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1. Introduction

In this series of papers we construct a quantum field theory model. This model de-
scribes a spin-zero boson field ¢ with a nonlinear ¢* selfinteraction in two dimensional
space time. The corresponding classical field equation is

’Pe_8d ., 3

Zr_°2% =0. 1.1

8t2 axz + ’”I/o¢ +4 l(ﬁ 0 ( )
The classical field ¢ is by definition a real valued function of 2 and ¢ which is a solution to

(1.1). The quantum field ¢ is also a function of x and ¢, but its values ¢(z, t) are densely
defined bilinear forms on some Hilbert space. The quantum field ¢ is a solution to (1.1),
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provided that ¢® is suitably interpreted. The quantum field ¢(z, ¢) depends continuously
on z and ¢ and the derivatives in (1.1) are taken in the sense of distributions.

Certain averages of the quantum field

$0)- [$a 0160 dsa 12)

and (i, t)= f $(x, 1) f(z) da (13)

are self adjoint operators on the Hilbert space. In addition, the quantum field ¢ satisfies

the canonical equal time commutation relations

(0.0, 2 610.0] =i [ 1o aa. 1.9

The construction of a quantum field ¢ satisfying (1.1)-(1.4) was one of the main results of
the first papers in this series [10, 12] (denoted hereafter as I, IT). General background ma-
terial can be found in [9, 17, 19]. ,

The field ¢ constructed in I and II is a bilinear form on the Fock space 7, the Hilbert
space for noninteracting bosons. The Cauchy data for the quantum field

¢(x,0) and (% gb) (2,0) (1.5)
are the same Cauchy data that give a solution to the free field equation

> & 0
—a? ¢free - 53? ¢free +my qsfree =0, (1.6)

and that satisfy (1.4). In other words,

$(x, 0) = dreeo (2, 0) 1.7
and (aai:) (x,0)= (f% ¢Me) (z, 0). (1.8)

It is expected that this quantum field theory of Tand II, with ¢ realized on the Fock
space J, will not possess all the properties conventionally assumed in quantum field
theory. For example, it seems that there will not exist a Hamiltonian operator H to generate

time translations
Pz, t+7) =" P(x, 1) 7",
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Also there will not exist a vacuum vector (a translation invariant ground state of H).
The cause of these difficulties is made clear by the circle of ideas and results known as
Haag’s theorem [16, 24]. Haag’s theorem states that if the field ¢ =+, satisfies (1.7)—(1.8)
and if there is a Hamiltonian H for ¢, then H will not possess a unique Euclidean invariant

vacuum vector.
In order to understand and deal with these difficulties—the lack of a Hamiltonian
operator I on F and of a vacuum vector ) in J—we first consider the cutoff field equation
& &

Pyl

¢ +mip+4Agd*>=0. (1.9)
Here the spatial cutoff g(x) is a smooth, positive function that equals one on some bounded
set and that vanishes off some larger bounded set. Corresponding to the cutoff field equation

(1.9), there is a Hamiltonian operator
H(g)=H, —l—lf:#(x): gxydx—-E,=H,+H, ,—E, (1.10)

The operator H, is the free field Hamiltonian and it corresponds to the free field equation
(1.6). The interaction energy operator H; , contains the spatial cutoff g. The operator
H,+H,; ,is a self adjoint operator {10, 11] and is bounded from below [22, 8]. The constant

E, is chosen so that
0 = inf {spectrum H(g)}.

The constant E, is one of the standard renormalization counterterms of quantum field
theory. K, is called the self energy of the vacuum. E, is finite because of the spatial cutoff
and because of the limitation to only one space dimension [13]. Both g and the restriction
to a single space variable serve to reduce the singularity of the perturbing operator H, ,.

In I, II we constructed the Heisenberg picture dynamics for (1.1). We started from the

locally correct equation (1.9) for which the solution is
$o (2, 1) = 1O Gz, 0) O (1.11)

The solution ¢, is independent of ¢(-) provided g(y) =1 for |y| < [z| + |¢|. Thus by patching
together different local solutions (1.11), corresponding to g—=1 on different sets, we con-
structed - a-solution ¢ to (1.1). This solution is associated with a time translation auto-

morphism ¢, implemented locally by H(g) as in (1.11).

o P, £)) = d(z, t +7). (1.12)

While a vacuum vector Q does not exist in J, we showed in IT that the approximate
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Hamiltonian H{g) does have a vacuum. In fact, zero is an isolated eigenvalue of H(g)
with multiplicity one. Thus there is a vector , in J such that

and (), is unique up to a scalar multiple.
We wish to obtain the Hamiltonian H and the vacuum Q corresponding to (1.1) by
taking the limit g(-)—>1. We cannot use the most conventional types of limits because as

g(+)—~1,
E,~ — (1.14)

[13]. Furthermore, perturbation theory predicts that
Q,~0, (1.15)

in the sense of weak convergence on ¥. In fact (1.15) can be compared to the simpler weak
limit in L,(R),
g(-)/llglls~0.

Instead of studying these quantities, we define the expectation values
wy(A) = (Q,, 4Q,), (1.16)

where 4 is a bounded function of the field operators (1.2) or (1.3). The set of all such A form
a C* algebra U of bounded operators on ¥, and w,€UA*, the dual space of A. Furthermore,
, is positive and has norm one, and thus w, is a state in the sense of C* algebras. We use
a limiting process as g(-)—1 to obtain a limiting expectation value w(4), and then o €A*
is necessarily a state also.

According to the Gelfand—Segal construction, w comes from a vector () in some new

Hilbert space F,., in the sense that
w(d) =(Q,n(4)Q), [[Q]=1, (1.17)
where m A->m(A) = Ayen

is a representation of 9 as operators on ¥, The Schrédinger picture dynamics exists on
Fren- In the Schrodinger picture, the time translation is given by a one parameter family

of unitary operators
U(t) =etHt, (1.18)

If A A(t)=0,(4)

is the Heisenberg picture dynamics constructed in I, II, then
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n(0,(A)) = e (A) e, (1.19)

Here H is positive and € is a vacuum for H,
HQ=0. (1.20)

The operator H is the renormalized Hamiltonian, and it is the limit of the H(g) in the
sense that
(7(B)Q, e®t 7(4)Q)

is obtained through a limit as g(- )—>1 of
(BQ,, 7@t 4Q).

We call Q the physical vacuum and 7 the physical representation. The vectors in ., are
called physical vectors.

The space translations are also given by a one parameter group, commuting with
the U(t) and leaving Q fixed.

(0, (A)) = p(A) e T PE () =(), (1.21)

It is well known that certain representations of U (coming from states of 9 via the
Gelfand-Segal construction) cannot be extended to the unbounded field operators ¢(f)
of (1.2), (1.3). Such states and representations seem to be totally unsuited for use in physics.
The deepest result of this paper is the fact that the physical representation 7 is not one of
these pathological representations. We now formulate this result in a stronger and more
precise form.

The C* algebra 9 is an inductive limit. Let B be a bounded region of space time (or a
bounded region of space at time zero). Let ¥(B) be the weakly closed (von Neumann)
algebra generated by bounded functions of the operators (1.2) or (1.3), but with f restricted
to have support in B. Then Y is defined as the norm closure of

U: A(B).

We prove that = is locally equivalent to the representation of Y as operators on the
Fock space J; in brief & is locally Fock. For each bounded region B, there is a unitary

operator Uy,
Ug: I Feon (1.22)
such that for all 4 in %(B),

7(A) = Apop = Ug AUE. (1.23)

We have remarked that there is no vacuum vector Q in J. It immediately follows
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from the locally Fock property that for each bounded region B there is a vector Q in ¥
which serves as a vacuum vector for the algebra UA(B). In other words, for all 4 €A(B),

w(A) = (Q: ArenQ) = (QB’AQB)- (124)

The vector Q; could be called a local vacuum. The vector ()5 is not unique, but one choice
would be Uz Q. The unitary Uy is also not unique.

An important consequence of the locally Fock property of x is the fact that the field
¢ exists on the physical Hilbert space Fren. Let $(f) be self adjoint on F. This is the case if,
for example, § is a real, twice differentiable function with compact support [I1]. Then for

supp. f< B and for real s,
s> (D) = Uy e'**) Uy

is a weakly continuous one parameter group of unitary operators on F,.,. We let

2($() = bren () = Us$(f) Uz

be the self adjoint operator that is the infinitesimal generator of the group.(*) Further-

more,

(l’ren (z,8) = UB¢(x: £) U;: (x,t)€ B:

is a densely defined bilinear form depending continuously on x and ¢, and ¢,,, is a solution
to (1.1)—(1.4). All the local properties of ¢ established in II go over immediately to ¢
For example, ¢, is local, so that ¢...(f;) and ¢...(f,) commute if the supports of f, and f,

are spacelike separated. Also, ¢ . (#, ) transforms correctly under the space-time translation

group. A
Gren (@ + o, b +7) =M 2P (x, 8) e~ HTFIER,

The Haag-Kastler axioms [15] are valid for A [12, 27] and carry over to z(U) on Fop.
The main technical step in proving the locally Fock property of 7w is an estimate on K,

~MV<E,

Here M is a positive constant and V is essentially the length of the support of the spatial
cutoff g( - ). From this estimate it easily follows that

Wy (%’) < const.

(*) Our definition of ¢, is Z; times the usual renormalized field. The field strength renormaliza-
tion constant Z is chosen to normalize the one particle states produced by the field$. Perturbation theory
predicts that Z, is strictly positive in our model. Hence Zg ¥ ghould be finite and neglecting Z; is merely &
maftter of convenience.
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We use space translation averaging in the limiting process which defines w, and therefore

we are able to conclude that
w(HY®) < const.,

where H° resembles a local energy operator for free particles. An estimate of this na-

ture, valid for a sequence w, of Fock states implies that
w, | UB)

lies in a norm compact subset of the dual (B)*. We note that the set of all states is w*
compact, and that any state g €U* can be reached as a w* limit point of Fock states [5, 71.
In particular, the pathological states referred to above are w* limits of Fock states. How-
ever, a norm convergent limit of Fock states is normal on U(B), and this excludes the un-
wanted states. In order to complete the construction of U,, we use the result of Araki[1]
that (B) is a factor of type III, for any bounded open set B at time zero. We also use a
result of Griffin [14] that isomorphisms between separable factors of type III are unitarily
implementable.

There are several properties of Q€ J,,, which we have not established. For example,
the uniqueness of Q is one of the Wightman axioms. Also Q should be in the domain of
any polynomial in the field operators ¢,.,(f).

The main phenomenon that we encounter in this paper is the necessity of changing
Hilbert spaces. This is a common feature of quantum field theory. In all cases this phe-
nomenon can be traced to the fact that the fundamental objects, such as the Hamiltonian

or energy operator, are given in the form
(Self adjoint operator) + (Perturbation)

with the perturbation exceedingly singular. (In the (¢%), theory, the perturbation is a bilinear
form, but not an operator on J. In fact the perturbation is so singular that the total Hamil-
tonian, as a bilinear form on Fock space, is unbounded below. It does not yield an operator
on Fock space, but on ¥,,, the renormalized Hamiltonian is a positive self adjoint operator.)
Two important reasons for this phenomenon are the translation invariance of the Hamil-
tonian and the fact that the interaction involves an infinite number of degrees of freedom,

The results of this paper extend to the interaction P(¢),, where P is a semibounded
polynomial. L. Rosen [28] has proved for this model that the cutoff Hamiltonian H(g) =
H,+H, ,is essentially self adjoint and has a vacuum vector. We expect that the conclu-
sions of section 2 of this work remain valid for certain models, even when the estimates on
the vacuum self energy derived in section 5 fail to hold. In particular, we expect that if the

vacuum energy in a finite volume has a logarithmic (but not a linear) ultraviolet divergence,
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the corresponding physical representation is still locally Fock. In two dimensional space-
time, the interaction P(¢)+@Q(¢)py has this property. Here P(¢) is a polynomial bounded
from below and Q(¢) is a polynomial of lower degree than P. The two dimensional Yukawa
interaction Py also has a logarithmic vacuum energy divergence so we expect that the
theory is locally Fock.

The logical order of the following sectionsis 5, 3, 4, 2. We have rearranged this order to

present results, first, followed by details of increasing complexity.

2. The physical representation and renormalization

In this section we construct the physical vacuum vector () and the corresponding
Hilbert space Fren. On Fon We construct the renormalized self adjoint Hamiltonian H,
and the self adjoint momentum operator P. The space time translations are implemented
by the unitary group

Ul(a, 7) = €5 17= 2.1)
and the vacuum satisfies HQ =PQ =0. (2.2)

Furthermore, H and P commute and H >0.
We construct €2 as a limit of the vacuum vectors {2, of the cutoff Hamiltonians H(g).

For concreteness, we take g(z) to be a nonnegative C3° function equal to one on the interval
[—3, 3] Let
gn (x) =g(x/n) (2.3)

and for A€, let w,(4) =% f(Q,“, 0. (4)Q, ) hla/n) da, (2.4)

where ¢, is the space translation automorphism (see II, sections 3.6 and 4). The function
h({-)>0is O, has support in [—1, 1] and

fh(x) dx=1 =% fh(oc/n) do. (2.5)
By a general compactness principle for states on a C* algebra, there is a w* conver-
gent subnet w,, of the states {w,}.
Thus for each 4€9, W, (4) > w(4).

The limiting state w can be used to construct the inner product of a new Hilbert space
Fren> and the operators A €9 can be realized as operators on J,.,. The advantage of working
on the Hilbert space ., is that the space-time automorphisms ¢, are given by unitary
operators (2.1). We state some results.



THE A(¢*), QUANTUM FIELD THEORY WITHOUT CUTOFFS. III 211

TaEOREM 2.1, Let w be a w* limit point of the sequence w, EA*. There is a subsequence of
the w, which converges w* to w. There is a separable Hilbert space Jien, @ * isomorphism 7
of A, a continuous unitary representation U of R?, and a vector Q€ Jpop, such that

o(4) =(Q, 7(4)Q) = (Q, 4;n Q) (2.6)
Ula)n(4) U(—a) = n(0,(4)) (2.7)
and U@)Q = Q. 2.8)

The spectrum of the generator H of time translations is contained in the interval [0, oo).

