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THE L2-BOUNDEDNESS OF PSEUDODIFFERENTIAL OPERATORS

I. L. HWANG

Abstract. We give a new proof of the Calderon-Vaillancourt theorem. We also
obtain the Z.2-continuity of a(x,D) if its symbol a(x, f) satisfies some suitable
conditions.

Introduction. We consider a pseudodifferential operator a(x, D) on an open set
£2 c R". We want to find conditions on its symbol a(x, £) that imply the L2
continuity of a(x, D). Several results for this problem can be found in the literature.
We mention a few. The first is due to A. Calderon and R. Vaillancourt [1].

Theorem. Let 0 < p < 1 and a: R" X R" -> C be a continuous function whose
derivatives 3"9fa in the distribution sense satisfy the following condition:

(*) There is a constant C > 0 such that

\d&ia(x,i)\<C(l+\i\)'M-m,

where (x, £) e R" X R", 0 < |j8| < 2[«/2] + n and 0 ^ \a\ <
2m with m e N and m(\ — p) > f n.

Then a(x, D) is continuous from L2(R") to L2(R").

Coifman and Meyer [2] improved (*) by assuming that it holds for 0 < |a|,
|/?| < m, m e N and m > [n/2] + 1. Moreover, they gave an example that shows
m > [n/2] + 1 is the best possible. Kato [3], Kumano-go [4], R. Beals [5], Cordes [6]
and others obtained similar results by assuming (*) holds for different numbers of
derivatives.

In this work we prove several new results about the L2 continuity of a(x, D)
when a(x, £) and some of its derivatives satisfy conditions similar to the above
theorem.

§1 contains our results, and §2-§6 contain the proofs.
We use elementary tools such as integration by parts, the Fourier transform and

Parseval's formula.
The author wishes to thank Professors M. S. Baouendi, J. Gerszonowicz and N.

Lerner for helpful discussions.
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56 I. L. HWANG

1. Statement of results.

Theorem 1. Let Q = \~lj=x(Sj, tf) be a bounded open box in R" and a: Q X R" -> C
a measurable function whose derivatives d"a in the distribution sense satisfy the
following condition:
,     , There is a constant C > 0 such that ||3"a||L*.(axRn) < C, where
^  ' ' a = (ax,...,a„)e N" with a, = 0 or 1.

Then a(x, D) is continuous from L2(R") to L2(fi) with its norm bounded by
C„(l + max1<yaS„(fy - ^))"/2|||a|||, where C„ is a constant depending only on n, and
\\\a\\\ is the smallest C such that (1.1) holds.

An immediate consequence of Theorem 1 is the following well-known result.

Corollary 1.1. Let fl be a bounded open subset of R" and a: fi X i?" -> C a
measurable function whose derivatives d"a in the distribution sense satisfy the following
condition:

,   ,x There is a constant C> 0  such that  |||3"a|||z.»(ax«") < C,
where a = (ax,..., an) e N" with a; = 0 or 1.

Then a(x, D) is continuous from L2(R") to L2oc(S2).

Theorem 2. Let a: R" X R" -> C be a continuous function whose derivatives 3°3^a
in the distribution sense satisfy the following condition:

There is a constant C > 0 such that |||3"3fa||lz.»(«"x«") < C,
(1.3) where  a = (ax,...,an),  B = (Bx,...,Bn) G N"  with  Uj-= 0

or 1, Bj = 0 or 1.

F/ie/7 a(x, D) ts continuous from L2(R") to L2(R") with its norm bounded by C„|||a|||,
where Cn is a constant depending only on n and |||a||| is the smallest C such that (1.3)
holds.

Remark. We mention that Theorem 2 is also obtained by Coifman and Meyer [2]
and by Cordes [6]. We include it because we need it for the proofs of the next results,
and because we believe our proof is simpler.

Corollary 2.1. Let a: R" X R" -> C be a measurable function whose derivatives
d^a in the distribution sense satisfy the following condition:

(1.4) There is a constant C > 0 such that

(r, .2     \1/2
sup    /     3fa(x,£)    dt\      <C,

where B = (Bx,..., B„) e N" with fy• = 0 or 1.
Then a(x, D) is continuous from L2(R") to L2(R") with its norm bounded by Cj||a|||,
where C„ is a constant depending only on n, and \\\a\\\ is the smallest C such that (1.4)
holds.

Remark. A different sufficient condition for Corollary 2.1 can be found in
Muramoto and Nagase [7].
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/.2-BOUNDEDNESS OF PSEUDODIFFERENTIAL OPERATORS 57

Corollary 2.2. Let a: R" X R" -* C be a measurable function whose derivatives
d"a in the distribution sense satisfy the following condition:
(1.5) There is a constant C > 0 such that

sup   f   |8;«(jc,€)I dA     <c,
^R"\JR" I

where a = (ax,...,an) G N" with a • = 0 or 1.

Then a(x, D) is continuous from L2(R") to L2(R") with its norm bounded by C„|||a|||,
where Cn is a constant depending only on n, and \\\a\\\ is the smallest C such that (1.5)
holds.

Remark. A different sufficient condition for Corollary 2.2 can be found in
Hormander [8].

Theorem 3. Let p g R, p < 1, and a: R" X R" -> C be a continuous function
whose derivatives d"dj?a in the distribution sense satisfy the following condition:
(1.6) There is a constant C > 0 such that

\d?d?a(x,o\^c(i+\z\y(lal-m,
where  (x,£) G R" X R",  a = (ax,...,a„),  B = (Bx,...,Bn)
g N" with <Xj = 0,1 or 2, &} = 0 or 1.

