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Abstract

We report the Transiting Exoplanet Survey Satellite (TESS) discovery of three terrestrial-size planets transiting L
98-59 (TOI-175, TIC 307210830)—a bright M dwarf at a distance of 10.6 pc. Using the Gaia-measured distance
and broadband photometry, we find that the host star is an M3 dwarf. Combined with the TESS transits from three
sectors, the corresponding stellar parameters yield planet radii ranging from 0.8 R⊕ to 1.6 R⊕. All three planets
have short orbital periods, ranging from 2.25 to 7.45 days with the outer pair just wide of a 2:1 period resonance.
Diagnostic tests produced by the TESS Data Validation Report and the vetting package DAVE rule out common
false-positive sources. These analyses, along with dedicated follow-up and the multiplicity of the system, lend
confidence that the observed signals are caused by planets transiting L 98-59 and are not associated with other
sources in the field. The L 98-59 system is interesting for a number of reasons: the host star is bright (V=
11.7 mag, K=7.1 mag) and the planets are prime targets for further follow-up observations including precision
radial-velocity mass measurements and future transit spectroscopy with the James Webb Space Telescope; the
near-resonant configuration makes the system a laboratory to study planetary system dynamical evolution; and
three planets of relatively similar size in the same system present an opportunity to study terrestrial planets where
other variables (age, metallicity, etc.) can be held constant. L 98-59 will be observed in four more TESS sectors,
which will provide a wealth of information on the three currently known planets and have the potential to reveal
additional planets in the system.

Key words: planets and satellites: detection – stars: individual (TIC 307210830, TOI-175) – techniques:
photometric

1. Introduction

The Transiting Exoplanet Survey Satellite (TESS; Ricker
et al. 2015), a near all-sky transit survey that began science
operations on 2018 July, is expected to find thousands of
planets. This includes hundreds of small planets with radii
R<4 R⊕, around nearby, bright stars (Barclay et al. 2018;
Huang et al. 2018b). During the two-year primary mission,
TESS will monitor more than 200,000 preselected stars at 2
minute cadence and will observe additional targets spread over
most of the sky (≈85%) in 30 minute cadence full-frame-image
(FFI) mode (Ricker et al. 2015). The spacecraft carries four
identical wide-field cameras that combine to produce a nearly
continuous 24°×96° field of view (FOV). TESS uses this
large FOV to observe 13 partially overlapping sectors per
ecliptic hemisphere per year and started its survey in the
southern ecliptic hemisphere. The spacecraft observes each
sector for two consecutive orbits that cover an average time
baseline of 27.4 days.61 The increasing overlap of sectors
toward the ecliptic poles provides continuous viewing zones
(CVZs) surrounding the poles where targets receive ≈350 days

of coverage. The long observing duration of the TESS CVZs will
enable the detection of smaller and longer period planets. It will
also overlap with the CVZs of the James Webb Space Telescope
(JWST), providing key targets for detailed characterization. In
about a hundred days of observations, TESS has already
identified more than a hundred planet candidates, provided key
observations to confirm several new planets, and provided new
data on known transiting systems (Dragomir et al. 2019;
Gandolfi et al. 2018; Huang et al. 2018a; Nielsen et al.
2019; Shporer et al. 2019; Vanderspek et al. 2019; Wang et al.
2019; Quinn et al. 2019; Rodriguez et al. 2019).
Planets discovered around bright, nearby stars provide ideal

targets for mass measurements via Doppler spectroscopy,
emission, and transmission spectroscopy for atmospheric
characterization, and for precise stellar characterization. Multi-
planet systems provide an additional layer of information on
planet formation and evolution, orbital dynamics, planetary
architectures (e.g., Lissauer et al. 2011; Fabrycky et al. 2014),
and in some cases mass measurements via transit timing
variations (TTVs; e.g., Hadden & Lithwick 2016; Hadden et al.
2018). While NASA’s Kepler and K2 missions successfully
discovered thousands of planets around stars in the Kepler

field and in the vicinity of the ecliptic plane (e.g., Rowe et al.
2014; Morton et al. 2016; Livingston et al. 2018), TESS will
perform a nearly all-sky survey focused on stars in the solar
neighborhood and find the touchstone planets that will be prime

59
Sellers Exoplanet Environments Collaboration.

60
Sagan Fellow.

61
The orbital period of TESS is not constant due to three-body gravitational

interactions between TESS, the Earth, and the Moon. This leads to slightly
different baselines in each sector.
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targets for observations with the Hubble Space Telescope
(HST), JWST, and future ground-based observatories (Kempton
et al. 2018; Louie et al. 2018).

Here we report the TESS discovery of three small planets
transiting the bright (K=7.1 mag), nearby (10.6 pc) M3 dwarf
L 98-59. This paper is organized as follows. In Section 2, we
describe the TESS observations and data analysis, as well as our
ground-based follow-up efforts. In Section 3, we discuss the
properties of the system, and draw our conclusions in
Section 4.

2. Observations and Data Analysis

2.1. TESS Observations and Stellar Parameters

TESS observed L 98-59 (TIC 307210830, TOI-175;
R.A.=08:18:07.62, decl.=−68:18:46.80 (J2000)) in Sectors
2, 5, and 8 with Camera 4. The target was added to the TESS
Candidate Target List—a list of targets prioritized for short-
cadence observations (Stassun et al. 2018)—as part of the
specially curated Cool Dwarf list (Muirhead et al. 2018). The
TESS data were processed with the Science Processing
Operations Center Pipeline (SPOC; Jenkins et al. 2016) and
with the MIT Quick Look Pipeline. The three candidates
identified by the SPOC pipeline passed a series of data
validation tests (Twicken et al. 2018; Li et al. 2019)
summarized below and were made publicly available on the
MIT TESS Data Alerts website62 and the Mikulski Archive for
Space Telescopes (MAST) TESS alerts page63 as TOI-175.01,
-175.02, and -175.03. These candidates had periods
P=3.690613 days, 7.451113 days, and 2.253014 days, and
transit epochs (BTJD)=1356.203764, 1355.2864, and
1354.906208, respectively,64 and are referred to in the rest of
the manuscript as L 98-59 c, L 98-59 d, and L 98-59 b,
respectively. The SPOC simple aperture photometry (SAP) and
presearch data conditioned (PDCSAP) light curves (Smith et al.
2012; Stumpe et al. 2014) of L 98-59 are shown in Figure 1.
We use the methods appropriate for M dwarfs previously

used by Berta-Thompson et al. (2015), Dittmann et al. (2017),
and Ment et al. (2019) to determine the stellar parameters of the
host star, and adopt these parameters throughout our analysis.
We estimate the mass of the star using the mass–luminosity
relation in the K band from Benedict et al. (2016) to be
0.313±0.014 Me. We then use single star mass–radius
relations (Boyajian et al. 2012) to find a stellar radius of
0.312±0.014 Re. We calculate the bolometric correction in K
from Mann et al. (2015, erratum) to be 2.7±0.036 mag,
resulting in a bolometric luminosity for L98-59 of 0.011±
0.0004 Le. We calculate the correction in V from Pecaut &
Mamajek (2013) to be −2.0±0.03 mag,65 resulting in a
bolometric luminosity of 0.0115±0.0005 Le. We adopt the
mean of the two bolometric luminosities from which we
calculate the luminosity of the host star to be 0.0113±0.0006
Le (i.e., 4.31e24 W). From the Stephan–Boltzmann law, we
find an effective temperature Teff=3367±150 K. As a
comparison, we also used the relations in Mann et al. (2015)
to determine an effective temperature of 3419±77 K for

L98-59, in agreement with the Teff derived from the Stefan–
Boltzmann law.
In addition, following the procedures described in Stassun &

Torres (2016) and Stassun et al. (2017) to fit a NextGen stellar

atmosphere model (Hauschildt et al. 1999) to broadband photo-

metry data from Tycho-2, Winters et al. (2015), Gaia, 2MASS,

and WISE, we performed a full fit of the stellar spectral energy

Figure 1. TESS PDCSAPFLUX light curves for L 98-59 as a function of time.
The upper three panels represent data from Sector 2, the middle three panels
from Sector 5, and the lower panels from Sector 8. For context, the transits of
the planet candidate L 98-59 c are indicated with vertical gray lines. As L 98-59
c and L 98-59 d are just wide of a 2:1 period resonance, their transits can
sometimes occur close to each other (e.g., around days 1445 and 1459.5), and
can even create a syzygy-like configuration near day 1452.2.

