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THE L>-BOUNDEDNESS OF PSEUDODIFFERENTIAL OPERATORS
1. L. HWANG

ABSTRACT. We give a new proof of the Calderon-Vaillancourt theorem. We also
obtain the L?-continuity of a(x, D) if its symbol a(x,£) satisfies some suitable
conditions.

Introduction. We consider a pseudodifferential operator a(x, D) on an open set
Q c R". We want to find conditions on its symbol a(x,£) that imply the L?
continuity of a(x, D). Several results for this problem can be found in the literature.
We mention a few. The first is due to A. Calderon and R. Vaillancourt [1].

THEOREM. Let 0 < p <1 and a: R" X R" = C be a continuous function whose
derivatives Bfafa in the distribution sense satisfy the following condition:

(*) There is a constant C > 0 such that

|a;aeﬁa(?€,§) | <Cc(1+ |§|)p(la|—lﬁl)’

where (x,§) € R" X R", 0 <{BI<2[n/2}+nand 0 <la| <
2m withm € N and m(1 — p) > 3n.

Then a(x, D) is continuous from L*(R") to L*(R").

Coifman and Meyer [2] improved (x) by assuming that it holds for 0 < |aj,
Bl < m, m €N and m > [n/2] + 1. Moreover, they gave an example that shows
m > [n/2] + 1 is the best possible. Kato [3], Kumano-go [4], R. Beals [5], Cordes [6]
and others obtained similar results by assuming () holds for different numbers of
derivatives.

In this work we prove several new results about the L? continuity of a(x, D)
when a(x, §) and some of its derivatives satisfy conditions similar to the above
theorem.

§1 contains our results, and §2-§6 contain the proofs.

We use elementary tools such as integration by parts, the Fourier transform and
Parseval’s formula. '
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56 I L. HWANG

1. Statement of results.

THEOREM 1. Let @ = I17_,(s;, ;) be a bounded open box in R" and a: @ X R" — C
a measurable function whose derivatives 0%a in the distribution sense satisfy the

following condition:

(1.1)

Then a(x, D) is continuous from L*(R") to L*(R) with its norm bounded by
C,(1 + max, ; (¢, - sj))"/zlllaIH, where C, is a constant depending only on n, and
llalll is the smallest C such that (1.1) holds.

There is a constant C > 0 such that ||97a| ;= g x rn) < C, where
a=(a,...,a,)E N" witha;=0 or 1.

An immediate consequence of Theorem 1 is the following well-known result.

COROLLARY 1.1. Let @ be a bounded open subset of R" and a: 8 X R" — C a
measurable function whose derivatives 0%a in the distribution sense satisfy the following
condition:

(12) There is a constant C > 0 such that |19%alll=@xr < C,
’ where a = (ay,...,a,) € N" with a; = 0 or 1.

Then a(x, D) is continuous from L*(R") to L% ().

loc

THEOREM 2. Let a: R" X R" — C be a continuous function whose derivatives 333fa
in the distribution sense satisfy the following condition:

There is a constant C > 0 such that IIIBfafaIIILx(RnXRn) < C,
(1.3) where a = (ay,...,a,), B=(B),....8,) E N" with a;=0
orl, B;=0orl
Then a(x, D) is continuous from L*(R"™) to L*(R") with its norm bounded by C,|llalll,

where C, is a constant depending only on n and |\\all| is the smallest C such that (1.3)
holds.

REMARK. We mention that Theorem 2 is also obtained by Coifman and Meyer [2]
and by Cordes [6]. We include it because we need it for the proofs of the next resuits,
and because we believe our proof is simpler.

COROLLARY 2.1. Let a: R" X R" — C be a measurable function whose derivatives
'c)fa in the distribution sense satisfy the following condition:

(1.4) There is a constant C > 0 such that

5 1/2
sup (/R [0fa(x. ) | ds) <C,

x€R"
where B = (B,,...,B,) € N" with B; =0 or 1.
Then a(x, D) is continuous from L*(R") to L*(R") with its norm bounded by C,|l|alll,

where C, is a constant depending only on n, and |||all| is the smallest C such that (1.4)
holds.

REMARK. A different sufficient condition for Corollary 2.1 can be found in
Muramoto and Nagase [7].
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L2-BOUNDEDNESS OF PSEUDODIFFERENTIAL OPERATORS 57

COROLLARY 2.2. Let a: R" X R" = C be a measurable function whose derivatives
0%a in the distribution sense satisfy the following condition:
(1.5) There is a constant C > 0 such that

NVZ:
sup (/ |9%a(x, £)] dx) <C,

¢eR”
where a = (a,,...,a,) € N" with a; = 0 or 1.
Then a(x, D) is continuous from L*(R") to L*(R") with its norm bounded by C,|l\alll,

where C, is a constant depending only on n, and || alll is the smallest C such that (1.5)
holds.

REMARK. A different sufficient condition for Corollary 2.2 can be found in
Hormander [8].

