ-subfields is called a standard filtering

space and denoted by (Ω, F , {Ft}, P ).

A process {ϕ(t, ω) : t ∈ [a, b]} on (Ω, F , P ) is a family of F -measurable functions

(which are called random variables) on (Ω, F , P ). We also denote the process ϕ(t, ω)

by ϕt(ω).

The process {ϕt(ω) : t ∈ [a, b]} is said to be adapted to the filtering {Ft} if for
each t ∈ [a, b], ϕt is Ft-measurable. In this paper, we shall fix the standard filtering

space (Ω, F , {Ft}, P ) and simplify it to the process ϕ being adapted.

Definition 1. A measurable process X = {X(t, ω), t ∈ [a, b]} defined on [a, b] is

called a martingale if

(i) X is adapted to the filtration, that is, Xt is Ft-measurable for each t ∈ [a, b];

(ii)
∫

Ω
|Xt| dP < ∞ for almost all t ∈ [a, b]; and

(iii) E(Xt|Fs) = Xs for all t > s.

For a given random variable ϕ on (Ω, F , P ), let E(ϕ) denote its expectation in

the probability space, that is,

E(ϕ) =

∫

Ω

ϕdP,
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and let us use the notation E(Xt|Fs) to denote the conditional expectation of Xt

given Fs, which is defined as the Fs-measurable random variable such that

∫

A

E(Xt|Fs) dP =

∫

A

Xt dP

for each A ∈ Fs. By the Radon-Nikodym Theorem, E(Xt|Fs) exists and is well-

defined.

Remark 1a. As an easy consequence of (iii) of Definition 1 and the definition of

conditional expectation, for all t 6= s we have

(a) E(Xt) = E(Xs);

(b) E(Xt − Xs|Fs) = 0; and

(c) if θ is a random variable that is Fs-measurable, then

E(θ(Xt − Xs)|Fs) = θE(Xt − Xs|Fs).

It is also clear that for any random variable ϕ,

(d) E(ϕ) = E(E(ϕ|Fs)).

A martingale X is said to be an L2-martingale if, in addition to satisfying the

conditions (i), (ii) and (iii) above, we also have

sup
t∈[a,b]

∫

Ω

|Xt|2 dP < ∞.

In this note, the integrator we shall be considering is an L2-martingale. We shall

also assume that the integrator is cadlag, that is, it has sample paths which are right-

continuous with left limits. Throughout our discussion, we fix an L2-martingale as

the integrator and denote it by X . All stochastic integrals are taken with respect to

the integrator.

Definition 2. For any L2-martingale X , there exists an increasing adapted

stochastic process 〈X〉 such that X2−〈X〉 is also an L2-martingale. This process 〈X〉
is called the quadratic variation process associated with the martingale X .

The proof of existence of the quadratic variation process for an L2-martingale can

be found in classical textbooks, for example, see [35, pp. 212–213, Proposition 11.20].

It is also shown in [3] that the process 〈X〉 is an adapted cadlag process provided
the L2-martingale is cadlag.

For each (c, d] ⊂ [a, b], we denote the measure induced by the quadratic variation

process by

µX [c, d] = E(〈X〉d − 〈X〉c).
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Definition 3. Let δ be a positive function on [a, b]. A finite collection D of

interval-point pairs {((ξi, vi], ξi) : i = 1, 2, 3, . . . , n} is a δ-fine belated partial division

of [a, b] if

(i) (ξi, vi], i = 1, 2, 3, . . . n, are disjoint left-open subintervals of [a, b]; and

(ii) each [ξi, vi] is δ-fine belated, that is, [ξi, vi] ⊂ [ξi, ξi + δ(ξi)).

Given η > 0, the partial division D is said to fail to cover [a, b] by at most µX -

measure η if
∣

∣

∣

∣

µX [a, b] −
n

∑

i=1

µX [ξi, vi]

∣

∣

∣

∣

6 η.

In this note, for each positive function δ on [a, b] and each positive constant η

we shall always assume that there exists a δ-fine belated partial division of [a, b]

which fails to cover [a, b] by at most µX -measure η (see for example [12, p. 52]).

As a special case, if X is the classical Brownian motion, then 〈X〉t ≡ t (see for

example [34, p. 288], and [1]), hence µX is the Lebesgue measure.

Definition 4. An adapted process f = {ft : t ∈ [a, b]} is said to be Kurzweil-
Henstock stochastic integrable on [a, b] (with respect to X) if there exists an A ∈
L2(Ω) such that for any ε > 0 there exists a positive function δ on [a, b] and a positive

number η > 0 such that for any δ-fine belated partial division D = {((ξi, vi], ξi) : i =

1, 2, 3, . . . , n} of [a, b] which fails to cover [a, b] by at most η, we have

E

( n
∑

i=1

fξi
[Xvi

− Xξi
] − A

)2

6 ε.

