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Abstract: Infant hydrocephalus is a clinically abnormal clinical state with an accumulation of fluid in
cavities (ventricles) deep within the brain. Hence, pressure is increased inside the skull. The ventricles
widen due to the excess fluid applying pressure upon the (parenchyma) brain tissues. The infant brain
tissue is described by a biomechanics model as a hyperelastic, Λ-fractional viscoelastic material, trying
to describe the various conditions developing hydrocephalus. Λ-fractional continuum mechanics
is applied with time variables due to viscosity and space fractional variables due to porosity. The
simultaneous influence of both the viscosity and porosity of the membrane material (parenchyma)
increases the cerebrospinal fluid’s pressure, causing the fluid’s accumulation in the brain.

Keywords: fractional-order; fractional integral; fractional derivative; Riemann–Liouville fractional
derivative; Λ-fractional space; Λ-fractional derivative; left and right Λ-spaces; initial space; viscoelas-
ticity; porosity brain parenchyma; hydrocephalus

1. Introduction

Hydrocephalus is a condition characterized by the accumulation of cerebrospinal fluid
(CSF) in the brain. Although the immediate result may be the increased pressure inside
the skull, many other symptoms may be attributed to the increased production of (CSF).
Symptoms such as headaches, double vision, poor balance, mental impairment, etc. are
attributed to hydrocephalus. It mainly occurs during birth but may be acquired later in life.
The description of hydrocephalus was presented more than 2000 years ago by Hippocrates.
Hydrocephalus is a composite Greek term derived from the words κεϕαλή (meaning head)
and ύδωρmeaning water.

Before discussing the mechanics of the hydrocephalic brain, its geometry will be
described. It is considered a thick cylindrical tube strained by the internal pressure of
the encephalic fluid. In its unloaded placement, the tube is defined by the internal radius
R1 and the outer R2. Further, the material of the tube is adopted to respond according
to a viscoelastic Λ-fractional Kelvin–Voigt model. The formulation will follow the model
introduced in ref. [1], where details may be found. In fact, that description considers
viscoelastic continuum mechanics models with Caputo time derivatives for modeling the
viscoelastic effects. However, the Caputo derivative does not conform to the prerequisites of
differential topology [2] for being a mathematical derivative corresponding to a differential;
hence, it fails to generate differential geometry, and its use is questionable.

Leibnitz suggested fractional derivatives in 1695 to propose derivatives with non-local
action. After almost three centuries of considerable mathematical study performed by
famous researchers, fractional derivatives were introduced to study non-local problems
in micromechanics, nanomechanics, biology, economy, etc. However, all the well-known
fractional derivatives, such as the Riemann–Liouville, Caputo, etc., exhibit a handicap;
their weakness is that they correspond to differentials and consequently generate geometry.
However, they are used even in the sense of approximate procedures. Hence, geometry
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and mechanics may not be described by the known fractional derivatives. That handi-
cap is cured by the proposed Λ-fractional analysis, which is able to generate fractional
geometry. Indeed, Λ-fractional continuum mechanics was presented in ref. [3]. In addition,
Λ-fractional plane linear elasticity was formulated in ref. [4].

The infant communicating hydrocephalus will be discussed in the present work when
the mechanical properties of the brain are degraded, causing ventricular expansion. The
infant’s brain is expanded rapidly during the first two years. It is evident that rapid
changes in the brain tissue’s mechanical properties occur, and its rapid growth is expected.
Fractional viscoelastic and poroelastic models have been employed for studying brain
biomechanics [5,6]. Drapaca et al. [1,7] studied the brain model with its hydrocephalus
mechanism, adapting Caputo fractional derivatives of time. However, Caputo derivatives
are not mathematical derivatives fulfilling the prerequisites of differential topology. Hence,
differential geometry may not be established by invoking Caputo fractional derivatives.

The following chapters outline Λ-fractional analysis and its application in the contin-
uum mechanics of cylindrical tubes. Two fractional variables are considered in the present
analysis. The fractional variable of time describes the viscoelastic effects, and the fractional
radius variable corresponds to the porosity of the material. The interaction of both effects
influences the development of hydrocephalus disease in infants. Numerical solutions of
the nonlinear system of the equilibrium equations are presented in figures indicating the
interaction of both effects, the viscoelastic [8] and the porosity [9].

