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ABSTRACT
We present a model of workers supplying labor to paid crowd-
sourcing projects. We also introduce a novel method for es-
timating a worker’s reservation wage—the key parameter in
our labor supply model. We tested our model by presenting
experimental subjects with real-effort work scenarios that
varied in the offered payment and difficulty. As predicted,
subjects worked less when the pay was lower. However, they
did not work less when the task was more time-consuming.
Interestingly, at least some subjects appear to be “target
earners,” contrary to the assumptions of the rational model.
The strongest evidence for target earning is an observed
preference for earning total amounts evenly divisible by 5,
presumably because these amounts make good targets. De-
spite its predictive failures, we calibrate our model with data
pooled from both experiments. We find that the reservation
wages of our sample are approximately log normally dis-
tributed, with a median wage of $1.38/hour. We discuss
how to use our calibrated model in applications.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics; J.m
[Computer Applications]: Miscellaneous

General Terms
Human Factors, Economics, Experimentation

Keywords
Crowdsourcing, Amazon’s Mechanical Turk, Human Com-
putation

1. INTRODUCTION
Crowdsourcing is a form of “peer production” [2] that out-

sources work traditionally performed by an employee to an
“undefined, generally large group of people in the form of
an open call” [11]. Despite the successes and the perceived
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promise of crowdsourcing,1 would-be users face a serious
practical challenge: they need to attract a crowd. Crowd-
sourcing projects have used a variety of inducements, includ-
ing entertainment [21], information [1, 13], and the chance
to be altruistic and win attention from others [12]. Until re-
cently, it was extremely difficult to offer money to a crowd,
but with the advent of online labor markets such as oDesk,
Elance and Amazon’s Mechanical Turk (AMT), buyers can
now easily pay workers with cash [8].

Compared to cash, non-monetary crowdsourcing incen-
tives are limited in at least two ways. First, some non-
monetary incentives depend on the nature of the task or the
identity of the proposer, which limits their usefulness. For
example, tasks such as classifying web pages, transcribing
scanned documents and validating search results are ideal for
crowdsourcing, yet they are unlikely to attract volunteers be-
cause they are tedious and the private benefits come only to
the proposer. Second, even when appropriate non-monetary
incentives exist, they are hard to adjust. For example, as-
suming that we could compute a “fun” labor supply elastic-
ity, ε, it is not clear how we could make a task 10(1/ε)%
more fun in order to boost provision by 10%. With cash
incentives, computing supply elasticities is straightforward
and making price adjustments is easy.

The possibility of cash payments raises a design question:
how does a would-be user of crowdsourcing effectively and
efficiently employ monetary incentives? To solve this prob-
lem, designers need two things: (1) a theoretical model that
predicts how people will respond to different price/task sce-
narios and (2) data-driven refinements of that model. The
refinements should allow the model to account for behavioral
biases, such as those identified by experimental economics,
and the idiosyncrasies of particular applications. To borrow
an analogy from the economist and market designer Al Roth,
just as builders of suspension bridges must be informed by
both the elegant theory of mechanics and the messy details
of metallurgy and geology, builders of social systems must
possess both a general theory of behavior and detailed con-
textual knowledge [18].

An appropriate theoretical model for the labor supply as-
pect of crowdsourcing design should tell the designer (1) how
workers decide whether or not to participate in a crowd-
sourcing project and (2) how workers decide the amount to
produce, conditional upon participating. In the language of
economics, the designer must be able to predict the labor
supply on both the (1) extensive and (2) intensive margins.

1 Examples include Wikipedia, Digg, Yelp, Yahoo! Answers,
Stack Overflow and InnoCentive.
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These two aspects of labor supply have intrigued economists
from Adam Smith onward, but research in conventional la-
bor economics is unlikely to directly apply to crowdsourcing
“jobs” that last seconds and pay pennies. This caveat aside,
labor economics offers a theoretical framework for under-
standing decision-making in paid crowdsourcing scenarios,
and it potentially provides the predictive model that de-
signers need.

1.1 Overview
There are several papers on the design of incentives in

crowdsourcing [5] and on obtaining work from AMT [19, 20],
but our paper is most closely related to work by Watts and
Mason [17], who also conducted labor supply experiments.
They found that workers respond to prices in a way that
is at least consistent with rational behavior. However, their
findings also suggest that the relationship between incentives
and output is complex: higher pay rates did not improve
work quality—a result the authors attribute to high wages
affecting worker beliefs. They also found that the structure
of incentives (i.e., whether workers faced a piece-rate or a
quota system) affected output.

Motivated by the evidence from [17] that AMT workers
respond to cash incentives, in Section 2.1 we develop a sim-
ple rational model of crowdsourcing labor supply. We also
present a novel method for estimating the reservation wage
of each worker (Section 2.3) that makes use of a highly con-
cave earnings function rather than a simple piece-rate. The
reservation wage is the minimum wage a worker is willing
to accept as compensation in exchange for performing some
task; it is the key parameter in models of labor supply.