The existence of F,.., 7t and Q satisfying (2.6) is the Gelfand-Segal theorem [21].
We will prove Theorem 2.1 using the locally Fock property of z, which also leads to the

properties of ¢, explained in section 1.

TarorEM 2.2. Let w be a w* limit point of the sequence {w,} and let 7 be the corresponding
representation of U. Let B be a bounded region of space time or of space at t=0. Then there
ts a unitary operator Ug: F— Foon such that for A€W(B)

n(A) = U, AUE. (2.9)

In short, we say that w and & are locally Fock.
The locally Fock property of w rests on the following theorem.

THEOREM 2.3. Let B be a bounded region of space time or of space at t=0. Then the
sequence

w, M A(B)EAB)* (2.10)

lies in a norm compact subset of A(B)*. Any limit point w | A(B) is normal.

The proof of Theorem 2.3 will be given in the following sections. We introduce some von

Neumann algebra terminology [2]. A state p of a von Neumann algebra I}t is called normal if

sup (4,) =g (sup 4,) (2.11)

for each monotone increasing generalized sequence {4,}, 4,€IR, provided the sequence
A, is bounded from above, so that sup 4, exists.

Let us consider linear functionals on I of the form 4 —~I(4),

I(d)= 5 (46, p), (2.12)

i=1
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where 2 6l <o, 3 < . (2.13)

Ultraweak convergence in I is defined by convergence of all linear functionals of the
form (2.12)-(2.13), and conversely each ultraweakly continuous linear functional on
IR can be represented in the form (2.12)—(2.13) [2, page 40]. A state g is ultraweakly con-
tinuous if and only if it is normal, and every ultraweakly continuous linear functional can
be written as a linear combination of four normal states [2, page 54]. The norm of I €R*

defined by
2]l =sup {J(4)|: A€M, 4] <1} (2.14)

The 4 in (2.14) can be restricted to a subalgebra IR, of M which is weakly or ultraweakly
dense in I, by Kaplansky’s density theorem [2, page 46, page 43].

We apply these concepts to the von Neumann algebra 9(B) and the weakly dense
subalgebra Ay(B) generated (algebraically) by the operators

{eid’(f), eid;(f): supp fCB’fe Ow}, (2.15)
where B is a region of space time or of space at {=0.

Proof of Theorem 2.2. We first prove that = | 9(B) is ultraweakly continuous. The right
and left multiplications
A->AC and A—-CA

are ultraweakly continuous on B(3). For C, and C, in some %(B,), with B,> B,
At AC,EU(B,)

is ultraweakly continuous. By Theorem 2.3, e [ 9(B,) is normal, and hence ultraweakly

continuous. Thus
A->w(CFAC,) = (7(0,) Q, m(A4) 7(C,) Q) (2.16)

is ultraweakly continuous. Since the vectors z7(C,;)Q run over a dense subset of Fen, and

since 7(4) is bounded, the map

4 -n(4), A€A(B)

is ultraweakly-weakly continuous. (This map is also ultraweakly continuous.)

Since A(B) is ultraweakly separable, #(3((B)) has a countable, weakly dense subset.
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Since the weak and strong closures of a linear subspace of F, coincide, z(%(B)) has a

countable, strongly dense subset. But
Usn(A(B)) Q

is dense in Fpep, 80 Fpen is separable also.

In proving the theorem, we replace B by a bounded open set at time zero (the domain
of dependence of B), since this change merely enlarges A(B). For such a B at time zero,
Araki has shown that (B) is a factor of type III [1]. His proof requires a computation that
a certain operator is not of trace class, and he shows that the operator in question is closed
but not everywhere defined due to the conditions at the boundary of B. Thus his proof which
is given in three spatial dimensions is valid in one spatial dimension, and is somewhat
easier in the latter case.

The kernel of 7 [ U(B) is a weakly closed two sided ideal. Since there are no. proper
weakly closed two sided ideals in any factor, we see that ker (z [ A(B)) equals zero and
7 ' A(B) is an isomorphism. According to a theorem of E. Griffin [14], ' A(B), as an iso-
morphism between separable type III factors, is unitarily implemented. This completes
the proof.

We remark that the argument of the above paragraph combined with the fact that
there are no norm closed two sided ideals in a factor of type III shows that U is simple,

and thus 7 is an isomorphism of ¥.

Proof of Theorem 2.1. On the metric space UA*(B), compactness implies sequential

compactness. Thus using Theorem 2.3, we can find a subsequence w, ; with

(@ = w,) [ AB| 0.

Using the diagonal process, the subsequence can be chosen independently of B.
The existence of the unitary U(a) satisfying (2.7)—(2.8) follows from the Gelfand—Segal

construction if for each space-time translation o,
w(o,(4)) = w(A). (2.17)

Thus we must show that o is a fixed point of ¢7. Since w is norm continuous, it is sufficient

to take A in the dense subalgebra
Us A(B).

Thus we let 4 belong to %(B) for some region B, and we choose » sufficiently large so that

for all (z, t)€B,
n>|z| +|¢].
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We define Bj; as the set of points within the distance |7| of B. With the above restrictions,
H(g,) is a Hamiltonian for By +js, provided that |a] <= and |7| <n. The restriction on

« 1s satisfied if
o€ supp k(- [n).

Utrider these restrictions 0o (07 (A)E A Bz +1t)

and 0o (07(4)) =0:(04(4)) = e 05 (A) e,

see II. We have set H,=H(g,)=Hy+H;, —E, . {2.18)
Since e HrQ, =Q, ,

we see that for « in supp A(- /n) and |t|<n,
€y, 02(0:(4)) Q;) = (€, 0 (4) Q)
and ' @, (0:(4)) = w, (4).

The formula (2.17) for time translations follows immediately.
In order to prove (2.17) for space translations, we substitute gz(A4) for 4 in (2.4)
and perform a change of variables «—« —f in the integration. This leads to the estimate

<||A||f|h(¢—§) —h)

lwn(aﬂ (A) ‘A)I

= % ‘ f(Qyn7 0a(4) Q) {h((a — B)/n) — M{at/n)} dot da

This vanishes as n— oo, so that for A€ U (B),
w(op(4)) = w(4),

{2.17) is valid, and U{(a) does exist.
We prove now the strong continuity of U(a). The vectors 7(4)Q are dense in Foy
for 4 in U, A(B) for bounded space-time regions B. If 6,(4) is in some A(B), we have

Ula) m(4) Q= n(0,(4)) Q
by (2.7) and (2.8). By (2.9),

Ula) m(A) Q= U,o,(4) Ug Q. (2.19)
Since g, is implemented locally on J by unitary operators of the form
exp (sH(g) v) exp (—iPa),

the right side of (2.19) is strongly continuous in a. This proves the strong continuity of
U(a) on a dense set of vectors, which is sufficient.
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The remaining assertion of the theorem is that H >0. Let
H= fﬂdE (w)
be the spectral resolution of H. Then we define
F(r) = 0(4*0-(4)) = (n(4) Q, " 7(4) Q) = fe"“d 1 B(u) =(4)Qf?, (2.20)

In order to prove that H has nonnegative spectrum, we must show that only the half line
[0, =) contributes to the integral (2.20). For 4 in some local algebra A(B), we infer from
Theorem 2.3 that F(r) is the limit through a subsequence of the similar functions

Fo(0)= 00 (40 () = [ (0(4) Qs 05070, 4)Q,,) x )

where H, is defined in (2.18). Since H, >0, F,(t) has a Fourier transform F,(u) with sup-
port in the half line [0, o0). The subsequence F,,’(r) converges pointwise to F, and is uni-

formly bounded,
|, (@) <[l 4]

Hence the F,, converge to F as tempered distributions, and consequently the Fourier
transforms F,, converge as tempered distributions also. Their limit # must therefore have
support in [0, o), and so only the interval [0, o) contributes to (2.20). As the vectors
n(4)Q, A€U(B), are dense in F,,,, this shows that H>0.

3. Local numbher operators

In this section we define local number operators Ny, N, 5 and N, ; and we investigate
their properties. Each of these operators is the biquantization of an operator on the one
particle space. We reduce the study of such quantized operators to the study of the cor-
respdndjng one particle operators. We analyze the one particle operators in detail, and
thereby arrive at results for the quantized operators. In Section 3.3 we assume the estimates
derived in Section 5, and we show that expectation values of the above local number opera-
tors in the approximate vacuum states w, are bounded uniformly in n. We shall use such

results in Section 4.

3.1. One particle operators. The one particle space consists of Lebesque square integrable
functions Ly(R'). We study operators ¢ on L,(R!) that are defined on the dense domain
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S(RY), the Schwartz space of rapidly decreasing C* functions with rapidly decreasing

derivatives. We require that ¢ be a bounded transformation from $(R?!) to L,(R?),

llefllz<IIflls (3.1.1)

where || - ||; denotes some Schwartz space norm. Such an operator ¢ can be represented by

a tempered distribution kernel. The Fourier transform is an operator of this type.

fle)=(2m)"? f f(p)e = dp. (3.1.2)

Corresponding to the physical interpretation of position and momentum, we say that
Fourjer transformation connects the momentum representation with the configuration
space (position) representation. This physical identification corresponds to the introduction
of Newton—Wigner position coordinates.

To each bonnded operator ¢,: S{RY)—L,(R") in the momentum representation, there

is a bounded operator c,;: §(R')—>L,(R") in the configuration space representation, where

(c:f) (=) = (2 n)“*f(cpf) (p) e #= dp. (3.1.3)

Conversely given ¢, there is a corresponding c,.
We now mention a few other examples. Let u(p) be the energy of a particle of mass

my. The operator c¢,=u(p)* of multiplication by

p(p) = (p* + md)* (3.14)

maps S(R') onto S(RY).
The configuration space operator u; corresponding to u(p)* is convolution by a kernel
k.. Here k,(x) is O except for z=0. If 7/2 is a nonnegative integer, %, has support at z=0.

Otherwise k,(x) decreases exponentially at infinity. Explicitly [25, page 185],

T/2+1 (T+D2 P
k()= i (mo) f g~meletooshE oogh (£+rt) dt, (3.1.5)

") 2

from which we see that for 7> —1,

dn

Wk’(x) <O(e ™), as |x|—> oo, (3.1.6)

for n=0,1, 2, ... For < —1, estimates of the form (3.1.6) hold if m, is replaced by m,—e,

for any £>0.
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A third example of an operator C, which we will need is multiplication by the charac-
teristic function E(x) of an interval B=[a, b]. The Fourier transformed operator c, is con-

volution by

(7%)} (i) sin ((a;b) p/2) = (27) E(p). (3.1.7)

A fourth example of an operator ¢, is multiplication by a C§° function {(x). The cor-

~

responding ¢, is convolution by (27)~#{(p)€ S(R'). Both ¢, and ¢, map S(R?) into itself.

Thus the operator
¢, = () pz () (3.1.8)

is a bounded transformation of §(R') into itself, and it is a localization of the operator

4#z. We also want a localized version of u7 with a sharp boundary. Thus we wish to replace
{(z) in (3.1.8) by E(x).

TEEOREM 3.1.1. Let 1 <}. Then E(x)u; E(x) ts a bounded operator from S(R*) to Ly(EY).
Let T<4. If [(x) is a positive Oy function equal to one in a neighborhood of the support of
E(x), and if £>0, then as bilinear forms on S(R!) x S(RY),

E(z) ui E(x) < const. {(x) u3*+*¢(), (3.1.9)
where the constant depends only on T, £ and supp E.
Proof. Tt is sufficient to prove that for <}, ¢>0, and f€ S(R),
(f, Eus* Ef) < const. (f, us***f). (3.1.10)
In that case Bz Bf||? < || Ef||® = (f, EuZ* Ef) < const. |32 f]%, (3.1.11)

which shows that E(z) uiE(x) is an operator and a bounded transformation from $(R') to
L, (RY. Furthermore, f=_{f+(1—¢)f and

Ef=Ef.

Hence (f, Buz Ef) = (¢f, Epz BLf) < const. (f, uz™**Lf),

which is (3.1.9).

In order to prove (3.1.10), we write
(f, EuzEf) = (f, Buz f) + (f, Eluz, E] f)-
Since |(f, Bz ) < Wl Nl fll < comst. [[uZf]l%,
we infer that (f, BuLEf) < const. (f, u2°f)+|(f, BLuZ, E11)|. (3.1.12)
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We now estimate (f, Blyz, B11) =}, 9),

where g9(p)= ("217?) fE’(p ~q) (u(g)® — u(s)") E(g — 5) f(s) dg ds.
Since for 7<1, | 4(g)* — u(s)*| < const. u(g —s)",

and since by (3.1.4), | E (p)| < const. u(p)~,

we have lg(p)| < B [f]) (2),

where h(p)= const-fu(p ~q)  ulg) " dg.

We now show that for any £> 0, there is a constant such that A(p) < const. u(

We break up the integral in (3.1.15) into two regions:
Llg|<}|»|
and II:|q|> 4 |»|-

In region I, u(p —q) = const. u(p), so that

f t(p—q) u(g) ™! dg < const. ,u(P)_lf p(g) ™" dg < const. pu(p) M,
I 1

Ipl
since f,u(q)‘l“dq < const.f lg|~**"dg < const. u(p)*.
I 1

On the other hand, for ¢> 0,

—&/2

< const. u(p—q) "2 u(p)??,

©(9)
so that

f (P —q) ™ plg) ™ *"dg < const. u(p)™ fn/t(p =) ulg) T dg.
II
But in the region II, u(g) ' <2u(p)™%, so

f M(p — Q)_IM(Q)_H_’(ZQ < const. Iu(p)(sl2)-1+'r+e/2,
II

from which we conclude that

1+7+s

h(p) < comst. u(p)”

(3.1.13)

(3.1.14)
(3.1.15)

p) —1+r+e.

