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Preface

Several superficially simple mathematical models, such as the self-avoiding
walk and percolation, are paradigms for the study of critical phenomena in
statistical mechanics. Although these models have been studied by mathe-
maticians for about half a century, exciting new developments continue to
occur and the subject is flourishing. Much progress has been made, but it
remains a major challenge for mathematical physics and probability theory to
obtain a complete and mathematically rigorous understanding of the scaling
theory of these models at criticality.

These lecture notes concern the lace expansion, which is a powerful tool for
the analysis of the critical scaling of several models above their upper critical
dimensions, namely:

• the self-avoiding walk on Zd for d > 4,
• lattice trees and lattice animals on Zd for d > 8,
• percolation on Zd for d > 6,
• oriented percolation on Zd × Z+ and the contact process on Zd for d > 4.

Results include proofs of existence of critical exponents, with mean-field val-
ues, and construction of scaling limits. Often, the scaling limit is described in
terms of super-Brownian motion.

There are two distinct goals for these notes. The first goal is to provide a
written accompaniment to my lectures at the Saint–Flour summer school in
2004, and at the Pacific Institute for the Mathematical Sciences – University of
British Columbia summer school in 2005. The notes contain an introduction to
the lace expansion and several of its applications, with sufficient background
and depth to prepare a newcomer to do research using the lace expansion. Ba-
sic graduate level probability theory will be used, but no previous knowledge
of the lace expansion or super-Brownian motion is assumed. The second goal
is to provide a survey of the field, so that an interested reader can follow up
by consulting the original literature. In pursuit of the second goal, these notes
include more material than can be covered during a summer school course.

Following a brief initial section concerning random walk, the notes can be
divided into four parts, whose contents are summarized as follows.

Part I, which concerns the self-avoiding walk, consists of Sections 2–6.
A complete and self-contained proof is given of the convergence of the lace
expansion for the nearest-neighbour model in dimensions d ≫ 4, and for the
spread-out model of self-avoiding walks which take steps of length at most L,
with L ≫ 1, in dimensions d > 4. The convergence proof presented here seems
simpler than all previous lace expansion convergence proofs. As a consequence
of convergence, it is shown that the critical exponent γ for the generating
function of the number of n-step self-avoiding walks exists and is equal to 1.
A survey is then given of the many extensions of this result that have been
obtained using the lace expansion.
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Part II, which concerns lattice trees and lattice animals, consists of Sec-
tions 7–8. It is shown how a minor modification of the expansion for the
self-avoiding walk can be applied to give expansions for lattice trees and lat-
tice animals, and an indication is given of the diagrammatic estimates that
are necessary for proving convergence of the expansion. The relevance of the
square condition is indicated, and results concerning existence of critical ex-
ponents in dimensions d > 8 are surveyed.

Part III, which concerns percolation, oriented percolation, and the contact
process, consists of Sections 9–14. Detailed discussions are given of expansions
for each of these models. Differential inequalities involving the triangle con-
dition are stated (and usually proved) and are shown to imply mean-field
behaviour of various critical exponents. Results concerning existence of crit-
ical exponents in dimensions d > 6 (for percolation) and d > 4 (for oriented
percolation and the contact process) are surveyed.

Part IV, which concerns super-Brownian scaling limits, consists of Sec-
tions 15–17. Critical branching random walk with Poisson offspring distribu-
tion is analyzed in detail and used to give a self-contained construction of
integrated super-Brownian excursion (ISE). The role of ISE as the scaling
limit of lattice trees and of critical percolation clusters, above the upper criti-
cal dimensions, is discussed. The canonical measure of super-Brownian motion
is also described, as is its role as scaling limit of critical oriented percolation
clusters and the critical contact process in dimensions d > 4, and of lattice
trees in dimensions d > 8.

Mathematics is not a spectator sport, and true understanding requires
active participation in working out the ideas. To help facilitate this, a number
of exercises for the reader appear throughout the notes. Some can be solved in
a few lines, and others require more effort. I am grateful to Jeremy Flowers,
Jesse Goodman, Jeffrey Hood, Sandra Kliem, Richard Liang, and Terry Soo,
who collectively wrote solutions to all the exercises during the PIMS–UBC
summer school.

It would not be possible to include detailed proofs of all the results dis-
cussed in these lecture notes without substantially increasing their length,
and a number of important topics are only alluded to. These include: the in-
ductive approach to the lace expansion, which is in many respects the most
powerful method to prove convergence of the expansion; the “double” expan-
sions that have been used to analyze r-point functions for r ≥ 3; and the
lace expansion on a tree, which is a method that can sometimes be used to
replace a double expansion. (Two of these topics—the inductive method and
double expansions—are discussed in recent lecture notes by Remco van der
Hofstad [110].) Also, a complete proof of the convergence of the expansion is
given only for the self-avoiding walk. This is the simplest setting for proving
convergence, and convergence for the other models can be based on the ideas
used in this setting. Finally, in an important new development about which
it is too early to provide details, Sakai [181] has shown how to apply the lace
expansion to analyze the Ising model in dimensions d > 4.
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1 Simple Random Walk

The point of departure for the lace expansion is simple (ordinary) random
walk, and it is helpful first to recall some elementary facts about random
walk on Zd. This will also set some notation for later use.

1.1 Asymptotic Behaviour

Fix a finite set Ω ⊂ Zd that is invariant under the symmetry group of Zd,
i.e., under permutation of coordinates or replacement of any coordinate xi by
−xi. Our two basic examples are the nearest-neighbour model

Ω = {x ∈ Zd : ‖x‖1 = 1} (1.1)

and the spread-out model

Ω = {x ∈ Zd : 0 < ‖x‖∞ ≤ L}, (1.2)

where L is a fixed (usually large) constant. The norms are defined, for x =

(x1, . . . , xd), by ‖x‖1 =
∑d

j=1 |xj | and ‖x‖∞ = max1≤j≤d |xj |.
For n ≥ 1, an n-step walk taking steps in Ω is defined to be a sequence

(ω(0), ω(1), . . . ,ω(n)) of vertices in Zd such that ω(i) − ω(i − 1) ∈ Ω for i =
1, . . . , n. Let Wn(x, y) be the set of n-step walks with ω(0) = x and ω(n) = y,
and let Wn = ∪x∈ZdWn(0, x) denote the set of all n-step walks starting from

the origin. Let c
(0)
n (x) denote the cardinality of Wn(0, x). The superscript

(0) is there to indicate that we are working with the random walk with no
interaction. We allow for the degenerate case n = 0 by defining W0(x, y) to
consist of the zero-step walk (x) if x = y, and to be empty otherwise. Then

c
(0)
0 (x, y) = δx,y. Taking into account the translation invariance, we will use

the abbreviations Wn(y − x) = Wn(x, y) and c
(0)
n (y − x) = c

(0)
n (x, y).

For n ≥ 1, by considering the possible values y ∈ Ω of the walk’s first step,
we have

c(0)
n (x) =

∑

y∈Ω

c
(0)
n−1(x − y) =

∑

y∈Zd

c
(0)
1 (y)c

(0)
n−1(x − y). (1.3)

Denoting the convolution of functions f and g by

(f ∗ g)(x) =
∑

y∈Zd

f(y)g(x − y), (1.4)

(1.3) can be written as

c(0)
n (x) =

(
c
(0)
1 ∗ c

(0)
n−1

)
(x). (1.5)

The Fourier transform of an absolutely summable function f : Zd → C is
defined by
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f̂(k) =
∑

x∈Zd

f(x)eik·x (k ∈ [−π, π]d), (1.6)

where k · x =
∑d

j=1 kjxj , with inverse

f(x) =

∫

[−π,π]d

ddk

(2π)d
f̂(k)e−ik·x. (1.7)

The fact stated in part (a) of the following exercise makes the use of Fourier
transforms very convenient.

Exercise 1.1. (a) Show that the Fourier transform of f ∗ g is f̂ ĝ.
(b) A closely related statement is the following. Denote the generating func-
tions of the sequences fn and gn by F (z) =

∑∞
n=0 fnzn and G(z) =∑∞

n=0 gnzn, and assume these series both have positive radius of convergence.
Show that the generating function H(z) of the sequence hn =

∑n
m=0 fmgn−m

is H(z) = F (z)G(z).

By Exercise 1.1(a), (1.5) implies that

ĉ(0)
n (k) = ĉ

(0)
1 (k)ĉ

(0)
n−1(k). (1.8)

Since ĉ
(0)
0 (k) = 1, solving (1.8) by iteration gives

ĉ(0)
n (k) = ĉ

(0)
1 (k)n (n ≥ 0). (1.9)

If we define the transition probability

D(x) =
1

|Ω|I[x ∈ Ω] =
1

|Ω|c
(0)
1 (x), (1.10)

where |Ω| denotes the cardinality of the set Ω and I denotes the indicator
function, then (1.9) can be rewritten as

ĉ(0)
n (k) = |Ω|nD̂(k)n (n ≥ 0). (1.11)

Exercise 1.2. (a) Show that for the nearest-neighbour model,

D̂(k) =
1

d

d∑

j=1

cos kj , (1.12)

and for the spread-out model

D̂(k) =
1

|Ω|




d∏

j=1

M(kj) − 1


 , (1.13)

where
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M(t) =
sin[(2L + 1)t/2]

sin(t/2)
(1.14)

is the Dirichlet kernel.
(b) Denote the variance of D by σ2 =

∑
x∈Zd |x|2D(x). Show that σ = 1 for

the nearest-neighbour model and that σ is asymptotic to a multiple of L as
L → ∞ for the spread-out model.

The number of n-step walks starting from a given vertex is of course
|Ω|n, because each step can be chosen in |Ω| different ways. This fact is
contained in (1.11), since the number of n-step walks starting from the origin

is
∑

x∈Zd c
(0)
n (x) = ĉ

(0)
n (0) = |Ω|n, using D̂(0) = 1.

By symmetry, σ2 = −∇2D̂|k=0, where ∇2 =
∑d

j=1 ∇2
j is the Laplacian,

with ∇j denoting partial differentiation with respect to the component kj of
k. Then, by (1.11) and by the symmetry of Ω, the central limit theorem

lim
n→∞

ĉ
(0)
n (k/σ

√
n)

ĉ
(0)
n (0)

= e−|k|2/2d (1.15)

follows, as does the fact that the mean-square displacement is given by

∑
x∈Zd |x|2c(0)

n (x)
∑

x∈Zd c
(0)
n (x)

= − ∇2D̂n
∣∣∣
k=0

= nσ2. (1.16)

Exercise 1.3. Prove (1.15) and (1.16).