With subjects recruited from AMT, we tested the pre-
dictions of the model in two separate experiments. In both
experiments, subjects could choose how much output to pro-
duce. We tested whether output fell when we made the task
more difficult (Experiment A, Section 4) and whether out-
put fell when we lowered the price (Experiment B, Section
5). We find mixed evidence for the rational model: work-
ers are clearly sensitive to price, but they are insensitive to
variations in the amount of time it takes to complete a task.

According to the model, reservation wages are fixed and
thus should not be affected by our experimental manipula-
tions. Although we find that the imputed wage distributions
are quite similar in Experiment A, large differences appear
in Experiment B. The cause seems to be that some workers
are “target earners” who focus on reaching salient earnings
targets. This stands in sharp contrast to the rational model
that predicts that workers should consider only the offered
wage. These findings have important implications for the
design of incentives and are discussed in Section 6.

The rational model clearly misses important elements of
reality, but there are no immediate replacements for the
model, and it makes reasonable predictions in some cases.
For these reasons, we demonstrate in Section 8 how the
model can be used to predict labor supply for any price/task
scenario, using calibration data pooled from both experi-
ments. We conclude with a discussion of the contributions
and limitations of the paper and our thoughts on directions
for future research.

2. THEORY
Every time-consuming activity generates an opportunity

cost. The opportunity cost of doing A is the foregone net

benefits one would have obtained from doing a next-best
option B. Researchers generally cannot observe the net ben-
efits of a person’s options, but when they observe a person
doing A, they can infer that the person finds doing A prefer-
able to doing B, with all rewards and costs for the two tasks
being taken into account. Applying this inference to work
decisions yields a prediction: a person will work only when
the net benefits from working exceed the hypothetical net
benefits from their next-best alternative, be it another job,
leisure or a renewed job search. In labor models, the eco-
nomic value of this “next-best alternative” is characterized
as a reservation wage.

The reservation wage is difficult to estimate in practice for
at least two reasons. First, all jobs offer a mixture of non-
monetary benefits and costs, or amenities and dis-amenities.
For example, there are obvious non-monetary differences be-
tween working as a coal miner and working as an ice cream
taste-tester. Second, observing someone working tells us
only that their total benefits exceed total costs, but not
what those total cost actually are. Imagine a job offers a
wage w and a stream of amenities, a, and a stream of dis-
amenities, d. If the worker works for time t, they receive
benefits (w + a)t and bear costs dt. If the worker has a
reservation wage, ω, then observing someone working tells
us only that w + a − d ≥ ω.

To estimate ω, we need to identify the worker’s indiffer-
ence point, i.e., the w∗ where w∗ + a − d = ω. To push a
worker down to their indifference point, we could continu-
ously lower their wage by small amounts until they chose to
quit. Assuming workers viewed this process sanguinely and
their marginal costs were not increasing, their wage when
they exit—i.e., when they are indifferent between working
and continuing—is their reservation wage for that task. This
“decreasing wage” method is clearly impractical in tradi-
tional labor relationships, but [4] shows that it can easily
be done for small, piece-rate tasks when the process is ex-
plained up front and workers have little emotional invest-
ment in their seconds-old “job.”

In our experiments, we capitalize on this feature of piece-
rate work and use a continuously decreasing payment func-
tion. To use this method, it is important for workers to be
aware that the marginal payment is falling and will continue
to fall. Otherwise, incorrect expectations that wages might
increase eventually might cause workers to continue working
even when wages fall below their reservation wage.

2.1 Model of labor supply
Because the payments in crowdsourcing contexts are so

small, we do not expect a worker’s marginal utility of wealth
to change while working and thus we assume u(w) = w.
Workers choose some positive, continuous quantity to pro-
duce, y ≥ 0. They are paid P (y) for their choice of y, and
we assume that P (y) is strictly increasing, P ′() > 0, but
concave, P ′′() ≤ 0. It costs the worker C(y) to complete y
tasks. The worker’s maximization problem is:

max
y

P (y) − C(y) s.t. y ≥ 0 (1)

The first-order condition is P ′(y∗) = C′(y∗), which holds
when the marginal benefit of working equals the marginal
cost. An interior solution exists only when P (y) − C(y)
reaches a global maximum, which occurs when P (y)−C(y)
is concave. The concavity of P (y)−C(y) depends jointly on
the properties of the payment function and the cost function.
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Although corner solutions are interesting and important
as predictions of the model, for the purpose of inferring
worker reservation wages, we need each worker to choose
and an interior solution. We will next discuss how to choose
a task and payment function that will lead to this result.

2.2 Cost curves and output
If a task is very tiring, marginal costs are increasing (C′′(y) >

0), but this is not necessarily the case: costs could be de-
creasing if workers get better with experience (C′′(y) < 0),
and costs can also be approximately linear (C′′(y) = 0) or
even have different properties at different points (e.g., de-
creasing at first, then linear).