Definition 4a. In Definition 4, if X is replaced by a classical Brownian motion,

then the process f is said to be Itô-Henstock integrable to A (see [2]).

Proposition 5. If an adapted process f is Kurzweil-Henstock stochastic inte-

grable, then the integral of f is unique up to a set of P -measure zero.

The proof of Proposition 5 follows easily from definition, hence it is omitted.

Subsequently, in view of the above uniqueness proposition, we shall denote the

integral of the adapted process f with respect to the L2-martingale X by the symbol

∫ b

a

ft dXt.

Example 6. Let h : Ω → R be a bounded random variable on (Ω, F , P ), that

is, there exists M > 0 such that |h(ω)| 6 M for all ω ∈ Ω. Let s ∈ [a, b] be

fixed and let h be Ft-measurable. Suppose t = s implies ft(ω) = h(ω) for all
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ω ∈ Ω; and suppose t 6= s implies ft(ω) = 0 for all ω ∈ Ω. Then f is Kurzweil-

Henstock stochastic integrable to zero on [a, b]. We remark that this function f is

also stochastic integrable to 0 under the classical setting (see for example [2]).

P r o o f. For any ε > 0 there exists a positive function δ on [a, b] such that

whenever ((ξ, v], ξ) is δ-fine, we have

0 6 E(〈X〉v − 〈X〉ξ) 6
ε

M2
.

This is possible since 〈X〉t is right-continuous, hence E〈X〉t is right-continuous by
Dominated Convergence Theorem for integration with respect to measures. Consider

any δ-fine belated partial divisionD = {((ξj , vj ], ξj)}m
j=1 of [a, b]. Assume that s = ξj

for some j; otherwise, it is trivial since fξj
≡ 0 for all j = 1, 2, 3, . . . , m. Thus,

E
(

∑

j

(fξi
[Xvj

− Xξj
] − 0)

)2

= E(fs[Xvj
− Xξj

])2

6 M2E(Xvj
− Xs)

2 = M2E(〈X〉vj
− 〈X〉s)

< M2
( ε

M2

)

= ε.

The above inequality holds for any δ-fine belated partial division of [a, b]. Hence,

f is Kurzweil-Henstock stochastic integrable to zero on [a, b]. �

Notation. We shall use the symbol S(f, D, δ, η) to denote the Riemann sum

n
∑

i=1

fξi
(Xvi

− Xξi
)

where D = {((ξi, vi], ξi) : i = 1, 2, 3, . . . , n} is a δ-fine belated partial division which

covers [a, b] except for a set of µX -measure not exceeding η.

Proposition 7 (Cauchy Criterion). Let f be an adapted process on [a, b]. Then

f is Kurzweil-Henstock stochastic integrable on [a, b] if and only if for each ε > 0

there exist a positive function δ on [a, b] and a positive constant η such that whenever

D1 = {((ξi, vi], ξi)}n
i=1 and D2 = {((ηj , tj ], ηj)}m

j=1 are two δ-fine belated partial

divisions of [a, b] failing to cover [a, b] by at most η, we have

E

(
∣

∣

∣

∣

n
∑

i=1

fξi
(Xvi

− Xξi
) −

m
∑

j=1

fηj
(Xtj

− Xηj
)

∣

∣

∣

∣

2)

6 ε.

The proof of Cauchy Criterion is analogous to the classical case for Henstock

(nonstochastic) integral (see [9]), hence it is omitted here.
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Theorem 8. Let f be an adapted process on [a, b]. Then f is Kurzweil-Henstock

stochastic integrable on [a, b] if and only if there exist A ∈ L2(Ω), a decreasing

sequence of {δn(ξ)} of positive functions defined on [a, b], and a decreasing sequence

of positive numbers {ηn} such that whenever Dn is a δn-fine belated partial division

of [a, b] that fails to cover it by at most µX -measure ηn, we have

lim
n→∞

E(|S(f, Dn, δn, ηn) − A|2) = 0.

Furthermore,

A =

∫ b

a

ft dXt.

Theorem 8 provides an alternative definition of the Kurzweil-Henstock stochastic

integral using limits of sequences of Riemann sums. This was first used in [30] for

Henstock’s Itô integral and [25] for Multiple Wiener integral, where the integrators

are Brownian motion. The proof is similar to the two cases with obvious modifica-

tions, hence we omit the proof here.

2. Non-stochastic properties

We shall use the term “non-stochastic properties” to refer to the properties of the

integral which can be established using the standard approach of Kurzweil-Henstock

(non-stochastic) integration, without using the results on probability. The term

“stochastic properties” will be used to refer to those properties that can only be

established using the properties of probability, and which are not generally shared

with classical Kurzweil-Henstock (non-stochastic) integration theory. In this section

we shall state without proving some basic non-stochastic properties of the integral.