Then a(x, D)  is continuous from L2(R")  to L2(R")  with its norm bounded by
C    |||a|||, where Cpn is a constant depending only on p and n, and \\\a\\\ is the smallest
C such that (1.6) holds.

Remark. When -oo < p < 1, a different sufficient condition for Theorem 3 can
be found in R. Beals [5].

Theorem 4. Let gr(£) = (log(l + |£|))"', t > 0. Suppose a: R" X R" -+ C is a
continuous function whose derivatives 3"3^a in the distribution sense satisfy the
following condition:
(1.7) There is a constant C > 0 such that

|3;3M^)|<cUu)(i+|i|))|aM/i|,
where  (x,£) G R" X R",  a = (ax,...,an),   B = (Rx,...,Bn)
g N" with 0 < otj ̂  [(4 + r)/2/] + 2 and R} = 0 or 1.

Then a(x, D) is continuous from L2(R") to L2(R") with its norm bounded by C, ,,|||a|||,
where Ct „ is a constant depending only on t and n, and \\\a\\\ is the smallest C such that
(1.7) holds.

Theorem 5. Let p g R, p < 1. Suppose a: R X R —> C is a continuous function
whose derivatives d"d^a in the distribution sense satisfy the following condition:
(1.8) There is a constant C > 0 such that

|3;3fa(x,Ohc(l+|||r(a-/S),
where (x, £) g R x R, a = 0 or 1, B = 0 or 1.
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58 I. L. HWANG

Then a(x, D) is continuous from L2(R) to L2(R) with its norm bounded by C |||a|||,
where Cp is a constant depending only on p, and \\\a\\\ in the smallest C such that (1.8)
holds.

Corollary 5.1. Let g,(£) = (log(l + |£|))""', £ g R, t > 0. Suppose a: R x R ->
C is a continuous function whose derivatives 3"3^z in the distribution sense satisfy the
following condition:
(1.9) There is a constant C > 0 such that

|a^f/«(x,€)| < c(A(0(i +1*1))'"*.
where (x, £) G R X R, a, B G N and 0 < a < [(4 + t)/2t]
+ 1, B = 0 or 1.

77ien a(x, D) w continuous from L2(R) to L2(R) with its norm bounded by C,|||a|||,
where Ct is a constant depending only on t, and \\\a\\\ in the smallest C such that (1.9)
holds.

2. Proof of Theorem 1. To prove Theorem 1, we need the following lemmas.

Lemma 2.1. ///(£) = 1/(1 + ii), £ g R, then the Fourier transform offis

/(,)_/°. t>0,
JV)     \2«-W     <<0.

Proof. Making use of the residue theorem, the reader can check it without
difficulty.

More generally, we have

Lemma 2.2. If

fU)= fi t^TF,       f=(*i.Ue«",
7 = 1    l   +  '*/

then the Fourier transform off is

/(') = tl8j(tj),y'=i
where t = (tx, ...,tn) G R" and

/o, o>o.

In the following proposition we shall prove Theorem 1 in the special case n = 1
and under stronger conditions.

Proposition 2.1. Let fi = (s, t), -oo < s < t < oo. Suppose a: fi X i? -> C w a
continuous function whose derivatives d°a satisfy the following conditions:

(2.1)3^0 G C°(fi xR),a = 0,1.
(2.2) T/iere is a constant C > 0 iwc/z f/za* llS^al^oo^xyj) < C, a = 0,1.
Then a(x, D) is continuous from L2(R) to L2(fi) with its norm bounded by Ca|||a|||,

where Ca is a constant depending only on fi and \\\a\\\ is the smallest C such that (2.2)
holds.
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l2-boundedness of pseudodifferential OPERATORS 59

Proof. Let 0 < e < j(s - /) and fiE = (s + e, t - e). Our goal is to find the
existence of an absolute constant C0 > 0 such that

\\a(x,D)uy(Qt)< C0(l + t - s - 2E)1/2\\\a\\\\\u\\LHR)   Vw g C?(R).

Then the proof of Proposition 2.1 follows by letting e -» 0.
For u g C0°°(i?) we have

a(x, D)u(x) = -^ f eixia(x, {)«({) d£,       x g fi.
lit JR

Therefore, we have

/    \a(x, D)u(x) | dx
Ja,

= (t-)   /"    (   I e^-^a(x,i)u(i)d(x,\)l(X)didXdx
\ l<n I   Jill JR JR

= [^A j   / / eixia(x,£ + \)u(£ + X)a(x,X)u(X) d^dXdx.

Because the integrand is in L}(Ue X R X R), by Fubini's theorem we have

(2.3)     f   \a(x,D)u(x)\2dx

= (j^)2f f [I   e'Mx,i + X)a(x,X)dx)u(i + X)ii(X)didX.

Making use of the identity

Y^ft + ajU'**) = *'*«,
we obtain

(2.4)

(   eixia(x,i + \)a(x,\) dx = ._?../"  e,xta(*J + X)a(x,X)dx

+ TT7?e'('"e)£a^ " e, I + A)a(f - e, A)

- —j-r>e,(s+c)*a(.s + e, £ + \)a(s + e, A)

"TTT?/ eix%a(x^ + x)a(x,x)dx

-,..,[  eix^a(x,i + X)dxd(x,X)dx.
1  + 's •/Qr
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60 I. L. HWANG

Substituting (2.4) into (2.3), we have

(2.5)

/    \a(x, D)u(x) | dx

= (t-I   iii  -rr-za(x,£, + X)u(£ + X)d(x,X)l(X)dXd£dx
\ i7r /   JQ, JR JR   1 + '«

+ (^) / /  j^a(t - e,£ + X)u(i + X)a(t - e,X)u(X) dXd£

~(t-)   /"   /"   !' '  !, a(j + e,g + X)&(£ + X)a(j + e, A)fr(A) dAd£
\ lit J JR JR   1 + Jfc

-(t-)  f   f   /" T£r^3,fl(jc,« + X)fiU + X)a(x,X)5(\)rfXJ€£&
\ ^7T / •'a, jr jr l + '?