2. The Λ-Fractional Derivative

A brief outline of fractional calculus will be presented in the present chapter, while the
interested reader may refer to refs. [10–12] for more information.

The left and right fractional integrals for a real fractional dimension 0 < γ ≤ 1 are
defined by

a I γ
x f (x) =

1
Γ(γ)

∫ x

a

f (s)

(x− s)1−γ
ds, (1)

x I γ
b f (x) =

1
Γ(γ)

∫ b

x

f (s)

(s− x)1−γ
ds, (2)

where Γ(γ) is Euler’s Gamma function. Further, the left Riemann–Liouville fractional
derivative (R.L.) is defined by

RL
a Dγ

x f (x) =
d

dx

(
α I1−γ

x f (x)
)
=

1
Γ(1− γ)

d
dx

∫ x

a

f (s)
(x− s)γ ds, (3)

whereas the right Riemann–Liouville’s fractional derivative is defined by

RL
x Dγ

b f (x) =
d

dx

(
x I1−γ

b f (x)
)
= − 1

Γ(1− γ)

d
dx

∫ b

x

f (s)
(s− x)γ ds. (4)

For the left fractional integrals and derivatives holds

RL
a Dγ

x
(

a I γ
x f (x)

)
= f (x). (5)

A similar relation is valid for the right Riemann–Liouville derivative and the right
fractional integral.

The Λ-fractional derivative (Λ-FD) is defined as

Λ
a Dγ

x f (x) =
RL
α Dγ

x f (x)
RL
a Dγ

x x
. (6)
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Recalling the definition of Riemann–Liouville’s fractional derivative, Equation (3),
Λ-FD is expressed by

Λ
a Dγ

x f (x) =
da I 1–γ

x f (x)
dx

da I 1–γ
x x

dx

=
da I1–γ

x f (x)

da I1–γ
x x

. (7)

Considering
X = a I1–γ

x x,
F(X) = a I1–γ

x f (x(X)).
(8)

Λ-FD appears to behave like a conventional derivative in the fractional Λ-space
(X, F(X)) with local properties. The fractional differential geometry may be generated
as a conventional differential geometry in Λ-space (X, F(X)). Then, the results may be
transferred to the initial space invoking Equation (5). Indeed, we may transfer the results
from Λ-space to the initial one using the relation

f (x) = RL
a D1−γ

x F(X(x)) = RL
α D1−γ

x a I1−γ
x f (x). (9)

Let us consider a function f (x) in the initial space (x, f (x)). The corresponding
function in Λ-space is defined by (X, F(X)). Nevertheless, for the existence of a horizon
h, the function f (x) corresponds in Λ-space to F(X) − F(X− h) function. In addition,
the derivatives of the functions F(X) in Λ-space are local. Further, Taylor’s expansion of
F(X− h) yields with horizon h,

F(X− h) ≈ F(X)− F′(X) h + o(h). (10)

Therefore, the function in the Λ-space with horizon h becomes

F(X)− F(X− h) ≈ F′(X) h. (11)

Then, the corresponding function f (x) in the initial space may be transferred as

f (x) = h RL
a D1−γ

x F′(X(x)). (12)

The mathematical solution to the problem is described following these three steps:

a. Definition of the Λ-fractional space corresponding to the initial space and time t,
based upon Equation (8).

b. Solution of the problem into the Λ-space following conventional procedures since
differential geometry is generated in that space.

c. Transferring the results into the initial space, considering Equation (9).

3. The Continuum Mechanics Hydrocephalus Model in the Λ-Fractional Space

In fact, the point in the cylindrical tube with Lagrangian cylindrical coordinates (R, Θ,
Z), at the initial placement, takes the current placement (r, θ, z) with (see Figure 1)

r = f(t,R), θ = Θ, z = Z. (13)
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Then, the deformation gradient F in the cylindrical system (r, θ, z) is defined by

F(t, R) =

∣∣∣∣∣∣∣
∂ f (t,R)

∂R 0 0
0 f (t,R)

R 0
0 0 1

∣∣∣∣∣∣∣. (14)

The strain energy density function of the material depends upon the left Cauchy–Green
deformation tensor B defined by