These non-stochastic properties can be derived easily using the non-uniform Riemann

approach (see, for example, [9] for the details of the various proofs).

Proposition 9. Let f and g be adapted processes on [a, b] which are Kurzweil-

Henstock stochastic integrable on [a, b], and let α ∈ R. Then both f + g and αf are

Kurzweil-Henstock stochastic integrable on [a, b], and furthermore,

(i)
∫ b

a
(ft + gt) dXt =

∫ b

a
ft dXt +

∫ b

a
gt dXt,

(ii)
∫ b

a
αft dXt = α

∫ b

a
ft dXt.

Proposition 10. Let f be Kurzweil-Henstock stochastic integrable on [a, c] and

[c, b]. Then f is Kurzweil-Henstock stochastic integrable on [a, b]; further,
∫ b

a

ft dXt =

∫ c

a

ft dXt +

∫ b

c

ft dXt.
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Proposition 11. If f is Kurzweil-Henstock stochastic integrable on [a, b], then

f is integrable on any subinterval [c, d] of [a, b].

Henstock’s Lemma is a crucial result of classical (nonstochastic) integration theory.

The proof of Lemma 12 is parallel to that for classical integrals, hence the proof is

omitted.

Lemma 12 (Henstock’s Lemma). Let f be Kurzweil-Henstock stochastic inte-

grable on [a, b] and let F (u, v) = (K HS)
∫ v

u
ft dXt for any (u, v] ⊂ [a, b]. Then

for each ε > 0 there exists a positive function δ on [a, b] such that whenever

D = {((ξi, vi], ξi)}n
i=1 is a δ-fine belated partial division of [a, b], we have

E

(∣

∣

∣

∣

n
∑

i=1

(fξi
(Xvi

− Xξi
) − F (ξi, vi))

∣

∣

∣

∣

2)

6 ε.

In Definition 4, the Riemann sum
∑

fξi
(Xvi

−Xui
) over almost the entire interval

[a, b] was used as an “approximation” of A with a small “accumulated error” from

the classical integration theory. In Lemma 12 (Henstock’s Lemma), the “absolute

error” fξi
(Xvi

− Xui
) − F (ξi, vi) is small over any subinterval of [a, b]. Henstock’s

Lemma asserts that these two are equivalent.

3. Stochastic properties and isometric equality

In this section we derive the stochastic properties of the Kurzweil-Henstock

stochastic integral and the isometric equality. Throughout this section, we let the

integrator X be an L2-martingale.

For a stochastic process Y on [a, b] and for a given subinterval J = (u, v] ⊂ [a, b]

we let Y (J) denote the random variable Yv −Yu throughout our discussion from this

section onwards.

Lemma 13. Let f be Kurzweil-Henstock stochastic integrable on [a, b] and let

F (I) =
∫

I
ft dXt, where I is a left-open subinterval of [a, b]. Let J and K be two

disjoint left-open subintervals of [a, b]. Then

(i) E(F (J)) = 0;

(ii) F has the orthogonal increment property, that is, E(F (J)F (K)) = 0;

(iii) E(X(J)F (K)) = 0;

(iv) E(F (a, t)|Fs) = F (a, s) if s 6 t; and

(v) E
(

(fξi
X(J)−F (J))(fξj

X(K)−F (K))
)

= 0, where ξi is the left-end point of J

and ξj the left-end point of K.
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P r o o f. By using the properties listed in Remark 1a, we have

E(fξ(Xv − Xξ) = E(E(fξ(Xv − Xξ)|Fξ))

= E(fξE(Xv − Xξ|Fξ))

= E(fξ · 0) = 0.

Hence, E(S(f, D, δ, η)) = 0. By Theorem 8, we obtain E(F (J)) = 0, completing the

proof of (i).

To prove (ii) and (iii), suppose that (ξi, vi] and (ξj , vj ] are disjoint. Without loss

of genereality, we may assume that vi 6 ξj . Then

E(fξi
[Xvi

− Xξi
]fξj

[Xvj
− Xξj

]) = E(E((fξi
[Xvi

− Xξi
]fξj

[Xvj
− Xξj

])|Fξj
))

= E(fξi
[Xvi

− Xξi
]fξj

E([Xvj
− Xξj

]|Fξj
)) = 0,

noting that the last step follows since fξi
(Xvi

− Xξi
) is Fξj

-measurable. Let D(J)

and D(K) denote the partial divisions of J and K respectively. Then, for any δn

and ηn and any two disjoint intervals J and K of [a, b],

E(S(f, D(J), δn, ηn)S(f, D(K), δn, ηn)) = 0.

Further, by Theorem 8, choose {δn} and {ηn} such that

lim
n→∞

E(|S(f, D(J), δn, ηn) − F (J)|2) = 0

and

lim
n→∞

E(|S(f, D(K), δn, ηn) − F (K)|2) = 0;

then

E(F (J)F (K)) = lim
n→∞

E(S(f, D(J), δn, ηn)S(f, D(K), δn, ηn)) = 0.