(3.1.16)
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We now bound (3.1.13) by writing for »>0,
|(Fs D1 < WFlla-sica s lglle s < NFllo-saso B % 17]ll2sss (3.1.17)
where subscripts denote L, norms. By the Hausdorff-Young inequality
|3 [ lass < | B} [F ™ (@) l2-sic s

and by the Hélder inequality
< [[B@)llcaszomm I fll2s

since N e = N7l = 1Al
Again applying the Hausdorfi~Young inequality
1% 3¢ 1Mo < URls s 1Al (3.1.18)

and by (31.16), he L1+,/(4+,,) if

v
1- 1+—)>1.
(1-7) ( + 4+v) >
This can be satisfied if <} (3.1.19)
by choosing v sufficiently large so that »> (1 —27)/47, or in other words

v
4+2y

7< (3.1.20)

For such a value of », we have by (3.1.17)
(7, )| < const. [|Fllo-pcrenllll2s
On the other hand, we shall prove that for certain » satisfying (3.1.20) and £> 0,

7 ll2-ssa4v < const. [|uE" % f||, (3.1.21)
so that

0, 205, B1 | =[(F 9 < comst. [uz* 2l Iy < const. (£, 27+ (3.1.22

Since this 7 is restricted to 7 <}, the inequalities (3.1.22) and (3.1.12) complete the proof
of (3.1.10). In order to establish (3.1.21), we write

“ f”g::{gig — flf(p)|2—v/(l+v)dp — fllu(p)zr f(p) l2—v/(l+v)[u(p)—d(2—vl(l+v))dp

<@ I @) 27 o s
15 — 702903 Acta mathematica. 125. Imprimé le 23 Octobre 1970.



220 JAMES GLIMM AND ARTHUR JAFFE

The function u(p) 27"+ js in Lo,y if

vy 1+
6(2—m) (2'T)>1.

This is true for any ¢ satisfying

14

> .
o 4429

Since » may be any positive number satisfying (3.1.20), we can choose » so that

v

1+8/2>4+2v

>,

and then choose ¢ =1 +¢/2. Hence

I7ll2-sct+» < comst. [|u(p)™**Fllo = const. [luz"** ]|,

which is (3.1.21). This completes the proof of the theorem.
For E, {, v as above, the operators

EuiE and Luil

are positive operators with domain $(R'). Let ¢, and s, denote their respective Friedrichs
extensions. We note that for

fe D(&LH),
we have fe€D(c})
and for a constant depending only on supp E, 7 and &,
llcdflI? < const. ||sd=+f]l- (3.1.23)

This is a consequence of the fact that inequality (3.1.9) extends by continuity to the
closure of S(R') in the norm

(£l = Resz™e= Al

which is the domain of s},,,. Furthermore,

I£1lle = ll42* Efl| < const. [l £]ll,

so that the domain of ¢} includes the domain of s}, ...
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THEOREM 3.1.2. Let 0<7 <} and let c, be the Friedrichs extension of
E(x) yz B(x),

where E(x) is the characteristic function for a bounded interval B. Then ¢, commutes with
the orthogonal projection of Ly(R) onto Ly(B), and

e | L, (B)] ™

s @ compact operator.

Proof. The projection of Ly(R*) onto Ly(B) is given by multiplication by E(z). Clearly
E(x)uz E(z) commutes with multiplication by E(x) on S(R?), since E(z)2= E(x). By con-
tinuity, this extends as a bilinear form to the domain D(c}) x D(c}), and so holds on D(c,)
as an operator equality.

In order to show that ¢, has a compact resolvent on Ly(B), it is sufficient to show that
the resolvent of ¢} is compact on Ly(B). The latter is true if whenever D is a set of vectors
such that

D<D(c} | Ly(B)) (3.1.24)
and sup [lcdf]| < oo, (3.1.25)
feD

then D has a compact closure. It is sufficient to replace D(c! | Ly(B)) in (3.1.24) by any core
of ¢} [' Ly(B). By definition of the Friedrichs extension, §(RY)is a core for ¢} and E(z) $(R)
is a core for ¢} | Ly(B).

It is convenient to imbed Ly(B) in L,(R!) and to write a nonlocal expression for c}.
For f€ E(x) S(RY), we have

lled Al1* = = B All* = |z 11, (3.1.26)
where we call this nonlocal since u7*f€ L,(R'). We remark that (3.1.26) implies a conti-
nuity condition on f. Let f,(x) = f(x + a), so that

=112 = [17i0) e - 1)t ap.
Since for 0 <z <1, (™% —1)| < 2| pa|” < 2|al" u(p)7,

: H
woinforthat =l <2lal"([17uieras) ~2lal il

Thus a uniform bound (3.1.25) for f€ D, gives

sup ||f.— f|] < const. a7,
fe€D
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or equicontinuity of the functions in D. It is a classical result that an equicontinuous set
D of L, functions with support in a bounded interval has a compact closure D-. This
completes the proof of the theorem.

3.2. Quantized operators on Fock space. We first review (1) some standard notation. The
Fock space F for noninteracting bosons is the Hilbert space completion of the direct sum
of n-particle Fock spaces,

7=,§> 7, (3.2.1)

Here ¥, is the complex numbers and 7, is the completion in Ly(R") of the n-fold symmetric
tensor product of F,=L,(R,). Thus a vector f={f,} € J is a sequence of » particle vectors
in J,, ||fl2=2%=0||fa]|> As for the one particle space, we represent n particle vectors in

the momentum representation f,(k,, ..., k,) or in the configuration representation f,(z,, ..., z,).

fol@y, ..., 2,)=(27)" ™2 f e " f(ky, ..., k,) dk, (3.2.2)

where kx= 37,k x, and dk=]][{,dk. Fourier transformation is an isomorphism of ¥,
and of 7. We use a domain D, J of well behaved vectors, The vectors in Dy have a

finite number of particles with wave functions in the Schwartz space S(R"),
Dy={f:/€3, f,=0 for large n, and f,€ §(R,)} (3.2.3)

Fourier transformation maps D, onto itself.

We define the annihilation operator a(k) on Dy, which maps J, onto J,_,. For f€D,,
(@) D (b e ona) = 0 fo (B, By, s Bna), (3.2.4)
so that a(k) D,< D,. Clearly la(k), a(k')] Dy=0

and any product a(k,) ... a(kg) is defined on the domain D,.

The adjoint a(k)* of a(k) has domain zero as an operator, but it is a densely defined
bilinear form on D, X Dy. Even though a(k)* is not a densely defined operator, we follow
convention and call it the creation operator for a particle with momentum %.

Any monomial of creation and annihilation operators

(1) Formulations of Fock, space and operators on it may be found in many places. Convenient for
our point of view is the systematic treatment of Kristensen, Mejlbo and Poulsen {20]. Creation and anni-
hilation operators as bilinear forms were also considered by Galindo [6]. Our use in [10] of weak inte-
grals of bilinear forms has been questioned [23], and for this reason we present the elementary details
leading to formula (3.2.7). We note that every Wightman field ¢(z) is a densely defined bilinear form
with C* dependence on z [3].
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a*(ky) ... a*(k,)alky) ... alky), (3.2.5)

with the creation operators to the left of the annihilators, is a bilinear form on D, x Dy
with vatues
(f, a*(ky) ... a* (k) a(py) ... a(pg) g) € S(B**P). (3.2.6)

Thus if ¢,z(k; p)€ S’ (R**#) is a tempered distribution,

Cap= fcaﬂ (k; p) a*(ky) ... a* (kz) a(py) ... a(pg) dk dp (3.2.7)

is a bilinear form on Dy x D, that exists as a weak integral of bilinear forms. The C,; of
(3.2.7) is a Wick ordered monomial and is the quantization of the tempered distribution
Coplk; D).

If c,4(k;p) is the kernel of a bounded operator c,; from S(R#) to Ly(R*), then the
bilinear form C,; on D, x D, determines an unbounded operator on ¥ with domain D,.
In order to establish this, we note that if 7, is the identity operator on L,(R?), then
2 ®1y, i8 a bounded operator from S(R#)® S(R?) into Ly(R*+7), and it extends uniquely
to a bounded operator from §(R4+7) into Ly( R*+7).

Symmetrization is a projection on L, and on §. Thus the symmetrization of ¢,s®1iy,
in the §+y initial variables and in the « -+ final variables yields a bounded operator from
S(RA*7) to Ly(R++7), and an unbounded operator from 7,4, to 7,., with domain §(R#+7)N
744y Finally, C,; is the sum over y of the symmetrizations of (e +y)!/y!) ((f + )yt
Cap®1y, With domain D,.

If ¢,y is a bounded operator from §(R') to L,(R"), then the operator C,; has a closure
on 3 if the operator ¢;; has a closure as an unbounded operator from L,{ B!} to Ly(RY). If
Cxp 18 bounded from L,(R#) to Ly,(R*), then C,; has a closure with domain containing
D(Nte+£2) where N is the total number of particles operator defined by

(Nf)p = nfp. (3.2.8)
If ||capl| is the norm of c,p as a transformation from L,(R?) to L,(R*) then
[N + )7 Cap (N + )22 < [lecpl] (3-2.9)

This we derive from the bound
(a+9)! (B+p)\?
I(fac+w Omﬁgﬂw)l < (——y?/— %%‘ ”caﬂ” "faw” ||9ﬂ+7”
< ”caﬂ" (a+ V)ulz "faﬂ'" B+ '}’)ﬁlz ”gﬂ+7”-
If ¢, 5 maps §(R#) continuously into S(R=), then C,; maps D, into D,.

By Fourier transformation we define the annihilation operator A(z) for a particle at
the space point z, ‘
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A@)=(2nm)"} fa(p) e dp, (3.2.10)

corresponding to the quantization of ¢g,(p) =(27)~Y/2 exp ( —ipx). In the configuration space
representation, for f€D,,

(A®@) Hr-1(@ys - Tn_1) = 0¥, (2, 24, ..., T,_q) (3.2.11)

As above, we can quantize a tempered distribution c,4(x; y) yielding
Cop= fc“ﬂ (2 ) A% (2y) ... A*(25) A(yy) ... Aly;) dxdy, (3.2.12)

a bilinear form on D, x Dy. These C, 4 have the same properties as the C, 4 in the momentum
representation discussed above.
We also use the Fock space J(B) defined over the one particle space Ly(B) where B is

an interval in R

3(B) =§0 7.(B), (3.2.13)

where 7,(B) is the Hilbert space completion of the n-fold symmetric tensor product of
Ly(B)= F(B). If B<B,, then J(B)< }B,). If B=B,UB; and B,N B, =, thep

F#(B)=3B))®, FB), (3.2.14)

where ®, denotes the completion of the symmetric tensor product.

We now specialize to study the biquantization C of operators ¢ on the one particle
space F,. For simplicity, we do not write ¢,; or C;;,. We consider operators ¢ studied in
Section 3.1; they are defined on the domain §(R') and are continuous transformations
of §(RY) into Ly(RY). Then on the domain D,,

C= fc(x, y) A* (x) A(y) dz dy, (3.2.15)

where ¢(2, y) is the kernel of ¢.

We give some examples which we call local number operators:

N, is the quantization of multiplication by E(x). (3.2.16)
N, is the quantization of ug. {3.2.17)

N, ¢ is the quantization of {(x)uz{(x). (3.2.18)

N_ 3 is the quantization of E(z)u; E(x), for T<}. (3.2.19)

In the case T=1, the operator N, ; provides a local energy operator Hy*, discussed in

Section 1.
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TrEOREM 3.2.1. The operator C | D, of (3.2.15) has any of the following properties if
and only if the operator ¢ | S(RY) has the same property.

{(a) The operator is essentially self adjoint.

(b) The operator is positive.

(c) The operator is positive and the Friedrichs extension (or closure) has a compact
resolvent.

Proof. (a) If C | D, has a self adjoint closure, the domain of the self adjoint closure
contains a dense set of analytic vectors. Since €' commutes with the projection of J onto
7. there is a dense set of one particle analytic vectors, obtained as limits of one particle
states in §(R!'). Thus they are in the domain of the closure of ¢, and c is essentially self
adjoint. Conversely, if ¢ [ $(R') has a self adjoint closure, the domain of the closure ¢~
contains a total set of analytic unit vectors ¢;(x), i=1,2, ... The vectors e, ...;,=en®;...®, €,
are n-particle vectors in the domain of the closure of C | D,. Clearly they are C* vectors
for C-, since

C_eh...in=c—eﬁ®s...®se,n+...+eh®s...®sc_ei".

Furthermore if, [lc™)mell| < 7 m?,
then [(C)me,.... | <nmpmm!,  B=max {B,,..., B}

Thus the e,, 4, are analytic vectors for C~ and C | D, is essentially self adjoint.

(b) If C is positive, ¢ is clearly positive. Conversely, suppose that ¢ is positive and
fal2y, ..., 2,) €Dy N F,. Then for each =, ..., z,, fu(z,, 23, ..., ,) € S(R?) and

fﬁ(xl, Loy oou s &) (2, Y) fr (4 Xy ..., 2,) dxdy =0

is a function in §(R""'). Thus integrating over z,, ..., ¢, We have shown that ¢ is a positive
operator on each n particle coordinate and hence C is positive on D,yN F,, and so on D,.

(¢) Let Cr and cp be the Friedrichs extensions of C [ D, and ¢ [ §(R*) respectively.
It is sufficient to show that c} has a compact resolvent if and only if C} does. Note that
D, is a core for O} and $(R?) isa core for c}. The Friedrichs extension Cr commutes with the
projection P, onto ¥, as a bilinear form on D(CE) x D(C}), and hence as an operator on
D(Cy). Thus C} commutes with P;, and if O} has a compact resolvent, so does ¢} =P, 0} P,.
Conversely, if c} has a compact resolvent, we choose orthonormal eigenvectors e, of ¢} cor-

responding to eigenvalues 0<4,, 4,— 0. Since ¢,=lim, e, where e, (x) € S(R') and
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Hm (e;-— ey, cey;—ey) =0, (3.2.20)
j, k>0

it follows that e, i, —e€,®;... ®,6, is in the domain of C%, and hence is an eigenvector
with eigenvalue 4, + ... + A,. These eigenvectors are total in ¥, so that C} has been diagonal-

ized. It has discrete spectrum and eigenvalues
2 ik (3.2.21)
i

for nonnegative integers #,, only a finite number being non-zero. Since 4,— oo, the eigen-
values have no point of accumulation except o> and hence C} has a compact resolvent.