B(t, R) = F(t, R)·FT(t, R) =

∣∣∣∣∣∣∣∣
( ∂ f (t,R)

∂R )
2

0 0

0 ( f (t,R)
R )

2
0

0 0 1

∣∣∣∣∣∣∣∣. (15)

The principal invariants of B(t, R) are defined by

I1 = (
∂ f (t, R)

∂R
)

2
+

(
f (t, R)

R

)2
+ 1, (16)

I2 = (
∂ f (t, R)

∂R
)

2( f (t, R)
R

)2
+ (

∂ f (t, R)
∂R

)
2
+

(
f (t, R)

R

)2
, (17)

I3 = (
∂ f (t, R)

∂R
)

2( f (t, R)
R

)2
. (18)

Assuming incompressibility of the brain tissue, the third invariant, I3 = 1, yields

h(T, R) =
d f (t, R)

dR
=

R
f (t, R)

. (19)

The solution of Equation (19) is defined by

f (t, R) =
√

R2 + k(t). (20)

Then, the left Cauchy–Green deformation tensor B(t,R) yields

B(t, R) =

∣∣∣∣∣∣∣
R2

R2+k(t) 0 0

0 R2+k(t)
R2 0

0 0 1

∣∣∣∣∣∣∣. (21)

Moreover, the rate of strain tensor is defined in the present case by

D(t, R) =

∣∣∣∣∣∣∣∣
∂

.
f (t,R)
∂ f 0 0

0
.
f (t,R)

f 0
0 0 0

∣∣∣∣∣∣∣∣. (22)

For an incompressible Kelvin–Voigt material, the stress tensor σ is defined by

σ = −qI + 2
[(

∂W
∂I1

+ I1
∂W
∂I2

)
B− ∂W

∂I2
B2
]
+ ηD(t, R), (23)

where q is the pressure term due to the incompressibility and η is a coefficient due to the
visco-elastic behavior of the material.
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Following Drapaca et al. [1], the strain energy model is adapted as a Mooney–Rivlin
model with strain energy density

W = c10(I1 − 3) + c01(I2 − 3). (24)

Therefore, the stresses are expressed by

Σr(t, R) = −q + 2
(

c10 + c01

(
h2(t, R) +

f 2(t, R)
R2 + 1

))
h2(t, R)− 2c01h4(t, R) + η

∂2 f (t, R)
∂t∂R

, (25)

Σθ(t, R) = −q + 2
(

c10 + c01

(
h2(t, R) +

f 2(t, R)
R2 + 1

))
h2(t, R)

R2 − 2c01
h4(t, R)

R4 + η
∂

∂t

(
f (t, R)

R

)
, (26)

Σz(t, R) = −q + 2
(

c10 + c01

(
h2(t, R) +

f 2(t, R)
R2 + 1

))
− 2c01. (27)

Equations (25)–(27) are different from the ones in ref. [1] only in viscoelastic terms.
Without body forces, the equilibrium equation is expressed by

∂ΣR
∂R

+
1
R
(ΣR − Σθ) = 0, (28)

with the b.cs.
ΣR(T, R1) = −P0(T) and ΣR(T, R2) = 0. (29)

Further, see ref. [1],

Po(T) =
µ

2

∫ b

1

(
1
x
− x

(x + B(T))2

)
dx +

η

2R1

∫ b

1

 .
B(T)

√
x
√
(x + B(T))

+

.
B(T)(√

(x + B(T))
)3

dx, (30)

with B(T) = R−2
1 k(T).

Thus, Equation (30) yields the equation

B′(T) ==
− µ

2

(
(−1+b)B(T)

(1+B(T))(b+B(T)) + Ln
(

b(1+B(T))
b+B(T)

))
+ P0(T)

η

(
1

(1+B(T))0.5 − 2
(b+B(T))0.5

) , (31)

with the b.c.
B(0) = 0 (32)

Equations (31) and (32) have a solution defining the deformation of the hydrocephalus
cylinder.