Similarly,

E(X(J)F (K)) = lim
n→∞

E(X(J)S(f, D(K), δn, ηn)) = 0,

thereby completing the proofs of (ii) and (iii).

To prove (iv), let s 6 t. First note that

E(Gt|Fs) = Gs

where

Gt =

n
∑

i=1

ηi(Xvi∧t − Xui∧t)
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and each ηi is Fui
-measurable while u ∧ t is the minimum of u and t. Thus

E(S(f, D, δ, η)|Fs) = (D)
∑

fξ(Xv∧s − Xu∧s).

Hence we have

E(F (a, b)|Fs) = F (a, s).

Similarly,

E(F (a, t)|Fs) = F (a, s).

By (iii) and (iv), we get (v), completing the proof. �

Lemma 14. Let f be Kurzweil-Henstock stochastic integrable on [a, b] and let

F (u, v) = (K HS)
∫ v

u
ft dXt. Let D = {((ξi, vi], ξi)}n

i=1 be a δ-fine belated partial

division of [a, b]. Then

(i) E

(∣

∣

∣

∣

n
∑

i=1

fξi
(Xvi

− Xξi
)

∣

∣

∣

∣

2)

= E

[ n
∑

i=1

f2
ξi

(〈X〉vi
− 〈X〉ξi

)

]

,

(ii) E

(∣

∣

∣

∣

n
∑

i=1

fξi
(Xvi

− Xξi
) − F (ξi, vi)

∣

∣

∣

∣

2)

= E

( n
∑

i=1

|fξi
(Xvi

− Xξi
) − F (ξi, vi)|2

)

.

P r o o f. To prove (i), note that

E
(

∑

i

fξi
[Xvi

− Xξi
]
)2

= E
{

∑

i

(fξi
[Xvi

− Xξi
])2 +

∑

i6=j

(fξi
fξj

[Xvi
− Xξi

][Xvj
− Xξj

])
}

=
∑

i

{E([fξi
]2[Xvi

− Xξi
]2)} = E

(

∑

i

f2
ξi

(〈X〉vi
− 〈X〉ξi

)
)

thereby completing the proof of (i).

The proof of (ii) follows immediately from Part (v) of Lemma 13. �

Lemma 15 (Henstock’s Lemma—Strong Version). Let f be Kurzweil-Henstock

stochastic integrable on [a, b] and let F (u, v) =
∫ v

u
ft dXt for any (u, v] ⊂ [a, b].

Then for every ε > 0 there exists a positive function δ on [a, b] such that whenever

D = {((ξi, vi], ξi)}n
i=1 is a δ-fine belated partial division of [a, b] we have

E

( n
∑

i=1

|fξi
(Xvi

− Xξi
) − F (ξi, vi)|2

)

6 ε.

P r o o f. This is an immediate consequence of Part (v) of Lemma 13 and

Lemma 14. �
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Note that Lemmas 12 and 15 are different as in the former, the expression involves

the expected value of the square of the sum while in the latter it is the expected value

of the sum of squares. We are able to switch the order of squaring and summation by

virtue of the stochastic properties; in the general integration theory, the switching

of order of the two operations is not true in general.

Definition 16. Let f be an adapted process on [a, b]. Then f is said to be 〈X〉-
integrable to A ∈ L2(Ω) on [a, b] if for each ε > 0 there exist a positive function δ

on [a, b] and a positive constant η such that whenever D = {((ξ, v], ξ)} is a δ-fine

belated partial division of [a, b] failing to cover [a, b] by at most µX -measure η, we

have

E
(
∣

∣

∣
(D)

∑

fξ(〈X〉V − 〈X〉ξ) − A
∣

∣

∣

)

6 ε.

We denote A by
∫ b

a
ft d〈X〉t. We shall also denote the above Riemann-Stieltjes

sum
∑

(D)fξ(〈X〉v − 〈X〉ξ) by S̃(f, D, δ, η).

Note that if X is a classical Brownian motion, the above Riemann-Stieltjes sum

is the usual Riemann sum, which defines the McShane integral (which is equivalent

to the Lebesgue integral).

Remark. The corresponding result of Theorem 8 also holds for f ∈ L 2, that

is, an adapted process f on [a, b] is µX -integrable to A ∈ L2 on [a, b] if and only if

there exist a positive sequence of functions δn on [a, b] and a positive sequence of

constants ηn such that whenever Dn is a δn-fine belated partial division of [a, b] that

fails to cover [a, b] by at most µX -measure ηn, we have

lim
n→∞

E(|S̃(f2, D, δn, ηn) − A|) = 0.

The technique of the proof of the above is similar to that for Theorem 8, which was

quoted from [30]. Hence we omit the proof here.