The two-point function is defined by

Cz(x, y) =

∞∑

n=0

∑

ω∈Wn(x,y)

zn =

∞∑

n=0

c(0)
n (x, y)zn. (1.17)

The two-point function is finite for z ∈ [0, 1/|Ω|). For d > 2, it is also known
to be finite for z = 1/|Ω|, and for this value of z it is called the Green function.
By translation invariance, we may regard the two-point function as a function
of a single variable, writing Cz(x, y) = Cz(y − x). By (1.11) and (1.17), its
Fourier transform is

Ĉz(k) =

∞∑

n=0

ĉ(0)
n (k)zn =

1

1 − z|Ω|D̂(k)
. (1.18)

The susceptibility is defined by

χ(z) =
∑

x∈Zd

Cz(0, x) = Ĉz(0) =
1

1 − z|Ω| . (1.19)

The critical point is the singularity zc = 1/|Ω| of the susceptibility.
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The inverse Fourier transform of (1.18) is

Cz(x) =

∫

[−π,π]d

ddk

(2π)d

e−ik·x

1 − z|Ω|D̂(k)
. (1.20)

For d > 2,

Czc(x) ∼ const
1

|x|d−2
(1.21)

as |x| → ∞, where the constant depends on d and on Ω (see [149, 195], or
[203] for a more general statement of this fact). The notation

f(x) ∼ g(x) denotes lim
x→∞

f(x)/g(x) = 1, (1.22)

and this notation will used in general for asymptotic formulas.

Exercise 1.4. Some care is needed with (1.20) when z = zc, since Czc(x) is
not summable by (1.21) and thus its Fourier transform is problematic. Using
the symmetry of Ω, prove that (1.20) does hold when z = zc for d > 2, and
that the integral is infinite when z = zc for d ≤ 2.

Exercise 1.5. Let f : Zd → C. For y ∈ Ω, define forward and backward
discrete partial derivatives by ∂+

y f(x) = f(x+y)−f(x) and ∂−
y f(x) = f(x)−

f(x − y). Define the discrete Laplacian by

∆f(x) =
1

2

1

|Ω|
∑

y∈Ω

∂−
y ∂+

y f(x) =
1

|Ω|
∑

y∈Ω

f(x + y) − f(x), (1.23)

and let δx,y denote the Kronecker delta which takes the value 1 if x = y and 0
if x 6= y. Show that −∆C1/|Ω|(x) = δ0,x. Thus C1/|Ω|(x) is the Green function
for −∆.

Exercise 1.6. Consider a simple random walk started at the origin.
(a) Let u denote the probability that the walk ever returns to the origin. The
walk is recurrent if u = 1 and transient if u < 1. Let N denote the (random)
number of visits to the origin, including the initial visit at time 0, and let
m = EN . Show that m = 1

1−u , so the walk is recurrent if and only if m = ∞.
(b) Show that

m =

∞∑

n=0

P(ω(n) = 0) =

∫

[−π,π]d

1

1 − D̂(k)

ddk

(2π)d
. (1.24)

Thus transience is characterized by the integrability of Ĉ1/|Ω|(k).
(c) For simplicity, consider the nearest-neighbour model, with Ω given by
(1.1). Show that the walk is recurrent in dimensions d ≤ 2 and transient in
dimensions d > 2.
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Exercise 1.7. Let ω(1) and ω(2) denote two independent simple random walks
started at the origin, and let

X =

∞∑

i=0

∞∑

j=0

I[ω(1)(i) = ω(2)(j)] (1.25)

denote the number of intersections of the two walks. Here I denotes an indi-
cator function. Show that

EX =

∫

[−π,π]

1

[1 − D̂(k)]2
ddk

(2π)d
. (1.26)

Thus EX is finite if and only if Ĉ1/|Ω|(k) is square integrable. Conclude,
for simplicity for the nearest-neighbour model, that the expected number of
intersections is finite if d > 4 and infinite if d ≤ 4.

The integral (2π)−d
∫
[−π,π]d

Ĉzc(k)2ddk of (1.26) is equal, by the Parseval

relation, to
∑

x∈Zd Czc
(x)2. The relevance of the condition d > 4 for the

latter is evident from the asymptotic behaviour (1.21). However, the k-space
analysis is more elementary, as it relies on the easy formulas given in (1.12)
and (1.18) rather than the deeper statement (1.21). It is often much easier to
use estimates in k-space than to work directly in x-space.

Fig. 1.1. Nearest-neighbour random walks on Z2 taking n = 1, 000, 10,000 and
100,000 steps. The circles have radius

√
n, in units of the step size of the random

walk.

It is a consequence of Donsker’s Theorem [24] that the scaling limit of
simple random walk is Brownian motion, in all dimensions. This means that
if we define a random continuous function Xn from the interval [0, 1] into Rd

by setting Xn(j/n) = σ−1n−1/2ω(j) for integers j ∈ [0, n], and interpolating
linearly between consecutive vertices, then the distribution of Xn converges
weakly to the Wiener measure. See Fig. 1.1.
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1.2 Universality and Spread-Out Models

In these notes, we study several models that live on the integer lattice,
and each has a nearest-neighbour and a spread-out version. In the nearest-
neighbour model, specified by (1.1), bonds (also called edges) join pairs of
vertices separated by unit Euclidean distance. In the spread-out model, spec-
ified by (1.2), bonds join pairs of vertices separated by distance between 1
and L, where L is a parameter usually taken to be large. According to the
deep hypothesis of universality, the critical scaling of the models to be studied
should be the same for the nearest-neighbour and spread-out models.

We use the spread-out model because proofs of convergence of the lace
expansion require large degree. The degree is the cardinality of Ω. For the
nearest-neighbour model the degree is 2d, and can be taken large by increas-
ing the dimension. The degree of the spread-out model is of order Ld for large
L, and this allows for convergence proofs for the lace expansion without tak-
ing the dimension d to be large in an uncontrolled way. In the applications to
be discussed, results will typically be obtained: (i) for the nearest-neighbour
model for d ≥ d0 for some d0 having no physical meaning, and (ii) for the
spread-out model with L larger than some L0 and d strictly greater than the
upper critical dimension (4 for the self-avoiding walk, oriented percolation
and the contact process; 6 for percolation; 8 for lattice trees and lattice ani-
mals). While it is of interest to prove results of type (i) with d0 equal to the
upper critical dimension plus one, failing this, results of type (ii) seem more
important, as they indicate clearly the role of the upper critical dimension.
Also, the fact that all large L give rise to the same scaling behaviour provides
a partial proof of universality in this context. In fact, much more general
spread-out models than (1.2) can be handled using the lace expansion (see,
e.g., [94, 120]), but we restrict attention in these notes to (1.2) for the sake of
simplicity.

2 The Self-Avoiding Walk

The self-avoiding walk is a model of fundamental interest in combinatorics,
probability theory, statistical physics and polymer chemistry. It is a model of
random walk paths but it cannot be described in terms of transition probabil-
ities and thus is not even a stochastic process. It is certainly non-Markovian.
These features makes the subject difficult, and many of the central problems
remain unsolved. See [127, 158] for extensive surveys.

The self-avoiding walk is a basic example in the theory of critical phenom-
ena, due to its close links with models of ferromagnetism such as the Ising
model. In particular, it can be understood as the N → 0 limit of the N -vector
model [79] (see also [158, Section 2.3]). In polymer chemistry, self-avoiding
walks are used to model a single linear polymer molecule in a good solution
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[80, 205]. The flexibility of the polymer is modelled by the possible configu-
rations of a self-avoiding walk, while the self-avoidance constraint models the
excluded volume effect that causes the polymer to repel itself.

In this section, we first give an overview of the self-avoiding walk and its
predicted asymptotic behaviour. Then we define the bubble condition and
show that it is a sufficient condition for a particular critical exponent (namely
γ) to exist and take its mean-field value.

2.1 Asymptotic Behaviour

An n-step self-avoiding walk starting at x and ending at y is an n-step walk
(ω(0), ω(1), . . . , ω(n)) with ω(0) = x, ω(n) = y, and ω(i) 6= ω(j) for all
i 6= j. We will assume for simplicity that the walks take steps in Ω given
either by (1.1) or (1.2). Let Sn(x, y) be the set of n-step self-avoiding walks
from x to y, let Sn = ∪x∈ZdSn(0, x) denote the set of all n-step self-avoiding
walks starting from the origin, and let S(x, y) = ∪∞

n=0Sn(x, y) denote the
set of all self-avoiding walks of any length from x to y. Let cn(x, y) denote
the cardinality of Sn(x, y). In particular, c0(x, y) = δx,y. We will use the
abbreviations Sn(x) = Sn(0, x), cn(x) = cn(0, x), and cn =

∑
x∈Zd cn(x).

Thus cn counts the number of n-step self-avoiding walks that start at the
origin and end anywhere.

More generally, given a walk ω, let

Ust(ω) =

{
−1 if ω(s) = ω(t)

0 if ω(s) 6= ω(t),
(2.1)

and, for λ ∈ [0, 1], let

c(λ)
n (x) =

∑

ω∈Wn(x)

∏

0≤s<t≤n

(1 + λUst(ω)). (2.2)

For λ = 0, (2.2) is the same as the quantity c
(0)
n (x) defined previously. For

λ = 1, we have c
(1)
n (x) = cn(x), and we will usually omit the superscript (1)

when λ = 1. For 0 < λ < 1, (2.2) defines a much-studied model of weakly
self-avoiding walks (sometimes called the Domb–Joyce model after [64]) in
which walks with self intersections receive less weight than walks that are
self-avoiding.

For λ ∈ [0, 1], let

c(λ)
n =

∑

x∈Zd

c(λ)
n (x). (2.3)

Since 1 + λUst(ω) ≤ 1 for all s, t, ω, we have

∏

0≤s<t≤m+n

(1 + λUst(ω)) ≤
∏

0≤s<t≤m

(1 + λUst(ω))
∏

m≤s<t≤m+n

(1 + λUst(ω)),

(2.4)
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from which we easily conclude that

c
(λ)
m+n ≤ c(λ)

m c(λ)
n . (2.5)

Therefore, log c
(λ)
n is a subadditive sequence. By a standard lemma [158,

Lemma 1.2.2], it follows that the limit

µλ = lim
n→∞

(
c(λ)
n

)1/n
(2.6)

exists and that moreover
c(λ)
n ≥ µn

λ. (2.7)

When λ = 1, µ = µ1 is known as the connective constant. For nearest-
neighbour walks, it is easy to see that d ≤ µ ≤ 2d − 1. The lower bound
follows from the fact that cn is at least as large as the number dn of walks
that take steps only in the positive coordinate directions. The upper bound
follows from the fact that cn is at most the number 2d(2d−1)n−1 of walks that
never reverse a previous step. The exact value of µ is not known in general,
although good rigorous numerical upper and lower bounds have been obtained
[55, 106, 171, 187]. Numerical estimates of µ are 2.638 and 4.684 for nearest-
neighbour self-avoiding walks in dimensions 2 and 3 respectively—in fact there
are higher precision estimates due to A.J. Guttmann and coworkers. It has
been conjectured [168, 169, 170], and been confirmed by numerical evidence

[70], that on the 2-dimensional hexagonal lattice µ =
√

2 +
√

2. It has been
observed from enumeration data that on the 2-dimensional square lattice µ is
very well approximated by the reciprocal of the smallest positive root of the
quartic equation 581x4 + 7x2 − 13 = 0 [54, 137], although no derivation or
explanation of this equation has been discovered.