This completes the proof.

COROLLARY 3.2.2. (a) The operators Ny and N are essentially self adjoint on Dy. The

operators N, ¢ for {(x)>0 and N, g for <} are positive.
(b) If 0<t <1k, the Friedrichs extension of N, z has a compact resolvent on J(B).
(c) Let B be a bounded interval and

Then for 0 <1 <} the Friedrichs extension of

J
jle 7.8
has a compact resolvent on F(B).

Proof. We need only prove (b) and (c). Since the Friedrichs extension of Eu; E com-
mutes with the projection of L,(R1) onto Ly(B) (see the proof of Theorem 3.1.2) a similar
argument shows that the Friedrichs extension of N, ; commutes with the orthogonal pro-
jection Py of Fonto J(B). The corollary now follows from part (c) of the theorem, which can
be proved for operators O NPz D, and ¢ [ ES(R') on J(B) and Ly(B). The compactness of
the resolvent of (Eu;E)y is proved in Theorem 3.1.2. This completes the proof of (b).
The proof of (c) follows from the compactness on Ly(B) of the resolvent of

J
(2512 B, (3.2.22)

where B, is the characteristic function of B;. Noting that ||f||* < >7-1 || &, f||*, we follow the
proof of Theorem 3.1.2 in order to establish the compactness of the resolvent of the
operator (3.2.22).

3.3. Vacuum expectation values of local number operators. In this section we assume the

results of Section 5, and give estimates on the vacuum expectation values of local number
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operators. We first recall some definitions. In terms of the A(z) and A(z)*, the local fields
¢(x) and z(x) are defined by

$() =lif2 §HA* @) + A @) (3:3.1)
() =%2 uh(4* (@) — A@)), (33.2)

and are S(R') valued bilinear forms on D, x D,.

In Section 2 we defined the approximate vacuum w, by
1
wn(A)=;bf (Q,, 04(4) Q, ) h{a/n)da. (3.3.3)

TaeorEM 3.3.1. (a) Let B be a bounded interval in R,. Then
0, (Nz)< M, (3.3.4)
where M 1is a translation invariant constant, independent of n.
(b) If 0< ()€ 03"’, and 7 <1, then
o (N ) <M, (3.3.5)
where M is a translation invariant constant, independent of n.

(¢) If f=F€S(RY), then
wn (B + 7f)®) <[

where || is a Schwartz space norm of f, independent of n.

(d) Ifr<}
0, (Ne,3) < M, (3.3.6)

where the constant M is translation invariant and independent of n.
Proof. (a) Let B=[a, b] and
1
(@, y)= ; fE(x —a)E(y —a) h(“/n) dad(z—y),

so that 0, {(Ng) = (Q,, CoQ, ). (3.3.7)
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Since ] f B(a—a) By — ) h(a/n) dec| <[4 |2l = llo |6~ al,
¢, (%, y) is the kernel of an operator on ¥, with norm bounded by
const. % |6 —al.
Thus by (3.2.9), (N +I)"2C, (N + I)"t|| < const. % |6 —al

and by (3.3.7) wy (N3) < const. % [6—a|w,(NV) < const. |b—al

by Theorem 5.1.
{(b) We follow the above proof with

calar) =3 [l kule—y) tly — o) M)

Let £, = (- —a). We note that for f€ S(R"),

(= [0 Consta bamdass, Wil { [ 1, 2 200
(10 o 1 2%, 21 2[4 1 )

<2l { [ e iPaccs [l et an 2 10l ewsf o

2
< -
n

o j (am A+ L, 1 2) da

2
=2 e (it Dz + [, 1 P

The commutator is a bounded operator, since

Mlp? 0H (o)< (@ ﬂ)_*fl(/t(zf))"2 — ulg)™) Ep—q)f(g) dg
< const. f (-9 |é(p—a)F(a) dg

and therefore ez, 21 lls < const. (™ 1) o Nflla < 2111z

as is rapidly decreasing.
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Let B=[a, b] be a neighborhood of the support of {, let E be the characteristic func-
tion of B, and let B,= E(- —«). Then

f NL4Z2, £.] B f|doc < cons. f 1E.f]?dac < const. (b a) 1|

Furthermore, the operator
[,u;/z: Ca] (I - Ea) = Ca,u;lz (I— Em)

is an integral operator with a kernel dominated by const. e~ ™U-=+l¥=2D  (Qee (3.1.6).)

Thus the operator
K, =%t — Ey) (1 + (x— o))

has an L, kernel and is consequently bounded with a bound M, independent of «. It
follows that

Jiteze, 21 - B = [+ o
<M%fll<1 + (x—a)zrlfll“dﬁmf(l +e)7%de | ]
Combining these results
(1 caf) < comst. (L fIP+ ) < const. >l
Therefore there is a constant M such that
w Uz —Cp
is a positive operator, and hence by Theorem 3.2.1b we have after biquantization

M
= N.~0,>0.

Thus for v<1, w,(C,) <% w,(N,) <]7b_lf const. w, (H,).

By Theorem 5.1 and Remark 2, equation (5.10),

w, (C,) < const.
(c) Since

S+ alffF =1 (N +a(P? + [z 2 + A2 (3.3.8)
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we need only consider the Wick ordered terms in (3.3.8). Each such term has § annihilators,
§=0,1, 2, and 2—4 creators. We now show that it is sufficient to consider the terms with

j=1. Consider, for example, the pure creation term (4*(u} f))2. We have

lwn (A* (d )] < 0n (A* (ud ) A(ud 1) + § | ud 1]

Similarly @a (B + 7(f)%) < const. w, (4*(uif) A(uif) + |1 (3.3.9)

for a suitable norm |f|. We estimate (3.3.9) as in the proof of parts (a) and (b).
(d) From Theorem 3.1.1, and Theorem 3.2.1b, we conclude that on Dy x D,,

Nz <const. Narie, o, (3.3.10)

where ¢>0. Hence (3.3.10) extends to the domain D x D, where D is the domain of the
square root of the Friedrichs extension of Ny, .. ¢. The desired inequality now follows from

part (b) of this theorem, by choosing ¢ sufficiently small so that 27 +¢<1.

4. Norm compactness of the approximate vacuums

In this section we use the bounds on the local number operators derived in Section 3.
We give a proof of Theorem 2.3, and hence complete the proof of Theorems 2.1 and 2.2.

We restate our result as Theorem 4.1, in a somewhat more general form.

THEOREM 4.1. Let w, be a sequence of normal states defined on the algebra A and suppose
that for some >0 and for each [(x) =0 in CF,

0, (N ) <M, (4.1)

where M =M (0) a translation invariant constant independent of n. Then the sequence Wy M AB)

lies in a norm compact subset of the dual A(B)*, and any limit point w [ A(B) is normal.

Remarks. 1. The state w, defined in (2.4) is a normal state on 9, since the vector state
(Qq4, - Qq,) is normal and the space translation automorphism ¢, in (2.4) is implemented by
a one parameter continuous unitary group of operators on J. Hence o, extends to a strongly

continuous automorphism of all bounded operators on 7.

2. In Theorem 3.3.1 we established the bound (4.1) for all <1 in the case that the
w, are the approximate vacuum states defined in (2.4) for the (¢%), interaction. Thus a

proof of Theorem 4.1 provides a proof of Theorem 2.3.
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3. If the inequality (4.1) holds for some 7 >0, then for ¢ <7, a similar inequality holds.
Wy (Na', C) < mﬁ_"wn (N‘r, C)'

If 0 <}r, and ¢ <}, then for a bounded interval B we conclude from (4.1) and the proof of

Theorem 3.3.1 (d) that
0y(No,5) < M, (3.3.6a)

for a translation invariant constant M =M (B) that is independent of n. The estimate
(3.3.6(a)), for some o> 0, is the crucial estimate in the proof of Theorem 4.1.
The method of proof is to use (3.3.6(a)) to replace the sequence w, by a regularized

sequence wj that is close to w, in norm.
loo, — 3|l <e. (4.2)

In the regularized state w;,, there will be only a finite number of particles in each bounded
region of space, and that number will grow at most as a power of the diameter of the region.
These bounds on wj, will be uniform in ».

The algebra Up(B) defined in (2.15) is weakly dense in A(B). Since

(e — %) [ AB) = ll(er —wh) [ L (B);

it is sufficient to prove that any sequence wf, | ¥y(8) has a norm convergent subsequence.

The next step in the proof is to approximate C €Uy(B) by an operator C° such that
s (0~ ) <], 43)

where C*® is independent of n. The approximation C¢ of C is obtained by expanding the
exponentials in € in power series, each term of which is a product of unbounded field
operators. Because of the regularity of w}, the expectation value w?(C) has a corresponding
infinite series expansion which converges uniformly in n. To obtain C¢, we neglect the tail
of this expansion and we also localize each term in a finite interval of space. The localiza-
tion also leads to a small error, uniform in #», and satisfying (4.3).

Finally it will be possible to apply the compactness of the resolvent of the localized
number operator N, ; proved in Corollary 3.2.2(c), in order to prove that the twice regu-

larized expectation values w7 (C?) have a subsequence such that
(@}, — i) () <o) O] (4.4)

From (4.2)-(4.4) we will conclude that Theorem 4.1 is valid.
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We prove Theorem 4.1 in the cage where B is an open interval of space whose closure

is contained in (0, 1). This restriction on B is for convenience only. Let
X i= [j7 7 + 1)'

The local number operators N xp j=0, 1, ..., are commuting self adjoint operators. Let
P, ; denote the spectral projection of the self adjoint operator Ny, for the spectral interval
{0, 1].

I 0<{{z) is a C§° function equal to one on X, then {;(z)={(x+7) equals one on X,

and
NX, < NO. 4‘1.

By (3.3.6 (a)) in the case v=0, wn(Nx) <M, (4.5)

The constant M, is independent of n and of j. In the following, we introduce constants
M,, ..., independent of = and of C in 9.

From (4.5) we have w,(I—P, ) )<M I (4.6)

We use this fact to construct the approximate vacuum o}, by keeping a finite number of
particles in each interval X,. For some constant M, to be chosen later, we define

1=1() = Mpe 2 (1 + 7). (4.7)
We define the projection P=T11 Py, (4.8)
j=-o00

and we define the linear functional wS(-) on A by
@’(C)= o, (PCP). 4.9)

By (4.8) and the fact that the P, ; are commuting projections, we have

{—P) <1 _Zw (= Py, 9)- (4.10)
Thus w,(I—P) <l > w,(I—Pyy,y)
_ 2 (M) S -1
and by (4.6) — (4.7) <e¢ > 14+
My);-"c

We now choose M, large, so that
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o, (I —P)< (¢/3)% (4.11)
In order to verify that w, and wj are close in norm, we write

@, (0) — 5(C) = w, (I — P) C(I — P)) + w, (I — P) CP) + 0, (PC(I - P)).  (4.12)

Note that |, (4* B)]* < w,(4*4) w, (B*B). (4.13)
Since |Pll=1=|1-P|,

and I —-PP=(I-P),

we have |, (C) — w3 (C)] < 3|0 [0 (I - P

Thus from (4.11) we conclude that

|n (C) — 03 (C) < ||
In terms of the states, llwn — sl <e. (4.14)

We now study an operator C € U, (B). Thus
0=,i°=ze‘°°"”“'"‘””. (4.15)

The test functions f; and k; are smooth and their support is contained in B. For such a C,
it is obvious what an expansion in terms of field operators means. First we expand C in

terms of annihilation-and creation operators 4 and 4* We write
0= 3 o 4.16
a_ﬂ2= o O (4.16)

where C, 4 is a Wick ordered monomial of degree o in creation operators 4* and of degree
in annihilation operators 4. Thus

C. =fc,ﬁ(x1,...,xa, Tos1s oo > Turp) A* (%)) ... A% (2,) A(@ps1) ... Apip)de.  (4.17)

The kernel ¢, 4(x) is symmetric in the « creation variables z;, ..., z, and in the § annihilation
variables ,,,, ..., %, 5. We note several properties of the operators C,, the kernels c,4(z),
and the corresponding operator c,,; from ¥, to 7,.
Suppose that the kernel c,4(x) has support in the region
xiEBi’ i=l"‘-1a+ﬂy

for intervals B;< R*. Then if
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3 etf
N.=[]Ns, N_= ]I Ny, (4.18)
i=1 i=a+l
we have s+ 1) Cous (V- + I)7¥|| < [feagll- (4.19)

The bound (4.19) is a localization of (3.2.9), and is a consequence of the local action of
A*(z) and A(x) on the Newton-Wigner wave functions f,(z,, ..., z,) € F,. (See Section 3.2.)
We also note that for v, €J,, v5€p,

llegll = sup l(e! )7 (ye, Cepve)| (4.20)
Ilgll=1

where (g is the quantization (4.17) of c,s on Fock space. Thus for

0 <y <min ( f),
we infer from (4.20) that

e <Tvl osll {2 E2) ouypmid 421
|tpes ey pryoll <l ell 5 5 Nwmsepy (4.21)

Lemwma 4.2. For a bounded operator C of the form (4.16)— (4.17),

lleasll < 2**# |- (4.22)
Proof. Note that

min (x, 8}
(W Cuppp) = (e {C — y; Ca-y, -7} ¥5)
By (4.20) — (4.21)
min («, 8 (

1313
leall <@gy {lol "3 EE L o)

min (&, £

~lotfrpy oS R, 2

y=

We reason by induction on min (e, 8). If min (&, 8)=0, then the sum in (4.23) does not

occur and
lleasll < fICIl-

If min (e, B) +0, then by the induction hypothesis (4.22) is valid for each ||c,,, 55| in the
sum on the right side of (4.23). Thus

leasll <l {wn—u 3L 2“*ﬁ‘2y}<~ll0ﬂ{(a!ﬁ!)“*+ S guee fl}
y=1 ! =1 7!