Theorem 17 (Isometric Equality). Let f be Kurzweil-Henstock stochastic inte-

grable on [a, b] and f ∈ L 2. Then

E

((
∫ b

a

ft dXt

)2)

= E

(
∫ b

a

f2
t d〈X〉t

)

.

We remark that the integral on the left in the above equation is the Kurzweil-

Henstock stochastic integral while that on the right in the above equation is the

usual Henstock-Stieltjes integral.
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P r o o f. By Theorem 8 and the remark preceding Theorem 17, there ex-

ist a decreasing sequence {δn} of positive functions on [a, b] and a decreasing se-

quence ηn of positive numbers such that for any δn-fine belated partial division

Dn = {((ξ(n)
i , v

(n)
i ], ξ

(n)
i )}p(n)

i=1 that fails to cover [a, b] by at most µX -measure ηn, we

have

lim
n→∞

E

(
∣

∣

∣

∣

S(f, Dn, δn, ηn) −
∫ b

a

ft dXt

∣

∣

∣

∣

2)

= 0

and

lim
n→∞

E

(∣

∣

∣

∣

S̃(f2, Dn, δn, ηn) −
∫ b

a

f2
t d〈X〉t

∣

∣

∣

∣

)

= 0.

Then

lim
n→∞

E

((
∫ b

a

ft dXt

)2)

= lim
n→∞

E(|S(f, Dn, δn, ηn)|2)

= lim
n→∞

E

(p(n)
∑

i=1

f
ξ
(n)
i

(X
v
(n)
i

− X
ξ
(n)
i

)

)2

= lim
n→∞

E(S̃(f2, Dn, δn, ηn)) = E

(
∫ b

a

f2
t d〈X〉t

)

,

which completes the proof. �

Theorem 18. Let f and g be Kurzweil-Henstock stochastic integrable on [a, b].

Then

(i) E
(∫ b

a
ft dXt

)

= 0;

(ii) E
(

n
∑

i=1

∫ vi

ξi
ft dXt

)2
=

n
∑

i=1

E(
∫ vi

ξi
ft dXt

)2
for any finite collection {(ξi, vi]}n

i=1 of

disjoint subintervals of [a, b]; and

(iii) E
((∫ b

a
ft dXt

)(∫ b

a
gt dXt

))

= E
(∫ b

a
ftgt d〈X〉t

)

if f and g are also in L 2.

P r o o f. The results (i) and (ii) follow from Lemma 13 by taking limits. For

a proof of (iii), it is instructional for the reader to go through the proof of Theorem 17

with the obvious modifications. �

Theorem 19. Let f be Kurzweil-Henstock stochastic integrable on any subinter-

val [a, b] of [0,∞) and let Fs =
∫ s

0 ft dXt. Then the stochastic process {Fs : s > 0}
is an L2-martingale with respect to the natural filtration.

P r o o f. This result follows from (iv) of Lemma 13. �
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4. Absolute continuity property

In this section we shall discuss the relation between the stochastic analogue of

absolute continuity and the Kurzweil-Henstock stochastic integral. As in the previous

section, we fix the integrator X as an L2-martingale.

Definition 20. Let F be a stochastic process on [a, b]. Then F is said to have the

ACX -property if for each ε > 0 there exists η > 0 such that whenever D = {[u, v]}
is a partial division of [a, b] with µX

(

⋃

D

[ui, vi]
)

6 η, we have

E
(

(D)
∣

∣

∣

∑

(Fv − Fu)
∣

∣

∣

2)

6 ε.

It follows from the martingale property that

µX

(

⋃

D

[ui, vi]
)

= E
(

(D)
∑

i

(〈X〉vi
− 〈X〉ui

〉)
)

.

Lemma 21. Let f be Kurzweil-Henstock stochastic integrable on [a, b]. Given

ε > 0, there exist a positive function δ on [a, b] and a positive number η such that

E
(∣

∣

∣
(D)

∑

fξ[Xv − Xξ]
∣

∣

∣

)2

6 ε

for any δ-fine belated partial division D = {((ξ, v], ξ)} which fails to cover [a, b] by

µX -measure at most η.

P r o o f. Given ε > 0, there exist a positive function δ on [a, b] and a positive

number η such that for any δ-fine belated division D0 that fails to cover [a, b] by at

most η, we have

E

(∣

∣

∣

∣

(D0)
∑

fξ[Xv − Xξ] −
∫ b

a

ft dXt

∣

∣

∣

∣

)2

6
ε

4
.

Let D = {((ξ, v], ξ)} be a δ-fine belated partial division of [a, b] such that

E
(

(D)
∑

(〈X〉v − 〈X〉ξ)
)

6 η.