-(t-)  /"/"/" 7^fl(*,* + X)ft(* + XRa(*,X)5(M<'X<««fr
\ 27r / •'a, •'« •'/? i + '«

= IX + I2 + I3 + I4 + I5.

We first estimate ij.

(2.6) i, = (^-)   f    /"   f -^-7Ta(x,£ + X)u{t + \)a(x,X)u(\)d\dtdx.
\ 27T )   Jq^ Jr Jr   1 + /£

For x fixed we study the following integral:

Ji=  i   f  ^^a(x,t + X)uU + X)a(x,X)u(X)dXdZ
jr jr i + '«

= [ g(i)h(Z)dt,
JR

where g(£) = e'xi/{\ + i|) and

A(0=  i a{x,£ + \)u(£ + X)a(x,X)u(X)dX.
jr

Looking at the expression of h(i-) and taking into account that u g C™(R) and
||a(x, Oilz,°= </?> ̂ lllaIH' we see tnat h 1S a ^n(^ °f convolution of two functions both
belonging to L:(^) ^ L2(R). Therefore we have

(2.7) h is in L2(R),

and
(2.8) There is an absolute constant Cx > 0 such that

— 2 2 t 2||/i||l'(R) < C1||a(jc, •) IU-(«)II"IU2(«) < CjllalU ||m||z.2(«).
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l2-boundedness of pseudodifferential operators 61

Obviously, g is in L2(R). Making use of Parseval's formula, (2.7), (2.8) and Lemma
2.1, we have

|/j|=  [ g{l)hU)dZ   -j-   i g(a)h(a)da
Jr lm JR

< ^rllgll^wPlk'wZ77

?n     n2< C2|||a||| ||m||l2(«)   for some absolute constant C2■

Now, going back to (2.6), we obtain

(2.9) |i1|<C2(?-^-2e)|||a|||2||M||2L2(R).

By similar arguments, we have the following estimates:

(2.10) |i2|<C2|||a|||2H|2L2(K,,

|/3| < C2|||a|||2||w||z.2(R),

|i4|<C2(,-s-2e)|||a|||2||W||i2(«)

and

|i5| < C2(t - s - 2e)|||a|||2||M||i2(R).

Thus, it follows from (2.5), (2.9) and (2.10) that

\\a(x, D)u\\o(a,) ^C3(l + t-s- 2e)1/2|||a|||H|z.2(K)   Vw g C?(R),

where C3 is an absolute constant.   □
More generally, we have

Proposition 2.2. Let fi = ITjLi (sJt tf) be a bounded open box in R". Suppose a:
fi X R" -> C is a continuous function whose derivatives d"a satisfy the following
conditions:

(2.11) dy g C°(fi X R"),        a = (ax,...,a„),aj = 0orl.

(2.12) There is a constant C > 0 such that

l|3"a|L°°(o,xK")< C,        a = (ax,...,a„), ay = 0 or I.

Then a(x, D) is continuous from L2(R") to L2(fi) with its norm bounded by
C„(l + max1< j^„{tj - Sj))"/2\\\a\\\, where C„ is a constant depending only on n, and
\\\a\\\ is the smallest C such that (2.12) holds.

Proof. The proposition follows from Lemma 2.2 and an argument similar to the
proof of Proposition 2.1.    □

Now, we are ready to prove Theorem 1.
Proof of Theorem 1. We shall approach the symbol a by smooth symbols. Then

we shall apply Proposition 2.2.
Let tp be in C™(R) such that the following conditions hold:

(p > 0,    supptp c {-1 <_y < 1}    and    IMU1^) = 1.
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62 I. L. HWANG

If 0 < e < lminx^J<n(tj - Sj), then we define ac = Xc* a, where

(2.13) U,.«- £lj »(?)»$•
with x = (xx,...,xn), £ = (£!,...,£„) g /?". We see that ae e C°°(i?" X it") and
lime_0ae(x, |) = a(x, |) a.e. in fi X i?". Moreover, hypothesis (1.1) gives

(2.14) ||3Xll™ox*»)<IIIA
where 0 < e ^ e0, fiEo = Yl^x(sj + 2eg, t} - 2e0) and a = (ax, ...,a„)G N" with
ay = 0 or 1. By applying Proposition 2.2 to ae(x, D)u with u g C0°°(i?"), we get for
0 < e < e0

/ \«/2
(2.15) \\ae(x,D)u\\L2(rl)^C„[\-4   +   max (*,-*,)       IIMII ||«|U2(*").

u V 1 <y < n /

We now write

ii    / \   ii2
\\ae(x,D)u\\L\ato)

= (i) 7    /. /neixii~X)oc(xA)uU)aAx,X)HX)d\d$dx.