For the nearest-neighbour self-avoiding walk on Zd, the lace expansion has
been used to prove that µ(d) has an asymptotic expansion to all orders in
1/d, with integer coefficients, and that

µ(d) = 2d − 1 − 1

2d
− 3

(2d)2
− 16

(2d)3
− 102

(2d)4
− 729

(2d)5

− 5533

(2d)6
− 42229

(2d)7
− 288761

(2d)8
+ O

(
1

(2d)9

)
. (2.8)

Without using the lace expansion (which was not yet invented), the above
coefficients were computed in [74], up to and including −102(2d)−4, without
a rigorous estimate for the error. About the same time, the formula µ(d) =
2d−1−(2d)−1+O((2d)−2) was proved in [140]. In [101, 102], the lace expansion
was used to prove the existence of an asymptotic expansion to all orders , and
also that µ(d) = 2d−1−(2d)−1−3(2d)−2−16(2d)−3−102(2d)−4+O

(
(2d)−5

)
.

The four additional coefficients in (2.8) were obtained in [53]. It seems likely
that the asymptotic expansion has radius of convergence zero, though there
is no proof of this. For further 1/d expansion results (but without rigorous
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error estimates) see [77, 163, 164]. For asymptotics of the connective constant
for the spread-out model, as L → ∞, see [118, 176].

For λ = 0, we have seen in Section 1 that c
(0)
n = |Ω|n, and thus the num-

ber of n-step walks grows purely exponentially in n. There is overwhelming

evidence to support the belief that for λ ∈ (0, 1], the asymptotic form of c
(λ)
n

is given by
c(λ)
n ∼ Aλµn

λnγ−1. (2.9)

Here, Aλ is a constant which, like µλ, depends on λ, d and Ω, but the critical
exponent γ is independent of λ and Ω and is given by

γ =





1 if d = 1
43
32 if d = 2

1.162... if d = 3
1 with logarithmic corrections if d = 4
1 if d ≥ 5.

(2.10)

The conjectured logarithmic correction in four dimensions, predicted by the
renormalization group method, is

c(λ)
n ∼ Aλµn

λ(log n)1/4 if d = 4. (2.11)

The independence of γ on λ ∈ (0, 1] and Ω is referred to as universality.
Similarly, the power of the logarithm in (2.11) is believed to be universal.

The exponent γ has the following probabilistic interpretation. Consider
the case λ = 1, and let qn denote the probability that two independent n-step
self-avoiding walks started at the origin do not have any intersection apart
from their common starting point. Since a non-intersecting pair of n-step self-
avoiding walks comprises a single 2n-step self-avoiding walk, if (2.9) holds
then

qn =
c2n

c2
n

∼ 2γ−1

A1

1

nγ−1
. (2.12)

In dimensions d > 4, the lace expansion has been used to prove that
(2.9) holds with γ = 1 for various choices of λ and Ω, including the nearest-
neighbour model with λ = 1 [96, 97, 98]. Note that γ = 1 corresponds to purely
exponential growth on the right hand side of (2.9), as is the case for the simple
random walk. Also, there is no decay as n → ∞ in (2.12) when γ = 1. Partial
results for the 4-dimensional case have been obtained in [43, 44, 129] (physics
references include [38, 65]). The 3-dimensional case is completely unsolved
mathematically. Evidence strongly supporting the value γ = 43

32 , which was
first predicted in [168, 169, 170], has been obtained in [150], by associating
the 2-dimensional self-avoiding walk with SLE8/3. Numerical tests supporting
the role of SLE8/3 in the description of the 2-dimensional self-avoiding walk
can be found in [139]. For d = 1, the strictly self-avoiding nearest-neighbour

model is trivial and c
(1)
n = 2 for all n ≥ 1, so γ = 1. For the 1-dimensional

strictly self-avoiding spread-out model, or for the weakly self-avoiding walk
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for any λ ∈ (0, 1), the determination of cn(λ) is no longer trivial, but has been
analyzed in detail (see [16, 84, 116, 146]).

For d = 2, 3, 4, the best upper bounds on cn (with λ = 1) are still the
forty-year-old bounds

µn ≤ cn ≤
{

µn exp[Kn1/2] if d = 2
µn exp[Kn2/(2+d) log n] if d = 3, 4

(2.13)

for a positive constant K [88, 140] (see also [158, Chapter 3]). This is a long
way from (2.9).

We can define a measure on Wn by

E(λ)
n X =

1

c
(λ)
n

∑

ω∈Wn

X(ω)
∏

0≤s<t≤n

(1 + λUst(ω)). (2.14)

Exercise 2.1. For λ = 1, the above measure is the uniform measure on Sn.
A family of probability measures Pm on Sn is called consistent if Pm(ω) =∑

ρ>ω Pn(ρ) for all n ≥ m and for all ω ∈ Sn, where the sum is over all ρ
whose first m steps agree with ω. Show that the uniform measure does not
provide a consistent family.

The mean-square displacement is E
(λ)
n |ω(n)|2 and it is believed that

E(λ)
n |ω(n)|2 ∼ vλn2ν (2.15)

where vλ is a constant depending on λ, d,Ω, and where ν is universal and
given by

ν =





1 if d = 1
3
4 if d = 2

0.588... if d = 3
1
2 with logarithmic corrections if d = 4
1
2 if d ≥ 5.

(2.16)

The conjectured logarithmic correction to ν in four dimensions, predicted by
the renormalization group, is

E(λ)
n |ω(n)|2 ∼ vλn(log n)1/4 if d = 4. (2.17)

In dimensions d > 4, the lace expansion has been used to prove that (2.15)
holds with ν = 1/2 for various choices of λ and Ω, including the nearest-
neighbour model with λ = 1 [97, 98]. Partial results for d = 4 have been
obtained in [43, 44, 129]. For d = 2, 3, 4, for the nearest-neighbour model with
λ = 1, it is still an open problem even to prove the “obvious” bounds that
the mean-square displacement is bounded below by n (cf. (1.16)) or bounded
above by constn2−ǫ for some ǫ > 0. For d = 1, the ballistic behaviour ν = 1 is
obvious for the strictly self-avoiding nearest-neighbour model. It is not obvious
that ν = 1 for the 1-dimensional strictly self-avoiding spread-out model, or
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Fig. 2.1. Nearest-neighbour self-avoiding walks on Z2 taking n = 100, 1,000 and
10,000 steps, generated using the pivot algorithm [159]. The circles have radius n3/4,
in units of the step size of the self-avoiding walk.

for the 1-dimensional weakly self-avoiding walk, but ballistic behaviour has
been proved also in these cases [84, 146].

The two-point function is defined by

G(λ)
z (x) =

∞∑

n=0

c(λ)
n (x)zn (2.18)

and the susceptibility by

χ(λ)(z) =
∑

x∈Zd

G(λ)
z (x) =

∞∑

n=0

c(λ)
n zn. (2.19)

The latter has radius of convergence z
(λ)
c = 1/µλ, by (2.6). For λ = 1, a proof

that the two-point function also has this radius of convergence is given in [158,
Corollary 3.2.6].

Exercise 2.2. Show that the 1-dimensional strictly self-avoiding walk (λ = 1)
two-point function is given by

Ĝz(k) =
1 − z2

1 + z2 − 2z cos k
. (2.20)

For λ ∈ [0, 1] and z ∈ (0, z
(λ)
c ), the two-point function decays exponentially.

To see this for the nearest-neighbour model, we note that c
(λ)
n (x) = 0 for

n < ‖x‖∞, and hence

G(λ)
z (x) =

∞∑

n=‖x‖∞

c(λ)
n (x)zn ≤

∞∑

n=‖x‖∞

c(λ)
n zn. (2.21)

Since
(
c
(λ)
n

)1/n → µλ by (2.6), for any ǫ > 0 there is a positive Kǫ,λ such that
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c(λ)
n ≤ Kǫ,λ(µλ + ǫ)n (2.22)

for all n ≥ 1. Given a positive z < z
(λ)
c = µ−1

λ , we choose ǫ(z) > 0 such that
θz,λ = (µλ + ǫ(z))z < 1. Then substitution of (2.22) into (2.21) gives

G(λ)
z (x) ≤ Cz,λ exp[−| log θz,λ| ‖x‖∞], (2.23)

with Cz,λ = Kǫ(z),λ(1 − θz,λ)−1. This shows the desired exponential decay of
the subcritical two-point function.

Precise asymptotics of the subcritical two-point function are known in
detail. This has been primarily studied for the nearest-neighbour model with
λ = 1, and we assume this for the moment. First, it can be shown that for
each z ∈ (0, zc) there is a norm | · |z on Rd satisfying ‖u‖∞ ≤ |u|z ≤ ‖u‖1 for
every u ∈ Rd, such that the limit

m(z) = lim
|x|z→∞

− log Gz(x)

|x|z
(2.24)

exists and is finite [158, Theorem 4.1.18]. The correlation length is defined by

ξ(z) =
1

m(z)
. (2.25)

Detailed asymptotics of the subcritical two-point function, known as Ornstein–
Zernike decay, were obtained in [48, 130]. It is known that ξ(z) → ∞ as z → z−c
(see, e.g., [158, Corollary 4.1.15]), and it is predicted that

ξ(z) ∼ const
1

(1 − z/zc)ν
as z → z−c , (2.26)

with the same exponent ν as in (2.16).
For λ ∈ (0, 1], it is predicted that the exponential decay of the subcritical

two-point function is replaced at z = zc by

G(λ)
zc

(x) ∼ const
1

|x|d−2+η
as |x| → ∞ (2.27)

and

Ĝ(λ)
zc

(k) ∼ const
1

|k|2−η
as k → 0 (2.28)

with η given in terms of γ and ν by Fisher’s relation γ = (2−η)ν (and with no
logarithmic correction for d = 4, to leading order). Equation (2.27) has been
proved (with η = 0) for the nearest-neighbour model in dimensions d ≥ 5
[90], using the lace expansion. The k-space asymptotics are easier and are
also known for the nearest-neighbour model when d ≥ 5. Equation (2.27) has
also been proved for the spread-out model with d > 4 and L sufficiently large
[91]. In [39, 44], (2.27) is proved for a 4-dimensional hierarchical model with
λ sufficiently small (again with η = 0).
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It is also believed that, for all λ ∈ (0, 1],

χ(λ)(z) ∼ const
1

(1 − z/zc)γ
as z → z−c , (2.29)

with a multiplicative factor [log(1 − z/zc)]
1/4 when d = 4. This has been

proved using the lace expansion for the nearest-neighbour model with d > 4
and λ = 1, with γ = 1 [97, 98]. In Section 5.4, we will see how to prove (2.29),
with γ = 1, for the spread-out model with d > 4, λ = 1, and L sufficiently
large, and for the nearest-neighbour model with λ = 1 and d sufficiently large.