If P () is linear, then P (y) − C(y) will be concave only
when −C(y) is strictly concave, which occurs when marginal
costs are increasing. With a constant piece-rate π for each
unit of output, the payment function is P (y) = πy. If costs
are not increasing, there is no interior solution and workers
are willing to produce either nothing when ω > π/t or an
infinite amount when ω < π/t. In the experiments run by
[17], workers could choose how many picture-sorting tasks
to perform, up to a cap of 100 and with each task paying
a constant amount. In the experimenter’s high-wage, low-
difficulty condition, mean output was over 90 tasks, and
presumably many of the subjects hit the 100-task cap.

Consistent with our opportunity cost framework, we as-
sume that the only cost of performing a task is the time it
takes: C(y) =

R y

0
ωt(x)dx, where t() is the marginal com-

pletion time and hence C′(y) = t(y)ω. The advantage of
this assumption is that because the t(y) curve is observable,
we can determine whether costs are increasing, decreasing or
constant. In our experiments, we find that completion times
are essentially constant and we assume linear costs.2 This
linearity is unsurprising given the simplicity and brevity of
our tasks.

2.3 Using the payment function to impute the
reservation wage

Even with linear costs, an interior solution to the maxi-
mization problem does not exist unless P (y) is strictly con-
cave. If P (y) is strictly concave, then the maximization
problem has an interior solution at P ′(y∗) = ωt0. A worker’s
reservation wage can be estimated directly from their out-

put choice: if they completed y∗
i , then ω̂i =

P ′(y∗
i )

t̄i
, where t̄i

is the worker’s average completion time.
For ease of exposition, we modeled worker output as con-

tinuous. In most practical crowdsourcing applications, sub-
jects make discrete output choices. In our experiments, sub-
jects chose some whole number of tasks to complete and
P (y) =

Py
x=0 p(x), where p(y) = P (y) − P (y − 1). When

output is discrete, measuring reservation wages is some-
what more complex, but we know that ωi ≤ p(y∗

i )/t̄i and
ωi > p(y∗

i + 1)/t̄i. If the piece-rate tasks are small and the
output choice is fine-grained, then

ω̂i ≈ (2t̄i)
−1 [p(y∗

i ) + p(y∗
i + 1)]

reasonably approximates the reservation wage.

2Excluding the very first task, completion times rise by less
than 1 millisecond per task on average. There is, however, a
gap between the first task and second task, with the second
task requiring about 1.5 fewer seconds.

3. EXPERIMENTAL PRELIMINARIES
Any reasonable labor supply model should predict that

lowering wages will reduce output. There are two ways to
lower a person’s wages: (a) increase the output they must
produce in order to earn their previous wage or (b) lower
their wage while keeping the required amount of work con-
stant. As we will show, our model predicts that output will
fall in either scenario. We then test these predictions in two
experiments. In Experiment A, we test whether increasing
the task difficulty reduces output, and in Experiment B, we
test whether lowering wages reduces output. Both of our
experiments had the same basic set-up: workers from AMT
were asked to perform piece-rate tasks. Critically, they were
given complete freedom to choose how many pieces to com-
plete. Before we discuss the experiments in depth, we first
provide necessary background information.

3.1 Amazon’s Mechanical Turk
Amazon’s Mechanical Turk is an online labor market where

workers can perform “Human Intelligence Tasks” (HITs) for
“requesters.” HITs vary, but most are small, simple tasks
that are difficult for computers but relatively easy for hu-
mans. Common tasks include transcribing audio clips, clas-
sifying and tagging images, reviewing documents and check-
ing websites for pornographic content. When posting a HIT,
a requester describes the task, sets a piece-rate payment,
sets worker qualifications, determines how long workers can
work on the task, determines how many times they want
each HIT performed and creates an interface for workers to
use when working on the task.

To become an AMT worker, a person must create an AMT
account and provide Amazon with a bank account number.
Workers are allowed to have only one account, and Amazon
uses several technical and legal means to enforce this restric-
tion. Workers can observe the collection of available HITs
and their attributes prior to starting work and can normally
view a sample of the required work before starting. They are
free to work on any task for which they are qualified, and
they can begin work immediately after accepting a HIT.
Once a worker completes a HIT, they must submit it for
review. A requester then may review the work and decide
whether or not to“approve”the HIT. If the HIT is approved,
the worker is paid the piece-rate. The worker is also paid if
the requester does not review and approve the work within
a specified amount of time. Solely at their discretion, re-
questers may “reject” work, in which case the worker is not
paid.3 Requesters may also elect to pay bonuses, which
makes it easy to tailor payments to individual workers based
on their performance within a nominally piece-rate HIT.