Hence, Equations (25)–(27) yield the stresses in the Λ-fractional space. Following
ref. [1], the considered parameters have been adopted by µ = 207, η = 0.66, b = 9, and R1 = 2
cm. Figure 2 shows the radial stress Σr(T,R) in the Λ-fractional space in that case.
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Figure 3 shows the distribution of the stress Σθ(T,R) in the Λ-fractional space.
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It is evident that the assumptions influence the fluid flow through the deformation of
the hydrocephalus cylindrical tube.

4. The Stresses in the Initial Space
4.1. Fractional Response with Respect to Time

Transferring the stresses in the initial space Equations (8) and (9) should be recalled.
In the present section, only the fractional behavior of time is considered, related to the
viscoelastic behavior of the model. In that case, time T in the Λ-space and time t in the
initial space are connected by

T =
1

Γ(1− γ)

∫ t

0

s
(t− s)γ =

t2−γ

Γ(3− γ)
. (33)

Hence, time t in the initial space is related to time T by

t = (Γ(3− γ)T)
1

2−γ . (34)

Further, recalling Equation (5), the various stresses σ(t,r) in the initial space are de-
fined by

σ(t, r) =
1

Γ(γ)

d
dt

∫ t

0

Σ
(

s2−γ

Γ(3−γ)
, r
)

(t− s)1−γ
ds. (35)

Figure 4 shows the distribution of the radial stress σr(t, r) in the initial space for γ = 0.9.
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Figure 4. Distribution of the radial stress σr(t, r) in the initial space for γ = 0.9.

Further, Figure 5 shows the stress σθ(t, r) in the initial space for γ = 0.9.
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In addition, Figure 6 shows the distribution of the radial stress σr(t, r) in the initial
space for γ = 0.8.
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Similarly, Figure 7 shows the distribution of the radial stress σθ(t, r) in the initial space
for γ = 0.8.
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Reducing the fractional order to γ = 0.7, the distribution of the radial stress σr(t, r) in
the initial space is shown in Figure 8, and the distribution of the tangential stress σθ(t, r) in
the initial space is presented in Figure 9.
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Finally, for the fractional order γ = 0.6, the distribution of the radial stress σr(t, r) in
the initial space is shown in Figure 10, and the distribution of the stress σθ(t, r) in the initial
space is presented in Figure 11.
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Figures 4–11 show the time (viscosity) fractional order’s influence on the stresses. The
less the fractional time-fractional order, the higher the stresses.



Axioms 2022, 11, 638 9 of 12

4.2. Fractional Response with Respect to Time and Space

As it has been pointed out, the fractional response with respect to time corresponds
to the viscoelastic reaction of the material, whereas the fractional response with respect
to the special variable R corresponds to the porosity of the material. In that case, space
variable transferring should be adopted apart from the time variable transferring. Hence,
if γ2 denotes the fractional order of time and γ1 the fractional space order of the radius
r, corresponding to the radius R in the Λ-fractional space, the transformation from the
Λ-fractional space (T,R) to the initial space (t,r) is defined through the relations

R =
1

Γ(1− γ1)

∫ r

0

q
(r− q)γ1

=
t2−γ1

Γ(3− γ1)
, (36)

r = (Γ(3− γ1)R)
1

2−γ1 , (37)

and,

T =
1

Γ(1− γ2)

∫ t

0

τ

(t− τ)γ2
=

r2−γ2

Γ(3− γ2)
, (38)

t = (Γ(3− γ2)T)
1

2−γ2 . (39)

Hence,

σ(t, r) = RL
0 D1−γ2

t

(
RL
r1

D1−γ1
r (Σ(τ, q))

)
=

1
Γ(γ2) · Γ(γ1)

· d
dt

∫ t

0

1

(t− τ)1−γ2
(

d
ds

∫ r

0

Σ(τ, q)

(s− q)1−γ1
dq)dτ. (40)

Applying Equation (40) for transferring the stresses Σr(T,R) and Σθ(T,R) from the
Λ-fractional space to the initial one, the radial stress σr(t,r) and the stress σθ(t,r) are defined.
Indeed, Figures 12 and 13 show the stresses for space fractional order γ1 = 0.9, indicating
the porosity of the material and the time fractional order γ2 = 0.9.
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Decreasing the space (porosity) order to γ1 = 0.7, while the time (viscosity) fractional
order remains the same, γ2 = 0.9, the stress distribution for the radial σr(t,r) and the stress
σθ(t,r) is shown in Figures 14 and 15.
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For the space (porosity) order to γ1 = 0.9, while decreasing the time (viscosity) frac-
tional order γ2 = 0.7, the stress distribution for the radial σr(t,r) and the stress σθ(t,r) is
shown in Figures 16 and 17.
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Figures 12–19 show the influence of the fractional orders, time and space, upon the
stresses. The less the fractional time–fractional order or the space (porosity) fractional order,
the higher the stresses.