Then by the facts lim_0ae = a a.e. in fi X R", (2.14), fi g S(R"), |QJ < oo, and
the Lebesgue dominated convergence theorem, we obtain

2
hm\\at{x,D)u\\L2(q )
€—*0

= l^-)2"\[m  (     [    i   eix«-x>at(x,£)u(S)at(x,\)&(\)d\dZdx
\ 277;    f ̂ o -'a    jr" jr"

= (y-)2'7     f    f   e^Mx^)Hi)a(x,X)il(X)dXd£dx
\ 277/      Jq      Jr-   Jr-

/ II2
= \\a(x,D)u\\L2(ii,0).

This and (2.15) imply

||a(x,D)w||L2(aI0)< C„ 1 - 4e0 +   max (;-.?.)       |||a||| ||u||l2(«").

Then Theorem 1 follows by letting e0 -> 0.    D
Proof of Corollary 1.1. Since any compact subset of fi can be covered by a

union of finite open boxes in fi, Corollary 1.1 follows from Theorem 1.    □

3. Proof of Theorem 2. To prove Theorem 2, we need the following crucial lemma
which is related to Wigner functions.

Lemma 3.1. For u, <p g L2(R") we define

g(x,£)=  [   e-,viq>(x-y)u(y)dy,
JR"
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i2-BOUNDEDNESS OF PSEUDODIFFERENTIAL OPERATORS 63

and

h(x,£)=  [   e:xy<pU+y)u(y)dy,        (x,£)eR»xR".
Jr"

Then we have

||g||z.2(R"x/?") = ||/j||z.2(«"XR") = (277)"     ||<p||£.2(«")||w||L2(/«").

Proof. Without loss of generality, we can assume that u, <p g C0°°(i?"). Making
use of Parseval's formula, we have

/   /   \g(x,£)\2dxd£=(^-Xj   f   \gT~l)(a)\2 dadt
JR"  JR" \ Lm I    JR"  JR"

By using the identity g(•, S-)(a) = (p(a)ii(a + £) and Fubini's theorem, we obtain

||g||/.2(K"xR") = (277)"     ||<jP|U2(K")ll"lk2(K")-

The second equality follows from a similar argument as above and by integrating
with respect to £ first instead of x.   D

Proof of Theorem 2. Without loss of generality, we can assume that the symbol
a is in C^(R" X Rn) and its derivatives d^a satisfy (1.3). Then for w g C0oo(i?")
and x g R", we have

(3.1) a(x,D)u(x)=[^-Y f    (   e^x~>Mx,Z)u{y)dyd£.
\  IT! J     JRn   JRn

Making use of the identity

we obtain

(3.2) /   *'<*-»«*(*,€)<«-/   e«x-rKb(x,0[flT-rT-\\d^
Jr" jr" \s=xl + i(xs-ys) J

where b(x, £) = (IX"=1(1 - d())(a(x, £)). Substituting (3.2) into (3.1), we have the
following crucial equality:

(3.3) a(x,D)u(x)

= [h)l  I <Kx-'*Hx.S)[ Yl T--r-A«(y)dydi.\2irj Jr. Jr, \,=i 1 + i(xs-yj J

Let v G Cf(R"). By (3.3) and
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we have
(3.4)
/    a(x, D)u(x)v(x)dx

Jr"

= (Jl.\"(    (    f    f   e'{x-})ie'xXb(x,0
\ 2 77 /      Jr-  Jr*  Jr-  Jr-

X[t\T^-T-z\u(y)v(X)dydZdXdx
\, = i 1 + i(xs- ys) J

= (hTi   /   I' [ixe'Xa+XMx,Z)
\11T )      Jr-   Jr-   Jr-\Jr-

xffl T-T~T-Adx\e-yiu(y)v(X)dydUX.
\s = xl + i(xs-ys) J     j

Integrating with respect to x first and making use of the identity

we get

(3.5)    /   e'«t + »b(x,t)tfl—^--)dx
JR" \s=i 1 + i{xs-ys)j

= [U 1 + <U, + AJ )

x^^n(i-o)(^.«(niTT7^))*.
Let T = {a G /V" |a = (ax,...,a„) and a7 = 0 or 1}. Then we have

(3.6) (n(i-o)(Mx.o(niTT7^)]

= E (-i)'a| £ ar^.Oa.'fflTXT2->)■
Substituting (3.6) into (3.5), we see that

(3.7) /^«M^r)_L__)*

x/ «"«*A>»r'»U{)»,'(ri t-^-1—»)*••v \v=i i + i\xs-ys)l
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L2-BOUNDEDNESS OF PSEUDODIFFERENTIAL OPERATORS 65

We derive from (3.4) and (3.7) that

(3.8)     (   a(x,D)u(x)v(x)dx
JR"

= E  E(-i)"'(^r/ / V-fib(x,z)g/l(x,i)h{x,s)dxdi,
aeT fi<a \l7r>    JR" JR"

where

^'■fl°/,.'"""i-'(aH^.-J,(,)*
and

Applying Lemma (3.1) to g^, we get

(3-9)   hA^xR-r w/2UR„ tf(n rhr) dx) i|m||l2(*B)

<(277)"/277«/2||M|U2(«").

Similarly, we have

(3.10) ||/I|k2(«"x«")=(27r)"/2 /    Y\-j—di\     M**')
\Jr" ,-i 1 +£2     /

=  (277)"77"/2||l;||/.2(«").