3.2 Conduct of the experiments
Experiments A and B were conducted in sequence, with

approximately 3 days between them. Of the 92 subjects who
participated in A, 38 of them also participated in B, which
had 198 subjects.

Subjects were not informed that the task had an exper-
imental component. The HIT was simply posted on AMT
like any other HIT, with the task title “User interface test.”
It is important to note that all subjects read identical in-
structions before accepting the HIT and before observing

3[10] provides a model of the accept/reject decision in mar-
kets like AMT and shows under what conditions an “all re-
ject” equilibrium does not occur.

211



any unique feature of their assigned treatment group. Thus
we are confident that subjects did not select out of the ex-
periment in response to the nature of their assigned treat-
ment. In both experiments, all subjects accepting the HIT
submitted a response, so no outcome data are missing.4

3.3 Task and user interface
For a crowdsourcing task, we had subjects click back and

forth between two narrow vertical bars separated by some
number of pixels. The “target” bar was green and the other
bar was gray. The target bar alternated between the left bar
and the right bar, with the first target bar always beginning
on the left. If they missed a bar, the bar flashed red but
workers could continue. Figure 1 represents the interface
and the cursor movement needed to complete the task.

We chose the clicking task because it is time consuming,
requires the full attention of subjects and is not obviously
fun. This task is also culturally neutral, easy to understand
and easy to make harder (by narrowing the bars or spacing
the bars farther apart). We organized work into blocks, with
each block consisting of 10 back-and-forth clicks. A block
is one unit of output (i.e., if a worker completes 3 blocks,
y = 3). Subjects had 4 seconds to complete each click. If
they did not perform the click within this time, the HIT
ended, but across both experiments, no subject exceeded
this cutoff. If a subject missed more than 40% of the clicks
in a block, the HIT ended. As with the time cutoff, no
subject came anywhere close to this limit. We capped total
output at 200 blocks, but this proved unnecessary as the
observed maximum output was only 58 blocks.

After completing a block, subjects chose whether to quit
or continue. If they had already completed y − 1 blocks,
they were offered p(y) to perform an additional block (recall
that p(y) = P (y) − P (y − 1)). If they chose to quit, they
performed no more tasks and earned P (y−1). When making
this exit decision, the interface showed them all the relevant
rates and totals, as well as their error rate and their average
per-block completion time in seconds. Subjects could rest
as long as they liked before starting a new block.

Figure 1: Crowdsourcing task. Subjects were asked
to click between the two vertical rectangles. The
“target” bar (shown on left here) was always colored
green.

4A discussion of the causal inference issues raised by
revealed-preference experiments conducted online can be
found in [9].

3.4 Payment function for our experiments
To create a concave payment function, each subsequent

piece of work must pay less than the previous piece of work,
but still offer positive payment. One payment function with
this property is:

P (y) = P̄
“
1 − e−ky

”
(2)

Note that total earnings asymptotically approach P̄ as y
increases. The parameter k ≥ 0 can be thought of as deter-
mining the “half-life” of the payment schedule. For example,
if a given k∗ has the property that P (10) = 1

2
P̄ , then the

half-life of the schedule is 10 tasks. In all experiments, we
used a half-life of 10; Table 1 shows samples of the total
earnings and the marginal payment using Equation 2, given
this half-life.5

Table 1: Sample earnings and wages with a 10-task
half-life

y P (y)/P̄ p(y + 1)/P̄
1 0.07 0.0625
5 0.29 0.0474

25 0.82 0.0118

One complication in our payment scheme is that it is im-
possible to pay workers fractional cents. To circumvent this
problem, we used a payment system where a worker was
paid all of their whole-cent earnings for sure, and their frac-
tional earnings stochastically. If a worker earned h whole
cents and f fractions of a cent, then we paid them h with
probability 1 − f , and we paid them h + 1 with proba-
bility f . Payment was thus correct in expectation, since
E[P (y)] = (1− f)h + (h + 1)f = h + f . This procedure was
explained to subjects before they joined the experiment.

4. EXPERIMENT A: Δ DIFFICULTY
In Experiment A, subjects were randomly assigned to

groups EASY and HARD. The only difference between the
two groups was that in EASY the vertical bars were 100 pix-
els apart and in HARD the bars were 600 pixels apart. Of
the 92 subjects that participated, 42 were assigned to EASY
and 38 were self-reported females. Subjects completed a to-
tal of 18, 934 clicks. In both groups, subjects’ earnings were
determined using the same payment function, Equation 2,
with the parameter values of P̄ = 10 and k = 10−1 log 1/2.
With these parameter values, total earnings asymptotically
approached 10 cents and the “half-life” was 10 blocks, i.e.,
P (10) = 5.

4.1 Model prediction
Using the first-order condition from Equation 1, and as-

suming a strictly concave payment function and linear costs,
P ′(y) = ωt (for simplicity, we drop the ∗ notation on y), and
treating optimal output as a function of t, we take the total
derivative with respect to t and get y′(t) = ω/P ′′(y(t)). We
can see that increasing the unit completion time reduces a
worker’s output because P ′′(y(t)) < 0.