62
https://archive.stsci.edu/prepds/tess-data-alerts/

63
https://archive.stsci.edu/prepds/tess-data-alerts/

64
BTJD=BJD-2457000.

65
We assume that the uncertainty on the bolometric correction in V is that of

the (V − K ) color.
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distribution (SED) to estimate the stellar Teff and [Fe/H] which,
together with the Gaia DR2 parallax, provides an estimate of the
stellar radius. The free parameters of the fit were Teff and stellar
metallicity [Fe/H], and we set the extinction AV≡0, due to the
very close distance of the system. The resulting best fit is shown in
Figure 2, with a reduced χ2 of 3.8 for eight degrees of freedom.
The best-fit parameters are Teff=3350±100 K and [Fe/H]=
−0.5±0.5. Integrating the SED gives the bolometric flux at Earth
as Fbol= 2.99±0.18×10−9 ergs−1cm−2. Finally, adopting the
Gaia DR2 parallax and the correction of 80μas from Stassun &
Torres (2018), we calculate a stellar radius of 0.305±0.018Re
using the Stefan–Boltzmann law. These are consistent with the
adopted parameters discussed above.

We also estimated a prior on the stellar density (ρ*) by
estimating the stellar mass. Here we used the empirical relations
of Mann et al. (2015), which provide Mstar≈0.32Me from the
absolute KS magnitude ( )MKS determined from the observed
2MASS KS magnitude and the Gaia DR2 parallax (corrected for
the offset from Stassun & Torres 2018). The quoted uncertainty
in the Mann et al. empirical relation is ∼3%; here we
conservatively adopt an uncertainty of 10%. Together with the
radius determined above from the SED and parallax, we obtain
ρ*=15.9±3.3 gcm−3

(this value is used as a prior in the
transit model). We also determined the stellar temperature and
radius using empirical relations calibrated using low-mass stars
with interferometrically measured radii and precise distances
(see Feinstein et al. 2019 and references therein). These
alternative stellar parameter estimates were consistent with those
determined from the empirical M-dwarf relations and from the
SED fitting. An additional set of stellar parameters for L 98-59
were previously derived from a medium-resolution optical
spectrum in the CONCH-SHELL survey (Gaidos et al. 2014).
This work also provides parameters consistent with our
estimates. We compile the stellar parameters used in subsequent
analyses and other identifying information for L 98-59 in
Table 1. While it is difficult to pin down the ages of old M
dwarfs, due to their long main-sequence lifetime, the lack of a
rapid rotation signal in the TESS SAP light curve and the low
activity of L 98-59 (see Section 2.4) indicate that it is likely an
old M dwarf with age >1 Gyr. The stellar parameters of L 98-59
are consistent with a spectral type of M3±1.

2.2. Light-curve Analyses

We opted to create our own apertures from target pixel file
data from Sectors 2, 5, and 8 to analyze the photometric time
series from TESS, instead of using the pipeline apertures used
to first identify the transiting planet candidates. Our primary
motivation for performing our own photometry is that we can
avoid any attenuation to the transit signals by explicitly
masking them during the systematic correction step. We first
used the lightkurve package (Lightkurve Collaboration et al.
2018)66 to extract light curves from each of the three sectors
using the threshold method, which selects pixels that (a) are a
fixed number of standard deviations above the background, and
(b) create a contiguous region with the central pixel in the
mask. We used a threshold value of 3σ; the corresponding
mask shape is shown in Figure 3. Thus produced, the resulting
light curve still contains low-level instrumental systematic
signals. To identify and subtract instrumental signals, we used a
second-order pixel-level de-correlation (PLD), which is a
technique based on Spitzer and K2 analysis methods (Deming
et al. 2015; Luger et al. 2016). During the PLD step, we
masked out transits to avoid attenuating the signals. Finally, we
normalized the light curve by dividing by the median and

Figure 2. Spectral energy distribution (SED) fit, yielding Teff and [Fe/H]. With
the Gaia DR2 parallax, the Fbol from integrating SED then gives the stellar radius.
The solid curve is the best-fitting NextGen atmosphere, the red symbols are the
observed broadband fluxes, and the blue points are the integrated model fluxes.

Table 1

Stellar Parameters

Parameter Value Notes

Identifying Information

Name L 98-59 L

TIC ID 307210830 L

TOI ID 175 L

α R.A. (hh:mm:ss) 08:18:07.62 Gaia DR2

δ Decl. (dd:mm:ss) −68:18:46.80 Gaia DR2

μα (mas yr−1
) 94.767±0.054 Gaia DR2

μδ (mas yr−1
) −340.470±0.052 Gaia DR2

Distance (pc) 10.623±0.003 Gaia DR2

Photometric Properties

B (mag) 13.289±0.027 APASS DR9

V (mag) 11.685±0.017 APASS DR9

G (mag) 10.598±0.001 Gaia DR2

g
′
(mag) 12.453±0.019 APASS DR9

r
′
(mag) 11.065±0.044 APASS DR9

T (mag) 9.393 TIC

J (mag) 7.933±0.027 2MASS

H (mag) 7.359±0.049 2MASS

Ks (mag) 7.101±0.018 2MASS

W1 (mag) 6.935±0.062 ALLWISE

W2 (mag) 6.767±0.021 ALLWISE

W3 (mag) 6.703±0.016 ALLWISE

W4 (mag) 6.578±0.047 ALLWISE

Stellar Properties

Spectral Type M3V±1 This Work

Teff (K) 3367±150 This Work

[Fe/H] −0.5±0.5 This Work

Mstar (Me) 0.313±0.014 This Work

Rstar (Re) 0.312±0.014 This Work

Lstar (Le) 0.0113±0.0006 This Work

Note.Gaia DR2—Gaia Collaboration et al. (2018), UCAC5—Zacharias et al.

(2017), APASS DR9—Henden et al. (2016), 2MASS—Skrutskie et al. (2006),

ALLWISE—Cutri et al. (2013).

66
https://github.com/KeplerGO/lightkurve
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subtracting one to center the flux about zero. We did the PLD
detrending separately for each sector.

We used the exoplanet toolkit for probabilistic modeling of
the exoplanet transits (Foreman-Mackey 2018). The model we
built consisted of four elements: three planet transit compo-
nents with Keplerian orbits and limb-darkened transits, and a
Gaussian process (GP) component that models residual stellar
variability. The planet models were computed with exoplanet
using STARRY (Luger et al. 2019), while the GP was
computed using celerite (Foreman-Mackey et al. 2017;
Foreman-Mackey 2018). The GP component is described as
a stochastically driven, damped harmonic oscillator with
parameters of log (S0) and ( )wlog 0 , where the power spectrum
of the GP is

( )
( )

( )w
p

w
w w w w

=
- +

S
S

Q

2
, 1

0 0
4

2
0
2 2 2

0
2 2

and a white noise term, with a model parameter of the log

variance. We fixed Q to 1 2 and put wide Gaussian priors on

( )Slog 0 and ( )wlog 0 with the means of the log of the variance

and one log of one-tenth of a cycle, respectively, and a standard

deviation on the priors of 10. For each sector, we used separate

GP parameters. This form of GP was chosen because of its

flexible nature and it smoothly varies (it is once mean square

differentiable), enabling us to use it to model a wide range of

low-frequency astrophysical and instrumental signals. The

white noise term carried the same prior as ( )Slog 0 . Each sector

of data had a separate parameter for the mean flux level.
The planet model was parameterized in terms of consistent

limb darkening, log of the stellar density, and stellar radius for
the three planets. Each individual planet was parameterized in
terms of the log of the orbital period, time of first transit, the log
of the planet-to-star radius ratio, impact parameter, orbital
eccentricity, and periastron angle at time of transit. The stellar
radius had a Gaussian prior with mean 0.312 and 0.014
standard deviation, with solar units, and is in addition required
to be positive. The log of the mean stellar density, in cgs units,
had a Gaussian prior with a mean of log 15 and standard
deviation of 0.2dex (as per Section 2.1). The limb darkening
followed the Kipping (2013a) parameterization.