From (1.3), we see that

(3.11) ||3;-/J*lk»(«»x/!»,<2"|||a|||.
Thus, we derive from (3.8), (3.9), (3.10) and (3.11) that

f   a(x,D)u(x)v(x)dx   < C„|||a||| ||w||z.2(/nlk!k2(K"),
JR"

where u, v g C0°°(i?") and C„ is a constant depending only on n.   U
Proof of Corollary 2.1. Without loss of generality, we can assume that the

symbol a has compact support in R" X R" and that its derivatives d^a satisfy (1.4).
Then we approach the symbol a by the smooth symbols ae defined by ac = Xe* a,
where 0 < e < 1 and A E is as in (2.13). By the definition of ac and taking into
account that a g L2(R" X R"), we have the following properties:

(3.12) aEG C0°°(i?"x R"),

(3.13) lim||ae-a||Li(J,.XJn=0
£—*0
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and

(3.14) suplffifa^ofds)      <\\\a\\\,       B = (Bx, ... ,Bn), B. = 0 or 1.

Let u g C^(R") and x e R". From (3.3), we have
(3.15) aE(x,D)u{x)

= [h)l / e,tx-'*b.M)[n tt--r—My)***-
\Lirj  Jr- JR- \s=x  1 + i(xs- ys) j

where

*.(*.o = (n(i-3fc))k(*,{)).
Let u g C0°°(i?"). Making use of (3.15), we write

(3.16) /"   ae(x,£>)M(x)u(x)fifcc

J J   e«*-y)tlfl——l--)u(y)dy)dxdi
\Jr" \s=i 1 + !(*,->>,)/ /

= {h)lRJRAx^h^dxd^
where g(x, £) = be(x, £)v(x), and

*(*.«) = / e'Hnnr—r)"(^)4v-■V \*-i i + '(*,-.yJ/
By (3.14) and

6.(*,€)-(n(l-3«.))(a,U{)),
we see that

(3.17) ||g||z.2,«»x«»)<2ll|a|||||t;||L2(/{»).
According to Lemma (3.1), we have

/ "        i \1/2
(3.18) ||/i||,2(«»x«",= (277)"/2   f    Yl—L-dx]     \\uWlR-)

\Jr- , = i 1 +x$      j

<  (277)"||«||zj2(R").

Therefore, we derive from (3.16), (3.17) and (3.18) that

(3.19) f   aF(x,D)u(x)v(x)dx  ^2"\\\a\\\\\u\\Li(R»)\\v\\Li(R")
Jr"

Vu,v g C™(R").
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Now, we are ready to prove the L2-boundedness of a(x, D). For u, v g C0°°(i?"), we
write

/    aAx,D)u(x)v(x)dx = hr—     /     /    e,Jcfa (x, £)fi(£)u(.x) dxd£.
yRn \ Z77 /    JR-   Jr-

Making use of (3.13), we see that

(3.20) lim  [    f   eixiae(xA)u(£)v(x)dxd£
e->0 Jr"  Jr"

=  f    [   eixia(x,£)u(£)v(x)dxd£,        u,v G C0°°(i?").
Jr" Jr"

Therefore we derive from (3.19) and (3.20) that

f   a(x,D)u(x)v(x)dx   < 2"|||a||| ||w||L2<R»)|klk2(«")   Vw, v g C?(R").
Jr"

Thus

||a(x,I>)M|k^)<2n|||a|||||«|k^»),        aeC;(4       D
Proof of Corollary 2.2. Without loss of generality, we can assume that the

symbol a g C^(R" X R") and its derivatives d?a satisfy (1.5). If u, v G C0°°(i?"),
we have

(3.21) j"   fl(x,D)«(x)o(x)&=(^)   M|   e'**a(;c,$)fi(g) </£)«>(*)<**

= (j^)"l'{fRneiMx,£)v(x)dx)u(£)d£

= / gU)a(€)^,
where

g(S) = (^)"fRiieiMx,Z)v(x)dx.

It follows from Corollary (2.1) that

(3.22) ||g|U2(«")< (277r2l||a|||||e|U2(«»)= (277)-"/22"|||a|||||f;|k2(«'').

From (3.21) and (3.22), we have

/    a(x,D)u(x)v(x)dx   < ||g|k2(«")ll"lk2(«") < 2"|||a||| ||«|k2(/r)||y||z.2(«").JR"

Thus

||a(x,i))U|k2(^)<2n|||a|||||M|k2(«»),       u^Cl?(R").       D

4. Proof of Theorem 3. The case p = 0 has been proved in Theorem 2. It remains
to prove the theorem for the cases -oo<p<l,p#0. Throughout this section, we
denote a constant depending only on p and n by Cp „, which may vary from time to
time. We may assume that a is in C™(R" X R") and its derivatives 3"3fa satisfy
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(1.6) for some -oo < p < 1, p =£ 0. Making use of the partition of unity in [2] i.e.
there exist <p(), cp g C0°°(i<") such that

supple    -<|^|<l      and    % +   E <Py s 1    withm,^) = <p(2^£), £ e /T,
*• J ' j=0

we write
X

«(*,*) = %(*M*.S) + E *,(£)«(*, I)
7 = 0

CO

= b0(x, £) +   E  Oy(*, «). (*. £) G *" X *"■
7 = 0

Then
00

a(x,D)u = b0(x,D)u +   E aj(x, D)u,        u B C^(R").
y=o

It follows from Corollary 2.1 that b0(x, D) and a0(x, D) are continuous from
L2(R") to L2(R") with their norms bounded by CpJ\\a\\\. Therefore we shall
concentrate on estimating E°°=0 «/(■*, D)u. Since the symbol a is in C^iR" X R"),
we obtain
'     00 00 \ 00

E aj(x,D)u,  E Oj(x,D)u \=    E   (a;(x, D)w, aA.(x, Z))«),
W-i 7 = 1 /      .M = i

«G  C0°°(/r).