THEOREM 3. Let p € R, p <1, and a: R" X R" = C be a continuous function
whose derivatives 8;’afa in the distribution sense satisfy the following condition:
(1.6) There is a constant C > 0 such that

la;agﬁa(x’g)‘ < C(l + |£DP(I‘X|—|B|),
where (x,§) € R" X R", a = (ay,...,a,), B=(By...,8,)
€ N"with a; =0, 1 or 2, ,Bj=00rl.
Then a(x, D) is continuous from L*(R") to L*(R") with its norm bounded by

C, .lall, where C, , is a constant depending only on p and n, and ||al|| is the smallest
C such that (1.6) holds.

REMARK. When —o0 < p < 1, a different sufficient condition for Theorem 3 can
be found in R. Beals [5].

THEOREM 4. Let g,(§) = (log(1 + [£]))~%, t > 0. Suppose a: R" X R"—> C is a
continuous function whose derivatives a;’afa in the distribution sense satisfy the
following condition:

(1.7) There is a constant C > 0 such that

« tal =181
[8e8fa(x, £)| < (g (&)1 +1£) ",
where (x,§) € R" X R", a = (ay,...,a,), B=(By...,B,)
EN"with0<a;<[@+1)/2t]+2and B; =0 or 1.
Then a(x, D) is continuous from L*(R") to L*(R") with its norm bounded by C, ,lllall,

where C, , is a constant depending only on t and n, and ||all| is the smallest C such that
(1.7) holds.

THEOREM 5. Let p € R, p < 1. Suppose a: R X R — C is a continuous function
whose derivatives a;afa in the distribution sense satisfy the following condition:

(1.8) There is a constant C > 0 such that
8rdfa(x,£)| < C(1 +]&)* 77,
where (x,§)€ RX R, a=0o0r1, 8=0o0r1.
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58 I. L. HWANG

Then a(x, D) is continuous from L*(R) to L*(R) with its norm bounded by C,||alll,
where C, is a constant depending only on p, and ||alll in the smallest C such that (1.8)
holds.

COROLLARY 5.1. Ler g,(¢) = (log(1 + |§))~", £ € R, ¢t > 0. Suppose a: R X R -
C is a continuous function whose derivatives 3%3fa in the distribution sense satisfy the
following condition:

(1.9) There is a constant C > 0 such that

az0fa(x,€)| < C(g(&)(1 +1€D) ",
where (x,§)€E RX R, a, BEN and 0 < a <[(4 + 1)/2¢]
+1, 8=0o0rl.

Then a(x, D) is continuous from L*(R) to L*(R) with its norm bounded by C)|lalll,
where C, is a constant depending only on t, and |||alll in the smallest C such that (1.9)
holds.

2. Proof of Theorem 1. To prove Theorem 1, we need the following lemmas.

LEMMA 2.1. If f(§) = 1 /(1 + i), £ € R, then the Fourier transform of f is
fo={5 o

2qe V< 0.
PROOF. Making use of the residue theorem, the reader can check it without

difficulty.
More generally, we have
LemmMma 2.2. If
n 1 !
f(£)=lel_T‘§,’ ¢=(%.....£,) ER",

then the Fourier transform of f is
7= T1e,(s).
j=

wheret = (t,,...,t,) € R" and

0, 1> 0,

gj(tj) = -1

2me 1< 0.

In the following proposition we shall prove Theorem 1 in the special case n = 1
and under stronger conditions.

PROPOSITION 2.1. Let @ = (s5,1), —~o0 <5 <1 < 00. Suppose a: X R > C isa
continuous function whose derivatives 9%a satisfy the following conditions:

(2.1) 3% € CO(Q X R), a = 0, 1.

(2.2) There is a constant C > O such that ||87a|| ;= qxry < C, a = 0, 1.

Then a(x, D) is continuous from L*(R) to L*() with its norm bounded by Cylllalll,
where Cg is a constant depending only on Q and ||all| is the smallest C such that (2.2)
holds.
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L*-BOUNDEDNESS OF PSEUDODIFFERENTIAL OPERATORS 59

PROOF. Let 0 <e < 4(s —t) and Q, = (s + &t — ¢). Our goal is to find the
existence of an absolute constant C, > 0 such that

la(x, D)ulli2a, < Co(1 + ¢ — s — 2¢)llall | u|2ry Vu € CP(R).

Then the proof of Proposition 2.1 follows by letting ¢ — 0.
For u € C§°(R) we have

a(x,D)u(x) = %fR ea(x,&)u(¢)dt, xeQ.
Therefore, we have

fﬂﬂa(x,D)u(x)|2dx
- (%)2 [ [ [ e atx £)i(€)a(x, A)a(A) g dx
z(zl_,,)zfﬂ fR/Reixfa(x,g+A)a(g+A)a(x,x)a(x)dgdxdx.

Because the integrand is in L'(2, X R X R), by Fubini’s theorem we have

(2.3) /Q la(x, D)u(x) [2 dx

- (5 )fR J; (fg ea(x,€ +N)a(x,\) dx |a(§ + N)A(A) dga.