Construct a δ-fine belated partial division D1 of [a, b] that fails to cover [a, b] by

at most η and is disjoint from D, such that D ∪ D1 is also a δ-fine belated partial

division of [a, b] failing to cover [a, b] by at most η. Hence

E

(
∣

∣

∣

∣

(D ∪ D1)
∑

fξ[Xv − Xξ] −
∫ b

a

ft dXt

∣

∣

∣

∣

)2

6
ε

4
.
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Consequently,

E
(∣

∣

∣
(D)

∑

fξ[Xv − Xξ]
∣

∣

∣

2)

= E

∣

∣

∣

∣

(D ∪ D1)
∑

fξ[Xv − Xξ] −
∫ b

a

ft dXt

+

∫ b

a

ft dXt − (D1)
∑

fξ[Xv − Xξ]

∣

∣

∣

∣

2

6 2E

(∣

∣

∣

∣

(D ∪ D1)
∑

fξ[Xv − Xξ] −
∫ b

a

ft dXt

∣

∣

∣

∣

2)

+ 2E

(
∣

∣

∣

∣

∫ b

a

ft dXt − (D1)
∑

fξ[Xv − Xξ]

∣

∣

∣

∣

2)

6 2
ε

4
+ 2

ε

4
= ε,

thereby completing the proof. �

Theorem 22. Let f be Kurzweil-Henstock stochastic integrable on [a, b]. Let

Φ(u) =
∫ u

a
ft dXt. Then Φ has the ACX property.

P r o o f. Let ε > 0 be given. By Lemma 21 there exist η and a positive function δ

on [a, b] such that whenever D1 = {((ξ, v], ξ)} is a δ-fine belated partial division of

[a, b] with E
(

(D1)
∑

(〈X〉v − 〈X〉ξ)
)

6 η we have

E
(
∣

∣

∣
(D1)

∑

fξ[Xv − Xξ]
∣

∣

∣

2)

6 ε.

Let {(ai, bi]}N
i=1 be a finite collection of disjoint subintervals from [a, b], where

E

( N
∑

i=1

(〈X〉bi
− 〈X〉ai

)

)

6 η.

Then f is Kurzweil-Henstock stochastic integrable on each [ai, bi], i = 1, 2, 3, . . . , N .

On each [ai, bi] there exist a positive function δi and a positive number ηi such that

E

(
∣

∣

∣

∣

(Di)
∑

fξ[Xv − Xξ] −
∫ bi

ai

ft dXt

∣

∣

∣

∣

2)

6
ε

22i

whenever Di = {((ξ, v], ξ)} is a δi-fine belated partial division of [ai, bi] which fails to

cover [ai, bi] by at most ηi, and it is clear that
∑

ηi 6 η. We may assume that

δi(ξ) < δ(ξ) for each i = 1, 2, . . . , N . Now D =
N
⋃

i=1

Di is a δ-fine belated partial

division of [a, b] with

E
((

⋃

i

Di

)

∑

(〈X〉v − 〈X〉ξ)
)

6 E
(

∑

(〈X〉bi
− 〈X〉ai

)
)

6 η,
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so that we have

E

(∣

∣

∣

∣

( N
⋃

i=1

Di

)

∑

fξ[Xv − Xξ]

∣

∣

∣

∣

)2

6 ε.

Consequently,

E

(∣

∣

∣

∣

∑

i

∫ bi

ai

ft dXt

∣

∣

∣

∣

2)

6 2E

(∣

∣

∣

∣

∑

i

{
∫ bi

ai

ft dXt − (Di)
∑

fξ[Xv − Xξ]

}∣

∣

∣

∣

2)

+ 2E
(∣

∣

∣

∑

i

(Di)
∑

fξ[Xv − Xξ]
∣

∣

∣

2)

6 2







∑

i

√

E

(∣

∣

∣

∣

∫ bi

ai

ft dXt − (Di)
∑

fξ[Xv − Xξ]

∣

∣

∣

∣

2)






2

+ 2ε

6 2

{ ∞
∑

i=1

√
ε

2i

}2

+ 2ε 6 4ε,

showing that Φ possesses the ACX property, thereby completing our proof. �

Theorem 23. Let f and F be stochastic processes on [a, b]. Then f is Kurzweil-

Henstock stochastic integrable on [a, b] with F (u, v) =
∫ v

u
ft dXt if and only if F has

the ACX property and for every ε > 0 there exists a positive function δ on [a, b] such

that whenever D = {((ξi, vi], ξi)}n
i=1 is a δ-fine belated partial division of [a, b], we

have

E

( n
∑

i=1

(fξi
(Xvi

− Xξi
) − F (ξi, vi))

)2

6 ε.

P r o o f. Sufficiency is guaranteed by Theorem 22 and Lemma 15. We just

need to prove the converse. Given ε > 0, choose a positive η such that whenever

{(ui, vi]}m
i=1 is a finite collection of subintervals of [a, b] with

E

( m
∑

i=1

(〈X〉vi
− 〈X〉ui

)

)

6 η

we have

E

(
∣

∣

∣

∣

m
∑

i=1

F (ui, vi)

∣

∣

∣

∣

2)

6 ε.