The log of the orbital periods, the time of first transits, and
the log of the planet-to-star radius ratio of the three planets
had Gaussian priors with means at the values found in the
TESS alert data and standard deviations of 0.1, 0.1, and 1,

respectively. The impact parameter had a uniform prior
between zero and one plus the planet-to-star radius ratio.
Eccentricity had a beta prior with α=0.867 and β=3.03 (as
suggested by Kipping 2013b), and was bound between zero
and one. The periastron angle at transit was sampled in vector
space to avoid the sampler seeing a discontinuity at values of π.
We sampled the posterior distribution of the model

parameters using the No U-turn Sampler (NUTS; Hoffman &
Gelman 2014), which is a form of Hamiltonian Monte Carlo, as
implemented in PyMC3 (Salvatier et al. 2016). We ran four
simultaneous chains, with 5000 tuning steps, and 3000 draws
in the final sample. The effective number of independent
samples of every parameter was above 1000, and most
parameters were above 5000. The Gelman–Rubin diagnostic
statistic was within 0.005 of 1.000 for each parameter in the
model. The impact parameter for the outer planet is relatively
high, which caused this parameter along with the orbital
eccentricity to be the most time consuming to sample
independently.
Figure 4 shows the GP model of the low-level variability in

the upper panels and the best-fitting transit model in the central
panels. The phase-folded transits of the three candidates, along
with the best-fitting transit models, are shown in Figure 5, and
the model parameters are provided in Table 2. The transit
modeling reveals that the candidate planets have small radii
ranging from 0.8 to 1.6 R⊕. A chain of small terrestrial-size
planets is common among M dwarfs (Muirhead et al. 2015),
and L 98-59 is reminiscent of other systems such as
TRAPPIST-1, Kepler-186, and Kepler-296 (Quintana et al.
2014; Barclay et al. 2015; Gillon et al. 2017). The stellar
density obtained from the transit model is fully consistent with
that determined from the stellar parameters in Section 2.1

( -
+ -15.8 g cm2.7
2.6 3 for the former versus 15.9±3.3gcm−3 for

the latter).
We repeated this analysis using the systematics-corrected

light curves from the TESS pipeline (PDCSAP; Stumpe et al.
2014; Jenkins et al. 2016) rather than using the respective target
pixel files. We found consistent results, aside from different GP
parameters, owing to the different systematics corrections
applied. The transit depths were lower in the PDCSAP data at
the <1σ level, which we attribute to masking out transits in the
systematics-correction technique we applied. We did not
include any flux contamination from nearby stars in our
models because there are no bright nearby stars to contaminate
our pixel mask—the TIC estimates that the contamination
fraction for L 98-59 is 0.002. Even if the TIC contamination is

Figure 3. The pixel mask (pink squares) we used to create a light curve of L 98-59. The mask was created using the threshold method in the lightkurve extract
aperture photometry tool. The three images shown are from TESS Sectors 2, 5, and 8.
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Figure 4. TESS data of L 98-59 from Sectors 2, 5, and 8. The top panels show the data after they have been extracted from the TESS target pixel file and detrended
using the PLD algorithm. The green line shows the best-fitting GP mean model. In the central panels, we show the data with a GP mean model subtracted (this
subtraction is only performed for display purposes in this figure). The best-fitting models for the three planets are also shown. The lower panels have the GP and planet
models removed.
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dramatically underestimated, it is highly likely that the stellar
radius uncertainty will be the dominant term in the planet
radius uncertainty; therefore, we feel comfortable ignoring it.

There are significant impact parameter differences between
the inner two planets and the outer planet. The outer planet
transits close to the limb of the star, although it is not grazing.
This manifests in the light curve as a shorter transit duration for
the outer planet than the two inner planets and indicates a
modest mutual inclination of at least one degree between the
inner two and outer planets. All three planets are subject to
significantly more flux than Earth receives from the Sun, and
are therefore unlikely to be good astrobiology targets.
However, with an insolation flux of 4.5±0.8, the outer planet
is a candidate Venus-zone planet (Kane et al. 2014).

2.3. Potential False-positive Scenarios

The TESS Data Validation Report performs a series of tests
designed to rule out various false-positive scenarios. The
results from these tests are as follows:

(i) L 98-59 c and L 98-59 d pass the difference image
centroiding test, which employs PSF-based centroiding
on the difference images (expected to be more precise and
accurate than a brightness-weighted moment on the
difference images). While L 98-59 b does not quite pass

the difference image centroiding test, its transits are much

shallower compared to the other two candidates. Thus, it

is likely that the centroiding errors are underestimated to

some degree, due to the variable pointing performance at

timescales less than the 2 minute observation cadence.

We expect the analysis of this candidate to improve with

new data.
(ii) All three candidates pass the odd–even difference tests.
(iii) Secondary eclipses are ruled out at the 3.6σ, 2.6σ, and

1.8σ levels.
(iv) A bootstrap analysis of the out-of-transit data is used to

quantify the probability of false alarms, due to stellar

variability and residual instrumental systematics. In the

case of L 98-59, the light curve is well behaved and

the analysis excludes the possibility of a false alarm at the

2.45E–25, 6.6E–62, and 2.2E–25 levels (as extrapola-

tions of the upper tail of the bootstrap distribution to the

observed maximum Multiple Event Statistics (MES) that

triggered the detections of these candidates in the

pipeline; Jenkins et al. 2017).
(v) All three candidates pass a ghost diagnostic test, designed

to flag instances of scattered light, other instrumental

artifacts, or background eclipsing binaries.

For completeness, we also applied the vetting pipeline

DAVE (Kostov et al. 2019) to the TESS light curve of L 98-59.

Figure 5. Phase-folded, three-sector light curves for planet L 98-59 b (upper panel), L 98-59 c (middle panel), and L 98-59 d (lower panel), along with the respective
best-fitting models (orange). The corresponding transit parameters are listed in Table 2.
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Briefly, DAVE evaluates whether detected transit-like events
produced by the candidate are real or false positives by
analyzing the data for (a) odd–even differences between
consecutive transits, (b) secondary eclipses, (c) stellar varia-
bility mimicking a transit, and (d) photocenter shifts during
transit.

To perform the (a)–(c) analysis, we used the Modelshift
module of DAVE—an automated package designed to
emphasize features in the light curve that resemble the shape,
depth, and duration of the planetary transit but located at
different orbital phase. To identify secondary eclipses and odd–
even transit differences, or flares and heartbeat stars (see e.g.,
Welsh et al. 2011), Modelshift first convolves the light curve
with the transit model of the planet candidate. The module then
computes the significance of the primary transits; odd–even
differences; and secondary, tertiary, and positive features
assuming white noise in the light curve; and compares the
ratio between each of these and the systematic red noise Fred to

the false alarm thresholds ( ( ))= ´T P NFA 2 erfcinv1 dur

(assuming 20,000 objects evaluated) and =FA 2 erfcinv2

( )T Pdur (for two events), where Tdur, P, and N are the duration,
period, and number of events (see Coughlin et al. 2014 for
details). For example, a secondary feature is considered
significant if Sec/Fred>FA1. The Modelshift results are shown
in Figures 6–8, where the panels show the phase-folded light
curve (first row), the phase-folded light curve convolved with the
best-fit transit model (second row), as well as the the best-fit to
all primary transits, all odd and all even transits, and the most
prominent secondary, tertiary, and positive features in the light
curve (lower two rows). The tables above the figures list the
individual features evaluated by the module: the significance of
the primary (“Pri”), secondary (“Sec”), tertiary (“Ter”), and
positive (“Pos”) events assuming white noise, along with their
corresponding differences (“Pri-Ter,” “Pri-Pos,” “Sec-Ter,”
“Sec-Pos”), the significance of the odd–even metric (“Odd-
Evn”), the ratio of the individual depths’ median and mean
values (“DMM”), the shape metric (“Shape”), the False Alarm
thresholds (“FA1,” “FA2”), and the ratio of the red noise to the
white noise in the phased light curve at the transit timescale
(“Fred”). Our analysis shows that there are no secondary eclipses
or odd–even differences for any of the L 98-59 planet
candidates. We note that the significant secondary and tertiary
eclipses identified by DAVE for L 98-59 d (Figure 7) are due to
the transits of L 98-59 c and thus not a source of concern.
To perform the (d) analysis for each candidate, we used the

photocenter module of DAVE, following the prescription of
Bryson et al. (2013). Specifically, for each candidate we (1) create
the mean in-transit and out-of-transit images for each transit
(ignoring cadences with nonzero quality flags), where the latter
are based on the same number of exposure cadences as the former,
split evenly before and after the transit; (2) calculate the overall
mean in-transit and out-of-transit images by averaging over all
transits; (3) subtract the overall mean out-of-transit image from the
overall in-transit image to produce the overall mean difference
image; and (4) measure the center of light for each difference and
out-of-transit image by calculating the corresponding x and y

moments of the image. The measured photocenters for the three
planet candidates are shown in Figures 9–11 and listed in Table 3.
We detect no significant photocenter shifts between the respective
difference images and out-of-transit images for any of the planet
candidates (see Table 3), which confirms that the target star is the
source of the transits. We note that some of the individual
difference images for L 98-59 b deviate from the expected
Gaussian profile, and thus, so does the mean difference image.
Overall, our DAVE results rule out false-positive features for

all three planet candidates of L 98-59, are consistent with the
analysis of the Data Validation Report, and indicate that
the detected events are genuine transits associated with the star