27

Making use of the identity

1 ) .
ixEY o pixé
1 + lé‘ (1 + ax)(e ) e k)
we obtain
(2.4)
ix¢ - — ix¢ -
'[She a(x, &+ N)a(x,\)dx 7 +i£j;25e a(x, &+ N)a(x,\)dx
+ T l,gei(’_s)ga(t —g ¢+ AN)a(t—¢gA)
- ﬁe"(”s)ga(s +eE+N)a(s+e )
~1 _1 iEf e™3 a(x, &+ N)a(x,\) dx
QF
—3 _’1_ i§f e*ta(x, &+ X))o a(x, \)dx.
QE
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60 L. L. HWANG

Substituting (2.4) into (2.3), we have
(2.5)

la(x, D)u \dx
I,

a(x E+ N a(é+ Na(x, N a(N)dhdédx

1 \?2 itt—e)4 ~
2 fR fR Tyl —efrMa(e+N)ale —e d)a(X)dhds

1 \2 pils+es B
27 fRfR 1+ “(S+E £+ N)a(E+N)a(s + e, N)a(N)d\dé

;_wzf fRf 1+,g a(x, £+ Nk + \)a,a(x, \)E(N) d\ dE d

=L+ L+L+1,+I

We first estimate I,.

(2.6) 11=( )/ [ [ Togate £+ it + NaGx\)i) ard ds.

For x fixed we study the following integral:

ixt ~
S = /R fR 1e+ iga(x’g + Nya(g+ Nya(x, N)a(N) dhdg

= /Rg(s)h(g)ds,

where g(£) = e™ /(1 + i¢) and
h(¢) = / a(x, &+ N)a(E + Na(x, N)a(N) dA
R

Looking at the expression of A(§) and taking into account that u € C;°(R) and
lla(x, )l 1= (, < llalll, we see that 4 is a kind of convolution of two functions both
belonging to L'(R) N L*(R). Therefore we have

(2.7) hisin L*(R),

and
(2.8) There is an absolute constant C; > 0 such that

2 2
IRllew < Clla(x, ) a=rllulzon < Gl
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L2-BOUNDEDNESS OF PSEUDODIFFERENTIAL OPERATORS 61

Obviously, g is in L%(R). Making use of Parseval’s formula, (2.7), (2.8) and Lemma
2.1, we have

51 =, stmie de| = 52| [ eta)i(a) da

1, N
< E”g”Lw(R)”h“U(R)

< C2|||a|||2||u||21,2(R) for some absolute constant C,.
Now, going back to (2.6), we obtain
2
(2.9) L] < Gt = s = 2e)lalli*| ul| z2cry.

By similar arguments, we have the following estimates:
2
(2.10) 1L, < Cllall|ul/2r),
2
FARS C2|||a“|2”u||L2(R),

2
] < (2 — s — 2¢&)lllall?|u] 22wy

and

2
|15 < Cy(t — s — 2€)llalll®]|u)z2cry.
Thus, it follows from (2.5), (2.9) and (2.10) that
la(x, D)ulliz@, < C;(1 + 1 — s — 2¢)lllalll||u|2ry Vu € C(R),
where C; is an absolute constant. O

More generally, we have

PROPOSITION 2.2. Let Q@ =I17_,(s;,¢;) be a bounded open box in R". Suppose a:
@ X R"—> C is a continuous function whose derivatives 3% satisfy the following
conditions:

211 fae COXXR"Y), a=(ap...,a,),a, =0orl.
x 1 n J
(2.12) There is a constant C > 0 such that
l3fall=@xry < €, a=(ay,...,a,), a,=0orl.

Then a(x, D) is continuous from L*(R") to L*(Q) with its norm bounded by
C(1 + max; _,; (¢, — sj))”/zillalll, where C, is a constant depending only on n, and
alll is the smallest C such that (2.12) holds.

PROOF. The proposition follows from Lemma 2.2 and an argument similar to the
proof of Proposition 2.1. O

Now, we are ready to prove Theorem 1.

PROOF OF THEOREM 1. We shall approach the symbol a by smooth symbols. Then
we shall apply Proposition 2.2.

Let ¢ be in C{°(R) such that the following conditions hold:

>0, supppC {-1<y<1} and [ofng =1
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62 I. L. HWANG

If0 <& < gmin, _, . ,(¢, — 5;), then we define a, = A * a, where

1 n X. g
(213) M) = =TT ol 2o ).
e =1 € €

with x = (x,...,x,), §=(§,,...,§,) € R". We see that a, € C*(R" X R") and
lim, , qa.(x,§)=a(x,§)ae. in & X R". Moreover, hypothesis (1.1) gives

(2.14) 95, || L=ca, xrmy < lllalll,

where 0 < e < gy, @, =TII7_(s; +2,,1,— 2¢) and a = (a,...,a,) € N" with
a, = 0 or 1. By applying Proposition 2.2 to a(x, D)u with u € C§°(R"), we get for
0<ex<eg

n/2
(2.15)  la (x, D)ul|rxq,,) < Cn(l -4, + max (1, - sj)) Malll ]| 22¢&>.

l<jgn

We now write
2
la.(x, D)ul ',

- (zl_w)fg [ ], e hax f)a@)ax )aN) drdgax.