The scaling limit, assuming it exists, is the law of the path n−νω in the
limit n → ∞ (a factor (log n)−1/4 should be included for d = 4), where ω is
an n-step self-avoiding walk. The scaling limit is believed not to depend on
λ ∈ (0, 1] in any important way. This limit is conjectured to be SLE8/3 for
d = 2, and the limit is not understood for d = 3. For d = 4, the scaling limit
is believed to be Brownian motion, and for d ≥ 5, the lace expansion has been
used to prove that the scaling limit is Brownian motion [97, 98].

The special role of d = 4 for the asymptotics of the self-avoiding walk is
summarized by saying that d = 4 is the upper critical dimension, and that
mean-field behaviour applies when d > 4. Above d = 4, the self-avoiding walk
has the same leading asymptotics as the simple random walk. Logarithmic
corrections to simple random walk behaviour occur when d = 4, and different
power laws appear for d < 4.

The critical nature of d = 4 can be guessed from the fact that Brown-
ian motion is 2-dimensional. Since two 2-dimensional sets generically do not
intersect in more than 4 = 2 + 2 dimensions, above four dimensions the self-
avoidance constraint does not play an important role.

2.2 Differential Inequalities and the Bubble Condition

We now define the bubble condition and show that it is a sufficient condition
for a particular critical exponent (namely γ) to exist and take its mean-field
value. This is a useful precursor to the lace expansion. It is also a useful pre-
cursor to the study of lattice trees and percolation, where the bubble condition
will be replaced by the square and triangle conditions, respectively.

For simplicity, we restrict attention in this section to the strictly self-
avoiding walk with λ = 1. We fix Ω to be either (1.1) or (1.2).

The bubble diagram is defined by

B(z) =
∑

x∈Zd

Gz(x)2. (2.30)

The name “bubble diagram” comes from a Feynman diagram notation in
which the two-point function evaluated at vertices x and y is denoted by a
line terminating at x and y. In this notation,
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B(z) =
∑

x∈Zd

0 x = 0 ,

where in the diagram on the right it is implicit that the unlabelled vertex is
summed over Zd. The bubble diagram can be rewritten in terms of the Fourier
transform of the two-point function, using (2.30) and the Parseval relation, as

B(z) = ‖Gz‖2
2 = ‖Ĝz‖2

2 =

∫

[−π,π]d
Ĝz(k)2

ddk

(2π)d
. (2.31)

The bubble condition is the statement that B(zc) < ∞. In other words, the
bubble condition states that Ĝzc

(k) is square integrable. Recall that square
integrability of Ĉ1/|Ω|(k) was important in Exercise 1.7.

In view of the definition of η in (2.27) or (2.28), it follows from (2.31) that
the bubble condition is satisfied provided η > (4 − d)/2. Hence the bubble
condition for d > 4 is implied by the infrared bound η ≥ 0. If the values
for η arising from Fisher’s relation and the conjectured values of γ and ν
are correct, then the bubble condition will not hold in dimensions 2, 3 or 4,
with the divergence of the bubble diagram being only logarithmic in four
dimensions.

Throughout these notes,

f(z) ≃ g(z) denotes c−1g(z) ≤ f(z) ≤ cg(z) (2.32)

for some c > 0, uniformly in z < zc. In this section, we prove a differential
inequality for the susceptibility, which shows that the bubble condition implies
that γ = 1 in the sense that χ(z) ≃ (1 − z/zc)

−1. In fact, the lower bound

χ(z) ≥ zc

zc − z
(2.33)

is an immediate consequence of (2.19) and the subadditivity bound cn ≥ µn =
z−n
c , and holds with or without the bubble condition. It remains to prove that

the complementary upper bound

χ(z) ≤ const
1

zc − z
(2.34)

is a consequence of the bubble condition. This will be shown in the following
theorem. In Section 5, we will use the lace expansion to prove the bubble
condition for the spread-out model (1.2) for d > 4 with L sufficiently large,
and for the nearest-neighbour model with d sufficiently large.

A version of Theorem 2.3 was proved in [36]. The role of the bubble con-
dition in proving mean-field behaviour for spin systems in dimensions d > 4
was developed previously, in [3, 76, 192] (see also [73]). In Section 5.4, it will
be shown that the lace expansion actually provides a differential equality in
place of the differential inequalities of Theorem 2.3.
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Theorem 2.3. For 0 < z < zc, the susceptibility obeys the differential in-
equalities

χ(z)2

B(z)
≤ d

dz
[zχ(z)] ≤ χ(z)2 (2.35)

and the inequalities

zc

zc − z
≤ χ(z) ≤ B(zc)

2zc − z

zc − z
. (2.36)

Thus the bubble condition implies that χ(z) ≃ (1 − z/zc)
−1, which is to say

that γ exists and equals 1.

Proof. We first prove the differential inequalities (2.35). By definition,

χ(z) =

∞∑

n=0

cnzn =
∑

y

∑

ω∈S(0,y)

z|ω|, (2.37)

where |ω| denotes the number of steps in ω. For 0 < z < zc, term by term
differentiation gives

Q(z) =
d

dz
[zχ(z)] =

∑

y

∑

ω∈S(0,y)

(|ω| + 1)z|ω|, (2.38)

where the first equality defines Q(z). This can be rewritten as

Q(z) =
∑

y

∑

ω∈S(0,y)

∑

x

I[ω(j) = x for some j]z|ω|

=
∑

x,y

∑

ω(1) ∈ S(0, x)

ω(2) ∈ S(x, y)

z|ω
(1)|+|ω(2)|I[ω(1) ∩ ω(2) = {x}], (2.39)

where I denotes the indicator function.
If we ignore the mutual avoidance of ω(1) and ω(2) in (2.39), we obtain the

upper bound
d(zχ(z))

dz
≤ χ(z)2 (2.40)

of (2.35).
To obtain a complementary bound, we rewrite Q(z) by using the inclusion-

exclusion relation in the form

I[ω(1) ∩ ω(2) = {x}] = 1 − I[ω(1) ∩ ω(2) 6= {x}].

This gives

Q(z) = χ(z)2 −
∑

x,y

∑

ω(1) ∈ S(0, x)

ω(2) ∈ S(x, y)

z|ω
(1)|+|ω(2)|I[ω(1) ∩ ω(2) 6= {x}]. (2.41)
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Since x ∈ ω(1) ∩ω(2), the indicator forces a nontrivial intersection. In the last
term on the right hand side of (2.41), let w = ω(2)(l) be the site of the last
intersection of ω(2) with ω(1), where time is measured along ω(2) beginning at
its starting point x. Then the portion of ω(2) corresponding to times greater
than l must avoid all of ω(1). Relaxing the restrictions that this portion of
ω(2) avoid both the remainder of ω(2) and the part of ω(1) linking w to x,
and also relaxing the mutual avoidance of the two portions of ω(1), gives the
upper bound

∑

x,y

∑

ω(1) ∈ S(0, x)

ω(2) ∈ S(x, y)

z|ω
(1)|+|ω(2)|I[ω(1) ∩ ω(2) 6= {x}] ≤ Q(z)[B(z) − 1], (2.42)

as illustrated in Fig. 2.2. Here the factor B(z) − 1 arises from the two paths
joining w and x. The upper bound involves B(z) − 1 rather than B(z) since
there will be no contribution from the x = 0 term in (2.30).

Exercise 2.4. Convince yourself that (2.42) is correct.

− ≤
D

A

−
D

A

B

C

=

E

F

[AD] [AD, AB, CD, BD] [EF ]

= Q(z)

Fig. 2.2. A diagrammatic representation of the inequality χ(z)2 − Q(z)[B(z) −
1] ≤ Q(z). The lists of pairs of lines indicate interactions, in the sense that the
corresponding walks must avoid each other.

Combining (2.41) and (2.42) gives

Q(z) ≥ χ(z)2 − Q(z)[B(z) − 1]. (2.43)

Solving for Q(z) gives

Q(z) ≥ χ(z)2

B(z)
, (2.44)

which is the lower bound of (2.35).
Next, we show that (2.35) implies (2.36). The lower bound of (2.36) has

already been established in (2.33) (and also follows by integration of the upper
bound of (2.35)). To obtain the upper bound of (2.36) from the lower bound
of (2.35), we proceed as follows. Let z1 ∈ [0, zc). The lower bound of (2.35)
implies that, for z ∈ [z1, zc),
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z

(
−dχ−1

dz

)
≥ 1

B(z)
− 1

χ(z)
≥ 1

B(zc)
− 1

χ(z1)
, (2.45)

where χ−1 denotes the reciprocal. We bound the factor of z on the left hand
side by zc and then integrate from z1 to zc. Using the fact that χ(zc)

−1 = 0
by (2.33), this gives

zcχ(z1)
−1 ≥ [B(zc)

−1 − χ(z1)
−1](zc − z1). (2.46)

Rewriting gives the upper bound of (2.36).
By (2.39), Q(z) is the generating function for pairs of self-avoiding walks

which do not intersect each other apart from their common starting point. It
follows from Theorem 2.3 that if the bubble condition holds then

Q(z)

χ(z)2
≃ 1, (2.47)

a relation related to the non-vanishing of the non-intersection probability qn

of (2.12), as n → ∞, when γ = 1.

3 The Lace Expansion for the Self-Avoiding Walk

The lace expansion was derived by Brydges and Spencer in [45]. Their deriva-
tion, which is given below in Sections 3.2–3.3, involves an expansion and
resummation procedure closely related to the cluster expansions of statistical
mechanics [40]. It was later noted that the lace expansion can also be seen as
resulting from repeated application of the inclusion-exclusion relation [186].
For a more combinatorial description of the lace expansion, see [211]. We first
discuss the inclusion-exclusion approach.