Axioms 2022, 11, x FOR PEER REVIEW 10 of 12 
 

For the space (porosity) order to γ1 = 0.9, while decreasing the time (viscosity) frac-
tional order γ2 = 0.7, the stress distribution for the radial σr(t,r) and the stress σθ(t,r) is 
shown in Figures 16 and 17. 

 
Figure 16. Distribution of the radial stress 𝜎 (𝑡, 𝑟) in the initial space with space (porosity) fractional 
order γ1 = 0.9 and time fractional order γ2 = 0.7. 

 
Figure 17. Distribution of the stress 𝜎 (𝑡, 𝑟) in the initial space with space (porosity) fractional order 
γ1 = 0.9 and time fractional order γ2 = 0.7. 

Figures 12–19 show the influence of the fractional orders, time and space, upon the 
stresses. The less the fractional time–fractional order or the space (porosity) fractional or-
der, the higher the stresses. 

 
Figure 18. Distribution of the radial stress 𝜎 (𝑡, 𝑟) in the initial space with space (porosity) fractional 
order γ1 = 0.7 and time fractional order γ2 = 0.7. 
Figure 18. Distribution of the radial stress σr(t, r) in the initial space with space (porosity) fractional
order γ1 = 0.7 and time fractional order γ2 = 0.7.

Axioms 2022, 11, x FOR PEER REVIEW 11 of 12 
 

 
Figure 19. Distribution of the stress 𝜎 (𝑡, 𝑟) in the initial space with space (porosity) fractional order 
γ1 = 0.7 and time fractional order γ2 = 0.7. 

5. Conclusions 
In this study, a Λ-fractional viscoelastic and poroelastic model was presented de-

scribing the brain of an infant exhibiting hydrocephalus phenomena. We determined that 
fractional calculus is a suitable analysis for studying biomechanics since fractional calcu-
lus is a non-local analysis suitable for dealing with micromechanics. However, the well-
known fractional derivatives cannot generate differential geometry, and their use in solv-
ing real-life problems is questionable. Therefore, Λ-fractional analysis was applied in the 
present hydrocephalus model and generated differential geometry used in the model 
study. Continuum micromechanics was recalled to describe the present problem concern-
ing the deformation of the hydrocephalus tube under fluid pressure. Apart from viscoe-
lasticity, the proposed Λ-fractional model considers the influence of the tube's porosity 
and the viscous material's interaction with porous geometry. Recent references concern-
ing hydrocephalus, mainly medical novelties, may be found in ref. [13]. The present Λ-
fractional analysis may be considered a prototyped model for other cases in biomechanics. 
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Figure 19. Distribution of the stress σθ(t, r) in the initial space with space (porosity) fractional order
γ1 = 0.7 and time fractional order γ2 = 0.7.

5. Conclusions

In this study, a Λ-fractional viscoelastic and poroelastic model was presented de-
scribing the brain of an infant exhibiting hydrocephalus phenomena. We determined that
fractional calculus is a suitable analysis for studying biomechanics since fractional calculus
is a non-local analysis suitable for dealing with micromechanics. However, the well-known
fractional derivatives cannot generate differential geometry, and their use in solving real-life
problems is questionable. Therefore, Λ-fractional analysis was applied in the present hydro-
cephalus model and generated differential geometry used in the model study. Continuum
micromechanics was recalled to describe the present problem concerning the deformation
of the hydrocephalus tube under fluid pressure. Apart from viscoelasticity, the proposed
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Λ-fractional model considers the influence of the tube’s porosity and the viscous material’s
interaction with porous geometry. Recent references concerning hydrocephalus, mainly
medical novelties, may be found in ref. [13]. The present Λ-fractional analysis may be
considered a prototyped model for other cases in biomechanics.
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