Table 2

Planet Parameters

Parameter −1σ Median +1σ

Model Parameters

Star

ln ρ (g cm−3
) 2.57 2.76 2.91

Limb darkening q1 0.41 0.65 0.83

Limb darkening q2 −0.34 −0.11 0.28

L 98-59 b

T0 (BJD-2457000) 1366.1694 1366.1701 1366.1707

ln period (days) 0.812318 0.812326 0.812334

Impact parameter 0.13 0.36 0.55

ln Rp/R* −3.79 −3.75 −3.72

Eccentricity 0.03 0.10 0.27

ω (rad) −2.2 0.3 2.4

L 98-59 c

T0 (BJD-2457000) 1367.2752 1367.2755 1367.2759

ln period (days) 1.305791 1.305795 1.305798

Impact parameter 0.09 0.29 0.49

ln Rp/R* −3.25 −3.23 −3.20

Eccentricity 0.02 0.09 0.25

ω (rad) −2.5 −0.4 2.2

L 98-59 d

T0 (BJD-2457000) 1362.7367 1362.7375 1362.7382

ln period (days) 2.008323 2.008329 2.008334

Impact parameter 0.75 0.89 0.93

ln Rp/R* −3.16 −3.07 −3.01

Eccentricity 0.04 0.20 0.52

ω (rad) −1.9 0.7 2.3

Derived Parameters

L 98-59 b

Period (days) 2.25312 2.25314 2.25316

Rp/R* 0.0226 0.0234 0.0243

Radius (R⊕) 0.75 0.80 0.85

Insolation 19.5 23.9 29.2

a/R* 15.2 16.2 17.0

a(au) 0.0216 0.0233 0.0250

Inclination (deg) 88.0 88.7 89.5

Duration (hr) 0.89 1.02 1.19

L 98-59 c

Period (days) 3.690607 3.690621 3.690634

Rp/R* 0.0388 0.0396 0.0407

Radius (R⊕) 1.28 1.35 1.43

Insolation 10.1 12.4 15.2

a/R* 21.1 22.5 23.6

a(au) 0.0300 0.0324 0.0347

Inclination (deg) 88.8 89.3 89.7

Duration (hr) 1.07 1.24 1.36

L 98-59 d

Period (days) 7.45081 7.45086 7.45090

Rp/R* 0.0426 0.0462 0.0492

Radius (R⊕) 1.43 1.57 1.71

Insolation 3.96 4.85 5.93

a/R* 36.2 37.4 38.5

a(au) 0.048 0.052 0.056

Inclination (deg) 88.0 88.5 88.7

Duration (hr) 0.74 0.91 1.68
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in question. We also note that while the automated vetting
of Osborn et al. (2019) flagged L 98-59 with “a high likeli-
hood of being astrophysical false positives” (their Table 3),
their subsequent manual vetting lists the system as a planet
candidate.

Additionally, to investigate whether one or more of the
transits associated with L 98-59 may result from nearby
sources (e.g., a background eclipsing binary), we used
lightkurve to extract light curves for nearby field stars.
Our analysis revealed that a nearby field star ∼80″ NW of
L 98-59 (2MASS 08175808-6817459, TIC 307210817,
Tmag=13.45, i.e., ≈4 mag fainter than L 98-59) is in
fact an eclipsing binary (EB), manifesting both primary
and secondary eclipses at a period of ≈10.43 days, with
T0=4.4309 (BJD-2,455,000) (see Figure 12). This

field star could be associated with one of two sources
in the Gaia catalog: source 1 with R.A.=124.492171
49500, decl.=−68.29612321000, ID= 527105568554179
7120, and parallax=0.1888 mas; and source 2 with R.A.
=124.49126472300, decl.=−68.29602748080, ID=
5271055689840223744, and parallax=0.9977 mas. Given
the corresponding approximate distances of 1 and 5 kpc,
neither of these targets can be physically associated with L
98-59 as they lie deep in the background. Regardless of
which of these sources hosts the detected EB, the faintness
of the host compared to L 98-59, the measured EB orbital
parameters, and the dilution-corrected eclipse depths are
inconsistent with the properties of the candidate planets and
effectively rule it out as the potential source of any of these
signals.

Figure 6. DAVE Modelshift analysis of L 98-59 c. The upper two rows represent the phase-folded light curve with the best-fit transit model (first row), and the phase-
folded light curve convolved with the best-fit transit model (second row). The six panels in the lower two rows show all transits (label “Primary”), all odd transits
(“Odd”), all even transits (“Even”), and the most significant secondary (“Secondary”), tertiary (“Tertiary”), and (“Positive”) features in the light curve. The table above
the figure lists the significance of each feature (see text for details). There are no significant odd–even differences, secondary eclipses, or photocenter shifts, indicating
that the transit events are consistent with genuine planet candidates.
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2.4. Follow-up Observations

We pursued ground-based follow-up of the three candidates
to rule out potential sources of false positives and strengthen
the evidence of their planetary nature. Our L 98-59 follow-up
program was organized through the TESS Follow-up Observing
Program (TFOP) Working Group (WG),67 which facilitates
follow-up of TESS candidate systems. The primary goal of the
TFOP WG is to provide follow-up observations that will
advance the achievement of the TESS Level One Science
Requirement to measure masses for 50 transiting planets
smaller than 4 Earth radii. A secondary goal of the TFOP
WG is to foster communication and coordination for
any science coming out of TESS. Our L 98-59 follow-up was
conducted by three TFOP subgroups (SGs): SG-1,

seeing-limited photometry; SG-2, reconaissance spectroscopy;
and SG-3, high-resolution imaging.

2.4.1. Seeing-limited Photometry from the TFOP WG

Analysis of multiplanet systems from Kepler has shown that
these have a higher probability of being real planets (e.g.,
Lissauer et al. 2012), lending credibility to the planetary nature
of the transit events associated with L 98-59. However, the
pixel scale of TESS is larger than Kepler’s (21″ for TESS versus
4″ for Kepler) and the point-spread function of TESS could be
as large as 1′, both of which increase the probability of
contamination by a nearby eclipsing binary (EB). For example,
a deep eclipse in a nearby faint EB might mimic a shallow
transit observed on the target star, due to dilution. Thus, it is
critical to explore the potential contamination by relatively
distant neighbors in order to confirm transit events detected on
a TESS target.

Figure 7. Same as Figure 6 but for L 98-59 d. The significant secondary and tertiary features detected are transits of 175-01.

67
https://tess.mit.edu/followup/
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To identify potential false positives due to variable stars such
as EBs up to 2 5 away from L 98-59, we made use of the TFOP
SG-1. Specifically, we observed the target with ground-based
facilities at the predicted times of the planet transits to search
for deep eclipses in nearby stars at higher spatial resolutions.
We used the TESS Transit Finder, which is a customized
version of the Tapir software package (Jensen 2013), to
schedule photometric time-series follow-up observations. The
facilities we used to collect TFOP SG-1 data are the Las
Cumbres Observatory (LCO) telescope network (Brown et al.
2013), SPECULOOS South Observatory (SSO; Burdanov et al.
2018; Delrez et al. 2018), MEarth-South telescope array
(MEarth; Irwin et al. 2015), and Siding Spring Observatory
T17 (SSO T17). Detailed observation logs are provided in
Table 4.