5For subjects producing only one unit of output, an ad-
justment must be made when imputing reservation wages
because P (1) needs to incorporate the “show-up” fee.
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Figure 2: Distribution of time-between-clicks for
“hits” and “misses” by treatment group. Distribu-
tions are computed using a kernel density estimator.

4.2 Results

4.2.1 Effort
Unsurprisingly, subjects assigned to HARD needed more

time to complete a block. Regressing average per block com-
pletion time (in seconds), T̄i, on the treatment indicator
EASYi (with robust standard errors under each coefficient)6

we have

T̄i = −4.89| {z }
1.25

·EASYi + 10.93| {z }
1.20

with R2 = 0.13 and sample size N = 92. The treatment ef-
fect is large and highly significant: subjects in HARD took
about 11 seconds to complete a block; subjects in EASY
needed only about 6 seconds. If we examine between-click
times instead of average block completion times, we see fur-
ther evidence that the treatment was effective. In Figure 2,
the distributions for both “hits” and “misses” are shown for
each group. As expected, the“hit” distribution for HARD is
right-shifted. Confirming our intuitions about the relation-
ship between effort and quality, misses were associated with
faster cursor movement.

4.2.2 Output
Even though subjects in HARD needed more time to com-

plete each block, they had nearly the same pattern of out-
put as subjects in EASY. Figure 3 shows output histograms
for both groups. There is no discernible difference in mean
output, and although more workers in HARD quit after per-
forming just one block (12 vs. 7), this difference is not sta-
tistically significant.7

6All standard errors in the paper are robust.
7We regressed 1{yi = 1} on EASYi.
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Figure 3: Output by task difficulty. The red vertical
line indicates mean output in both groups. Bins
have unit length.

Regressing output on a group indicator we have

yi = −0.25| {z }
3.76

·EASYi + 20.08| {z }
2.72

with R2 = 5e − 05 and the sample size N = 92. Subjects
in EASY had slightly less average output, though the effect
is imprecisely estimated. Transforming output with the log
function and running the same regression, we have

log yi = 0.14|{z}
0.28

·EASYi + 2.30|{z}
0.20

with R2 = 0.00256 and N = 92. Even though the coeffi-
cient on EASY changes signs, both the regressions and the
graphical analysis of Figure 3 lead to the same conclusion:
despite the greater time required per block for subjects in
HARD, there was no discernible difference in the patterns
of output across groups.

4.2.3 Reservation wages
We imputed the reservation wage for each subject using

the method explained in Section 2.3. The distribution of
the log of estimates is plotted in Figure 4, which shows both
the smooth kernel density estimate of the distributions as
well as the the actual estimated values (displayed as tick
marks along the horizontal axis). The top two panels contain
the results of Experiment A. We can see that the imputed
reservation wage distributions are quite similar, except that
HARD has a fat left tail, implying that a cluster of workers
in HARD exhibited output patterns consistent with very low
reservation wages. However, this could be due to sampling
variance. Indeed, in a regression of log reservation wages on
a group indicator we have

log ω̂i = 0.52|{z}
0.37

·EASYi + −0.12| {z }
0.26
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Figure 4: Imputed log reservation wage distribu-
tions both experimental groups, in both experi-
ments.

with R2 = 0.02 and sample size N = 92. Assignment
to EASY had a positive but statistically insignificant ef-
fect. The coefficients in this regression are more easily in-
terpretable following transformation. They imply that the
geometric mean reservation wage was $0.89/hour in HARD
and $1.49/hour in EASY.

4.3 Discussion
The experimental results are theoretically ambiguous but

are internally consistent. Given that workers in HARD took
longer per task but had essentially the same output pattern
as subjects in EASY, we would expect subjects in HARD to
have relatively higher reservation wages, which is what we
find, albeit the effect has a t-statistic of only 1.41.

Perhaps the simplest explanation for the lack of treatment
effects is that our treatment was not strong enough and that
workers are not attuned to fairly small differences in time.
Lord Robbins’ notion of the “marginal utility of not both-
ering with marginal utility” seems particular apt, especially
if workers have a heuristic task-based (as opposed to time-
based) reservation wage [16].

5. EXPERIMENT B: Δ PRICE
In Experiment B, 198 subjects were randomly assigned

to groups HIGH and LOW. The task was identical in both
groups, with the bars 100 pixels apart, but earnings asymp-
totically approached either 10 cents (in LOW ) or 30 cents
(in HIGH ). Because of the imprecise treatment effect esti-
mates in Experiment A, we doubled the sample size. By
chance, both groups had the same number of subjects. Of
the 198 subjects, 72 were self-reported females. Subjects
completed a total of 45, 710 clicks.
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Figure 5: Output by price group. The red vertical
line indicates mean output in both groups. Bins
have unit length.