=JlCl {(a! 1)+ 2P (et — 1)} <2**# |0,

and this completes the proof of Lemma 4.2.
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We want to show that c,s(x) is exponentially small at infinity in each of the variables
;. For this purpose we define a localization multi-index L={L,; Ly, ..., L, 5}. We let L,
be an integer corresponding to the localization of the coordinate  in the interval X,
We use the localization indices L to localize the operator C,,. We define

a+f
ol (@)= Sym. o (w) [ B(Xy,), L={L}, (424)

where E(X) is the characteristic function for the interval X,. The symmetrization in (4.24)
symmetrizes the kernel in the « creation variables (zy, ..., %,) and in the § annihilation
variables (%43, ..., #,44). The corresponding localized operator ¢y from ¥, to ¥, has the
kernel c¢Zs(x). We denote by C%; the localized, quantized. operator arising from cZs.

L= f ks (@) A* (,) ... A*(2,) A(Fgs1) ... A (Xosp) d. (4.25)
We define NE=TINs, (4.26)
k=1 k
L a+f
and NEi= . =1;[+1Nxbk. (4.27)
Then by (4.19) WNE+ 1) CE(NE+ I)7 ] < ek (4.28)

We note that the kernels c,4(x) from operators C € (B) are functions in §(E*+#),
Thus each term in (4.24) before symmetrization is a bounded operator from L,(R#) to
L,(R*) with a norm bounded by ||c,4||. Hence the same holds for ¢ (x) and

llezsll < lieusll-

Thus by Lemma 4.2, lleZsll <281\ (4.29)

We now define a measure D= D(L) of the total distance from the origin of the locali-
zation L in Ck.

x+B
D= D(L) =kZIILk|. (4.30)
LEMMA 4.3. There is i constant M, independent of C such that for C €U, (B),
llozsll < M5*Pe=mP®||C. (4.31)

This lemma improves the bound (4.29). We postpone the proof to the end of this
section. We remark, however, that the basis for the localization (4.31) is‘the fact that when
16 — 702903 Acta mathematica. 125. Imprimé le 23 Octobre 1970.
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C is expanded in terms of the fields ¢(y) and z(y), only points y € B enter the expansion.
The expansion (4.17) approximately preserves this localization, and (4.31) is a quantitative
estimate of the loss of locality that results from using the 4*, A expansion.

We now study the operator PCi; P where P is the projection defined in (4.8). By
definition P projects onto a subspace of J with a finite number I(j) of particles in each
interval X ;. Since the localization L restricts the kernel ¢ (z) to have compact support,
the operator 0% creates or annihilates particles in a bounded region. Hence by (4.25),

PCLP 4.32)
is a bounded operator,

LEMMA 4.4. Given g > 0, there exists a constant My such that for all C€ Uy (B),
|PCL P| < 5+t e-nem 2B g
Proof. We first prove that given g >0, there is a constant Mg such that
|P(VE+ I P|| |P(NE + I)EP|| < M§*P DD,

By the definition of P and the fact that each N x, commutes with P, we have
a+f
|PQVE+ DFPY | PQVE + 1) P < TT 0L + DR, (4.33)
k=

For any ¢ >0, there is a constant M such that

(ULy) + 1) = {Mye~2 (1 + L) + 1}} < Mgeti2H,

at+f
Thus T UL, + 1) < MEHE DD,
k=1
Using (4.33), |P(NVE + 1)t P|| [|P(NE + 1)} P|| < M5+ 2D,

Using estimate (4.28), we find that
|PCLP|| = ||PVE+ I (NE+T) " CL(NE+I) Y (NE+ )P
<[P+ D P||PNE+ DEP (N5 + D)7 O (V= + I)7H|
SHEP D |leg|
and by Lemma 4.3, S (M, M)+ e mem 2D 0|,

to complete the proof.
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Our next estimate bounds D(L) from below.
LeMMa 4.5. If P and Ci are defined as in (4.8) and (4.25), and if
PCLP+0, (4.34)
then there is a constant M, such that
D(L) +13 M, (at + B%). (4.35)

Proof. For fixed values of « and §, we can minimize (4.30) by choosing the |L,| as
small as possible. However, (4¢.34) will hold only if 0% both creates and annihilates no more
than [(j) particles in each region X;. For this reason it is convenient to count the number
of particles created and annihilated in the region X, for the localization L. We define L_(j)
and L_(j) to be these numbers:

L_(j) = the number of L,=j, for k=1, 2, ..., a.

L_{j) = the number of L, =j, fork=a+1, .., a+p.

These numbers must satisfy

jwu (j)=«, and j=§wL_ () =p. (4.36)
In addition, (4.34) will be valid only if
L.(G)<Uj) = Mo (1 +47), (4.37)
and L_()<l(j)=M,e2(1+4%. (4.38)
In order to minimize D(L) consistent with (4.34), we choose

l(j)=M28"2(1 +4%), if Ij|<J:t

Li(j)={0 , it |j]> ..

(4.39)
The maximum value J, or J_ of any localization index | L | in L, and the number of indices
with this maximum value, are fixed by the requirements (4.36). Using (4.39) we conclude
that there is a comstant M, (approximately equal to M,e2/3) such that (excluding the
trivial caseJJ, =0)

ac=”|<ZJ+M23‘2(1 +72)+ Lo(J )< MgJ3, (4.40)

and similarly (excluding the trivial case J_=0),
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B< M J*. (4.41)

For our choice of L, there is a constant M,, independent of « and §, such that
at+f
D(L)= 3 |\L|= 3 |jlL+()+ X |i|L-()> Me(J%+J2),
k=1 <7, MI<T -

where we have used (4.39). Thus by (4.40) — (4.41) which bound J, and J_,
D(L)> M, Mzt (ot + 8%).

If J, =0, then a <M,e~2 and if J_=0, then § <M,e72 The proof is thus complete.
These estimates are useful for constructing the operator C* and for analyzing the error

C — ¢, Let us-define the set of localization indices
Cu={L: |Lk| <M, Ek=1,2,.., 0+8}. {4.42)

If L€ Ly, then all the particles that are created or annihilated by CZ; are in the region of

space
Z=Zy= U X, (4.43)
HI< M
We define for C€ U, (B),
M
= 3 2 Ca, (4.44)
a,B=0 LecCy

where M = M(g) will be chosen later, independently of C.

LEMMA 4.6 (a). There exists a constant M, independent of M such that for C € Uy (B)
and for C° defined in (4.44),
| PC*P|| < My |C]|- (4.45)

(b) Given &> 0, there exists M = M(c) sufficiently large such that for all C'€ ¥y (B)
| P(c - co) Pli<ceficl, (4.46)
and |’ (C—C®) < el (4.47)
Proof. By Lemma 4.4 with ¢, =g,
lpepl<, 5|3 gt e,

where 7 denotes the sum over those L for which PC P+ 0, namely the L which sat-
isfy the hypotheses of Lemma 4.5. Thus
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M
I\PoPll<McliCll >~ > M exp{—imD(L)~Mu(at+pY}  (448)
&, p= M

where M;,=M,(3my—e¢) and My=e™"°. The sum over all L converges exponentially
fast, for

o0 a+f
ZL exp { — §myD(L)} = [ 2 e"""""z] = (My,)**P. (4.49)

i=—o0

The sum over the tail, L ¢ Ly, is characterized by the fact that for some k, [L,|> M. Thus

2 exp {—3moD(L)} < (a+f) e ™2 (M )" (4.50)

LéCy

Using the estimate (4.49) in (4.48) shows that

M
||PCeP|| < M, ||0||¢ ,SZ:O (Mg M)+ exp { — My, (af + %)}, (4.51)
which converges faster than exponentially as M — co. Hence (4.48) is bounded independ-
ently of M = M(e).

To establish (4.46), we write

M
lPCc~-cyPl< > 3 + 3 3+ X Z|PokP. (4.52)
a,f=0 Lécy 5;34 L %in;fM L

From (4.50) we conclude that the first sum in (4.52) is bounded by const. exp (--m, M [2),
which converges to zero exponentially fast as M — co. The remaining two terms in (4.52)
converge to zero faster than exponentially as M — oo, as a consequence of the estimate on

the tail of (4.51). Hence by choosing M = M (¢) sufficiently large, we can assure that

P -0 Pl <e|C].
Lastly, we remark that

| (C— 0] = w, (P(C ~ 09 P)| < || P(C ~ C*) Pl| <e]C]], (4.53)

to complete the proof.

We next study the convergence of the sequence {w§} of approximate states applied
to the approximate operators C°. In other words, we study the convergence of the states
w, on the bounded operators PC*P.

As a first reduction, we restrict our attention to the Fock space of a bounded region.
Let Z be the interval defined in (4.43). Then if Z, is the complement of Z in RY,

R'=7Zy2Z, (4.54)
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and by (3.2.14) F=32)®,FZ,) (4.55)
With this decomposition we write

P=(Py,@I)(IQP,). (4.56)

We now study the local number operator N,  defined in (3.2.19).

Here we choose B=X; and we restrict ¢ to be less than }. Since the Friedrichs extension
(Mo x)r of Nex ['D, commutes with the projection onto F(X,) for all 4, it follows that
the various (N, Xi)p commute. Also (N, x,)r commutes with each N, and with the spectral
projections P, ,. Thus (N, x,)r commutes with Py® 1, with I®P,, and with P. We now
let N, x denote the Friedrichs extension of NV, %, I Dy

As a consequence of the commutativity with P,
W (N2, x)= 0,(PNy x P)= o, (Nr*,x,PN{x,) S (Ve x).

We choose 7>0 sufficiently small so that (3.3.6a) is valid. (See Remark 3 following

Theorem 4.1.) Hence
wy (N, XI) < const.

We now choose M as in (4.42) — (4.44) and define
Noewe=( 2. N-t.X,)F- (4.57)
lilsM

Thus @7, (N ¢ 31} < const, (4.58)

We note that N, , commutes with each Py®I and with 7® P,. Also N, , leaves J(Z)
invariant, and by Corollary 3.2.2¢,

New | 32)
has a compact resolvent.

We now study the sequence {w}} of functionals restricted to B(Z), the algebra of all
bounded operators on the Hilbert space F(Z). Each functional w is normal, since w, is
normal by assumption in Theorem 4.1, and P is a projection. The normal functional

w; [ B(Z)
has the form w; (A)=Tr(A,4), A€B(Z), (4.59)
where A, is a positive trace class operator in B(Z) with
lws | B@)N =Tr (A <1. (4.60)
{See [2].) The operator N, , in (4.57) can be restricted to J(Z), and thus by (4.58)



THE A($*); QUANTUM FIELD THEORY WITHOUT CUTOFFS. III 241
wa (N [ FEZ) <M. (4.61)
We wish to study the convergence of
5 (C°) = w, (PC*P).

We note that PC°P =Py C*P,® P, where we regard C° on the right side as an operator

on }(Z). Thus
w5 (C%)="Tr (A, P,Ce Py).

The desired convergence of the w} (C?) now follows from

LeEMMaA 4.7. Let B be the algebra of all bounded operators on some Hilbert space H,
and let N be @ positive (unbounded) operator with N-1 a compact element of B. Then the set

{A: A€B, 0<SA<I, Tr (AN)<1}=3,

18 compact in the trace norm.

Proof. Choose an orthonormal basis {e,} for H consisting of eigenvectors of N and let

b; be the corresponding eigenvalues. For A in Ty, we have

Tr(AN)=Tr (N*AN}H) = ; Aub;

if (4;) is the matrix representing the operator A. If P= At and if g, is the corresponding

matrix, then

Tr (AN)= 3 (bt b) egl* + 201 ouf*

Let A, be a sequence in Jy and let P, = A}. Since b,— o agi—> o0, we see that a subsequence
P, of the P’s converge to a limit P in the Hilbert~Schmidt norm. For a trace class operator
A, the trace norm ||A||, is given by

4]l = sup Tr (U4),
where the supremum runs over all unitary operators. Thus if A= P2,
1A = Ally=sup Tr (U(A, — A)) = sup {Tr (U(P, ~ P) P,) + Tr (UP(P, — P))}
<up | U(P, = P IPull + sup | UP s |2, Ply=(|Pul + [Pl | P~ P>,

with P15 5o

denoting the Hilbert-Schmidt norm, and » belonging to the subsequence.
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We apply this lemma to the case = #(%) and B =B(Z). We use the operator N, 4
of (4.57) to give an
N=(N.u+1I)

for Lemma 4.7. The states w;, | B(Z) satisfy the hypotheses of the lemma by (4.59) —
(4.61). By (4.58) and Corollary 3.3.2 (¢) the operator N has the desired properties. Thus

there is a norm convergent subsequence Wn, satisfying
(s, — @) (PC*P)| < 0(1) | PC°P|| < 0(1) ||
by (4.45). For this subsequence
|(w?, — %) (C9) < o(D) [|C]), (4.62)

which is the announced bound (4.4).

In order to complete the proof of Theorem 4.1, we write for C € Uy (B).

[(@n, = @n,) (O)] < (@n, — @5) (C)] + | 05, (C — )] + |(@F, — @57,) (C)] + | 03, (C° — )]

+ (@5, — w,) (O) <4 e]|C]| + o) [|C]. (4.63)

Here we have chosen n;, n; to belong to the convergent subsequence in (4.62), and we
used (4.14), (4.46) and (4.62) to dominate (4.63). Since

"(wn‘_ mnj) r 2[()(B)" = "(wn‘_ wn,) l\ %[(B)"’

we conclude that the subsequence in (4.63) is norm convergent on U(B).

It is known and easy to prove that the norm limit of a sequence of normal states is
normal. Thus any norm limit w of the w, is normal on (B), and Theorem 4.1 is established.

We now return to prove Lemma 4.3. We analyze the expansion of C € {B) in terms of
the local, time zero fields. We start by proving a useful lemma.

Let «, B, 6, &, u, v be nonnegative integers satisfying a+f8=0+¢, u<d, »<¢ and
a—0=v—u.