We shall give several lemmas to study the behavior of (a Ax, D)u, ak(x, D)u). Then
we shall see that Theorem 3 follows from these lemmas.

Lemma 4.1. Letj g N - {0} andEj = {£ g R"\2J/2 < |£| < 2^}. 77iew

|a,(x,Z>)M||L2(/n< CPi„IN||||ft|k2(/f,),        u g C0»(/r).

Proof. Since suppa(x, •) c Ej and

aj(x,D)u(x)= (j^Yjneix(a(x,t)u(Z)dS,       x^R", u <= Cf(R"),

it suffices to show the following property:

(4.1) \\aJ(x,D)u\\[2(R„)^CpJ\a\\\\\u\\LHE,),        wG C000(£/).

Let « g Cq00 (iT). Then

/"   aj(x,D)u(x)v(x)dx=(^-\   i    i   e,xiaj(x,£)u(£)v(x)didx
Jr"     J \ 277/    yR»   .//<» '

= (t-)'7    i   eixiai(2-J"x,2J^)u(2H)v{2-J"x)dZdx,
\ 277 /    -V.   -V* '

where the last equality is obtained by the change of variables x ->.2~Jpx, £ -* 2iP£.
By the hypothesis (1.6), we have

|9,-a/(ay(2-^,2*{))<CpJWl|,
where (x,£)Gi?"Xi?n, y > 1, and a = (ax,...,a„), B = {Bx,..., B„) g N" with
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a, = 0 or 1 and Bt = 0 or 1. So by the proof of Theorem 2, we have

/    ai(x,D)u(x)u(x)dx   < C' „\\\a\\\ ||w|k2(£,)|k|k2(«"),
Jr"

which implies (4.1).    D
Lemma 4.1 implies the following lemma for which we omit the proof.

Lemma 4.2. Ifs&N- (0} andj, k^\, then

E     \aj(x, D)u, ak(x, D)u)\< *2Cp J||a|||2 ||ii||i?<*")    Vw g C^(R").

The following lemmas describe the properties of (a (x, D)u, ak(x, D)u), when
\j — k\ is large.

Lemma 4.3. If 0 < p < 1, then we have

\{aj(x,D)u,ak(x,D)v)\ < Cp„|||fl|||22-^2-^||"lk2(^l|e|k2(£t),
where u, v G C0°°(i?"), ;", A: ̂  1; \j - k\ > 4 a«J ep = (1 - p)/4.

Proof. Since suppa-(x, •) and suppak(x, •) are contained in EJ and £A respec-
tively, it suffices to show the following property:

(4.2) \(aj(x,D)u,ak(x,D)v)\ < CPiJ||a|||22-^2-A:£p||fi|k2(£J.)||e||^(£4),
where   « g C00O(£/),   0 g C0°°(£J,   j,   k > I,   \j-k\>4  and   ep = (1 - p)/4.
Without loss of generality, we can assume that j > k + 4. Then we write
(4.3) {aj(x,D)u,ak(x,D)v)

= fy-)27    f    /"   e,x^-X)aj(x,OHOak{x,X)0(X)dXd£dx
\ lit j     Jr-  Jr-  Jr«

= [h] "2JP"J / / «'*<*"X)ay(2">*,2*{)"(-*{)
XaA(2--/px,2^|)0(2^X)JXrf|dbc,

where the last equality comes from the change of variables x -> 2~Jpx, | -» 2yp£ and
A -> 2">A.

In the last integral, we integrate with respect to x first. By using the following
identity:

we write

(4-4).

/"   e'JC«-x>a/(2--*,je,2*{)flt(2--*,Jc,2-*,X) </x•V

=tn i+l-(4i-x,))
X  E    E (-I)'"'/   e'^-x)3;-^(ay.(2->x,2>|))3Jf(at(2->"x,2>X))dx)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



70 I. L HWANG

where T = [a G N"\a = (ax,...,a„) with a, = 0 or 1}. Substituting (4.4) into
(4.3), we obtain

(4.5) (aJ{x,D)u,ak{x,D)v)= ("MV" E    E (-1)W/^,
lZ77/ «e7)J<«

where

(4-6)    7^=/   /   /   e'^-x)3;^(fl;(2->x,2^))3^(fl,(2->x,2>X))

x(nii + i(<,-x.))l>(2^g(2>x)rfX^-

Let g(£) = fi(2*0, € G *"• Then

(4.7) g(£)= /   e-'^g(7)^.

Substituting (4.7) into (4.6), integrating with respect to £ first and making use of the
following identity:

(ri TT-r—t)( n (i + h))(eiix~y)i) = *i(x-y)i>
\s=x 1 + l(xs-ys)]\s=l        Ss j

We obtain

(4.8) /„,,= E  E (-i)M/..,lT...
y£7 S<y

where

(4.9) Ja,p,y,s=f   iff e'l'-yXdr'V-'Mi-fix.W))
Jr" jr" jr" jr"

x3Jf(^(2^px,2^A))e(2^A)^^AJ^x

= f I dr'v~p{aj(2~jPx>2J,'i))G(x>s)Hi>Ax'Z)dxds>
JR"  JR"

with

(4.10) G(x,i) = j   e«>-»4fl j—71-Ag(y)dy,
jr" \s=i 1 + i(xs-ys)j

and

(4.11) HM(x,i)-f   e-'^(a,(2">x,2>X))
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By (4.5) and (4.8) we have

(aJ(x,D)u,ak(x,D)v) = (±-)2"2»"Z    E    E    E  (-1)"I + ,tI/..,.t...
^ ' aeT yeT fizia  Say

Therefore, (4.2) follows by showing that

(4.12) \J«,f,,y,s\ < 2-^"Cp,J||a|||22-^2-^||«lk2(£J)lklk2(^),
where a, y g T, B < a, 8 < y and ep = (1 - p)/4. By Lemma 3.1 and (4.7), we get

(4.13) ||G|k2(R"xR") = 77"/22-^"/2||&|k2(£,).