5.1 Model prediction
Consider an alternative payment function γP (y), where γ

is some positive number. The first-order condition for the
original maximization problem is now γp(y) − tω = 0, and
if we treat the optimal output y as a function of γ, the total
derivative of the first-order condition with respect to γ is
p(y) + γp′(y(γ))y′(γ) = 0 and thus:

y′(γ) = − p(y)

γp′(y(γ))

Because payment is strictly increasing, p() > 0, and be-
cause the total payment function is concave, p′() < 0, it
follows that y′(γ) > 0, i.e., output increases when payment
is higher.

5.2 Results

5.2.1 Output
Figure 5 shows the histogram of output in the two groups.

Although LOW has more early quits, both groups have siz-
able numbers of early quitters as well as some stalwarts that
completed in excess of 50 blocks. Unlike in Experiment A,
mean output in LOW is noticeably lower than in HIGH.
Regressing output on a group indicator we have

yi = −2.81| {z }
2.89

·LOWi + 24.07| {z }
2.00

with R2 = 0.0048 and N = 198. Subjects in LOW had
lower mean output, but the effect is imprecisely estimated
due to the bi-modality of output, which can be seen in the
output histograms. Estimating the regression in logs rather
than levels we have

log yi = −0.30| {z }
0.17

·LOWi + 2.71|{z}
0.11
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with R2 = 0.02 and N = 198. There is a large and signifi-
cant difference in geometric means across the groups. From
Figure 5, it appears that most of the effect is due to the
relatively large number of subjects in LOW quitting after
small amounts of output. We can confirm this graphical ob-
servation by regressing an indicator for whether a subject
completed fewer than 10 blocks on the treatment indicator:

1{yi < 10} = 0.152| {z }
0.07

·LOWi + 0.273| {z }
0.05

with R2 = 0.03 and N = 198. The choice of 10 blocks is
somewhat arbitrary, but the effect is strong for all low cutoff
values, and a QQ-plot (not shown) makes the pattern even
more apparent.

5.2.2 Reservation Wages
Unlike in Experiment A, group assignment strongly af-

fected the imputed reservation wage. The bottom two pan-
els of Figure 4 show that the mass of observations at the
center of the distribution is left-shifted for LOW relative to
HIGH. Both distributions also have a second mass of ob-
servations with very low reservation wages, but as with the
main hump, the LOW observations are shifted further left
than the low-wage hump in HIGH. Regressing log wages on
a group indicator we have

log ω̂i = −0.79| {z }
0.22

·LOWi + 0.45|{z}
0.14

with R2 = 0.06 and N = 198. Transforming the predic-
tions into levels, the geometric mean reservation wage was
$1.57/hour in HIGH and $0.71/hour in LOW.

5.3 Discussion
As per the model’s prediction, lower pay reduces output,

but the finding that being in LOW lowers a worker’s reserva-
tion wage implies that the lower output in LOW is not as low
as it should be. Because the actual tasks are identical across
groups, the difference in imputed reservation wages cannot
be due to uncontrolled-for differences in amenities. There
are several other possible explanations for the data, includ-
ing worker error, increasing but non-time-based marginal
costs and target earning behavior; we believe target earning
provides the most compelling explanation for our findings.

Worker error could explain our results: we would find
lower reservation wages in LOW if (1) subjects in LOW
falsely believe that they are being paid more than they ac-
tually are, (2) subjects in HIGH falsely believe that they are
being paid less than they actually are or (3) some combina-
tion of (1) and (2). Liebman and Zeckhauser [15] argue that
people systematically misinterpret schedules, usually by let-
ting early marginal payments “bleed over” to affect percep-
tions of future marginal payments. However, with our con-
cave schedules, this bleed-over would occur in both groups.
While we have no evidence on this question, it seems likely
that any bleed-over effects would be greater in HIGH, which
would lead to effects in the opposite direction of what we do
find. Furthermore, because subjects were informed of their
precise marginal payment after each block, this bleed-over
explanation seems unlikely.

Constant marginal costs are a key assumption in our reser-
vation wage estimation method. If marginal costs are rapidly
increasing, then we would incorrectly infer that subjects in

LOW had reservation wages too low: the additional out-
put that subjects in HIGH should produce because of their
higher wages is moderated by the higher costs of high out-
put. Although an explanation involving increasing marginal
cost is possible, it seems unlikely, given that subjects could
rest for as much time as they liked between blocks. Fur-
thermore, even subjects producing lots of output spent less
than 15 minutes total, including resting time (recall that
per block time for the 100-pixel group was less than 7 sec-
onds). Rapid increases in marginal costs over such a short
time seem rather unlikely.8

An additional explanation for the results is that some
workers may be target earners. Target earners try to ob-
tain some self-imposed earnings goal rather than respond to
the current offered wage. If at least some workers are target
earners, then the results are easy to explain: because their
wages are lower, subjects in LOW must produce more out-
put to achieve their earnings targets than they would have
to produce if they were instead assigned to HIGH.