LrMmA 4.8. Let cg be a bounded operator from Ly(R®) to Ly(R?) with bound ||cs||. Let
ko and k4 be Hilbert—Schmidt operators on Ly{R%) and on Ly R} respectively, with Hilbert—
Schmidt norms

]|z and ||k,
Then
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ka (xl’ cve s Ly Wyyeeey wv) CJE(xv+17 e s Xy Byy ey 2/4; Wiy eee s Wy, ?//4+1’ "'2?//9)
X k(215 ee s 243 Y15 ov0 , Yu) dwdz
i8 the kernel of a bounded operator c,s from Ly (RP) to Ly(R*) with morm ||c.|| satisfying

lleasll < Ieallz Nesell 1ol

Proof. We introduce the variables

Xy = (xl’ reey xv)’ L= (xv+1, sees xa)’ r= (xa., xb)»

Yo= (Y1, --- sYuhs Y= Yp+1se-- » Y8)s Y= Ya> ¥)

w=(Wy, ..., W), 2= (21, 005 2p)

Then for f,€ 3., 95€ J5»

[(fau caﬂgﬁ)l = ‘ J‘fd (x) kA (xa; w) cﬁs(xbr 2w, %) kc(Z, ya) .‘Iﬂ(’y) dx dy dwdz|.

By the definition of ||cs|,

|(fos capgpl <llesell f"fac @ar Mz llec (-5 Yallla a2 iz 98 Was - )|z da Ay

and by the Schwartz inequality

|(Fes can )| < llocsll Eclle 1l 21 gl

to complete the proof.
We now expand C€ Uy (B) in terms of ¢ and x fields. Let

07 = Z Oaﬂ'
ot =y
Then Cy = Z B/w’
utv=y
where By, = Jb,uv ®):d@) ... ‘ﬁ(y,u) T (Yps1) --- Y ps»): dy.

The locality of C'€ %, (B) means that

Supp b,lw(?/p--- ,y,m)EB xBx...xB.

The kernels b,,(y) are symmetric in the y variables y,, ..., y, corresponding to the ¢’s,
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and also in the vy variables y,,,, ..., ¥,4, corresponding to the =’s. For fixed u+vy=y,
there are exactly y +1 different B,,,’s and for fixed a +§ =y, there are exactly y -1 different
C,4’s. We now specify the relation between them. First we inspect the simple case a+f=
y=p+v=1. From (3.9) we conclude that

1 .
cm(x)=7§u;*bm(x)+%uz box () (4.64)
and ()= 7= 1 ) == b ). (4.65)

We also have the inverse relation

1
byo(x)= Vié ,ugclo (x) + E /ﬁg Co1(2) (4.66)
and bu )= i a0 +7"§u;*cm (@). (4.67)

The transformations (4.64)—(4.67) by themselves are valid for a wide variety of by, (x),
byo(x); they are defined, for instance on tempered distributions. These relations do not
require that the by, (x) and b,y(x) be local. We now make the locality explicit by means of
a C§° function {(«) which has its support in X;and which equals one on a neighborhood of B.
We rewrite (4.66) as

bro (w)=lif2 £ (@) b ero(2) +Vi§c<w)u3 o1 (2), (4.68)

and similarly for by, (x). We note that the operators gz, which were introduced in Section
3.1 have integral kernels k,(x) satisfying (3.1.5)-(3.1.6).

(it f) () = fk @) f(z) .

By substituting (4.68) into (4.64) — (4.65), we obtain the equations

C10() = (K ¢19) (x) + (K- Co) (%) (4.69)
and Co1 (%) = (K- ¢19) (%) + (K 1 Co1) (), (4.70)
where we define K,=}u;¥eul + 1udlust. (£.71)

Let k. (x, 2) be the (tempered distribution) kernel of K. For ¢ X,=[0, 1), the property
(3.1.6) of k, implies that k,(x, 2) is a O function of « and z and that for a constant M,
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| ks (=, 2)] < My exp (—mg |w| —my)2)). (4.72)
We note that the locality requirement
supp by () <B,  supp by, (2) < B,

imposes implicit restrictions on—and relations between—c,(z) and ¢,4(x); for instance, if
either one is nonzero, they must both be nonzero. Thus we cannot expect, and we do
not find, that the identity transformation (4.69)~(4.70) yields the identity on all functions
as in (4.64)—(4.67). In fact for the kernels of (4.71), we have

k(z,2)+68x—z), and k_(z,2)+0.

We now define localized kernels and estimate their norms. Let

Bulw2)= {’(;i(x’ Z): ::hf;wise, (4.73)
and let K% be the operator with kernel &’,.
LrmMmA. 4.9. For some constant M, the operator norm of K'. is bounded by
&L < MygemmH, (4.74)
and the Hilbert-Schmidt norm of k' is bounded by
|| < B yg e, (4.75)

Proof. If i+0, the bound (4.72) immediately yields
KN <l lls < M5 exp (—mo]i]),
so we need only consider the case ¢=0. Since

ps¥lud = C+ps¥(E, bl

the lemma, follows from (4.71) and an estimate on the Hilbert—Schmidt norm of the operator

A= pz L, udl.

Let a(z, z) be the kernel of A. The Fourier transform of a(z, z) is

a(p,q) = p(p) (2 — ) {ul@)* — u(p)i},

where f is the Fourier transform of {. Since
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ln@) ~p@! __ pmr=g)
w(p) +ulg)t ~ p(p)? +ulg)?

|u(p)? — u(g)t|=

p(@—a)|E(p—9)
pe {u(p)+ pu@ty

we have lé(p, @) <

Thus llall = llafl; < oo,
and the proof is complete.

Proof of Lemma 4.3. Let L={L,} be a localization index in the case y =1, which lo-

calizes the single particle in X;,. Then
co (@) = (K% ey0) () + (KX cpy) (%) {4.76)
and ek (x) = (KD ¢y) () + (Kiey) (). (4.77)
The bound of Lemma 4.3 for ¢l follows from
lofill < 2 ol + 12 ool < IR flenll + 1 K2 ol (4.78)

<[IEL | flesoll + 2]l lloanl
by Lemma 4.8

<Mrw(”"lo" + "001”) exp (_molLli)
by Lemma 4.9

<2 M5 exp (—mo| Ly ) [|Cf| =2 Myse” ™2 C]

by Lemma 4.2. A similar result holds for c.
We now generalize this method to deal with any ¢z, and we need an expansion sim-
ilar to (4.76) — (4.77). We first obtain such an expansion for operators C, which have

the form
Cp= 2 Cup=:01, (4.79)

a+f=y

where (] is a degree one expression
Cy =A% (e1y) + AlCor) = $lbro) + by ), (4.80)

and supp b,,< B, supp by, = B. For our special case

¢y= 2 J‘A* (®1) ... A% (%) A(Tgty) - A%z p) (a * 'B)
atfi=y o

X €19(®1) . €19(%e) €1 (Fa1) - -+ €1 (Tar p) AT {4.81)
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or Cy= 2 DY) DY) A Y pra) - Y psr): (,u : 1))

ptv=y
X big(¥1) -+ by (Yu) bor Ypr1)--- boy (Ypr») dy. (4.82)

We now apply (4.69) to the creation variables, expanding ¢;p(2,), --., €10(%,). We apply
(4.70) to the annihilation variables, expanding co;(#,.q) -.- €p(%444). The kernels c,4(z)
for (4.79)

]
Cup(2)= (“ +ﬂ) Mewls) 11 cul@) (4.83)

can be written
o +ﬁ & a+f
Cap()= ( ) U{ K cy) () + (K_cqy) (x’)},gd{(K+c°1) (%)) + (K- ¢y9) (x/)} (4.84)

In a more compact form

Cap (x) = z laﬂ, s: (%, 2) €3:(2) dz, (4.85)

d+e=a+p

where the kernel [, s (v, 2) is a sum of tensor products of the kernels k, (z, z) times some

numerical factors. We can write

lap, 5e (%, 2) = Sym. Z (6) (“ ,u) Hk+(xf’ z)

Oto—p dte
X H k—(x;’zﬁa W 11 k(2,25 - a) B,, 170+( » %) (4.86)

where the symmetrization operation symmetrizes the kernel in the « creation variables
&y, ..., %, and in the § annihilation variables x,,,, ..., Z5, .

We note some properties of the monomials contributing to the sum (4.86). In each
kernel k, (x;, z,) that occurs, either z, is a creation variable for c;, and =, is a creation variable
for c,g, or else z; is an annihilation variable for ¢s. and x, is an annihilation variable for
Cqp- In other words, the K operators in (4.86) do not connect creation variables to anni-
hilation variables. On the other hand, the kernels k_(z,, z,) connect an annihilation (crea-
tion) variable in ¢;, to a creation (annihilation) variable in ¢, 4. In majorizing (4.86) we will
later use the operator norm to dominate &, kernels, and Lemma 4.8 to deal with the k_
kernels.

The next step in our argument is to prove that the transformation (4.85)—(4.86)
which we derived for a class of Co () defined in (4.83), is correct for any c,z(z) that might
occur in the expansion of an operator C' €, (B). We note that by a generalized polarization

identity, (4.85)—(4.86) is valid for kernels arising from operators
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C,=:CL0P...CP:, (4.87)
where CP = A*(cf) + A () = p0R) + (b)), 7=1,2,...., %, (4.88)

and supp b{3 < B, supp b} < B.

Here we use the identity (for real ay, a,...,a,),

2" plaa,...a,= z:u £y Bl + Eas + ...+ g, 0,)" (4.89)
e

Kernels that are finite sums of kernels of the operators (4.87) are the only kernels
¢.4() that occur in the expansion of operators C' €9y(B). Hence the identity transformation
{4.85)—(4.86) holds for all our kernels.

We now return to the localized kernels c¢,g4(x) and the proof of Lemma 4.3. Using

(4.85) we can write

@)= 2 fliﬂ, oe (%, 2) cas(2) dz, (4.90)

O+e=a+f

where the localized kernel 1% s (2, 2) is defined by

L [ P P I Sta—u d+e
lap, 8 (%, 2) = Sym 2 ( )( )ka’(x;, z) I1 kY(x,2) 1 kii(z,2) (4.91)
p=0 \ A= U/ i=1 j=p+1 j=0+a—p+1

and L={L,, ..., L, 4} is the localization multi-index. Each kernel (4.91), before symmetriza-
tion, is the sum of §+1 terms with a numerical coefficient dominated by 2°*¢=2%*#, The
kernels from one term, obtained by fixing u, are a tensor product of &, kernels and of &_
kernels. The k_ factor

d+a—pu L 4 S+a—p L
I1 k2 (2, 2) = I1 kfi(xp Zivo—n) 11 K%, 250u-a)
j=p+1 j=p+1 j=a+l

is the tensor product of Hilbert—Schmidt kernels and has the form of a tensor product of
kernels kqk, of Lemma, 4.8, The first product in (4.91) of &, kernels is a bounded operator
0, on ¥, and the second product in (4.91) of k. kernels is a bounded operator Oz on ¥,.
Thus applying Lemma 4.8 to the k. k&, kernels and using the operator norm on the &, kernels,
we find that each term 1% ;.(x, 2) 0 (4.91) with fixed u is a kernel such that

flﬁﬂ_ 0e (&, 2),, Cos (2) dz

is the kernel of an operator from L,(R?) to L,(R*) with a norm dominated by

a+f + x L O+atoy L d+e& L
2210l eclle NEalls NOpll Neaell = 2+° TTNKSY TT N2z T1 & lleoell
ji=1 F=ay+1 j=0—a—-on+1
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By Lemma 4.9, this is less than
a+f
2¢+ﬂM°1¢g‘ﬁ H e~ malLjl "063" =(2 M15)1+ﬁe— meD(L) "068”’
i=1

and by Lemma 4.2, < (@M ) B e 2D ||
Summing over u in (4.91) and over d + ¢ =a+ § in (4.90) yields fewer than
O+ (x+B+1)<(x+p+1)2<et?
such terms. Since symmetrization does not increase our bound,
lezall < (4 e M)+ 2 e~ ™),

which completes the proof of Lemma 4.3.

5. The vacuum self energy per unit volume is finite

The lower bound E, on the operator H(g)=H,+ H, , is called the vacuum energy,
because

Hg)Q,=E,Q,, (5.1)
and Eﬂ = (Qa’ Fl(g) Qa)

is the value of the energy operator H(g) in its vacuum state. This actually represents the

shift in vacuum energy between the problem with and without interaction,
Ey=E,— K,
where E,=0 is the lower bound of H,. The scale of H(g) is arbitrarily specified so that
(Qo, H(g) Q,)=0. (5.2)

It is customary and convenient to add a constant to the Hamiltonian H(g) so that
its vacuum energy is zero

H(g)=H() - E, (6.3)
and H(g)Q,=0. (5.4)
This shift is one of the standard renormalizations of quantum field theory, and we shall

call H(g) the renormalized Hamiltonian. We omit the renormalization to the mass m, and

to the coupling constant 4 since perturbation theory indicates that they are finite for our
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(¢*), model, even in the limit g(x)—>1. We note that it is the renormalized Hamiltonians
H(g), and not the unrenormalized Hamiltonians H(g) that have a limit as g(x)—1. In Sec-

tion 2 we proved that as g(z)—1,

e L ¥:{(31) -‘>‘6_th

in a certain weak sense, and 0<<H.

In this section, we bound the rate at which E, can diverge. According to perturbation
theory, E, is proportional to the volume of space in which the particles interact. However,
the perturbation expansion for E, can be shown by methods such as [18] not to converge
and at best to be asymptotic. Thus we cannot get a rigorous bound on E, from perturbation
theory. Instead, we use a modification of Nelson’s method [22]. It is this method which
produced the estimates (cf. IL, (2.1.16-18)) stating that the vacuum self energy for a fixed
volume cutoff is finite [22, 8, 4].

THEOREM 5.1. Let 0 <g(x) <1 and for some constant M,,

dg(x)
dx

<M,

Then ~M<E,<0, (5.5)

where M is a positive constant proportional to the volume of the set (supp g)y, that is the set
of poinis within distance one of (supp g).