Choose a δ-fine partial division D = {((ξ, v], ξ)} of [a, b] such that it fails to cover

[a, b] by at most η > 0. Then the measure of the part of [a, b] not covered by D is at
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most η. Denote this finite collection of subintervals as {(si, ti]}N
i=1. Hence

E
(∣

∣

∣
(D)

∑

fξ(Xv − Xξ) − F (a, b)
∣

∣

∣

2)

6 2E
(∣

∣

∣
(D)

∑

(fξ(Xv − Xξ) − F (ξ, v))
∣

∣

∣

2)

+ 2E

(∣

∣

∣

∣

N
∑

i=1

F (si, ti)

∣

∣

∣

∣

2)

6 2ε + 2ε = 4ε,

showing that f is Kurzweil-Henstock stochastic integrable to F (a, b) on [a, b]. Sim-

ilarly, we can show that f is Kurzweil-Henstock stochastic integrable to F (a, v) on

[a, v] for any v ∈ [a, b], hence completing the proof. �

5. Integrable Functions

In this section we shall prove that if f ∈ L 2 is µX -measurable, then f is Kurzweil-

Henstock stochastic integrable.

We use the same setting throughout: fix (Ω, F , {Ft}, P ) to be the standard fil-

tering space as in the previous sections. An adapted process f on [a, b] is said to be

a simple step process on [a, b] if f can be written as

ft(ω) = α0(ω)1{a}(t) +

n
∑

i=1

αi(ω)1(ui,vi](t),

where each αi is a Fui
-measurable bounded random variable for each i = 1, 2, . . . , n;

the random variable α0 is Fa-measurable. Let {(ui, vi]}n
i=1 be a finite collection of

disjoint left-open subintervals of [a, b] with
⋃

(ui, vi] = (a, b].

Lemma 24. Let f be a simple step process as given above. Then f is integrable

and we have
∫ b

a

ft dXt =

n
∑

i=1

αi(Xvi
− Xui

)

and

E

(
∫ b

a

ft dXt

)2

= E

(
∫ b

a

f2
t d〈X〉t

)

.

P r o o f. We only need to consider the adapted simple step process

ft = α01{a}(t) + α11(a,b](t),

where |α0(ω)| 6 M and |α1(ω)| 6 M for all ω ∈ Ω. By Example 6, we may assume

that α0 ≡ 0, i.e. ft = α11(a,b](t).
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Let δ be a positive function on [a, b]. For any subinterval (u, v], define

F (u, v] = α1(Xb∧v − Xa∧u).

Let D = {((ξ, v], ξ)} be a δ-fine belated partial division of [a, b]. Then

(D)
∑

(fξ(Xv − Xξ) − α1(Xv − Xξ)) = 0.

Further, it is clear that α1(Xv − Xξ) possesses the ACX property. By Theorem 23,

we get the required result. �

Theorem 25. Let f ∈ L 2 be µX -measurable. Then f is Kurzweil-Henstock

stochastic integrable on [a, b].

P r o o f. According to the classical theory of integration with respect to mea-

sures, there exists a sequence {f (n)} of simple step processes such that

E

(
∫ b

a

(f
(n)
t − ft)

2 d〈X〉t
)

→ 0

as n → ∞. Hence
E

(
∫ b

a

(f
(n)
t − f

(m)
t )2 d〈X〉t

)

→ 0

as n, m → ∞.
On the other hand,

E

(
∫ b

a

(f
(n)
t − f

(m)
t ) dXt

)2

= E

(
∫ b

a

(f
(n)
t − f

(m)
t )2 d〈X〉t

)

.

Thus there exists A ∈ L2(Ω) such that

E

(
∫ b

a

f
(n)
t dXt − A

)2

→ 0

as n → ∞. We claim that f is Kurzweil-Henstock stochastic integrable to A.

Let ε > 0. Then there exists a positive integer n such that

E

(
∫ b

a

f
(n)
t dXt − A

)2

6 ε

and

E

(
∫ b

a

(f
(n)
t − f)2 d〈X〉t

)

6 ε.
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Let n be fixed and let f (n) be denoted by g in the following formulas:

E(|S(f, D, δ, η) − A|2) 6 4E(|S(f, D, δ, η) − S(g, D, δ, η)|2)

+ 4E

(
∣

∣

∣

∣

S(g, D, δ, η) −
∫ b

a

gt dXt

∣

∣

∣

∣

2)

+ 4E

(∣

∣

∣

∣

∫ b

a

gt dXt − A

∣

∣

∣

∣

2)

;

and

E(|S(f, D, δ, η) − S(g, D, δ, η)|2) = E(|S̃((f − g)2, D, δ, η)|).