£

Then by the facts lim, ,,a, = a a.e. in @ X R", (2.14), & € S(R"), |9, | < o0, and
the Lebesgue dominated convergence theorem, we obtain

. 2
lim [|a,(x, D)u e,
e—0

_ (il;)z"lim fQ f /R e Ng (x, £)i(£)a,(x, \)a(N) d\ df dx

e—0
= (2_1‘7;)2"‘/;2 f" f"€iX(£_>\)a(x,$)i‘(§)E(X,)\)5(}\)d}\d};dx

2
=|la(x, D)ul 1,

This and (2.15) imply

n/2
la(x, D)ulixe,, < C,,(l — 4ep + max (1, - sj)) Malll w22z

l<jgn

Then Theorem 1 follows by letting e, » 0. O
Proor oF COROLLARY 1.1. Since any compact subset of § can be covered by a
union of finite open boxes in £, Corollary 1.1 follows from Theorem 1. O

3. Proof of Theorem 2. To prove Theorem 2, we need the following crucial lemma
which is related to Wigner functions.

LEMMA 3.1. For u, ¢ € L*(R") we define

g(x,8)= [ ep(x —y)u(y)dy,

R"
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L2-BOUNDEDNESS OF PSEUDODIFFERENTIAL OPERATORS 63

and
h(x,8)= [ emp(E+y)u(n)d,  (x.8) < R xR

Then we have

lgllczcrrxrn = | Allzrmxrny = m) |l 2crml u ] c2ern.

Proor. Without loss of generality, we can assume that u, ¢ € C°(R"). Making
use of Parseval’s formula, we have

f [ NsCx o) dat = (;—W)fk L. 120 6)(a) | dadt.

By using the identity g( ,E) (@) = p(a)i(a + £) and Fubini’s theorem, we obtain

I gll2rx r"y = (277)"/2” @ll2crmlullz2crr).

The second equality follows from a similar argument as above and by integrating
with respect to £ first instead of x. O

PrOOF OF THEOREM 2. Without loss of generality, we can assume that the symbol
a is in C(R" X R") and its derivatives a;:afa satisfy (1.3). Then for u € CP(R")
and x € R", we have

(3.1) a(x, D)u(x) = (%)/R [, e a(x £)uly) dy.

Making use of the identity

[ im0

PLC s J1 3 ei(x—y)i,
s=1 1+ l(x _ys ( )

we obtain

(2) [ e axigyde = [ (0| T Ty ) 4

s 11+I(X _.ys)

where b(x, §) = (I1{_,(1 — 3; ))(a(x, §)). Substituting (3.2) into (3.1), we have the
following crucial equality:

(3.3) a(x,D)u(x)
Hx— y 1
(2W) f/ =»8p(x, i)( J Sy ))u(y)dyd.f.
Let v € C§°(R"). By (3.3) and

o(x) = (%)[R e™(A) dA,
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64 L L. HWANG

we have
(3.4)

fRn a(x, D)u(x)v(x)dx

= (21_7T)2n/n f” /R" _/R,, ei(x—,v)ﬁeixkb(x’g)

n 1 i
X(E[l m)u(y)v(}\)dydéd}\dx

(=)L)

X eXETMp(x, §)
R'l

T ~ivty () (A dy dEdA
X(Fl—[lui(xs—ys))dx)e uly)b(h) dydtdd.

Integrating with respect to x first and making use of the identity

M) Ta e

s=1 s=1

(eix(£+)\)) _ eix(£+}\)’

we get

ix(§+A PENY2NEEY
(3.5) _/Rne “*b(x, ¢ (.\'=1 1+ i(x, _yé))dx

n 1
fo" eix(£+)\)( ﬁ(l - axy))(b(x,é)(Fl m)) .

s=1
LetT = {a € N"|a = (aj,...,a,)and a; = 0 or 1}. Then we have

? n

(3.6) (ﬁl(l - axj))(b(x 5)(“ 1—+t(x——y))

_ et —_————

= agT( 1) 8 b(x g)(lj—-—ll 1 +I(X —ys)))

Y O N
T (0" T -t )2 ﬂm(xs—m)'

Substituting (3.6) into (3.5), we see that

6D [ e”“g”"b(x,é)( 1‘[ ——1—) dx

-1 1+i(x,—y,)

-y ¥ <—1>'“'(ﬁ m)

aeT B<ga s=1

X efx““)a;‘ﬁb(x,g)af( I1 ;)) dx.

R" s=1 1+ I(XX - Y
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L2-BOUNDEDNESS OF PSEUDODIFFERENTIAL OPERATORS 65

We derive from (3.4) and (3.7) that

(3.8) /Rna(x,p)u(x)v(x)dx

= £ S0 [ e )galx, h(x, 8) e,

aeT Bga

where

p(x.6) = [ e[ s a,

1+ z(x
and

_ ixA - ———1—
h(X»ﬁ)-fRn" (El 1+i(&+A,)

Applying Lemma (3.1) to gg, we get

5(\) dA.

2

5

(39) “gB“LZ(R"xR") = (277)"/2('/;{”

‘ 1
B
a"(sUl 1+ ix

< m)" 7" Y| ul| 2 rn).

1,2
dx) I|u||L2(R")

Similarly, we have

172
(3.10) A llz2crr xRy = (277)"/2(/" ) IRV

= 27)" "7 vllr2crm.