We used the AstroImageJ software package (Collins et al.
2017) for the data reduction and the aperture photometry in
most of these follow-up photometric observations. For the

observations carried out at SSO, the standard calibration of the

images and the extraction of the stellar fluxes were performed

using the IRAF/DAOPHOT aperture photometry software as

described in Gillon et al. (2013). The results are shown in

Figures 13–15.
For all three planet candidates, we confirmed that the target

star is the source of the transits and ruled out nearby EBs,

which could mimic the transits. In addition, observations of L

98-59 c and d in different filters showed no chromatic

dependence, which strengthens the hypothesis that the

candidates are real planets. Our follow-up did detect a nearby

EB at a separation of 54″ (TIC 307210845, Tmag=16.042,
i.e., ∼7 mag fainter than TIC 307210830, producing no

detectable eclipses in the light curve of the latter), and we used

deep exposures to confirm that it is not the origin of the L 98-

59 b transits, providing a high level of confidence on the

planetary nature of this candidate.

Figure 8. Same as Figure 6 but for L 98-59 b.
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The measured transit depths revealed by follow-up transit
photometry are consistent with the transit depths measured
from TESS. The differences in the follow-up and TESS transit
depth measurements (in terms of Rp/R*

) are listed in Table 5 as
a function of wavelength, where we have included only the
transits with scatter low enough to reasonably detect the events.

2.4.2. Reconnaissance Spectroscopy

To investigate the magnetic activity and rotation of L 98-59
and rule out spectroscopic binary companions, we obtained two
epochs of optical spectra of L98-59 on UT 2018 February 1268

and on UT 2018 November 20 using the slicer mode with the
CTIO HIgh ResolutiON (CHIRON) spectrograph (Tokovinin
et al. 2013; R;80,000) on the Cerro Tololo Inter-American
Observatory (CTIO)/ Small and Moderate Aperture Research
Telescope System (SMARTS) 1.5 m telescope. CHIRON has a
spectral range of 410–870 nm. We obtained one 7.5 minute
exposure for the first epoch and 3×2.5 minute exposures for

the second observation, yielding a signal-to-noise ratio of
roughly 13 in order 44 for both epochs. As described in
Winters et al. (2018), we used an observed template of
Barnard’s Star to derive a radial velocity of −5.8±0.1 km s−1

using the TiO molecular bands at 7065–7165Å.69 Our analyses
of the spectra reveal no evidence of double lines. We see
negligible rotational broadening (v sin i=0.0± 1.9 km s−1

)

and do not see Hα in emission, providing evidence that the star
is inactive and not host to unresolved, close-in, stellar
companions. We are also able to rule out the presence of a
brown dwarf companion to the host star. The radial-velocity
difference between the two observations, separated in time by
roughly nine months, is 53±52 m s−1. For comparison, a 13
Jupiter-mass companion in a circular, nine-month period would
induce a velocity semiamplitude of 863 m s−1 on this star. This
semiamplitude is eight times larger than our velocity
uncertainty and would have been readily detectable. Thus, it
is highly unlikely that there is a low-mass stellar or brown

Figure 9. DAVE centroid analysis of L 98-59 c for Sector 2 (four upper left panels), Sector 5 (upper right panels), and Sector 8 (lower panels). The four panels shown
are in the same format as in the Data Validation Report, i.e., the mean difference image (upper left), mean out-of-transit image (upper right), mean in-transit image
(lower left), and signal-to-noise ratio of the mean difference image (lower right). The red circles and cyan stars represent the measured individual photocenter for each
transit. We measure no significant photocenter shift between the difference and out-of-transit images, consistent with the transit signals originating from the target
itself.

68
The first epoch of spectroscopic data was obtained as part of the M dwarf

spectroscopic program described in Winters et al. (2019), before TESS began
observations.

69
We note that the total uncertainty on the systemic velocity should include

the 0.5 km s−1 uncertainty on the Barnard’s Star template velocity.
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dwarf companion around L98-59 at periods shorter than nine
months.

We note, as well, that the trigonometric distance of

10.623±0.003 pc from the Gaia second data release is in

agreement with the photometric distance estimate of

12.6±1.9 pc reported in Winters et al. (2019). Undetected

equal-luminosity companions would contribute light to the

system, making the system overluminous and resulting in an

underestimated photometric distance estimate. Because the two

distances are in agreement, this lends further support to the host

star being a single star.
We also placed L98-59 on an observational Hertzsprung–

Russell color–magnitude diagram (blue star; see Figure 16).

Because it is not elevated above the main sequence or among

the blended photometry binary sequence (red points), even

more strength is given to the argument of this star being single.
In addition, we obtained a near-IR spectrum of L98-59 on

2018 December 22 with the Folded-port InfraRed Echellete

(FIRE) spectrograph (Simcoe et al. 2008) on the 6.5 Baade

Magellan telescope at Las Campanas observatory. FIRE covers

the 0.8–2.5 μm band with a spectral resolution of R=6000.
The target was observed under favorable conditions, with an

average seeing of ∼0 6. L98-59 was observed twice in the

ABBA nod patterns at 40 s integration time for each frame

using the 0 6 slit. Reductions and telluric corrections,
using the nearby A0V standard HIP 41451, were completed
with the FIREhose IDL package. We derived stellar parameters
following the empirical methods derived by Newton et al.
(2015). For L98-59, we infer: Teff=3620±74 K, Rstar=
0.37±0.027Re, and L=0.021±0.004Le, consistent with
the SED analysis.

2.4.3. High-resolution Imaging

Photometric contamination from nearby sources can result in
various false-positive scenarios (e.g., background eclipsing
binaries) and can bias the measured planetary radius from
photometric analysis (see, e.g., Ciardi et al. 2015; Furlan &
Howell 2017; Ziegler et al. 2018). In this work, we use several
high-resolution images to tightly constrain the possible back-
ground sources and companion stars present near L 98-59.
Previous speckle observations of the target were collected with
Gemini/DSSI on 2018 March 31 as part of the M dwarf
speckle program described in Winters et al. (2019). Once the
candidate planets in this system had been identified by TESS,
we collected additional speckle images with Gemini/DSSI
(Horch et al. 2011) on 2018 November 1 and AO images with
VLT/NaCo on 2019 January 28. Both epochs of Gemini/DSSI
data are collected simultaneously through the R- and I-band

Figure 10. Same as Figure 9 but for L 98-59 d.
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filters (692 nm and 880 nm respectively), while the VLT/NaCo
data are collected in the Brγ filter. At 0 5 from the host, these
data rule out companions 5.0, 6.6, and 5.8 mag fainter than the
host star in the R, I, and Brγ bands, respectively. The 5σ
contrast curves for each of these observations are presented in
Figure 17.

Due to the high proper motion of the target (354 mas yr−1
),

the target undergoes significant motion even over the relatively
modest time baseline of these observations. The on-sky
position of the target is displaced by 338mas between the
observations on 2018 March 31 and 2019 January 28. This
motion is significantly more than the PSF width in the high-
resolution images, and we are therefore able to rule out the
presence of stationary background objects within ∼6 mag of
the host at any separation: any background objects obscured by
the target in the first observation would be clearly visible in the
final observation and vice versa. The motion of the target is
demonstrated in Figure 17. These data also allow tight
constraints to be placed on the presence of comoving
companions beyond ∼150mas (=1.6 au at the distance of
this target). An object with ΔBrγ∼6mag and at the distance
of L 98-59 would have a mass of ∼75MJ at an age of 10 Gyr
(Baraffe et al. 2003),70 and we can therefore rule out any stellar
companions to this host with a projected separation greater than
1.6 au, while stellar companions closer than this could be easily
detected in radial-velocity data with a sufficient baseline.
Overall, the follow-up efforts demonstrate that there are

tentative transit detections of the various candidates from the
ground, but it is difficult to confirm them because they are all

Figure 11. Same as Figure 9 but for L 98-59 b.