3.1 Inclusion-Exclusion

The inclusion-exclusion approach to the lace expansion is closely related to
the method of proof of Theorem 2.3. In that proof, a single inclusion-exclusion
was used to obtain upper and lower bounds. Here, we will derive an identity
by using repeated inclusion-exclusion.

For simplicity, we restrict attention to the strictly self-avoiding walk (λ =
1). We consider a walk taking steps in a finite set Ω, so that ω(i+1)−ω(i) ∈ Ω
for each i, but there is no need here for a symmetry assumption and Ω is an
arbitrary finite set. As in (1.10), we write

D(x) =
1

|Ω|I[x ∈ Ω]. (3.1)

We rewrite cn(x) using the inclusion-exclusion relation. Namely, we first
count all walks from 0 to x which are self-avoiding after the first step, and then
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subtract the contribution due to those which are not self-avoiding from the
beginning, i.e., walks that return to the origin. Since c1(0, y) = 1 for y ∈ Ω,
this gives

cn(x) = (c1 ∗ cn−1)(x) −
∑

y∈Ω

∑

ω(1)∈Sn−1(y,x)

I[0 ∈ ω(1)]. (3.2)

Comparing with (1.5), it is the second term on the right hand side that makes
the above equation interesting.

The inclusion-exclusion relation can now be applied to the last term of
(3.2), as follows. Let s be the first (and only) time that ω(1)(s) = 0. Then for
y ∈ Ω,

∑

ω(1)∈Sn−1(y,x)

I[0 ∈ ω(1)]

=

n−1∑

s=1

∑

ω(2) ∈ Ss(y, 0)

ω(3) ∈ Sn−1−s(0, x)

I[ω(2) ∩ ω(3) = {0}] (3.3)

=

n−1∑

s=1

[
cs(y, 0)cn−1−s(0, x) −

∑

ω(2) ∈ Ss(y, 0)

ω(3) ∈ Sn−1−s(0, x)

I[ω(2) ∩ ω(3) 6= {0}]
]
.

We can interpret cs(y, 0) as the number of (s + 1)-step walks which step from
the origin directly to y, then return to the origin in s steps, and which have
distinct vertices apart from the fact that they return to their starting point.
Let Us denote the set of all s-step self-avoiding loops at the origin (s-step
walks which begin and end at the origin but which otherwise have distinct
vertices), and let us be the cardinality of Us. Then

∑

y∈Ω

∑

ω(1)∈Sn−1(y,x)

I[0 ∈ ω(1)]

=

n∑

s=2

uscn−s(x) −
n∑

s=2

∑

ω(2) ∈ Us

ω(3) ∈ Sn−s(0, x)

I[ω(2) ∩ ω(3) 6= {0}]. (3.4)

Continuing in this fashion, in the last term on the right hand side of the
above equation, let t ≥ 1 be the first time along ω(3) that ω(3)(t) ∈ ω(2), and
let v = ω(3)(t). Then the inclusion-exclusion relation can be applied again
to remove the avoidance between the portions of ω(3) before and after t,
and correct for this removal by the subtraction of a term involving a further
intersection. Repetition of this procedure leads to the convolution equation

cn(0, x) = (|Ω|D ∗ cn−1)(x) +

n∑

m=2

(πm ∗ cn−m)(x), (3.5)
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where we have used c1(x) = |Ω|D(x), and where πm is given by

πm(v) =

∞∑

N=1

(−1)Nπ(N)
m (v), (3.6)

with the terms on the right hand side defined as follows. The N = 1 term is
given by

π
(1)
m (v) = δ0,vum = δ0,v ,0

where the diagram represents um. The N = 2 term is

π(2)
m (v) =

∑

m1, m2, m3 :
m1 + m2 + m3 = m

∑

ω1∈Sm1
(0,v)

∑

ω2∈Sm2
(v,0)

∑

ω3∈Sm3
(0,v)

I(ω1, ω2, ω3),

where I(ω1, ω2, ω3) is equal to 1 if the ωi are pairwise mutually avoiding apart
from their common endpoints, and otherwise equals 0. Diagrammatically this
can be represented by

π
(2)
m (v) = ,0 v

where each line represents a sum over self-avoiding walks between the end-
points of the line, with mutual avoidance between the three pairs of lines in
the diagram. Similarly

π
(3)
m (v) = ,

0 v

where now there is mutual avoidance between some but not all pairs of lines in
the diagram; a precise description requires some care. The unlabelled vertex is
summed over Zd. A slashed diagram line is used to indicate a walk which may
have zero steps, i.e., be a single site, whereas lines without a slash correspond
to walks of at least one step. All the higher order terms can be expressed
as diagrams in this way, and with some care it is possible to keep track of
the pattern of mutual avoidance between subwalks (individual lines in the
diagram) which emerges. The algebraic derivation of the expansion, described
next, keeps track of this mutual avoidance automatically. Equations (3.5)–
(3.6) constitute the lace expansion. No laces have appeared yet, but they will
come later.

Exercise 3.1. Determine a precise expression for π
(3)
m (v). What is the picture

for π
(4)
m (v)?
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3.2 Expansion

In this and the following section, we give the original derivation of the lace
expansion due to Brydges and Spencer [45]. The expansion applies in a more
general context than we have considered so far, and we will give a quite general
derivation.

Consider walks taking steps in a finite subset Ω ⊂ Zd. Suppose that to
each walk ω = (ω(0), ω(1), . . . , ω(n)) and each pair s, t ∈ {0, 1, . . . , n}, we are
given a complex number Ust(ω) (for example, (2.1)).

Definition 3.2. (i) Given an interval I = [a, b] of positive integers, we refer
to a pair {s, t} (s < t) of elements of I as an edge. To abbreviate the notation,
we usually write st for {s, t}. A set of edges is called a graph. The set of all
graphs on [a, b] is denoted B[a, b].
(ii) A graph Γ is said to be connected if both a and b are endpoints of edges
in Γ , and if in addition, for any c ∈ (a, b), there are s, t ∈ [a, b] such that s <
c < t and st ∈ Γ . In other words, Γ is connected if, as intervals, ∪st∈Γ (s, t) =
(a, b). The set of all connected graphs on [a, b] is denoted G[a, b].

An apology is required for graph theorists. The above notion of connectiv-
ity is not the usual notion of path-connectivity in graph theory. Instead, the
above notion relies heavily on the fact that the vertices of the graph are lin-
early ordered in time, and may be justified by the fact that connected graphs
are those for which ∪st∈Γ (s, t) is equal to the connected interval (a, b). In any
event, it is decidedly not path-connectivity. There are connected graphs that
are not path-connected, and vice versa. It is convenient to have in mind the
representation of graphs illustrated in Fig. 3.1.

a b

a b

a b

a b

(a)

(b)

Fig. 3.1. Graphs in which an edge st is represented by an arc joining s and t. The
graphs in (a) are not connected, whereas the graphs in (b) are connected.
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We set K[a, a] = 1, and for a < b we define

K[a, b] =
∏

a≤s<t≤b

(1 + Ust), (3.7)

where the dependence on ω is left implicit. By expanding the product in (3.7),
we obtain

K[a, b] =
∑

Γ∈B[a,b]

∏

st∈Γ

Ust. (3.8)

Note that B[a, b] contains the graph with no edges, so our convention that
K[a, a] = 1 is consistent with the standard convention that an empty product
is equal to 1.

Exercise 3.3. Prove (3.8).

We set J [a, a] = 1, and for a < b we define a quantity analogous to K[a, b],
but with the sum over graphs restricted to connected graphs:

J [a, b] =
∑

Γ∈G[a,b]

∏

st∈Γ

Ust. (3.9)

Lemma 3.4. For any a < b,

K[a, b] = K[a + 1, b] +

b∑

j=a+1

J [a, j]K[j, b]. (3.10)

Proof. The contribution to the sum on the right hand side of (3.8) due to all
graphs Γ for which a is not in an edge is exactly K[a + 1, b]. To resum the
contribution due to the remaining graphs, we proceed as follows. If Γ does
contain an edge containing a, let j(Γ ) be the largest value of j such that the
set of edges in Γ with both ends in the interval [a, j] forms a connected graph
on [a, j]. Then the sum over Γ factorizes into sums over connected graphs on
[a, j] and arbitrary graphs on [j, b], and resummation of the latter gives

K[a, b] = K[a + 1, b] +

b∑

j=a+1

∑

Γ∈G[a,j]

∏

st∈Γ

Ust K[j, b], (3.11)

which with (3.9) proves the lemma.
Let

cn(x) =
∑

ω∈Wn(x)

K[0, n] =
∑

ω∈Wn(x)

∏

0≤s<t≤n

(1 + Ust(ω)), (3.12)

a generalization of (2.2). It is simplest if we assume that Ust(ω) is invariant
under spatial translation of ω, and under an equal shift of each of s, t and the
time parameter of ω, and we make this assumption. Note that (2.1) obeys the
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assumption. We substitute (3.10) into (3.12). A key point is that in the last
term of (3.10) the portion of the walk from time j onwards is independent of
the portion up to time j. Let

πm(x) =
∑

ω∈Wm(0,x)

J [0,m]. (3.13)

Then for n ≥ 1, we obtain

cn(x) = (|Ω|D ∗ cn−1)(x) +

n∑

m=1

(πm ∗ cn−m)(x), (3.14)

as in (3.5).1 To obtain a more useful representation of πm than (3.13), we
perform a resummation of (3.13) using the notion of laces.

3.3 Laces and Resummation

Definition 3.5. A lace is a minimally connected graph, i.e., a connected graph
for which the removal of any edge would result in a disconnected graph. The
set of laces on [a, b] is denoted by L[a, b], and the set of laces on [a, b] which
consist of exactly N edges is denoted L(N)[a, b].

We write L ∈ L(N)[a, b] as L = {s1t1, . . . , sN tN}, with sl < tl for each l.
The fact that L is a lace is equivalent to a certain ordering of the sl and tl.
For N = 1, we simply have a = s1 < t1 = b. For N ≥ 2, L ∈ L(N)[a, b] if and
only if

a = s1 < s2, sl+1 < tl ≤ sl+2 (l = 1, . . . , N − 2), sN < tN−1 < tN = b
(3.15)

(for N = 2 the vacuous middle inequalities play no role); see Fig. 3.2. Thus L
divides [a, b] into 2N − 1 subintervals:

[s1, s2], [s2, t1], [t1, s3], [s3, t2], . . . , [sN , tN−1], [tN−1, tN ]. (3.16)

Of these, intervals number 3, 5, . . . , (2N − 3) can have zero length for N ≥ 3,
whereas all others have length at least 1.

Exercise 3.6. Prove that (3.15) characterizes laces.