By the hypothesis (1.6), we have

(4.14)   |a/-a«a;-'(fly(2-*jc,2**)) I < CpJM\
for (x, £) G R" x R", a, B, y, 8 g T and B < a, 8 < y.

It remains to estimate Ili^allL^/rxR")- (4-H) can be written as

HM(x,£)= f   e-ixX2-^\^ak){2-Jox,2J»\)
Jr"

=  (   e-ixX2-JfM(d£ak)(2-Ji'x,2J''\)hA\)d\,
Jr"

where

MM-<(jg^l(fc-x,))'(^)-
We first estimate \\HM(-,£)\\L2IRII), so let w G C0OC(^"), then

/    H„s(x,£)w(x)dx
JRn

= i    i   e-ixK2-Jpm(d^dk)(2-Jpx,V"X)hAX)-w(x)dXdx
Jr" jr"

=  f    f   e-xX2-^^(0Pak){2-k»x,2k»X)
Jr" jr"

xhi(2(-J+k)pX)w(2u-k)l'x)dXdx.

By (1.6) and by the assumption that j > k + 4, we have

2-7^l|8;Y((3Jfa,)(2-^x,2^A))| < Cp,J|«|||,

where (x, X) e i?" X 7T and a', /?', /3 e r.
Thus, we derive from Theorem 2 that

f   Hfi8(x,Z)w(x)dx   <CPiJ||«||||A4(-)|UJ,.)lk||L»(ji-),        wGQ°(i<"),
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which implies

/    \H^s(x,i)\2dx^CpJ\a\\\2j   dl[fl l |    \v(VpX)\2dX.
JR"     p jr"     \,-i1 + i(€i-a,)/

Then we have

(4.15)     f       If   \Hpj(x,i)\2dx)dt

I I    " 1 \   2 ,        \
<CpJ\a\\\2f /    3/   FI  ,,,.,>      x J   k(2^PA)| dXldt

h-»Ej \Jr"      \s-i 1 + i{Zs- AJ/ J
Since 8 = (8X,..., 8n) G T, we see that

(4.i6) 3»(n-_J_—) <n———-j,   A,iGi?«.

Then an elementary calculation gives

(4.17) f        fi-r^<28/1277"2-^(1-'",
J2-*Ej  , = 1   l+(^-XJ2

for X G 2-JPEk and j > k + 4.

Thus, it follows from (4.15), (4.16), (4.17) and Fubini's theorem that

/ 2 \ V2
(4.18) /"        f   |i/M(x,0| dxdi]      <Cp„|||a|||2-><1-")/22->'»'/2||6|k2(£t).

yj-jeEj jr" I

By (4.9), and the fact that suppa -(x, •) C £., we obtain

(4.19) \Ja.p,y,s\ < Cp,J||a|||||G||/.2(R»x2-£,)||i/||/.,(«" x 2-J'Ej).

Thus (4.12) follows from (4.13), (4.18) and (4.19).   □

Lemma 4.4. i/-oo < p < 0, then

\(aj(x,D)u,ak(x,D)v)\ ^ Cp,J||a|||22^/42-A:/4||fi||/.2(£J)||e||L2(£,),

where u, v g Cf(R"), j,k>\ and \j - k\ > 4.

Proof. Without loss of generality, we can assume that it g C0°°(£/), v g C™(Ek)
and j > k + 4. Then

(o,(x, Z))w,aA.(x,D)';)

= (t-)7    f    (   e,x(f-V(x,£)&(£)a*(x,X)fi(X)rfX^x
V Z77" /      -V  •/R"  •'fl4

= (-M V'"/"    /"    /"   «'*<«-x>fl/(2-*',je,2*',{)fi(2*',{)
V 277 / y^n •/#.> jr-

Xak(2-kpx,2kpX)d(2kpX) dXd^dx,
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where the last equality comes from change of variables x -* 2~kpx, £ -* 2kpi-,
X -* 2kpX. We will use a technique similar to the proof of Lemma 4.3, but we
integrate with respect to X instead of integrating with respect to £. Then the lemma
follows by using the inequality

[ I- dX < 28n V • 2~J + kp    for | g 2~kpEj.   U
h-*>Ek s=l i + |{f-\,|

Thus, Theorem 3 follows from Lemmas 4.1, 4.2, 4.3, and 4.4.

5. Proof of Theorem 4. By using the same partition of unity as in §4, we have
00

a(x,D)u(x) = b0(x,D)u(x) +  E «,(*> D)u(x),    for u g C0°°(i?").
7 = 0

By Corollary 2.1, it suffices to estimate |p*L5o,(x, D)u\\Li^n) with u g Crf(R").
We write

2
00 00

E Qj(x, D)u =    E   (aj(x, D)u,ak(x, D)u).
7 = 5 i2(R")        j,k-5

The only difficulty in estimating |(o,(x, D)u, ak(x, D)u)\ occurs when \j - k\ is
large. We give a lemma to handle this case.

Lemma 5.1. If j, k > 5 and \j - k\ > 4, then

\{aJ(x,D)u,ak(x,D)v)\ < CtJ\\a\\\2j-1~E'k-1^E'\\u\\LHEJ)\\v\\L2(.El,),

where u, v G C™(R"), e, > 0 a constant depending only on t and Ctn is a constant
depending only on n and t.