Table 3

Photocenter Analysis of the Three Planet Candidates

Parameter Row (pixels) Column (pixels)

L 98-59 b

Out-of-transit image centroid 338.83±0.02 664.01±0.01

Difference image centroid 338.34±1.39 664.04±0.55

Offset −0.49±1.39 0.03±0.55
Offset/σ 0.35 0.05

L 98-59 c

Out-of-transit image centroid 338.83±0.02 664.01±0.01

Difference image centroid 338.76±0.31 664.11±0.24

Offset −0.07±0.31 0.1±0.24

Offset/σ 0.23 0.42

L 98-59 d

Out-of-transit image centroid 338.93±0.02 664.02±0.02

Difference image centroid 339.27±0.21 664.06±0.34

Offset 0.34±0.21 0.04±0.34

Offset/σ 1.62 0.12

70
Given the difficulty in estimating M-dwarf ages, we use an age of 10 Gyr so

as to calculate a conservative mass limit.
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shallow events. More importantly, none of these detections
were identified as eclipsing binary scenarios (either on the host
star or on nearby stars), supporting the planetary nature of the
three transit candidates.

3. Discussion

Our light-curve and false-positive analyses, follow-up obser-
vations, and the multiplicity of the system provide strong
evidence that the detected transit signals are planetary in nature.
We consider the planets L 98-59 b, c, and d to be a validated
system of terrestrial planets orbiting a very nearby, bright M
dwarf. Here we explore additional properties of the system to

place constraints on the planet masses, orbital dynamics, and
evolution, and discuss their potential for future characterization.

3.1. Planet Mass Constraints

In the absence of radial-velocity measurements, we placed
constraints on the masses of the planets using the forecaster
package for probabilistic mass forecasting (Chen & Kipping
2017). From the mean and standard deviation of each planet’s
radius, we generated a grid of 5000 masses within the entire
mass range of the conditioned model, which spans dwarf
planets to high-mass Jovians, and sampled 50,000 times from a
truncated normal distribution. For each sampled radius,

Figure 12. Upper panel: lightkurve analysis of the nearby field star 2MASS 08181825-6818430 showing that it is a background eclipsing binary (BEB) with a period
of 10.43 days. The inset panels shows the pixel mask used to extract the light curve of the field star (near the right edge of the aperture) not physically associated with
the target star. Lower panel: 4′×4′(the size of the TESS aperture) 2MASS J-band image showing the position of the background eclipsing binary (BEB).
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forecaster computes a vector of probabilities given each
element in the mass grid and a randomly chosen set of
hyperparameters from the hyperposteriors of the model (which
include transition points and intrinsic dispersion in the mass–
radius relation). From this vector, the package returns the
median mass and ±1σ values. From the calculated radius
values of 0.8 [0.05] R⊕ (L 98-59 b), 1.35 [0.07] R⊕ (L 98-59 c),
and 1.57 [0.14] R⊕ (L 98-59 d), we determined mass values of
0.5 [+0.3, −0.2] M⊕, 2.4 [+1.8, −0.8] M⊕, and 3.4 [+2.7,
−1.4] M⊕, respectively. The large errors on these values
suggest that better constrained radii from continued follow-up
observations, combined with precise radial-velocity measure-
ments, are necessary to constrain the true masses. We note that
given the brightness of the host star, the L 98-59 planets should
be great targets for mass measurements to establish the M–R
relation for M-dwarf planets. Using the forecaster masses, the
expected radial-velocity semiamplitude, K, for the three planets
are 0.54, 2.22, and 2.48 m s−1 for L 98-58 b, L 98-58 c, and L
98-58 d, respectively, the outer two comparable to the
amplitude of the measured radial-velocity signal produced by,
e.g., GJ 581 b (Mayor et al. 2009) and Proxima Centauri b
(Anglada-Escudé et al. 2016).

3.2. Dynamical Stability and Transit Timing Variations

3.2.1. Long-term Stability

To examine the long-term dynamical stability and orbital
evolution of the L 98-59 planets, we integrated the system

using Rebound (Rein & Spiegel 2015) for 1 million orbits of
the outer planet (P= 7.45 days). We used two sets of initial
conditions—planets on circular orbits and on eccentric orbits
with e=0.1—and start all integrations with randomly selected
initial arguments of periastron. Given the large uncertainties on
the forecaster masses, we also tested the dynamical stability
for two sets of planetary masses: best-fit masses (i.e., 0.5 M⊕,
2.4 M⊕, and 3.4 M⊕ for L 98-58 b, L 98-58 c, and L 98-58 d,
respectively), and best-fit+1σ masses (i.e., 0.58 M⊕, 4.2 M⊕,
and 6.1 M⊕ for L 98-58 b, L 98-58 c, and L 98-58 d,
respectively). Overall, we performed 1000 numerical simula-
tions for each set of planetary masses, using the IAS15
nonsymplectic integrator (Rein & Spiegel 2015) with a time
step of 0.01 times the orbit of the inner planet (i.e., about
30 minutes).
Our simulations show that for initially circular orbits, the

semimajor axes and eccentricities do not exhibit extreme
variations, the system does not exhibit chaotic behavior for the
duration of the numerical integrations for either set of planet
masses, and the orbits remain practically circular (Figure 18).
In contrast, for initially eccentric orbits with e=0.1, the
system becomes unstable in half of our simulations (with
randomly selected initial arguments of periastron), both for the
best-fit and the best-fit+1σ planet masses (Figure 19). Thus, we
consider orbits with nonnegligible eccentricity as unlikely. This
is consistent with other compact multiplanet systems where the
orbital eccentricities are typically on the order of a few percent
(e.g., Hadden & Lithwick 2014) and is in line with the L98-59

Table 4

Observation Log

L 98-59 Planet Date Telescopea Filter ExpT Exp Dur. Transit Aperture FWHM

(UTC) (s) (N) (minutes) Coverage (arcsec) (arcsec)

b 2018 Oct 19 LCO-SSOb
r′ 120 41 147 Ingr.+71% 3.89 2.21

2018 Nov 11 SSO-Europa r′ 15 764 315 Full 5.25 4.53

2018 Nov 11 LCO-CTIO-1 i′ 25 120 154 Full 5.83 3.49

2018 Nov 18 LCO-SAAO-0.4b i′ 70 125 175 Full 9.14 7.03

2018 Nov 20 LCO-CTIO-1 r′ 30 146 178 Full 3.89 2.20

2018 Nov 29 LCO-CTIO-1 r′ 30 186 223 Full 5.83 3.56

2018 Dec 7 SSO-Io r′ 15 998 415 Full 5.60 4.06

2019 Jan 26 LCO-SAAO-1b r′ 12 88 234 Full 3.89 3.08

c 2018 Oct 16 LCO-CTIO-1 i′ 20 63 70 Ingr.+30% 4.27 2.01

2018 Oct 22b SSO-T17 clear 30 122 86 Ingr.+77% 7.10 2.40

2018 Nov 11 SSO-Europa r′ 15 764 315 Full 5.25 4.53

2018 Nov 22 MEarth RG715 45 1682 380 Full 20.16 8.00

2018 Dec 25 LCO-SSO-1 i′ 22 108 113 Full 5.05 1.89

2019 Jan 20 LCO-CTIO-1 g′ 100 85 197 Full 6.22 2.75

2019 Jan 20 LCO-CTIO-1 zs 30 170 197 Full 9.36 4.43

d 2018 Nov 7 LCO-CTIO-0.4 i′ 70 119 170 Full 6.85 4.48

2018 Nov 22 LCO-CTIO-1b i′ 25 108 113 Full 6.22 5.05

2018 Nov 22 MEarth RG715 45 1682 380 Full 20.16 8.00

2019 Jan 13 LCO-CTIO-0.4 i′ 14 143 73 Full 5.14 2.32

2019 Jan 20 LCO-CTIO-1 r′ 30 132 151 Full 6.22 2.89

2019 Jan 28 LCO-CTIO-1 g′ 50 153 223 Full 7.78 2.35

Notes.
a
Telescopes: LCO-SSO-1: Las Cumbres Observatory—Siding Spring (1.0 m), LCO-CTIO-1: Las Cumbres Observatory—Cerro Tololo Inter-American Observatory

(1.0 m), LCO-CTIO-0.4: Las Cumbres Observatory—Cerro Tololo Inter-American Observatory (0.4 m), LCO-SAAO-1: Las Cumbres Observatory—South African

Astronomical Observatory (1.0 m), LCO-SAAO-0.4: Las Cumbres Observatory—South African Astronomical Observatory (0.4 m), SSO-Europa: SPECULOOS

South Observatory—Europa (1.0 m), SSO-Io: SPECULOOS South Observatory—Io (1.0 m), SSO-T17: Siding Spring Observatory—T17 (0.4 m), MEarth: MEarth-

South telescope array (0.4 m×5 telescopes.)
b
Observations not shown in Figures 13–15 due to intrinsically high scatter in the light curve and/or because they were a deep exposure search for eclipsing binaries in

nearby stars.
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planets being close to but not in resonance (where the orbits
may potentially be eccentric; e.g., Charalambous et al. 2018).