Given a connected graph Γ ∈ G[a, b], the following prescription associates
to Γ a unique lace LΓ ⊂ Γ : The lace LΓ consists of edges s1t1, s2t2, . . ., with
t1, s1, t2, s2, . . . determined, in that order, by

t1 = max{t : at ∈ Γ}, s1 = a,

1 For m = 1, there is a single connected graph {01}, and when Ust is given by
(2.1) we have π1(x) =

∑
ω∈W1(0,x)

U01(ω) = 0, since it is always the case that

ω(0) 6= ω(1). Thus the sum over m in (3.14) can be started at m = 2 in this case.
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s1 t1

s1 s2 t1 t2

s1 s2 t1 s3 t2 t3

s1 s2 t1 s3 t2 s4 t3 t4

Fig. 3.2. Laces in L(N)[a, b] for N = 1, 2, 3, 4, with s1 = a and tN = b.

ti+1 = max{t : ∃s < ti such that st ∈ Γ}, si+1 = min{s : sti+1 ∈ Γ}.
The procedure terminates when ti+1 = b. Given a lace L, the set of all edges
st6∈L such that LL∪{st} = L is denoted C(L). Edges in C(L) are said to be
compatible with L. Fig. 3.3 illustrates these definitions.

Exercise 3.7. Show that LΓ = L if and only if L is a lace, L ⊂ Γ , and
Γ \ L ⊂ C(L).

The sum over connected graphs in (3.9) can be performed by first sum-
ming over all laces and then, given a lace, summing over all connected graphs
associated to that lace by the above prescription. This gives

J [a, b] =
∑

L∈L[a,b]

∏

st∈L

Ust

∑

Γ :LΓ =L

∏

s′t′∈Γ\L

Us′t′ . (3.17)

But, writing Γ ′ = Γ \ L, it follows from Exercise 3.7 that

∑

Γ :LΓ =L

∏

s′t′∈Γ\L

Us′t′ =
∑

Γ ′⊂C(L)

∏

s′t′∈Γ ′

Us′t′ =
∏

s′t′∈C(L)

(1 + Us′t′). (3.18)

Therefore,

J [a, b] =
∑

L∈L[a,b]

∏

st∈L

Ust

∏

s′t′∈C(L)

(1 + Us′t′). (3.19)
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a b

a b

a b

a b

(a)

(b)

(c)

Γ

LΓ

L

L

Fig. 3.3. (a) A connected graph Γ and its associated lace L = LΓ . (b) The dotted
edges are compatible with the lace L. (c) The dotted edge is not compatible with
the lace L.

Inserting this in (3.13) gives

πm(x) =
∑

ω∈Wm(0,x)

∑

L∈L[0,m]

∏

st∈L

Ust

∏

s′t′∈C(L)

(1 + Us′t′). (3.20)

For a < b we define J (N)[a, b] to be the contribution to (3.17) from laces
consisting of exactly N bonds:

J (N)[a, b] =
∑

L∈L(N)[a,b]

∏

st∈L

Ust

∏

s′t′∈C(L)

(1 + Us′t′). (3.21)

For the special case in which Ust is given by (2.1), each term in the above sum
is either 0 or (−1)N . By (3.17) and (3.21),

J [a, b] =

∞∑

N=1

J (N)[a, b]. (3.22)

The sum over N in (3.22) is a finite sum, since the sum in (3.21) is empty for
N > b − a and hence J (N)[a, b] = 0 if N > b − a.

Now we define

π(N)
m (x) = (−1)N

∑

ω∈Wm(x)

J (N)[0, m]

=
∑

ω∈Wm(x)

∑

L∈L(N)[0,m]

∏

st∈L

(−Ust)
∏

s′t′∈C(L)

(1 + Us′t′). (3.23)

The factor (−1)N on the right hand side of (3.23) has been inserted to arrange
that
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π(N)
m (x) ≥ 0 for all N,m, x (3.24)

when Ust is given by Ust of (2.1). By (3.13), (3.22) and (3.23),

πm(x) =

∞∑

N=1

(−1)Nπ(N)
m (x). (3.25)

a, b
a, t1 s2, b

s2, t2

a, t1 s3, b

s2, t2

a, t1 s3, t3

s4, b

Fig. 3.4. Self-intersections required for a walk ω with
∏

st∈L
Ust(ω) 6= 0, with Ust

given by (2.1), for the laces with N = 1, 2, 3, 4 bonds depicted in Fig. 3.2. The
picture for N = 11 is also shown.

For the special case in which Ust is given by (2.1), walks making a nonzero
contribution to (3.23) are constrained to have the topology indicated in
Fig. 3.4. In the figure, for

∏
s′t′∈C(L)(1 + Us′t′) 6= 0, each of the 2N − 1

subwalks must be a self-avoiding walk, and in addition there must be mu-
tual avoidance between some (but not all) of the subwalks. The number of
loops (faces excluding the “outside” face) in a diagram is equal to the number
of edges in the corresponding lace. The lines which are slashed correspond
to subwalks which may consist of zero steps, but the others correspond to

subwalks consisting of at least one step. This gives an interpretation of π
(N)
m

identical to that obtained in Section 3.1, but here there is the advantage that
explicit formulas keep track of the mutual avoidance between subwalks.

It is sometimes convenient to modify the definitions of “connected graph”
and “lace,” and we will do so in Section 8.1. A more general theory of laces is
developed and applied in [124, 126], for the analysis of networks of mutually-
avoiding self-avoiding walks. See also [125] for an application of the more
general theory to lattice trees.

3.4 Transformations

Equation (3.14) involves convolution in both space and time. It has been
studied in this form in [29], via fixed point methods.

It is tempting to use transformations to eliminate one or both of these
convolutions. We can eliminate the convolution in space if we take the Fourier
transform (1.6). For n ≥ 1, this gives
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ĉn(k) = |Ω|D̂(k)ĉn−1(k) +

n∑

m=1

π̂m(k)ĉn−m(k). (3.26)

Conditions are given in [120] which ensure that solutions of (3.26) have Gaus-
sian asymptotics, via an analysis based on induction on n.

We may instead prefer to eliminate the convolution in time, by going to
generating functions. Using (2.18) and (3.14), this gives

Gz(x) = δ0,x +

∞∑

n=1

cn(x)zn

= δ0,x + z|Ω|(D ∗ Gz)(x) + (Πz ∗ Gz)(x), (3.27)

where

Πz(x) =

∞∑

m=1

πm(x)zm. (3.28)

Equation (3.27) has been studied in [90, 91].
Finally, we may prefer to eliminate both convolutions by using both the

Fourier transform and generating functions. Taking the Fourier transform of
(3.27) gives

Ĝz(k) = 1 + z|Ω|D̂(k)Ĝz(k) + Π̂z(k)Ĝz(k), (3.29)

which can be solved to give

Ĝz(k) =
1

1 − z|Ω|D̂(k) − Π̂z(k)
. (3.30)

Equation (3.30) has been the point of departure for several studies of the
self-avoiding walk, and we will work with (3.30) in Section 5.

Exercise 3.8. The memory-2 walk is the walk with Ust = Ust if t − s ≤ 2,
and otherwise Ust = 0. This is a random walk with no immediate reversals.
Suppose that 0 6∈ Ω ⊂ Zd is finite and invariant under the symmetries of the
lattice.
(a) What is the value of ĉn(0), the number of n-step memory-2 walks? (Cal-
culation is not required.)
(b) Prove that for the memory-2 walk, for m ≥ 2,

πm(x) =

{
−|Ω|δx,0 if m is even
I[x ∈ Ω] if m is odd.

(c) Suppose that |Ω| > 2. Show that the mean-square displacement for the
memory-two walk is given by

σ2

[(
1 + δ

1 − δ

)
n − 2δ(1 − δn)

(1 − δ)2

]
∼

(
σ2|Ω|
|Ω| − 2

)
n,
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where σ2 =
∑

x |x|2D(x) is the variance of D and δ = (|Ω| − 1)−1. One
approach2 is to use (3.26) to compute ∇2ĉn(0). This problem goes back a
long way [63, 18, 72].
(d) Show that for the memory-two walk,

Ĝz(k) =
1 − z2

1 + (|Ω| − 1)z2 − z|Ω|D̂(k)

(compare Exercise 2.2 for d = 1). This formula was used to compute the
mean-square displacement via contour integration in [158, Section 5.3].

The memory-τ walk is the walk with Ust = Ust if t− s ≤ τ , and otherwise
Ust = 0. Finite-memory walks played an important role in the original analysis
of the lace expansion in [45], but will not concern us further here. For a study
of generating functions of the number of memory-τ walks, for τ ≤ 8, see [171].

4 Diagrammatic Estimates for the Self-Avoiding Walk

The difficulty in analyzing the lace expansion is to understand the function
πm(x), or one of its transforms. In this section, we will prove estimates for the
Fourier transform Π̂z(k) of the generating function Πz(x) =

∑∞
m=1 πm(x)zm.

Related estimates of one sort or another have been used in every analysis of
the lace expansion for the self-avoiding walk. Throughout this section, we use
the notation of Section 3.2, and we take Ust to be given by (2.1), i.e.,

Ust = Ust =

{
−1 if ω(s) = ω(t)

0 if ω(s) 6= ω(t),
(4.1)

We also assume that our walks take steps in a finite set Ω which is invariant
under the symmetries of Zd, namely permutation of coordinates and replace-
ment of any coordinate xi by −xi.

We will obtain estimates for
∑

x∈Zd Π
(N)
z (x), which is an upper bound for

|Π̂(N)
z (k)|, and for

∑
x∈Zd [1− cos(k ·x)]Π

(N)
z (x), which is an upper bound for

Π̂
(N)
z (0) − Π̂

(N)
z (k). To motivate the latter, let F̂z(k) = 1/Ĝz(k), and note

from (3.30) that

Ĝz(k) =
1

F̂z(0) + [F̂z(k) − F̂z(0)]

=
1

F̂z(0) + z|Ω|[1 − D̂(k)] + [Π̂z(0) − Π̂z(k)]
. (4.2)

Our estimate for
∑

x∈Zd [1 − cos(k · x)]Π
(N)
z (x) will ultimately allow us to

compare the terms [Π̂z(0) − Π̂z(k)] and z|Ω|[1 − D̂(k)] in the denominator.