Proof. Without loss of generality, we can assume that j > k + 4, it g Cq'(Ej)
and v g Cf(Ek). Then

(aj(x, D)u,ak(x,D)v)

= (t-)'7    f    f   eix^-X)aAx,$)u(Z)ak(x,X)d(\)dXdZdx
\ lit j      Jr-   Jr-   Jr- j

= l±)2\r>vyf i i e^-x\{r2-Jx,m)u{rvi)
\ Z77 / JR-   Jr-   Jr.

Xdk(j'2-jx, j-'2JX)v~(j-'2JX) dXdidx,

where the last equality comes from the change of variables x -* j'2'Jx, £ -* j~'2J£,
X -> j~'2JX. Integrating with respect to x first and making use of the following
identity:

Ad+ /»!-*>)( n(' +w'"k))w>-»)- .■■»-'■■
[(4 + 01      ,with r =   -2—r—-   + 1,
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we have

(aj(x, D)u,ak(x,D)v)

= (if"(r'2T E (/)(-r+1)W(-l)'|a|  E   C(ra,B)TaJ

where

T = {a G iVn |a = («lf..., aj and a„, = 0 or 1),

and

7«W   /   /   g'^-X)3;a^(ay(/2->x,y-^))( fi 1 ̂  .   *     , J

Xdg(ak(j'2-Jx,j-'2J\)){i(j-'2Jt)6(j-'2J\)d\didx.

Then the lemma follows by an argument similar to the proof of Lemma (4.3) and by
the following fact:

If j > k + 4, r = [(4 + 0/2?] + 1, e = r - (4 + t)/2t and S = (6\,..., S„) G N"
with 8j. = 0 or 1, then

/ 94nT—TtHtv)    ^<^2"r4-2£'    forXG/2"^,

where Cn is a constant depending only on n.   □
Remark. Let $, <p be two positive functions defined on R" x it". We say a is in

the Beals-Fefferman class S$;°, if a G C^iR" X R") and there exists a constant
C„jJg > 0 such that

|3;3fa(x,£)|<Ca,,(«l»(x,£))-|/J|(<P(x,£))-|Q|,

for(x,|) e«"X K", a, B G tV".

In Hormander [8], it is proved that a(x, D) is continuous from L2(Rn) to L2{R") if
a G S$;° and 4>,(p satisfy the following conditions:

(1) There exists e0 > 0, C0 > 0 such that if (x, £), (y, n) g R" X R" and

then

c-i    v(y,n) x    Hy,n)

(2) <D(x, 0 • <p(x, 0 > 1, for (x, 0 G R« X R".
(3) There exist C > 0, t > 0 such that

4^4 + ̂  < ̂  + *(*>0\X-y\ + 9(x,€)|« - n|)',<p(x,£)        0(x,£)

for(x,£),(v,n) Gi?"x fl".
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We now construct a symbol a0 which is in C°°(i? X i?) and satisfies the following
condition:

For any a, B G N, there exists a constant Ca p > 0 such that

\d&a(x,S)\< Q,,((l +|£|)(log(l +|£|))-1)'alH",

(x, £)g R x R. Suppose such an a0 exists. Then by Theorem 4, a0(x, D) is
continuous from L2(R) to L2(R). Also, we can see that a0 g S£'° with $0(x, £)
= (1 + |£|)(log(l + |£|))-x and <p0(x,£) = (1 + |^|)-1log(l + |||),° which can not
satisfy (3). Therefore (1), (2) and (3) are not the necessary conditions for the L2
continuity.

Construction ofa0. Let f e C^J!) such that <p > 0, <p(0) = 1 and supp<l> c {|£|
< 1}. We define

00

«o(*. «) =   E e'^2'>(;2->(£ - 2^),        (x, O^Xii.
7 = 4

Then a0 satisfy the condition that we want.

6. Proof of Theorem 5. We denote a constant depending only on p by C , which
may vary from time to time. At first, we prove the following lemma.

Lemma 6.1. If 0 < p < 1, then

\(aj(x,D)u,ak(x,D)v)\ < Cp2-^2-*EHI"lk2(£,)||£|k2(£*),
where u, v G C0co(i?), ;', Jt > 1, |; - fc| > 4 and ep = (1 - p)/4.

Proof. By following the proof of Lemma 4.3, we have

(aj(x,D)u,ak(x,D)v) = (j-Yv" E    E (-I)"/..*.

where T = (0,1} and

7«.'" / / / *te(t~X)3*"~/,(«7(2-**.2**))
R    R    R

Xd?{dk(2-Jpx,2>"A))( i +    * _ A) )u(2^)g(2>"X)rfXrfgdx.

By the proof of Lemma 4.3, we have

17„01 < Cp2"7e"2-'<:e'>||M||L2(£,)||f5||z.2(£i.)   with a = Oorl.

To estimate Iox, we use a technique similar to the proof of Lemma 4.3, but we
integrate with respect to X instead of £.   □

We state the following results and omit their proofs.

Lemma 6.2. i/-oo < p < 0, then

|(a7.(x,D)w,a/t(x,i))(;)| ^ Cp2^/42-*/4||ft||L2(£,)||0|k2,£i.),

where u, v g C0°°(i?), j, k > 1 and \j - k\ > 4.
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Theorem 5 follows from Lemmas 4.1, 4.2, 6.1, and 6.2.
By using arguments similar to the proofs of Theorem 4 and Theorem 5, we obtain

Corollary 5.1.
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