From (1.3), we see that

(3.11) 182 Pe]| o rrsermy < 2"llalll.
Thus, we derive from (3.8), (3.9), (3.10) and (3.11) that

‘/ a(x, D)u(x)v(x)dx| < C,lllalll |u|lz2crm
R"

vlL2rm),

where u, v € C°(R") and C, is a constant depending only on n. O

PrOOF OF COROLLARY 2.1. Without loss of generality, we can assume that the
symbol a has compact support in R” X R” and that its derivatives Bfa satisfy (1.4).
Then we approach the symbol a by the smooth symbols a, defined by a, = A, *a,
where 0 < e <1 and A, is as in (2.13). By the definition of a, and taking into
account that a € L%(R" X R"), we have the following properties:

(3.12) a, € CF(R" X R"),
(3.13) lif(l)llae — al|2roxrmy =0
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and

1,2
(3.14)  sup (f!aé’ag(x&)lzdé) <llall,  B=(By.....B,). B;=0or1.
xER"
Let u € C°(R") and x € R". From (3.3), we have
(3.15) a.(x,D)u(x)

= (21_'”)"/]?" fR” ei(x—_v)ﬁbe(x,i)(}j m u( y) dydt,

where

n

bx,) = [ T100 - 8)|(a(x.8)).

s=1

Let v € C{°(R"™). Making use of (3.15), we write

(3.16) f (x, D)u(x)v(x) dx

~(3) [ [ bx000)
><(‘/'1 ei(x—y)ﬁ(sli[l 1_i_i(;ﬁ)u(y)dy) dxd£

1 n
- (E) fR /R g(x,§)h(x, £) dxdg,
where g(x, §) = b.(x, £)v(x), and

- i(x—y)§
h(xag) L"e( )(s::l ]+1(x ))u(y)dy'
By (3.14) and

85,0 = | T =) (e (. £),
we see that

(3.17) lglizcrrscrm < 27Mllall [ ofle2crn.

According to Lemma (3.1), we have

! 1,2
5 dx) ||| 22¢rm)
+ Xx;

(3.18) | All2rxrry = (277)"/2(["

< (27) "\ ull2rmy.

Therefore, we derive from (3.16), (3.17) and (3.18) that
f a(x,D)u(x)v(x)dx
R"

(3.19) < 2"|lalllt fful|z2crm| 0| 22¢R7y

Yu,v e CP(R").
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Now, we are ready to prove the L*>-boundedness of a(x, D). For u, v € CP(R"), we
write

[ adxDyuxe()ax = (5-) [ [ ea(x8)a(8)o(x) dxde.

Making use of (3.13), we see that
(320) lim / j ea (x,£)a(£)v(x) dxds
= f f ea(x, £)a(€)v(x) dxds,  wu,ve CP(R").
n RII
Therefore we derive from (3.19) and (3.20) that

fRn a(x, D)u(x)v(x)dx

Thus

vllz2ry Yu,v € CP(R").

< 27lall ||| 22¢rm

la(x, D)ulzan < 27llall jullien,  we GP(RY).  ©

PROOF OF COROLLARY 2.2. Without loss of generality, we can assume that the
symbol a € Cg°(R" X R™) and its derivatives d%a satisfy (1.5). If u, v € C°(R"),
we have

(3.21) j;n a(x, D)u(x)v(x)dx = (—2—17—’)"&"(./]?" e™*a(x, £)a(&) dg)v(x)dx

N (z%)f,e(f e‘*a(x,ﬁ)v(x)dx)a(g)dg
= [ s(©u¢)as,
where
g(¢) = (21_77)",/,?,, e*a(x, &)v(x) dx.

It follows from Corollary (2.1) that

(322)  ligllexen < @m)"2%Mlall 8]l 2rny = (2) ™27 lall |l {2z,
From (3.21) and (3.22), we have

j;" a(x, D)u(x)v(x)dx
Thus

<ligllezcrnllicllzzcrey < 2"Walll ||u || 2rm v |22 R7.

la(x, D)ulz2any < 2'llalll [ ullzrn,  w e CP(R™). O

4. Proof of Theorem 3. The case p = 0 has been proved in Theorem 2. It remains
to prove the theorem for the cases —c0 < p < 1, p # 0. Throughout this section, we
denote a constant depending only on p and n by C, ,, which may vary from time to
time. We may assume that a is in Cg°(R” X R") and its derivatives 323fa satisfy
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(1.6) for some —oco < p < 1, p # 0. Making use of the partition of unity in [2] i.e.
there exist ¢, ¢ € C°(R") such that

1 ~ i : -7 n
supp g C {g <|£I<1} and ¢, + )2 ¢ =1 withg(§)=9(27%), &€ R",

=0
we write
a(x, &) = g(&)a(x, &) + Z ¢ (£)a(x,§)
j=0
=by(x, &) + X a;(x.8), (x,§)€R"XR"
j=0
Then

a(x,D)u=by(x,D)u+ Y, a,(x,D)u, ue C(R").
j=0
It follows from Corollary 2.1 that by(x, D) and a,(x, D) are continuous from
L*(R") to L*(R") with their norms bounded by C, lllall. Therefore we shall
concentrate on estimating L%, a,(x, D)u. Since the symbol a is in C§°(R" X R"),
we obtain

i a,(x,D)u, i a(x,D)u i (aj(x,D)u,a,‘,(x,D)u),

u € Cy(R").
We shall give several lemmas to study the behavior of (a,(x, D)u, a,(x, D)u). Then
we shall see that Theorem 3 follows from these lemmas.