2 Verification of the formula by induction seems an unsatisfactory solution, since it
requires prior knowledge of the formula.
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4.1 The Diagrammatic Estimates

Recall from (3.23) and (3.25) that πm(x) =
∑∞

N=1(−1)Nπ
(N)
m (x), with

π(N)
m (x) =

∑

ω∈Wm(x)

∑

L∈L(N)[0,m]

∏

st∈L

(−Ust)
∏

s′t′∈C(L)

(1 + Us′t′). (4.3)

For z ≥ 0, we define the non-negative generating function

Π(N)
z (x) =

∞∑

m=2

π(N)
m (x)zm. (4.4)

In the above series, we omit the term involving π
(N)
1 (x) because it is always

zero, since the only lace on [0, 1] is L = {01}, and U01 = 0 since a walk cannot
be at the same place at consecutive times. By (3.28), we have

Πz(x) =

∞∑

N=1

(−1)NΠ(N)
z (x). (4.5)

Let

Hz(x) = Gz(x) − δ0,x =

∞∑

n=1

cn(x)zn. (4.6)

The following theorem gives bounds on Π
(N)
z in terms of norms of Gz and

Hz.

Theorem 4.1. For all z ≥ 0,

∑

x∈Zd

Π(1)
z (x) ≤ z|Ω| ‖Hz‖∞ (4.7)

and ∑

x∈Zd

[1 − cos(k · x)]Π(1)
z (x) = 0. (4.8)

For z ≥ 0 and N ≥ 2,

∑

x∈Zd

Π(N)
z (x) ≤ ‖Hz‖∞‖Hz ∗ Gz‖N−1

∞ , (4.9)

and

∑

x∈Zd

[1 − cos(k · x)]Π(N)
z (x) (4.10)

≤ (N + 1)⌊N/2⌋‖[1 − cos(k · x)]Hz(x)‖∞‖Hz ∗ Gz‖N−1
∞ .
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We refer to the bounds of Theorem 4.1 as diagrammatic estimates, as they
are inspired by the diagrams of Fig. 3.4. Moreover, the diagrams themselves
provide a pictorial representation of the bounds, and have the dual interpre-

tation of depicting both walk trajectories that contribute to Π
(N)
z (x) as well

as upper bounds on these quantities. See Fig. 4.1.3

✲

Fig. 4.1. Depiction of the estimate
∑

x
Π

(4)
z (x) ≤ ‖Hz ∗ Hz‖∞‖Hz ∗ Gz‖2

∞‖Hz‖∞
by decomposition of the diagram for Π

(4)
z .

In applying Theorem 4.1, we will use the estimate

‖Hz ∗ Gz‖∞ = ‖Hz + (Hz ∗ Hz)‖∞ ≤ ‖Hz‖∞ + ‖Hz‖2
2, (4.11)

using the triangle and Cauchy–Schwarz inequalities in the last step. Since
Gz(0) = 1, it follows from (4.6) and (2.30) that

‖Hz‖2
2 = ‖Gz‖2

2 − 1 = B(z) − 1. (4.12)

To control the sum over N in (4.5) using (4.9), our method in Section 5 will
require, in particular, that B(zc)−1 be small. This is a restrictive form of the
bubble condition of Section 2.2.

4.2 Proof of the Diagrammatic Estimates

In this section, we prove Theorem 4.1.

4.2.1 Proof of (4.7)–(4.8)

The estimates (4.7)–(4.8) are easy, and we prove them first. Since the unique
lace on [0, m] consisting of a single bond is simply the bond 0m, it follows
from (3.23) that

π(1)
m (x) = δ0,x

∑

ω∈Wm(0,0)

∏

s′t′∈C(0m)

(1 + Us′t′). (4.13)

There is no 1-step walk from 0 to 0, so this is nonzero only for m ≥ 2. Since
C(0m) ⊃ B[0, m − 1] for m ≥ 2, it follows from (4.1) that

3 Fig. 4.1 shows a slight improvement of (4.9) (as Hz ≤ Gz) and it is possible to
prove the improvement, but we will only prove (4.9), which suffices for our needs.
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0 ≤ π(1)
m (x) ≤ δ0,x

∑

ω∈Wm(0,0)

K[0,m − 1]

= δ0,x

∑

y∈Ω

cm−1(y). (4.14)

Therefore, after multiplying by zm and summing over m ≥ 2, we obtain

0 ≤ Π(1)
z (x) ≤ δ0,xz

∑

y∈Ω

Hz(y), (4.15)

which immediately implies (4.7)–(4.8).

4.2.2 The Diagrams

In preparation for the proof of (4.9)–(4.10), we now prove a preliminary esti-

mate on Π
(N)
z (x).

For N ≥ 2, we define p
(N)
m (x, y) inductively as follows. Let

p(2)
m (x, y) =

∑

0<i<j≤m

ci(x)cj−i(x)cm−j(y) (m ≥ 2), (4.16)

am(u, v, x, y) = δv,x

m∑

l=1

cl(u − v)cm−l(y − u) (m ≥ 1). (4.17)

For m = 0, 1, we set p
(2)
m (x, y) = 0, and we set a0(u, v, x, y) = 0. For N ≥ 3,

let

p(N)
m (x, y) =

∑

u,v∈Zd

m∑

i=0

p
(N−1)
i (u, v)am−i(u, v, x, y) (m ≥ 2). (4.18)

For N ≥ 2, we also define the generating functions

P (N)
z (x, y) =

∞∑

m=2

p(N)
m (x, y)zm, (4.19)

Az(u, v, x, y) =

∞∑

m=1

am(u, v, x, y)zm

= δv,xHz(u − v)Gz(y − u). (4.20)

It follows from (4.18) that, for N ≥ 3,

P (N)
z (x, y) =

∑

u,v∈Zd

P (N−1)
z (u, v)Az(u, v, x, y). (4.21)

The diagrammatic representations for P
(N)
z (x, y) shown in Fig. 4.2 are closely

related to the diagrams appearing in Fig. 3.4.
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0 x
y 0 x

y

0

x

y

Fig. 4.2. P
(N)
z (x, y) for N = 2, 3, 4.

Proposition 4.2. For N ≥ 2, m ≥ 2, and z ≥ 0,

π(N)
m (x) ≤ p(N)

m (x, x) (4.22)

and
Π(N)

z (x) ≤ P (N)
z (x, x). (4.23)

Proof. We prove the first inequality, as the second then follows immediately
from (4.4).

For N ≥ 2 we write a lace L ∈ L(N−1)[0, j] as {s1t1, . . . , sN−1tN−1}, with
s1 = 0 and tN−1 = j. For N ≥ 2, we define

J (N)
x [0,m] (4.24)

=

m∑

j=0

K[j,m]
∑

L∈L(N−1)[0,j]

j−1∑

i=tN−2

δx,ω(i)

∏

st∈L

(−Ust)
∏

s′t′∈C(L)

(1 + Us′t′),

where we set t0 = 1 when N = 2. We first show that, for every ω and every
N ≥ 2,

0 ≤ (−1)NJ (N)[0, m] ≤ J
(N)
ω(m)[0,m]. (4.25)

The first inequality is immediate, and we concentrate on the second. For this,
comparing with (3.21), L in (4.24) corresponds to L\{sN tN} in (3.21), and
i and j of (4.24) correspond to sN and tN−1 of the lace L in (3.21). The set
of compatible edges in (3.21) contains C(s1t1, . . . , sN−1tN−1) ∪ B[tN−1, m],
and omitting factors in the product over s′t′ in (3.21) can only increase the
product. When x = ω(m), the factor δx,ω(i) is −Ui,m = −UsN tN . This leads
to (4.25).

For N ≥ 2, we define

π(N)
m (x, y) =

∑

ω∈Wm(0,y)

J (N)
x [0,m]. (4.26)

It follows from (3.23) and (4.25) that

π(N)
m (x) ≤ π(N)

m (x, x). (4.27)

We will show that

π(N)
m (x, y) ≤ p(N)

m (x, y) (N ≥ 2), (4.28)
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which then gives the proposition.
The proof of (4.28) is by induction on N . We begin the induction with the

case N = 2. In this case, the sum over L in (4.24) consists of the single term
L = {0j}. Since C(0j) ⊃ B[0, i] ∪ B[i, j] for 0 < i < j, using symmetry we
obtain

π(2)
m (x, y) ≤

∑

0<i<j<m

∑

ω∈Wm(0,y)

K[0, i]δx,ω(i)K[i, j]δ0,ω(j)K[j,m]

=
∑

0<i<j<m

ci(x)cj−i(x)cm−j(y)

≤ p(2)
m (x, y). (4.29)

To advance the induction, we fix N ≥ 3 and assume that (4.28) holds for
N − 1. We replace the factor −UsN−1tN−1 in the first product of (4.24) by

−UsN−1tN−1
= δω(sN−1),ω(tN−1) =

∑

u∈Zd

δω(sN−1),uδu,ω(tN−1). (4.30)

Given L ∈ L(N−1)[0, j], let L′ = L\{sN−1tN−1}. For tN−2 ≤ i < j = tN−1,
we then have C(L) ⊃ C(L′) ∪ B[tN−2, i] ∪ B[i, j]. Using (4.30), we conclude
from (4.24) that

J (N)
x [0,m] ≤

∑

u

∑

0≤i<j≤m

J (N−1)
u [0, i]K[i, j]δω(i),xK[j, m]δu,ω(j). (4.31)

Therefore, recalling (4.17) and using the induction hypothesis,

π(N)
m (x, y) ≤

∑

u

∑

0≤i<j≤m

π
(N−1)
i (u, x)cj−i(u − x)cm−j(y − u)

≤
∑

u,v

m∑

i=0

p
(N−1)
i (u, v)am−i(u, v, x, y)

= p(N)
m (x, y). (4.32)

This completes the proof.

Exercise 4.3. Convince yourself that (4.31) holds.

4.2.3 Proof of (4.9)–(4.10)

We prove two lemmas, and combine them with Proposition 4.2 to obtain
(4.9)–(4.10).

We define the operators

(Mzf)(x) = Hz(x)f(x), (4.33)

(Hzf)(x) = (Hz ∗ f)(x), (4.34)

(H′
zf)(x) = (Gz ∗ f)(x). (4.35)
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Lemma 4.4. For N ≥ 2 and z ≥ 0,

∑

x

P (N)
z (x, x + y) =

[
(H′

zMz)
N−1Hz

]
(y). (4.36)

Proof. The proof is by induction on N . For N = 2, we conclude from (4.16)
that

∑

x

P (2)
z (x, x + y) =

∑

x

Hz(x)2Gz(x + y)

=
∑

x

Hz(x)2Gz(y − x) = [(H′
zMz)Hz](y), (4.37)

using Hz(−x) = Hz(x) in the second step.
To advance the induction, we assume that (4.36) holds for N − 1. By

(4.20)–(4.21),

∑

x

P (N)
z (x, x + y) =

∑

x,u,v

P (N−1)
z (u, v)Az(u, v, x, x + y)

=
∑

u,v

P (N−1)
z (u, v)Hz(u − v)Gz(v − u + y)

=
∑

w

(
∑

u

P (N−1)
z (u, u + w)

)
Hz(−w)Gz(w + y)

=
∑

w

(
∑

u

P (N−1)
z (u, u + w)

)
Hz(w)Gz(y − w), (4.38)

where in the last step we replaced w by −w and used the fact that the first
factor is unchanged by this replacement (see Exercise 4.5 below). Writing
F (w) for the first factor, the above is equal to

(Gz ∗ HzF )(y) = (H′
zMzF )(y). (4.39)

We then apply the induction hypothesis to complete the proof.