Inspired by the closely spaced multiplanet systems dis-
covered by Kepler (Muirhead et al. 2015) and other surveys
(e.g., Gillon et al. 2017), we also explored the possibility of a
fourth, nontransiting planet having a dynamically stable orbit in
between L 98-59 c and L 98-59 d such that the four planets
would form a near-resonant chain of 5:8:12:16 period
commensurability similar to, e.g., TRAPPIST-1 (Gillon et al.
2017). As an example, we tested a planet with a mass of
2.5M⊕ and a 5.7 day orbital period (≈1.55 and ≈0.77 times
the period of L 98-59 c and L 98-59 d, respectively), again for
two cases of (a) initially circular orbits and (b) initially
eccentric orbits with e=0.1. For simplicity, we only used the
best-fit masses for the three planet candidates. The system is
dynamically stable in case (a) for the duration of the
integrations (Figure 20, upper panel) and becomes unstable
within a few thousand orbits of the outer planet for case (b).
Thus, such a hypothetical planet is potentially possible if on a

circular orbit. Overall, while a comprehensive dynamical
analysis for the presence of additional planets is beyond the
scope of this work, we will continuously monitor the system as
data from future TESS sectors become available.

3.2.2. Transit Timing Variations

If detected, deviations in the times of transits from a linear
ephemeris can be a powerful method to constrain the masses
and orbital eccentricities of planets in multiplanet systems (e.g.,
Agol et al. 2005). We measured transit times for each
individual transit using two different methods. First, we folded
the transits on a linear ephemeris, fitting a transit model using
the models of Mandel & Agol (2002). Next, we measured the
time of each individual transit by, for each transit, sliding this
model across a grid of potential transit midpoints with a time
resolution of one second, and measuring the likelihood of each
transit fit at each grid point. We then found the maximum-
likelihood transit time and a 68% confidence interval on the

Figure 13. Ground-based follow-up observations of L 98-59 c. The date, facility, and filter used for each observation is marked, and each data set is offset for clarity.
The black line represents the transit model based on the TESS data.
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same. The ability to measure TTV signals depends sensitively
on our ability to measure precise transit times. For L 98-59 b,
the scatter in measured transit times, suggestive of the ultimate
transit timing precision we measure, is 5.1 minutes. For L 98-
59 b, this is 2.1 minutes, and for L 98-59 d, 1.2 minutes. Our
analysis showed that a linear ephemeris is sufficient to
reproduce the transit times of the three planet candidates
detected in Sector 2. We found no evidence for TTVs, and no
further constraints can be placed on the parameters of the
system beyond those already provided by dynamical stability
considerations. Given that L98-59 will be observed in 7 of the
13 sectors that comprise the first year of the TESS mission
(Mukai & Barclay 2017; Sectors 2, 5, 8, 9, 10, 11, and 12), here
we examine how continued TESS observations would affect the
transit timing analysis of the system.

Specifically, we simulated continued observations following
the nominal TESS schedule, assuming a linear ephemeris for
future transits and that every planned sector will be observed as
scheduled. We then used the TTVFast package (Deck et al.
2014) to calculate predicted transit times for the three planets in

various orbital configurations consistent with the current data
and examine what can be ruled out by the data by the end of the
mission.
The two outer planets (L 98-59 c and d) are close to first-

order period commensurability (period ratio of 2.02), whereas
the inner planet is not near a first-order resonance with either of
the other planets (1.64 period ratio between L 98-59 b and L
98-59 c, and 3.31 period ratio between L 98-59 b and L 98-59
d). Thus, the expected TTV signal for the former planet pair is
stronger compared to that for the latter planet pair. Indeed, even
for eccentricities of ∼0.1, the expected TTV amplitude for the
innermost planet is ∼90 s, notably smaller than the observed
precision on the measured times of transit. To evaluate the
potential for measuring TTVs for the outer two planets, we
performed numerical simulations of the system for the first year
of the TESS mission (using TTVFast), thus covering all sectors
it will be observed in. We allowed the planet eccentricities to
vary, and assumed the maximum-likelihood masses listed in
Section 3.1. Adopting a transit timing precision of 1–2 minutes,
we found that significant TTVs could be detected if the

Figure 14. Same as Figure 13 but for L 98-59 d.
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eccentricities of the outer two planets were larger than ∼0.03

(as shown in Figure 21).
Overall, as multiplanet systems typically have orbital

eccentricities of a few percent (Hadden & Lithwick 2016), it

is unlikely that TESS will reveal timing variations for this

system during its primary mission; doing so would suggest

either anomalously large eccentricities (which are unlikely

based on dynamical stability consideration) or significantly

Figure 15. Same as Figure 13 but for L 98-59 b.

Table 5

Ground-based Follow-up Rp/R* Less TESS Rp/R* as a Function of Wavelength

TOI Date Obs Filter (Observatory) Rp/R* Less TESS Rp/R*

L 98-59 b UT 2018 Nov 20 Sloan r′ (LCO) - -
+0.0008 0.0085
0.0054

L 98-59 b UT 2018 Nov 29 Sloan r′ (LCO) -
+0.0018 0.0045
0.0039

L 98-59 c UT 2019 Jan 20 Sloan g′ (LCO) −0.0033±0.003

L 98-59 c UT 2018 Nov 22 RG715 (MEarth) −0.0007±0.002

L 98-59 c UT 2019 Jan 20 Sloan z′ (LCO) −0.0056±0.0028

L 98-59 d UT 2019 Jan 28 Sloan g′ (LCO) -
+0.0072 0.0064
0.0078

L 98-59 d UT 2019 Jan 20 Sloan r′ (LCO) - -
+0.003 0.012
0.01

L 98-59 d UT 2018 Nov 7 Sloan i′ (LCO) -
+0.0072 0.0072
0.0088

L 98-59 d UT 2018 Nov 22 RG715 (MEarth) -
+0.0104 0.0043
0.0044
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larger planet masses/densities in this system relative to planets

with similar radii in other systems.
To explore TTVs using an alternative software framework,

we also used the TTV2Fast2Furious package (Hadden et al.

2018) to project the expected TTV signals of the planets

through Sector 12, again adopting the forecaster masses and,

for simplicity, assuming circular orbits. Similar to the TTVFast
analysis described above, our results show that it is unlikely

TTVs are measurable for this system during the TESS prime

mission—the maximum TTV amplitudes are 0.09 minutes for

L 98-59 b, 0.17 minutes for L 98-59 c, and 0.56 minutes for L

98-59 d (see Figure 22).
Following the approach described in Hadden et al. (2018),

we also used TTV2Fast2Furious to project the precision of

mass constraints derived from future TESS transit timing

measurements. Planet mass constraints derived from TTVs

depend on the precision of transit time measurements, and we

adopt the measured scatter in the transit time measurements

taken through Sector 2, s =- 2.1tL98 59c
minutes and s =-tL98 59d

1.2 minutes. The planets’ masses are expected to be

Figure 16. Observational Hertzsprung–Russell diagram. The sample of 1120 M dwarf primaries within 25 pc from Winters et al. (2019) is plotted as black points.
L98-59 is noted as a blue star. For comparison, known close multiples with separations less than 5″ having blended photometry (red points), known cool subdwarfs
(open green squares), and known young objects (open cyan diamonds) are noted. Error bars are shown in gray and are smaller than the points, in most cases.