6. DEPARTURES FROM THE RATIONAL
MODEL

The differences in the imputed reservation wage distribution—
particularly those found in Experiment B—strongly suggest
that the rational model cannot explain the behavior of all
workers. Our best conjecture is that workers create earnings
targets that influence their output decisions. While having
goals seems sensible and perhaps heuristically “rational” if
the target provides motivation, earnings targets lead work-
ers to commit a kind of sunk-cost fallacy, because in the
absence of income effects, past earnings are irrelevant to the
decision they must make at the margin (i.e., whether the
next bit of earnings is worth the the trouble of the next bit
of work).

To return to the analogy of suspension bridge building
from Section 1, we are now dealing with metallurgy instead
of mechanics: target earners do not behave like rational
workers in certain contexts, and this difference will mat-
ter in applications. For example, in the absence of income
effects, when wages are high, a target earner works less and
a rational worker works more. There is mixed evidence on
the question of whether target earning occurs in “real life”
[3, 6, 7], but we find fairly unambiguous evidence of target
earning in several places in the results.

The first piece of evidence of target earning is that in
every experiment, at least some subjects try to pursue the
maximum earnings possible, despite the low wages associ-
ated with this strategy. For rational workers to generate
this pattern, the wage distribution would have to be highly
bi-modal. A more plausible explanation is that workers try
to earn the full amount possible (i.e., P̄ is their target) and
quit only when they realize this goal is unattainable.9

8One possibility we must consider with more complex work
is that workers are likely to need more experience with a task
before deciding whether they are good at it. In these cases,
we might mistakenly view learning and exit as increasing
marginal costs.
9A more pedestrian explanation could be that some subjects
believe that the payment is in dollars, not cents, despite
the clear instructions that stated that payment would be in
cents. One subject did email us insisting that payment was
supposed to be in dollars—we sent him screen shots proving
this was not the case.
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6.1 Preferences for “focal point” earnings
More evidence of target earning can be see in the pattern

of output. In Figure 6, we plot histograms of the output for
HIGH, grouped in horizontal panels by the floor of earnings,
�P (y)�. Subjects show a preference for working the mini-
mum amount possible to earn some whole number of cents:
when multiple output values yield the same number of whole
cents, the far left bar of the histogram is the highest. The
only exception is in the 29-cent panel; however, recall that
in HIGH, subjects’ earnings asymptotically approached 30
cents. Subjects quit once they realized that they could not
break out of the 29-cent band. Although suggestive of tar-
geting, the preference for whole cents could be symptomatic
of extreme risk aversion (recall from Section 3.2 that pay-
ment is stochastic due to the fractional cent problem), or
workers could believe that we might cheat them on the frac-
tional cents (i.e., ignore their fractional earnings) but that
we would not be willing to withhold whole-cent earnings.

Harder to reconcile with a rational model is another pat-
tern seen in Figure 6: subjects show a preference for earn-
ings amounts evenly divisible by 5. The smallest earnings
amounts (e.g., 2, 3 and 5 cents) all get several subjects,
but because these are people who quit very early, they pre-
sumably do not have a target or would not need a target.
However, we see clear output spikes at 15, 20 and 25 cents.
Assume that in the absence of “modulo 5”targeting, the pro-
portion of subjects earning amounts divisible by 5 should be
equal, in expectation, to the proportion of potentially real-
izable amounts divisible by 5. Consider the set of possible
whole-cent earnings:

Pw = {�P (1)�, �P (2)�, . . . �P (N)�}
and the fraction of those elements of Pw that are divisible
by 5, which is given by:

q = |Pw |−1
X

x∈Pw

1{x mod 5 = 0}

where |.| indicates the number of elements in the set. Let Y
be the set of realized output choices for an experiment group
and let n be the number of observations, n = |Y|, and let
s be the actual number of observations in Y such that the
whole-cent earnings were divisible by 5: s =

P
y∈Y 1{�P (y)�

mod 5 = 0}.
Under our assumption of proportionality, we can compute

the probability of observing s successes out of n trials when
the per-trial probability of success is q. We had 33 successes
out of 99 trials when the probability was only q = 0.22.
The probability of observing this many successes or more by
chance is only 0.0027. If we exclude subjects in the 29-cent
band, the result is even more compelling: the probability is
only 2.55e − 05.

7. USING THE CALIBRATED MODEL
It is straightforward to use our calibrated model for pre-

diction. Consider some crowdsourcing task that takes t0 to
complete and that will pay a piece-rate of p0. Workers whose
reservation wage exceeds the offered wage, p0/t0, will accept
the task. The fraction of workers producing at least one unit
of output is equal to the probability that a given worker

will find participating attractive: Pr(p0 ≥ ωit0) = F
“

p0
t0

”
,

where F is the cumulative density function of the estimated
reservation wage distribution.