Remarks 1. This theorem states that the average vacuum energy density, namely the
vaeunum self energy per unit volume, is finite for the theory with g(z) =1. Thus it shows that

perturbation theory, though inapplicable, actually predicts the correct answer.

2. Furthermore, the theorem assures us that the expected number of (bare) particles
per unit volume and the expected free energy per unit volume are both finite in the vacuum
Q. We define these expectation values as limits as g(z)—1 of the expectation value in €2,.

Since

(Q, NQ,) <— (Q, H,Q,), (5.6)

1

My

it is sufficient to bound the free energy per unit volume. Since H,= 2H(g)— H(29),
(Qa? HOQg) < (Qg’ (23(9)—E2g) Qn) =2Eg—E2y‘ (57)

In particular, if we choose g to be g, (x) defined in (2.3), then (5.5) says that for M in-
dependent of n,
— M <E,,. (5.8)
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Therefore, by (5.6-7) (Q,,, NQ, ) < const. n, 5.9)
(Q,,, Hy ), ) < const. n, (5.10)
w, (N) < const. n, (5.11)
and w, (Hy) < const. x. (5.12)

3. A similar result holds for the Hamiltonians H,, defined in I, (2.1.7). Namely, there

is a positive constant M independent of V, such that as V— oo

~-MV<H,. (5.13)

Our proof yields (5.13) as well as (5.5), although a somewhat easier proof may be based on
a modification of Federbush’s proof for ¥ fixed [4, 19].

4. The theorem also holds for any interaction Hamiltonian in two dimensions of

the form
Hyo= f : Plp(a)): g(z) dz,

where P is a polynomial of even degree whose leading coefficient is positive.

5. The same proof also shows that for g(z) satisfying the hypotheses of the theorem,
and for &>0, there exists a constant M proportional to (supp g); such that

O0<eN+H,,+M.

Proof of Theorem 5.1. We use a partition of unity {,(z) constructed from a positive

C= function {(x) with support in the interval |#| <1, such that

Gi(@)={L(x—1), (5.14)
and > Li(x)=1. (56.15)
i
Thus we decompose g and H, , into a sum of local parts

9:=:9 (5.16)
HM=21H,_% (5.17)
Since we use the Feynman Kac formula to bound H(g), we wish to approximate H(g)

by a Hamiltonian with a finite number of modes. Thus we study the Hamiltonian

17— 702903 Acta mathematica. 125. Imprimé le 26 Octobre 1970.
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B @y =Hoxy+ Higxs 5.18)

Homy= | _a* Bl uthr) ©.19)

Huam= 4000 0t0) 8o (5.20)

and par @)= (35) 3. ¢ @0+ o= 1) 0 HEGI) 21)

See II, section 2.1 for the notation used above. Here &(x) > 0 is a fixed C§° function, equal
to one on a neighborhood of zero, and vanishing for |z|>1. As in II, section 2.2, we

find that
H(Q)K,Vl Jf.v>EK,v» (5.22)

where Ey , is the lower bound of H(g),,v on the full Fock space FJ. Therefore, we need
only find the lower bound of H(g)k y| Fx.v» which we now study. For simplicity of nota-

tion, we sometimes suppress the V cutoffs and define
Hy(K,j)=H; 4 x.v- (5.23)
Thus it is sufficient to obtain a lower bound for

{HO. K.V + ; ‘HI(K’ j)} I :;K.V (5‘24)

which is independent of K and V, and which is at most proportional to the number of

nonzero terms H,(K, ). On F¢ v

Hoxv= le Vat(k) ay (k) u(k) (5.25)

lk|<K

We note that H;(K,j) is the sum of five monomials in creation and annihilation

operators, each of which has the kernel proportional to
4 4
b,y (ky, ... kg) = A2V) (g ))” (glkz)lg [u(k) ™ &K,/ K)], (5.26)
corresponding to an expansion in creation and annihilation operators for volume V,

4
B = 3 5 (2 xR a3 ar(~ ).y~ R). (527

1.0 K €T7 a=0 \X,



THE A(¢%); QUANTUM FIELD THEORY. WITHOUT CUTOFFS. ITI

253

We decompose the single particle Fock space F, ; of F, into an orthogonal direct sum

Fya= (?:;V.l.b

where Jy ; ; consists of the Fourier series of functions vanishing off the interval
(—3.i+3n[-V/2,V/2].

Furthermore, we have the Parseval equality

Vi
|7 teb@dz= 3 fik-k= 5 mbE) e ),

-Vi2 kel'y

1, k=¥

h Sk k') =
where (ki) {0, k+E.

From this, we see that

SJokn=3 [ o3 [ Leheas
SR CIONE)

Thus (5.30) provides a decomposition into localized parts,
HE€EFv 1o
Using this decomposition, we can decompose any r-fold tensor product
Fr1®:F1,1@; ... ®:Fvy,
into an orthogonal direct sum, and corresponding to (5.30) we have

z i(kl: r)k ) "'kr):z Z (fl (k19--"kr) (h£)~(_k1!--': '_k,-),

kjel'y i kjel'y

where ¢ ={t,, ..., ¢,} is a localization index and

fie:;v.l,h@s'-- ®sgv.l.£,'

We therefore can write
by k)= 5 Bl )

corresponding to the direct sum (5.28), with

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)
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bt 1 €EFr1,0®se. ®sFv.1ic-

Let H; (K, §, ¢, ..., 15) be the part of H(K, §) with the kernels (5.32). We notice that the
kernel (5.32) has five localization indices. If the indices are incompatible, that is, if any of
the differences |j—3,| is large, then the kernel must be small. We need the same result

for a somewhat more general kernel. For k, €T}, let

4
bKJ.s (kl! see k4) = bK.i(kl’ rees k4) exp { - lglsllu(kl)}r (533)
where s= {sy, ..., 8,}.
LemmaA 5.2. For each integer r, each £>0, and each positive number T, there is a con-
stant c=c(r, T) such that for 0<5,<T, and 1 <A<XK,

4
"bA.J', 51 bk, s,i"2.V < CA—“elI;Il(l + |7 - iti)_f‘ (5.34)

Note i={i,, ..., i,}. Note that b, ,, , is the ith component of b, ; , defined in (5.33).
Here the norm || - ||, , refers to the Fourier series L, norm, which equals (V/27)? times
the usual L, norm of (5.26) with each k; replaced by k.

Before proving this lemma, we make some general remarks. Let f(z) be a function with

a smooth Fourier transform. That is, assume that for all o,
|D*f|la< oo. (5.35)
This corresponds to a rapidly decreasing f(x). Now let
fr@)€ Ly([—V/2,V/2]) (5.36)
be a periodic function with Fourier coefficients

V- (k), kET,.
Then fo(x)= ﬁ flx+nV), (5.37)

as can be checked by computing the Fourier coefficient of the right side of (5.37). In fact
(5.37) is valid for f€L,. Using the rapid decrease of f(x), we have for any integer r, a bound

on the norms,

L+ 2] Follar (5.38)

in Ly([V /2, V/2]), which is independent of V, as long as ¥V is bounded away from zero.

Furthermore, the norms (5.38) can be estimated in terms of the norms (5.35).
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Proof of Lemma 5.2. We have by ; , given by (5.83). Multiplication of the b ; , by
exp (¢§ 2i-1 k;) maps the (¢y,...,1%,) component of by ; , into the (3, —7,..., ¢,—j) compo-

nent of

4 4 4
MRV 2(g( +3)0) (2 k) [Tl ™06,/ K) exp (= 3 syl

These functions are of the form f,, and we now see that the corresponding functions f
satisfy estimates of the form (5.35), which are independent of K and j. Let P=
ky+...+ kg, and

FK,A,s)

il

4 4 4
(1+ P2 Ttk e 9] (TT608 ) — [T &Gk A)}.

Then D'F(K, A, s)€ L, and

4
”Dr{(bx.j,s —ba,j,s) €XP (’*7121 kz)}llz

<z (;) ”D“[(l +P2)’}(g( . —«}—7') C)~ (P)]"w X ”Dr—zF(K, A, 8)"2. (5.39)

We observe that E(k[K)=1=Ek/A)
unless |k| > const. A.

Thus D*"*F(K, A, s) =0 unless at least one of the ’s has magnitude greater than const. A.
By checking the order of convergence of the integrals, we see that for each r, the L, norm
of D" *F(K, A, s)is O(A~*%), independent of K and s as long as they lie in their allowed
ranges. (See [26].)(*) In order to see that the L, norms in (5.39) are bounded independ-

ently of 4, we note that
| D (1 + P%)}| < conmst. (1+|P))

for a constant independent of g if || <|r|, and |r| is fixed. Thus for |«|<r.
1D={1+ P¥g(- +4)¢) (P} oo < sup consts. [|(1+] P DX(g(- +9) )" ()]s
< sup const. ([l (- +7)¢ll+1Dg(- +4) Ol

< const. sup ((1+ )22l + | D" 0)]) (5.40)

by the assumed bounds on g(x) and | Dg(z)|. Since { €C® and has compact support, (5.40)
is dominated by c=c(|r|, My, T). Thus (5.39) satisfies a bound

4
107 {(bx. ;s —ba.s.5) eXp (il:z1 B} <clr, T) A™H,

(*) A direct calculation is also possible.
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which is independent of j and K. This is an estimate of the form (5.35), so the corresponding
norms (5.38) satisfy similar bounds. The rapid decrease of these functions could be written
as the estimate (5.34), which completes the proof.

We now bound | E,| through the formula

E,|=t11o le “HHO)|| = ¢ Jog (6, e tHO 1)}, (5.41)
g
|9|| 1 ”lll

Since lim B, xy=E,
K, V—>o0
it is sufficient to bound | #, ¢ ;| uniformly in K and V. We use the Feynman Kac formula

to represent the operator exp ( —tH(g)g, v) on Jx y. For 6, y€Fx, v

©, e_“"”"‘-”X)=L eXP[ f Hy,, xv(Q(S))dS] 0(9(0)) x(q(t))dg(-).  (5.42)

Here (g y is the path space corresponding to Fx, . It consists of continuous paths g¢(-)
taking values g(s) in a Euclidean space of high dimension—one dimension for each mode
permitted by the cutoffs K and V. The integral is a Wiener type integral on Cg , coming
from H, ¢ ,. The transition probabilities of the Wiener process are the kernel of
exp (“{Ho.x,v)- We bound the inner product (5.42) with Hélder’s inequality, as in [22, 8]. .

For some sufficiently large numbers p and ¢ chosen independently of g, K and V, we have

t
| Eg, x.v| < (pt) ™" log U exp — [pf Hiy g xv(g(s) JS] dq(- )}- (5.43)
Cx,v 0
Thus we must show that
¢
L exp [— P f Hy g xv{g(s)) ds] dg(-) (5.44)
K,V 0

grows at most exponentially in the number of §’s, with the exponential constant inde-
pendent of K and V. We have

c@av(@):=(paZ(x)—30,)*—6C3,

where C, is the no particle expectation value

Co= (@0 pa @ Q) =57 5. s €A < Cllog A)

1
2V «
for A>2. Thus

—6C*1|1¢]l, log A < Hy(A, ),

and for a new constant ¢, depending on ¢
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1—c,(log A < f Hy(A, ) (qls) de. (5.45)
0
Let SH(A, )~ Hy(K, §) — Hy(A, ) (5.46)
and 1A, 7‘)=ftéﬂ(A, ) (a(e)) ds. (5.47)
0

Also let Pr denote the measure defined by the integral

L dg(-).

We define J as the set of integers j for which g,;+0. Let J, denote any subset of J.
We consider a finite sequence {A;:j€J,} such that

2<A <K
We define for such a sequence {A}

P({A}) = Pr{|I(A,,§)| =1, for all j€J,}. (5.48)
The main step remaining is to prove
LeEMMA 5.3. For constants c, d independent of K and V,

PHA}< ,E [cexp (—d A}™)]. (5.49)

Let us for the moment assume Lemma 5.3 and derive the bound on (5.37). We represent
Ck. v a8 a disjoint unijon of measurable subsets X,, and we estimate the integral by the

maximum of its integrand on each X,.

fc Pl ) dg()| <3 Pr{X,} sup |Fig(-). (5.50)

aCIEx,
Let us assign to each path g(-)€Cy y a sequence of integers v; with j€ J. We define
v,(g(+)) =v; (6.51)
-as the smallest integer in the interval {d,, K] such that
| 1(v;, ) (a(- )| <1. (5.52)

Here d,>2 is a constant which we choose depending only on the ¢ and d in Lemma 5.3.
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We take d, and K to be integers. Since I(K, j)=0, there is a smallest integer »; with the
required property.
For each sequence of integers {»,}, namely
v,€[dy, K], j€J,
let X({»,}) be the set of all paths in Cg, , which, by (5.51), correspond to the sequence
{»;}. Then Cx y is a disjoint union of measurable sets

Crv= U X({n}), (5.53)
{”i}

where the various % range over [d,, K].

Furthermore, we note that

t t
f H;,x.v(g(s)) ds =ij {f H (v, 7) (q(s)) ds + I(v;, f)}, (5.54)
] € 0
and by (5.45) 1—e¢,(log )t < ftH,(v,-, ) (g(s)) ds.
0

Therefore for ¢( - )€ X({»,}), (5.54) yields
£
~ o1 2 (log ) < f Hi,ox,v(q(s)) ds. (5.55)
€ 0

To each path ¢(-)€ Cxy we now assign a second sequence of integers {A,}, where §
ranges over a subset J, of J. Let J, consist of those k for which

yp>dy+1, (5.56)
and for k€ J, define Ay=9—1.
To each subset X({»}) of Ok y, there corresponds one sequence {A,}. For k€ J,<= J,
[ (A ®) (g€ )| > 1,
and so Pr{X({»}} <P{As}). (5.57)

Thus using (5.50), (5.55), (5.57) and Lemma 5.3, the desired integral (5.44) is
bounded by

2. Pr(X{n}) exp [c,p > log?»]1< > T][cexp (—dA}™)][][exp (c;plog’»)].  (5.58)
{v’} jey {7} 1e% jes

Each v, in the above sum ranges over d, <v,<K, and we now treat the various cases
in which some of the », equal d,. Let M be the number of elements of J and M, be the
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number of elements of J,, leaving (M — M) of the », equal to d,. Since there are 2¥ subsets
of J, Jy can be chosen in 2 different ways. Restricting the sum (5.58) to {v;} which give
one fixed subset J,, this restricted sum is bounded by

exp [(M — M) c;p log® dI]{ 2} ,H [exp (log ¢+ ¢, p log? v, — dA#)]
A y €70
<exp (M — M) ¢;p log* d,] exp [M,d,]. (5.59)
Here we have chosen the arbitrary constant d, sufficiently large so that for ¥ >d,,

cplog?vtloge<id(v—1)ic=3dAt",
in which case
X-1

> exp (—3dAP) <l§0exp (—L1dAY°)=exp [d,].