Therefore, f is Kurzweil-Henstock stochastic integrable to A on [a, b]. �

6. Convergence theorems

It was shown in [2], [23], [24], [25] that the Kurzweil-Henstock stochastic integral

encompasses the classical Itô integral. The techniques of proofs use implicitly some

form of convergence theorems.

In this section we shall establish three convergence theorems for the Kurzweil-

Henstock stochastic integrals. The integrator X in this section is restricted to the

classical Brownian motion.

From the previous section, any process A on [a, b] can be treated as a random

variable defined on all left-open intervals by letting A[u, v] denote Av − Au for any

subinterval [u, v] of [a, b].

Definition 26 (Mean convergence). Let A andA(n), n = 1, 2, 3, . . ., be stochastic

processes on [a, b]. Then A(n) is said to converge in mean to A if given ε > 0 there

exists a positive integer N such that for any finite collection of disjoint intervals

{[ui, vi] : i = 1, 2, 3, . . . , q} we have

E

( q
∑

i=1

{A(n)(ui, vi) − A(ui, vi)}
)2

6 ε

for all n > N .

Theorem 27 (Mean Convergence Theorem). Let f (n), n = 1, 2, . . ., be a sequence

of Itô-Henstock integrable processes (see Definition 4a) on [a, b] and let f be an

adapted process such that

1. for almost all t ∈ [a, b], E(f
(n)
t − ft)

2 → 0 as n → ∞;
2. E

(∫ b

a
(f (n) − f (m))t dXt

)2 → 0 as n, m → ∞.
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Then f is Itô-Henstock integrable on [a, b] and

E

(
∫ b

a

(f (n) − f)t dXt

)2

→ 0

as n → ∞.

We shall skip the proof of Theorem 27 which was extensively used (and proved)

in [2], [23], [24], [25] to show the scope of Henstock’s approach. As a natural corollary

of the Mean Convergence Theorem, we have the Uniform Convergence Theorem for

the Kurzweil-Henstock stochastic integral:

Corollary 28 (Uniform Convergence Theorem). Let f (n), n = 1, 2, . . ., be a se-

quence of Itô-Henstock stochastic integrable processes on [a, b] and let f be a stochas-

tic process on [a, b] adapted to the standard filtering space such that

1. E(f
(n)
t − ft)

2 → 0 uniformly as n → ∞;
2. E

(∫ b

a
(f (n) − f (m))t dXt

)2 → 0 as n, m → ∞.
Then f is Itô-Henstock integrable on [a, b] with

E

(
∫ b

a

(f (n) − f)t dXt

)2

→ 0

as n → ∞.

Note that the Uniform Convergence Theorem is a direct consequence of the Mean

Convergence Theorem, where the choice of n is independent of the value of t ∈ [a, b]

as in the proof of the Mean Convergence Theorem (see [2], [23], [24], [25]). Finally,

we state and prove the Dominated Convergence Theorem for the Kurzweil-Henstock

stochastic integral.

Theorem 29 (Dominated Convergence Theorem). Let f (n), n = 1, 2, 3, . . ., be

a sequence of Itô-Henstock integrable processes (see Definition 4a) on [a, b]. Let f

and g be stochastic processes on [a, b] having the following properties:

(i) E
(

f
(n)
t − ft

)2 → 0 as n → ∞ for almost all t ∈ [a, b];

(ii) |ft(ω)| 6 gt(ω) for almost all ω ∈ Ω and almost all t ∈ [a, b]; and E[g2
t ] is

Lebesgue integrable over [a, b].

Then f is Itô-Henstock integrable on [a, b]. Furthermore,

E

(
∫ b

a

(f (n) − f)2t dXt

)

→ 0

as n → ∞.
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P r o o f. By the Isometric Equality (Theorem 17), E[f
(n)
t

2
] is Lebesgue integrable

on [a, b]. By the Dominated Convergence Theorem for the classical Lebesgue integral,

E[f2
t ] is integrable on [a, b] and (L)

∫ b

a
E[f

(n)
t − ft]

2 dt → 0 as n → ∞. Hence, we
have that (L)

∫ b

a
E[f

(n)
t − f

(m)
t ]2 dt → 0 as m, n → ∞. Applying Theorem 17 again,

E

(
∫ b

a

(f (n) − f (m))t dXt

)2

→ 0

as n, m → ∞. Finally, the result is obtained by applying the Mean Convergence
Theorem to {f (n)}. �

7. Conclusion

This note is an extension of our earlier papers where we attempted to show that

the Kurzweil-Henstock approach could be used to study stochastic integrals. In this

note, we have used the Kurzweil-Henstock approach to provide a unified theory of

stochastic integration theory. Using this approach, some useful results of classical

(non-stochastic) integration theory can be shown to be satisfied by the stochastic

integral. These results include Henstock’s Lemmas, the absolute continuity of the

primitive and convergence theorems.
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