The labor supply curve is S(w) = NsF (log w), where Ns

is the number of workers in the population and w = p0/t0.
The point elasticity of extensive labor supply is thus εw =
f(log w)/F (log w). To compute the intensive elasticity, we
would have to know something about the change in marginal
costs.

If we pool estimates from both experiments and assume
that wages are log normally distributed, the distribution pa-
rameters are μ̂ = 0.074 and σ̂ = 1.634, with the reservation
wage measured in dollars per hour. In Table 2, the 25th,
50th and 75th percentiles of the pooled reservation wage
distribution are shown, as well as the extensive labor supply
elasticity computed at that point using the log normal ap-
proximation. Consistent with a right-skewed distribution
like the log normal, the arithmetic mean is considerably
higher than the median wage.

Table 2: Pooled reservation wage distribution prop-
erties

Wage ($/hour) Point Elasticity
25th p. 0.321 0.81
Median 1.384 0.43
75th p. 2.876 0.28
Mean 3.625 0.24

It is important to remember the fairly strong assumptions
underlying these predictions. First, the reservation wage
distribution was estimated using a selected sample of AMT
workers willing to participate in our experiment. Second,
we are assuming constant marginal costs, and we are assum-
ing that task amenities/dis-amenities for the new task are
equivalent to those from the back-and-forth clicking task we
used. Third, we are assuming that there is a fixed reserva-
tion wage and that workers respond rationally to the offered
wage, despite some evidence to the contrary.

8. CONCLUSION
We find some agreement with a simple rational model, as

well as important anomalies; we find fairly strong evidence
that at least some workers work to targets. Designers should
consider this propensity when designing incentives schemes
and give people natural targets that will increase output,
though they should also consider that such schemes might
seem manipulative and could backfire (and potentially be
unethical).

In the following section, we demonstrate how our cali-
brated model can be used in applied work. While we find
only partial agreement between the model’s predictions and
reality, we believe it still offers a useful approximation. We
conclude by discussing how our paper fits into a larger re-
search program and laying out some directions for future
investigations.

8.1 Future research
Crowdsourcing is still a new development, and many open

questions remain. Perhaps the most obvious next empirical
step is to collect data on the compensating differentials asso-
ciated with different kinds of crowdsourcing tasks. In other
words, compared to a baseline task, how much more or less
do workers have to be paid to generate the same amount of
output? A related question is how costs change with output,
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Figure 6: Earnings in the HIGH Group. This plot shows the histogram of output, grouped by the whole-cent
portion of worker earnings (in cents).

i.e., does a task get much easier or much harder as the worker
gains experience? Finally, it would be interesting to learn
about the correlates of reservation wages. For example, do
groups with lower opportunity costs (e.g., the unemployed,
non-US citizens, etc.) have lower reservation wages?

Perhaps the biggest limitation of the current model is that
it only predicts the fraction of workers that will accept a
task. It tells us nothing about how many workers will actu-
ally see a given offer on AMT. Furthermore, AMT workers
are not uniformly distributed across time zones, and pre-
sumably the number of potential workers waxes and wanes
over the day. Understanding search and job uptake would
be useful for applications—search is a very important and
yet comparatively under-studied topic in economics.

8.2 Research approach to crowdsourcing
We view our paper as a step towards the theoretical frame-

work for crowdsourcing/human computation advocated by
[14]. Jain and Parkes argue (correctly in our view) that
advances in crowdsourcing as a methodology will require
broadly applicable, predictive models. They discuss game
theory as a potential generalizing framework, but point out
that crowdsourcing “games” are not so much about workers
revealing private information (which would suggest a mech-
anism design approach) as they are about getting workers
to show up and exert the effort needed to accomplish a task.

In a labor relationship, there is a “game” between work-
ers and their employers: workers must choose how much
(costly) effort to provide, and employers—who prefer high
effort—cannot directly observe this choice. This classic prin-
cipal/agent problem arises in many real-world contexts, but
we argue that in most crowdsourcing applications, it is a

fairly easy problem to solve.10 When effort is highly corre-
lated with output and output is observable, simple mecha-
nisms can eliminate moral hazard. By rejecting low-quality
work (or not hiring low-quality workers in the future), buy-
ers can easily make shirking a dominated strategy.

Although the moral hazard problem is solvable, the prob-
lem of getting a sufficient supply of labor persists. Once an
employer sets up a quality-control mechanism (e.g., screen-
ing, firing, spot checks, etc.), the worker is essentially play-
ing a game against nature. Individual workers will make la-
bor supply decisions by comparing the costs and benefits of
working, and although workers must think rationally about
their preferences, they do not have to think strategically.
In short, we do not need a game theory of crowdsourcing,
but rather a price theory of crowdsourcing. Our model and
reservation wage estimation procedure provide the ground-
work for such a theory.
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