LEMMA 4.1. Letj € N — {0} and E; = {£ € R"|2//3 < |§| < 2/}. Then
la,(x, D)ul|,. u <€ CE(R").

& S G

PROOF. Since suppa(x, ) C E; and

a,(x. D)u(x) = (L)fR e™a(x, £)ia(£)dE,  x € R ue C#(R"),

2q
it suffices to show the following property:
(4.1) la;(x, DYulzpr, < G, Mallflallzsy, &€ CF(E).

Let v € Cg°(R"™). Then

fR” a;(x, D)u(x)v(x)dx = (—21'”-)"/ / e"%a;(x, £)a(£)v(x) dédx

(27;) f f (27Px, 208 ) (2778 )0 (27 x ) dE dx,

where the last equality is obtained by the change of variables x — 27/°x, § — 2/°£,
By the hypothesis (1.6), we have

8:8f(a;(277%x,27¢)) < ¢, llalll|.
where (x,£) € R" X R", j>1,and a = (a;,....a,), B=(By,...,B,) € N" with
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a,=0or1and B, = 0 or 1. So by the proof of Theorem 2, we have
j;" a,(x, D)u(x)v(x)dx| < C, llall
which implies (4.1). O
Lemma 4.1 implies the following lemma for which we omit the proof.
LEMMA 4.2. Ifs € N — {0} andj, k = 1, then

2
Y a;(x,D)u,a(x, D)u)| < s*C, Mall® |ul2ry Vu € CP(R).
l-kl<s
The following lemmas describe the properties of (a,(x, D)u, a,(x, D)u), when
|j — k|1is large.

tl|lceploll2crm,

LEmMMaA 4.3. If 0 < p < 1, then we have
|(aj(x, D)u,a,(x,D)v) ’ < G, all*277%2- k|| || 2| 0 L2,

whereu,v € Ci°(R"), j,k>1;|j—k|>4dande,= (1 — p)/4

PRrOOF. Since supp a;(x, -) and supp a,(x, -) are contained in E; and E, respec-
tively, it suffices to show the following property:
(42)  |(a;(x. D)u, ax(x, D)v)| < G, Mall*27 /%2 ] al| e o]l 2ce,
where @t € C°(E)), 0 € CP(Ey), j, k=1, |j—k|>4 and ¢,=(1 - p)/4
Without loss of generality, we can assume that j > k + 4. Then we write
(4.3) (a,(x,D)u,a,(x,D)v)

B (%)sz [ [ e ™a,(x,£)a(§)a(x, \)5(A) dh dg dx

- (21_77)2"21;»:/ f /eix(s—x)aj(z—jpx,2jp§)a(21pg)

Xa,(27°x,2°¢) 5(2°PN) dA d& dx,
where the last equality comes from the change of variables x — 27/°x, ¢ — 2/°£ and
A - 2/P),

In the last integral, we integrate with respect to x first. By using the following
identity:

(ﬁ __1_)( ﬁ (1+ 3x,\_))(e”‘(§‘“) _ eiEN),

s=1 1+i(§5_>\s) s=1
we write

(4.4)

f" eix(&—)x)aj(z—jpx’ 2/"5)5k(2‘j"x, 2PN ) dx

z 1

M)

x ¥y oy (—1)'“'/ ei"(g_}‘)a)’j‘_ﬁ(aj(2‘fpx,2fp§))af(ak(2'f"x,2f"7\))dx,
iy

aeT B<ga
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where T = {a € N"|a = (ay,...
(4.3), we obtain

(4.5) (aj(x,D)u,ak(X,D)U) - (51_)2"2;,,': D (_1)Ialla‘ﬂ,

T aeT Bga

,a,) with a, =0 or 1}. Substituting (4.4) into

where

(46) L= [ [ [ e8P a, 27, 2))88(@, (2 x,200))
n n RVI
- _——-—1 ~(27°8N 5 (2P
><(1:[1 1+i(£8—>\3))u(2 £)0(27°A) dhdédx.
Let §(£) = 2(2/°¢), £ € R". Then

(4.7) §(¢) = fR e g (y) dy.

n

Substituting (4.7) into (4.6), integrating with respect to § first and making use of the
following identity:

e

(ei(x—y)é) — ei(x—,v)§’
s=1 1+ I(X - Vs

We obtain

(4.8) =Y T ()" sys
yET 8<y

where

@9) Jupiys= [, [ [ f etz A e (270, 208))

- 1 1 —ixA
<t I = )| i Jooe
X 8F(a,(277%x,27°X)) 5(27°N) dy d\ d€ dx
=fR [ oyt A(a, (2%, 2%)) G (x, §) Hy (. £) dxdE,
-
with
(4.10) G(x,§)= fR" ei("y’g(l:[ m;—j)g()’)dy’

and

(411) Hps(x,§) = fR" e *9F(a,(27°x,2/°1))