Figure 17. Top: high-resolution images of the target at each epoch. In the center and right panels, the blue cross indicates the position of the target on UT 2018 March
31, when the first Gemini/DSSI data set was collected, and we show only the I-band images here. No companions are detected here or anywhere in the field of view in
any of the images. Only the central portion of the NaCo image is shown. Bottom: 5σ sensitivity to companions as a function of separation from the host star, for each
data epoch. Red and blue lines indicate the Gemini/DSSI R- and I-band observations, respectively, which have central wavelengths of 692 and 880 nm.
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constrained with precisions of s =- ÅM13.1m,L98 59c and
s =- ÅM5m,L98 59d with transit timing data through Sec-
tor 12.71

With three sectors of data available for this system at the time
of writing (Sectors 2, 5, and 8), there is at present no evidence
for TTVs. In line with the predictions of the previous paragraph,
there is no significant mass constraint beyond what is given from
plausible compositions of terrestrial planets. We use TTVFast to
compare maximum-likelihood dynamical models of the orbits of
the planets, assuming the masses listed in Section 3.1. We also
repeat this procedure holding the masses fixed at four times this
nominal value, which would imply a density of ∼20 g cm−3. In
both scenarios, there is a dynamical model that fits the observed
transits equally well. This is partly due to the large gaps in the

Figure 18. The evolution of the planets’ semimajor axes (left panels) and eccentricities (right panels) for the corresponding best-fit (upper panels) and best-fit+1σ
(lower panels) masses for 1 million orbits of the outer planet (L 98-59 d), and assuming initially circular orbits. The orbital elements do not experience drastic
variations, and the system is dynamically stable for the duration of the integrations.

Figure 19. Same as Figure 18 but for planets on initially eccentric orbits with e=0.1. The system becomes dynamically unstable within a few thousand orbits of the
outer planet in half of our simulations, both for the best-fit and for the best-fit +1σ masses.

71
If the planets are restricted to circular orbits in the TTV model, e.g., under

the assumption that eccentricities are damped away by tidal dissipation, the
mass–eccentricity degeneracy (e.g., Lithwick et al. 2012) is removed, and the
measured TTV signals therefore place tighter constraints on the planet masses.
In particular, if the TTV model is restricted to circular orbits, the mass
measurement precisions of s =- ÅM3.4m,L98 59c and s =- ÅM2.1m,L98 59d are
projected.
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data at present: the best opportunity for future TTV detection
with TESS will be in upcoming data releases, when the system is
observed for five consecutive sectors.

3.3. Potential for Atmospheric Characterization

Owing to the small, bright host star, the three planets of the L
98-59 system are promising targets for follow-up atmosphere

characterization. The planets’ small radii suggest that it is unlikely
that they retain hydrogen-rich atmospheres (Rogers 2015; Fulton
et al. 2017), but secondary atmospheres could form from volcanic
outgassing and/or delivery of volatiles from comets.
To investigate the feasibility of atmosphere studies for the L

98-59 planets, we compared the expected signal-to-noise ratio
of atmospheric features to that of GJ 1132b, another small
planet around a nearby M-dwarf (Berta-Thompson et al. 2015).
Morley et al. (2017) found that a CO2-dominated atmosphere
could be detected for GJ 1132 with a modest number of JWST
transits or eclipses (11 transits with NIRSpec/G235M or two
eclipses with MIRI/LRS). To scale these estimates for L 98-59,
we used the transmission and emission spectroscopy metrics
from Kempton et al. (2018), who calculated the expected
signal-to-noise ratio for atmospheric features based on planet
and star properties. We scaled the signal relative to each
planet’s transit/eclipse duration, estimated the brightness of the
star based on its K-band magnitude, and assumed zero noise
floor. We found that L 98-59 b, L 98-59 c, and L 98-59 d have
transmission spectroscopy metric (TSM) values 0.8, 1.4, and
1.0 times that of GJ 1132b and emission spectroscopy metric
(ESM) values of 0.3, 0.4, and 0.7, respectively (Kempton et al.
2018). This implies that features in the transmission spectrum
could be detected with 16, 6, or 11 transits, or 24, 13, or 4
eclipses for L 98-59 b, L 98-59 c, and L 98-59 d. Provided
that JWST observations reach the photon limit for stars as
bright as L 98-59, this system is an exciting opportunity for
studying comparative planetology of terrestrial exoplanet
atmospheres.

3.4. Planets in the Venus Zone

It is worth noting the possibility that the planets in the system
are analogs to Venus in terms of their atmospheric evolution.
Venus shares several characteristics with Earth including its

Figure 20. Same as Figure 18 but for the three known planets (with best-fit masses) and a hypothetical fourth planet in between L 98-59 c and L 98-59 d, with a mass
of 2.5M⊕ and a period of 5.7 days. All four planets are on initially circular orbits (upper panel) or on initially eccentric orbits with e=0.1 (lower panels). While the
system is dynamically stable for the duration of the integrations in the former case, it quickly becomes unstable in the latter.

Figure 21. Parameter space in eccentricity (purple) where TTVs are likely to be
detected for the L 98-59 system, assuming transit times can be measured to a
precision of 2 minutes and using the forecaster planet masses. If transit times
can instead be measured to 1 minute precision, TTVs are likely to be detected if
the planet eccentricities are in the green region.
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relative composition, size, and mass. Although Venus may have
previously had temperate surface conditions (Way et al. 2016),
Venus eventually diverged significantly from the habitable
pathway of Earth and transitioned into a runaway greenhouse
state. The planet now has a high-pressure, high-temperature, and
carbon-dioxide-dominated atmosphere. In our study of exopla-
nets and the search for life, it is vitally important that we
understand why Earth is habitable and Venus is not (Kane et al.
2014). There is a need to discover planets that may have evolved
into a postrunaway greenhouse state so that we can target their
atmospheres for characterization with future facilities, such as
JWST (Ehrenreich et al. 2012). However, most of the potential
Venus analog candidates hitherto discovered orbit relatively faint
stars (Barclay et al. 2013; Kane et al. 2013, 2018; Angelo
et al. 2017).

The L 98-59 planets receive significantly more energy than
the Earth receives from the Sun (a factor of between 4 and 22
more than Earth’s insolation) and fall into the region that Kane
et al. (2014) dubbed the Venus Zone. This is a region where the
atmosphere of a planet like Earth would likely have been forced
into a runaway greenhouse, producing conditions similar to
those found on Venus. The range of incident fluxes within the
Venus Zone corresponds to insolations of between 1 and 25
times that received by the Earth. Planets in the Venus Zone that
can be spectroscopically characterized will become increas-
ingly important in the realm of comparative planetology that
aims to characterize the conditions for planetary habitability. In
that respect, and considering the potential for atmospheric
characterization discussed in Section 3.3, L98-59 could
become a benchmark system.

4. Conclusions

We presented the discovery of a system of three transiting,

terrestrial-size planets orbiting L 98-59 (TESS Object of Interest

TOI-175). The host star is a bright M3 dwarf (K=7.1) at a

distance of 10.6 pc, with M*=0.313±0.014 Me, R*=
0.312±0.014 Re, and Teff=3367±150 K. TFOP-led follow-

up observations found no evidence of binarity or significant

stellar activity. To thoroughly vet the transit signals detected in

the TESS data, we used the software package DAVE. Our

analysis ruled out significant secondary eclipses, odd–even

differences, or photocenter shifts during transits, verifying their

planetary nature. Using lightkurve, we also discovered that the

nearby field star 2MASS 08181825-6818430, inside the TESS

aperture of L 98-59, is an eclipsing binary system with an orbital

period of ∼10.43 days, manifesting both primary and secondary

eclipses. Utilizing Gaia data, we confirmed that the eclipsing

binary is a background object (likely a red giant) not associated

with L 98-59. This battery of tests highlights the importance of

comprehensive analysis of all sources inside the TESS aperture.
The planets range in size from slightly smaller to slightly

bigger than Earth, with radii of 0.8±0.05R⊕, 1.35±0.07R⊕,
and 1.59±0.23R⊕ from inner to outer, respectively. The

planetary system is quite compact, with orbital periods of

2.25days, 3.69days, and 7.45days, respectively. We estimated

their masses using the forecast package for probabilistic mass

forecasting, confirmed the dynamical stability of the system for

circular orbits, and showed that there are no significant TTVs.
TESS will continue observing the system in upcoming

Sectors (9, 10, 11, 12), and it is also likely that the system will

Figure 22. Observed TTVs of L 98-59. The vertical bars represent ±1σ uncertainties for the observed transits, and a horizontal line shows the zero-point. The
observed transit times do not meaningfully deviate from a circular orbit model.
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be observed during a TESS Extended Mission. These
observations will allow for refinement of the known planet
parameters, searches for additional planets, further investiga-
tions of the dynamics of the system, as well as long-term
monitoring of the host star activity.
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