A=

We are considering the case of M different A’s so the bound {5.59) follows. Thus if
a=dy+c;plog®d,,

(5.59) is dominated by exp [aM] and (5.44) is less than

2™ exp [aM],
which proves the theorem.

Proof of Lemma 5.3. For any set of positive even integers [,
AN <[ T vt (5.60)
Cx,v i€

We approximate the Riemann integral defining I(A,, j) by Riemann sums. In order to
bound (5.60) it is sufficient to do so with I(A,, j) replaced by a Riemann sum. We replace
all L= 73,1, factors by Riemann sums and then expand. The result will be a sum of M~
terms, if each Riemann sum has M terms. Each term is a product of L factors, and each
factor occurs at a sharp time. To write down a typical term, we choose mesh times s, ..., s;,

and for the ath factor we choose an index j(«). The index j is chosen exactly I, times. Then
(b.60) is replaced by

P({A})<t"sup L OH(Aywy, 3(1)) (g(s0)) .. 8H(Ajny, §(L)) (a(s2)) da(-),  (5.61)

K,V

where the supremum is taken over all choices of mesh times, mesh lengths and all choices
of j(a) consistent with the I, We can rearrange the factors in the integral, so that is no
loss of generality to assume that
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81<82<-.—<8L-
By the definition of the Wiener integral, (5.61) equals the no particle expectation value

t* sup (Qy, exp (— s, Hy, x,v) 6H(Asq), §(1)) exp (— (83— 81) Hy, x.v)
... ©Xp (— (8, — 8.-1) Hy, x,v) 5H(A1(L)> 3(L)) ). (6.62)

The next step is to evaluate (5.62) as a sum of elementary terms. Each elementary
term will itself be a sum of explicit functions. This reduction of (5.62) is accomplished by
repeated application of the commutation relation

1 if —k=¥

lav(— k), ay (K')]=0(— k; k') = { 0 otherwise

and [av(—k), “v(k')] =0,

for k, k' €I'y. We use this relation to bring all the annihilation operators ay(k) to the right
and the creation operators a,(k) to the left. Furthermore, these commutation relations
yield the relations for k€T'g ,

ay(k) exp (—sH, x,v) =exp ( —sHy x v) av(k) exp [ —su(k)],

which are used to bring the annihilation operators to the right past the factors

exp (—sHy,  y). Since
ay(k)C =0,

moving the annihilation operators to the right does reduce (5.62) to the desired sum of
elementary terms. Furthermore, each variable ¥ must occur in a delta function 6( —%; &)
in any non zero term.

In order to keep track of the distinct terms and the commutation rules used, we
introduce a graph @ for each term. The value of the term will be a number N(G) assigned to
G. Thus we shall write

L
(Qo’aI:Il{eXP [ (8a—$a-1) Ho,x,v] 6H(Aj(¢): 7(“))} Q) = % NG, (5.63)
where s,=0, and where the product of noncommuting operators is defined by
L
,,I;[l{A“}=A1A2'” A,

We construct @ as follows. We start with L vertices, labeled by the index «, 1 < a<L.
From each vertex we draw four lines (called legs), labeled by («, ), 1 <¢ <4. Each factor
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OH(A i, j(@) in (5.63) is the difference between two interaction Hamiltonians, and as
such is the sum of five monomials as in (5.27). For each factor we choose one such monomial
with v, creators and 4 —y, annihilators. This monomial will correspond to a vertex in G,
and we draw », legs from the ath vertex to the left, and 4 —, legs pointing to the right.
Each leg {«, ¢) corresponds to a momentum variable k,, in the kernel B(A,,, j{«)) at vertex
a. Since our factors are noncommuting, we order the vertices linearly from left to right, as
in (5.63), with vertex 1 on the left and vertex L on the right. Each time that the use of the
commutation relations introduces a delta function, we say that the variables —k,, and
k, o occurring in it are contracted. Graphically we join together the annihilation leg («, p)
and the creation leg (o', p’) whieh correspond to these variables. We have already noticed
that for a nonzero term, each variable occurs in exactly one delta function, and so for the
corresponding graph each creating leg (pointing left) is connected to a unique annihilating
leg (pointing right). Thus only terms with », =0, v, =4 will contribute. Since annihilating
legs all moved to the right, the annihilating legs at vertex « are always contracted with
creating legs on their right.

The possible graphs are all graphs which can be constructed in this manner. Each
graph consists of L vertices and 2L lines (each line being two joined legs). Each vertex is the
endpoint of four lines and each line joins two distinct vertices. This last fact results from

Wick ordering the interaction. Evidently there are fewer than

(4L)!' = 4L—-1)(4L-3)... 3-1
possible graphs.
We let N(G) denote the contribution to (5.63) from a given graph @ and this is obtained

as follows: To the vertex o of G we assign the kernel

B(-Al(a)’ 7.(“); kal, reey kam) = bK.}(a) (kan reey ka4) - bl\j(u),j(“) (kav ceey ka4)r (564)

where by ; is defined in (5.26). We write down the product of the L kernels (5.64) for ¢
and multiply this by a product of 2 L delta functions

6( - kao; ka'q'):

one delta function for each line, obtained by pairing the annihilator (e, ) with the creator

(', 0'), @’ >a. We then multiply by a product of 2L energy factors

€xXp [ - (sa’ - sa);u’(kaa)]:

one for each line, which arise from the commutations past exp ( —sH x y) factors. These
factors could actually be included in the kernels B(A;,,, j(«)) by defining for each graph ¢
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4
B(A;ay, (@) = B(A o), (o) exp [~ ezl(sw — 8a) plkag)/2)- (5.65)

The numerical value of @ is the sum of this expression over the 4L variables k,,€I'x

times some numerical factors.

L 4 N .
N&= > [ 2 ( )B(Am» 9(ac); kao)] [ 1T (kg barg)]- (5.66)
kgsel'g,y La=1 Va lgagL
1<8<L 1<ex4
104
Let us now motivate the type of bound we expect (in the simple case s, =...=8;=0).

We expect that different regions of localization will be independent, by the localization
property of free fields (cluster property). Since each localization index j must be chosen

exactly I, times, exact localization would mean for s, =...=s,=0 that (5.63) equals

I (Qy, 6H(A;, §)7Qy), (6.67)

j€J

which can be shown to be dominated by
[Tl @) A2, (5.68)
jedo

for some constant ¢ independent of K, V, J,, A; and I;. In fact, we will show that although
the localization is not exact, it is approximate in the sense that (5.68) actually bounds
(5.63), and this holds even in the case that the s; are nonzero. In other words, the action of

exp (—sH,) does not destroy, in any essential way, the localization of the particles.
Lemma 5.4. The expectation value (5.63) is dominated by

H [C"(2 lj) ! Al—lf(l—e)lz],

ek
where the constant ¢ depends only on T providing the bounds
0<gx) <1,
| Dg(2)| < M,
and 0<s, <T

are satisfied.

Let us assume this lemma and complete the proof of Lemma 5.3. We apply Lemma
5.4 to (5.63), and get a bound on (5.61) independent of the variables in the supremum. Thus
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Pr{A)< (ct)LjQ (20) 1A A2,

We now choose I; to be the positive even integer nearest to (dct/A} %)t =0(Af~2").
Then using Sirling’s formula to estimate the factorials, with d <(4¢f)~%, with a new constant
¢, and with a new ¢,

Pr{A)< T [ey exp (—dA} ™))
This completes the proof.

Proof of Lemma 5.4. By repeated application of the Schwarz inequality in the variables
koo N(@) in (5.66) can be dominated by

L Y
[9(6)| <2 TT 1B e 2 TT1BCA,, A< T EWAT0-07,

by Lemma 5.2. However, we need a sharper bound (5.82) which reflects the localization
of particles. Thus we classify the graphs in a way which reflects this property.

For a particular graph @, each vertex «, 1 <a <L, has an associated localization num-
ber j(a) €J,. For p=1, 2, 3, 4, let us define j(, o) by

i, @) = 5(G; &, @) = j{a’), (5.69)

where the gth leg at vertex « is connected in @ to the p'th leg at vertex «’. We can also

define
d(a, ) = j(&) — (et 0), (5.70)

which measures the difference in configuration space localization between the two vertices
connected by the pair of legs («, g), (o', ¢') corresponding to a line in G.

The functions (5.69) uniquely specify the functions (5.70) and vice versa, for any
graph @ contributing to (5.63). However, (5.69) does not uniquely specify the graph. We

now show that there are at most

[T144(21)1 (5.71)

1€

out-of the (fewer than (4 L)!!) different graphs G with the same function (G, «, g).
Let us suppose that in @ there are
Liy=1i(@)

lines connecting a j-localized vertex to an i-localized vertex, and to simplify the following

formulae, we count each line with ¢ =4 twice. Thus

2 b= 41, (5.72)

jedo
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and > l;=4L. (6.73)
TRTYA

Note that the G’s which contribute to (5.65) are exactly those for which the off diagonal

l;/'s vanish, and I;;=41,4,,.

With the functions j(«, ) given and with ¢ and j held fixed, there are two sets of [,
legs specified, and for the graphs we are considering each leg in the first set must be con-
tracted to a leg in the second set. For a vertex « of a leg in the first set, j(«)=j and for a
vertex o of a leg in the second set, j(a')=1. If ¢ 4§ then these two sets of legs are disjoint
and the contractions can be made in at most (I;;)! ways. If =4 then the two sets of legs
coincide and the contractions can be made in at most (I;;}!! ways. Once the contractions

have been made for-all <4, the graph @ is uniquely determined, and so there are at most

iI:I’ [y !]ig (2411 (5.74)
119 °

graphs with given functions j(«, g).
If I is even I <2HEDIP
<23

and there are similar estimates for I; odd.
Using (5.72) — (5.73), we thus have that (5.74) is dominated by

IT 2% 1,) 1= 4Ljef71 {11[GL) i< 4‘}_;[ (21,

i,j€J

which is the desired bound (5.71).
Thus

L
I(Qmazl;ll aH(Aj(a)a 7(“)) Qo)l < {jH

€Jp

[(4)7(28)1]} > sup |N(G)|. (5.75)
{6}

Here the supremum is over all graphs @ with fixed (@, «, p)=j(e, p), or fixed &(«, g),
and the sum is over all possible integers &(e, o) of graphs contributing to (5.63). We now
bound N(G) in (5.66).

Each of the 2L independent sums over momentum variables k,, € I'y can be regarded
as an inner product in the one particle space Fy ,, or the equivalent inner product in the
space of Fourier series on [~ V/2, V/2]. We now make-an-expansion by, writing the inner
product on F, , as a sum of inner products on the Fy,, , using (5.28). Because of the

support properties, many terms vanish giving as in (5.31)

L Lo 4 .
N(G) = Z B(Ai(a): 7(“)’ zaa; kaa) ( ) H 6( - kato; ka'o’) (s(%zo; @a’ Q’)' (576)
iﬂo'kﬁo a=1 Va/ 1<a<gL
1<A<L 1ges ¢

1gog4
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The sum runs over all possible choices of the localization indices ¢4, and the momenta
kg,. We now apply the Schwarz inequality repeatedly in the 2 L independent k,, variables.
This gives the bound

L
V@l< 3 T1161BA @ i@ iadlle, T | 0liciiare): 5:77)
I;ﬁ,&;‘ 1<e<4
1€o<4

We choose V sufficiently large to enclose the support of the spatial cutoff g(x). Thus by
Lemma 5.2 independently of V,
1B(A; @y, (), Sa1s - -5 Baa)]|s < € AGG ™2 (1+]5(e) = iae)) ™" (5.78)

1<es4

where ¢ depends on 4, My, r and 7. Using the fact that each index j= §(x) occursl; times
in G, we have by ({5.77)-(5.78),

[N@)| < 113 [16cV A U912 S 1<1;[<L (1 +[§(e) = bapl) " OlBags tar0)- (5.79)
) 1<?2L12954
104

Since each leg («, p) is paired with another leg («, ¢'), the factors

o (1 +{5(e) = Gag|) ™" Olings burg)
oceur in pairs,

(1 +]5(0) = tag]) ™" (1 +[5(e) = )77 8(Bigs tar)?

= (1+|§(00) = 52g)) " (1 + |§(&) — tag]) " Oiags S e')s (5.80)
where (e, @) = j(or) — j(a’) = j(ex) — §(e, @)- (5.81)
As I+[z)2A+]y) <@ +|z—y) A +]2)7Y

(5.80) is dominated by

(1+]8(er, @))% (1 + | (@) — g )"
Hence by (5.79)

|N(G| <;Ie_,l (16 ccl)liA,"ia“)/zl <1;1<L (1+]|6(ex, 0)]) ™%, (5.82)
1se§4

where we have chosen r> 2 and used the fact that

> JL (Ui —isgh =k,

ipg 1l<ea<

1gpgr teest
1o 4

o
with e=[ 2 (1+]|n|)""
n=—o0
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The bound (5.82) gives the dependence of @ on the localization of its vertices. Thus by
(5.75) and (5.82),

L
I(QO’EI(SH(A;‘(“): (@) Qo)l <,g [(64 cc%)’f(2lj) ! A/—Zi(l_e)lz]y

which establishes the lemma.
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