1
Xaﬁ(U [T 2. - )
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By (4.5) and (4.8) we have

(aj(x,D)u,ak(x,D)v) = (21—,”>2"2j”" MDD DM (‘UIaHMJa B.y.5

a€T yeT B<ga 8y

Therefore, (4.2) follows by showing that
(4.12) |y p.p.5] < 27°7C, Mall®277%2 5 || c2cep] 6 |l 2z,
where o, y € T, B < o, 8 < yand ¢, = (1 — p)/4. By Lemma 3.1 and (4.7), we get
(4.13) |G|z rrxrey = /22772 a2,
By the hypothesis (1.6), we have
(4.14) |9y~%de~A(a,(27x,27¢))| < G, ,Mlall

for(x,§) € R"XR", a,B8,y,6 € Tand B < a,8 < 7.
It remains to estimate || Hg sl| ;2(g=x rny- (4.11) can be written as
HB’S(X, 5) = /R" e‘i")‘Z'f”'Bl(afék)(Tj"x,2’"’}\)
T L
s=1 L+i(¢,—A,)

=/ e~ix2-selB)(38g, )(27#x, 200N Y ho(N) dA,

><a£

)5(2!‘%) dA

where
—_— 52
he(A\) = (I;I1+ (g_}‘))v(2 A).
We first estimate || Hg 5(, £)|l 2(rny, S0 let w € C5°(R"™), then

./;.. Hg 5(x, £)w(x) dx
= f" f" e"""‘2‘f““3'(afﬁk)(Z‘f"x,2”‘)\)h5(}\) -w(x) d\dx

=/ f e~ IpIB1(3B7, ) (2 *ex, 2PN )

Xh (2670 N)w(2U~Px) dA dx.
By (1.6) and by the assumption that j > k -+ 4, we have
0X0f((0fa, ) (2 %ox,240)) | < C, ,lalll
where (x, A\ ) E R" X R"and o/, B",BE T.
Thus, we derive from Theorem 2 that

L Hoale, E9w(x) ] < Ml ) e
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which implies
2

[ 1Hpate )P e < Gl JEZSTRON

Joe| 11

T))

Then we have

(4.15) sz (fR |Hy o(x.£) yzdx) dt

n 1
2 8 - -
< G, llall /“ (/R ag(ﬂ e ,-(gx_}\s))

Since 8 = (8,,...,6,) € T, we see that

8 n 1
af(g 1+i(£s—>\s))

Then an elementary calculation gives

n 1 )
4.17 ——dt < BpPyr2 e
( ) '/;‘f"li, s=1_[l 1 +(§s - )\3)2

2

5(27°1) |2d}\) dt.

2
n —1———, NEER

4.16
19 =1L - A

for A\ € 27/°E, and j > k + 4.

Thus, it follows from (4.15), (4.16), (4.17) and Fubini’s theorem that

1/2
(4.18) (fz v f |Hg 5(x, $)| dxd¢| < C, Mall2~/

By (4.9), and the fact that suppa (x, -) € E;, we obtain
(4.19) l By, 8| Lz(R" % 2”"’Ej).
Thus (4.12) follows from (4.13), (4.18) and (4.19). O

LEmMA 44. If —c0 < p < 0, then
|(a,(x. DYu,ar(x, D)v)| < G, Mall 277727 *|fjexcepll o 2o,
where u,v € C(R™), j,k>land |j— k| >4

PrOOF. Without loss of generality, we can assume that & € C5°(E)), 0 € C°(Ey)
and j > k + 4. Then

(aj(x,D)u,ak(x,D)v)
(2w)2”_/"f’j;24 E Mg (x,E)a(E)a(x, N)o(N) dX\dédx
_ (E)Z"zkpn'/" /' f,, u-(g—x)aj(z Koy, 2l\p§) (2kp$)

X, (27%0x, 2K\ ) 5 (2%°\) d\ dé dx,
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where the last equality comes from change of variables x — 27%Px, § — 2kPg,
A — 2%\, We will use a technique similar to the proof of Lemma 4.3, but we
integrate with respect to A instead of integrating with respect to £&. Then the lemma
follows by using the inequality

f Il —1—2d>\< 28p2qn . Q- Jtke for562"‘PEj. O
R
Thus, Theorem 3 follows from Lemmas 4.1, 4.2, 4.3, and 4.4.

5. Proof of Theorem 4. By using the same partition of unity as in §4, we have

a(x, D)u(x) = by(x, D)u(x) + Z (x,D)u(x), forue C(R").
Jj=0
By Corollary 2.1, it suffices to estimate |X5_sa;(x, D)ull;2gny With u € Cg°(R").

We write
2

= i( (xDuak(xD))

LZ(R") J.k=5

Jj=5

The only difficulty in estimating |(a,(x, D)u, a;,(x, D)u)| occurs when |j — k| is
large. We give a lemma to handle this case.

LEMMA S.1. Ifj, k = 5and |j — k| = 4, then

|(a;(x, DYu,ar(x, D)o)| < €, Mall’j =~k ~4|la )l o]k,

where u,v € C°(R"), ¢, > 0 a constant depending only on t and C,, is a constant
depending only on n and 1.

ProOF. Without loss of generality, we can assume that j > k + 4, &t € C°(E))
and & € C°(E,). Then

(aj(x, D)u,a,(x,D)v)

- (51;)2f [ [ e (x, £)a(£)@, (x,\)5(A) d\ dt d
- (;_w)z"(j-'zf)"f" [ [ e Na (2, jorakg)al j 1)

Xa,(j2 7%, j~'2/N)5(~'2/\) d\ dt dx,

where the last equality comes from the change of variables x — j27/x, £ — j~"27¢,
A — j7'2/X. Integrating with respect to x first and making use of the following
identity:

ST R

s=1

(4+1¢)

with 7 [ T

[+1
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we have

(aj(x, D)u,a,(x,D)v)

aeT B<ra
where
T={a€eN"a=(a..... a,)and a,, = O or 1},

and

I, = ,[ fR /‘ ezx(ﬁ—x)a;a—ﬁ(aj(jtz-fx,j‘lsz)) 1:[ m

X0B(a,(j 277, j2/N))a(j"27€) b (j~"2/N\) d A dé dx.

Then the lemma follows by an argument similar to the proof of Lemma (4.3) and by
the following fact:

fj>k+4r=[4+1)/2t]+L,e=r—(4+1)/2tand § = (4,,.
with 8] = 0 or 1, then

J

§,)EN"

MR 1

2
g\ C r2n -4t fOl‘ A ejtzijk’

“ 1
8
‘(n L+ i(f, - xs)’)
where C, is a constant depending only on n. O
ReEMARK. Let @, ¢ be two positive functions defined on R” X R”. We say a is in

the Beals-Fefferman class Sq, g if @€ CP(R" X R") and there exists a constant
C,.p > 0such that

|a“aﬁa(x £)] < Cop(@(x,8) " (@(x,8)7",
for(x,£) € R" X R", a, B E N".

In Hormander [8], it is proved that a(x, D) is continuous from L?(R") to L>(R") if
aec Sq?:‘;, and @, ¢ satisfy the following conditions:
(1) There exists ¢, > 0, C, > 0 such that if (x, £), (y, n) € R" X R" and

x=yl , Je=n
o(x.6) * ®(x.8)

< g,
then

b - Q b
Cit < % <C, and C5'< % <G,
(2) O(x,8) - p(x,£) > 1, for (x,€) € R" X R".
(3) There exist C > 0, ¢ > 0 such that
¢(y.n) . ®(y.n)
p(x, &)  ©(x.§) =

< C(1+@(x,8)lx -yl + o(x, £)l¢ = n])",

for (x,£¢),(y,n) € R" X R™.
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We now construct a symbol a, which is in C*(R X R) and satisfies the following
condition:
For any a, B & N, there exists a constant Cop>0 such that

la28fa(x,£)| < C.5((1 +1&])(tog(1 +1¢D) ™) 7,

(x,€) € R X R. Suppose such an a, exists. Then by Theorem 4, ay(x, D) is

continuous from L?(R) to L*(R). Also, we can see that a, € Sg°,  with ®y(x, £)

= (1 + [£Dog(l + |ED)™" and @y(x, £) = (1 + [£)~"log(l + [£), which can not
satisfy (3). Therefore (1), (2) and (3) are not the necessary conditions for the L?
continuity.

Construction of a,. Let ¢ € C;°(R) such that ¢ > 0, ¢(0) = 1 and supp® C {|§|
< 1}. We define

ag(x,8)= Y eif-lzlx(p(j2“f(§ - 2f)), (x,€) € R XR.
j=4

Then a satisfy the condition that we want.

6. Proof of Theorem 5. We denote a constant depending only on p by C,, which
may vary from time to time. At first, we prove the following lemma.

LEMMA 6.1. If 0 < p < 1, then
(a,(x, DYu, a(x, D)) | < G2 o2 sl el ol
whereu, v € C(R), j,k>1,|j—k|>4ande, = (1 — p)/4.
PRrOOF. By following the proof of Lemma 4.3, we have

(aj(x,D)u,ak(x,D)U) = (51;)22/7’ Y X (-1,

aeT Bga

where T = {0,1} and
Ia,ﬂ=f f f eiX(ﬁ—X)a:—B(aj(z—jpx’2/’0&))
R YR YR

xaf(ak(z-fpx,zfpx))( 1

- - 2B (27PN dx.
1+i(£—}\))u( £)5(2/°N) d\ d¢dx
By the proof of Lemma 4.3, we have

|Ia‘0] < CPZ'”"Z"“"”ﬁ”LZ(EI)H0||L2(Ek) witha =0orl.

To estimate I,;, we use a technique similar to the proof of Lemma 4.3, but we
integrate with respect to A instead of £. O
We state the following results and omit their proofs.

LEMMA 6.2. If —00 < p <0, then
[(a,(x, D)u, ap(x, D)v)| < €224 a2k b ucen

where u,v € C°(R), j,k > land |j — k| = 4.
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Theorem 5 follows from Lemmas 4.1, 4.2, 6.1, and 6.2.
By using arguments similar to the proofs of Theorem 4 and Theorem 5, we obtain
Corollary 5.1.
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