Exercise 4.5. Prove the identity
∑

u P
(N)
z (u, u + w) =

∑
u P

(N)
z (u, u − w)

used in (4.38).

The combination of Proposition 4.2 with Lemma 4.4 gives

∑

x

Π(N)
z (x) ≤

∑

x

P (N)
z (x, x) =

[
(H′

zMz)
N−1Hz

]
(0). (4.40)

Note that for N = 2 the upper bound can be replaced by [(HzMz)
N−1Hz](0),

which is equal to the above right hand side in this special case. The right hand
side of (4.40) can be estimated using the following lemma.



34 The Lace Expansion and its Applications

Lemma 4.6. Given non-negative even functions f0, f1, . . . , f2M on Zd, de-
fine Hj and Mj to be respectively the operations of convolution with f2j and
multiplication by f2j−1, for j = 1, . . . , M . Then for any k ∈ {0, . . . , 2M},

‖HMMM · · ·H1M1f0‖∞ ≤ ‖fk‖∞
∏

‖fj ∗ fj′‖∞, (4.41)

where the product is over disjoint consecutive pairs j, j′ taken from the set
{0, . . . , 2M} \ {k} (e.g., for k = 3 and M = 3, the product has factors with
j, j′ equal to 0, 1; 2, 4; 5, 6).

Proof. The proof is by induction on M . The desired result for M = 1 is a
consequence of the elementary estimates

∑

y

f2(x − y)f1(y)f0(y) ≤





‖f0‖∞‖f1 ∗ f2‖∞
‖f1‖∞‖f0 ∗ f2‖∞
‖f2‖∞‖f0 ∗ f1‖∞,

(4.42)

where for the last of these inequalities we used the fact that
∑

y f1(y)f0(y) =
(f0 ∗f1)(0) for even f0. To advance the induction, we assume that (4.41) holds
for 1, . . . , M − 1. We write the function inside the norm on the left hand side
of (4.41) as HMMMFM−1, with Fl = HlMl · · ·H1M1f0, and estimate its
infinity norm using the result for M = 1. If we associate the infinity norm to
FM−1, an estimate of the form (4.41) follows from the induction hypothesis,
for any k ≤ M − 1. It remains to show that the infinity norm can also be
associated to f2M or f2M−1.

We show this for the latter, and the former is similar. Applying the M = 1
case to HMMMFM−1 gives an upper bound ‖f2M−1‖∞‖f2M ∗ FM−1‖∞. Let

H̃M−1 denote convolution by f2M ∗ f2M−2, so that

f2M ∗ FM−1 = H̃M−1MM−1FM−2 (4.43)

(with F0 = f0). We apply the induction hypothesis to estimate the infinity

norm of the right hand side, associating the infinity norm to H̃M−1. This gives
the desired estimate.

Exercise 4.7. Give the details omitted at the end of the above proof, for the
case in which the infinity norm is associated to f2M .

Proof of (4.9)–(4.10). The bound (4.9) follows from (4.40) and Lemma 4.6.
It remains to prove (4.10). Fix N ≥ 2. Our goal is to estimate

∑

x

[1 − cos(k · x)]Π(N)
z (x) =

∞∑

m=2

zm
∑

x

[1 − cos(k · x)]π(N)
m (x). (4.44)

To do so, we investigate how the argument leading to (4.40) is modified by
the factor [1 − cos(k · x)].
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Because of the factor
∏

ij∈L(−Uij) occurring in the definition of π
(N)
m (x)

(see (4.3)), a nonzero contribution occurs only for those ω for which ω(i) =
ω(j) for each edge ij ∈ L. Let Ij denote the jth time interval listed in (3.16)
(j = 1, . . . , 2N − 1), and let yj denote the displacement performed on Ij by

a walk ω contributing to π
(N)
m (x). These displacements yj correspond to the

subwalk displacements in Figures 3.4 and 4.2. The constraints that ω(i) = ω(j)
for all ij ∈ L, together with the subinterval structure (3.16), impose the
constraints

y1 + y2 = 0,

2p+2∑

j=2p

yj = 0 (p = 1, . . . , N − 2), y2N−2 + y2N−1 = 0. (4.45)

It can also be seen from this (see also Fig. 3.4) that the total displacement x
is given by

x =

⌊N/2⌋∑

i=1

y4i−1 =

⌈N/2⌉∑

i=1

y4i−3 = −
N−1∑

i=1

y2i (4.46)

(we need only the first equality).

Let t =
∑J

j=1 tj . Taking the real part of the telescoping sum

1 − eit =

J∑

j=1

[1 − eitj ]ei
∑j−1

m=1
tm (4.47)

leads to the bound

1 − cos t ≤
J∑

j=1

[1 − cos tj ] +

J∑

j=1

sin tj sin
( j−1∑

m=1

tm

)
. (4.48)

It is a consequence of the identity sin(x + y) = sin x cos y + cos x sin y that
| sin(x + y)| ≤ | sin x| + | sin y|. Applying this recursively gives

1 − cos t ≤
J∑

j=1

[1 − cos tj ] +

J∑

j=1

j−1∑

m=1

| sin tj || sin tm|. (4.49)

In the last term we use |ab| ≤ (a2 + b2)/2, and then 1 − cos2 a ≤ 2[1 − cos a],
to obtain
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1 − cos t ≤
J∑

j=1

[1 − cos tj ] +
1

2

J∑

j=1

j−1∑

m=1

[sin2 tj + sin2 tm]

≤
J∑

j=1

[1 − cos tj ] + J

J∑

j=1

sin2 tj

=

J∑

j=1

[1 − cos tj ] + J

J∑

j=1

[1 − cos2 tj ]

≤ (2J + 1)

J∑

j=1

[1 − cos tj ]. (4.50)

We use the decomposition of x given by the first equality of (4.46), and

apply (4.50) with t = k · x =
∑⌊N/2⌋

j=1 k · y4j−1, to obtain

1 − cos(k · x) ≤ (N + 1)

⌊N/2⌋∑

j=1

[1 − cos(k · y4j−1)]. (4.51)

The modification of the upper bound (4.40) due to the factor [1−cos(k ·y4j−1)]
is simply to replace one of the factors Hz or Gz occurring in the right hand
side by [1−cos(k·y4j−1)]Hz(y4j−1). Then we apply Lemma 4.6, associating the
infinity norm to this particular factor, to obtain the desired estimate (4.10).

5 Convergence for the Self-Avoiding Walk

In this section, we prove convergence of the lace expansion for the nearest-
neighbour model in sufficiently high dimensions, and for sufficiently spread-out
models in dimensions d > 4. As part of the proof, we will show that the critical
bubble diagram B(zc) is finite in these cases, and hence, by Theorem 2.3, that
the critical exponent γ exists and equals 1. This is restated in the following
theorem.

Theorem 5.1. The bubble condition B(zc) < ∞ for the self-avoiding walk
holds for the nearest-neighbour model in dimensions d ≥ d0, and for the
spread-out model with L ≥ L0(d) in dimensions d > 4, for some constants
d0 and L0(d). Thus the critical exponent γ exists and equals 1, in the sense
that χ(z) ≃ (1 − z/zc)

−1 as z → z−c .

Remark 5.2. The conclusion of Theorem 5.1 can easily be improved to an
asymptotic formula χ(z) ∼ A(1 − z/zc)

−1 as z → z−c . See Exercise 5.19
below.
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Recall that Hz(x) = Gz(x) − δ0,x =
∑∞

n=1 cn(x)zn, so that ‖Hz‖2
2 =

‖Gz‖2
2 − 1 = B(z) − 1. We will prove not just that the critical bubble dia-

gram B(zc) is finite, but that in fact ‖Hzc‖2
2 = B(zc) − 1 is small, under the

hypotheses of Theorem 5.1. As a preliminary, we first analyze some related
issues for simple random walk.

5.1 Random-Walk Estimates

By the Parseval relation, ‖Hzc‖2
2 = ‖Ĥzc‖2

2 = ‖Ĝzc − 1‖2
2. By (1.18), the

random walk analogue of the latter is the integral

∫

[−π,π]d

∣∣∣∣∣
1

[1 − D̂(k)]
− 1

∣∣∣∣∣

2
ddk

(2π)d
=

∫

[−π,π]d

D̂(k)2

[1 − D̂(k)]2
ddk

(2π)d
. (5.1)

The following proposition shows that this integral is small under the hypothe-
ses of Theorem 5.1. (We have already encountered a closely related integral
in Exercise 1.7.)

Proposition 5.3. Let d > 4. Then

∫

[−π,π]d

D̂(k)2

[1 − D̂(k)]2
ddk

(2π)d
≤ β, (5.2)

with β = K(d−4)−1 (K a universal constant) for the nearest-neighbour model,
and with β = KL−d (K dependent on d) for the spread-out model.

Proof. This is a calculus problem. For the nearest-neighbour model, a proof
can be found in [158, Lemma A.3]. For the spread-out model, there is a proof
in [158, Lemma A.5] but with a β which is larger by a factor (log L)d/2. We
show here how the improvement can be achieved for the spread-out model.

It is shown in [120] that there are positive constants η, c1 (independent of
L) such that for all k ∈ [−π, π]d,

1 − D̂(k) ≥ c1L
2|k|2 (‖k‖∞ ≤ L−1), (5.3)

1 − D̂(k) > η (‖k‖∞ ≥ L−1). (5.4)

The integral (2π)−d
∫
[−π,π]d

D̂(k)2ddk is equal to (D ∗ D)(0), which is the

probability of return to the origin after two steps, namely |Ω|−1. For j ≥ 4
even, it follows from (5.3)–(5.4) that

∫

[−π,π]d
D̂(k)j ddk

(2π)d
≤

∫

Rd

e−c1jL2|k|2 ddk

(2π)d

+

∫

[−π,π]d
D̂(k)2(1 − η)j−2 ddk

(2π)d

≤ constL−dj−d/2 + |Ω|−1(1 − η)j−2

≤ constL−dj−d/2. (5.5)
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For j ≥ 3 odd,

(2π)−d

∫

[−π,π]d
|D̂(k)|jddk ≤ (2π)−d

∫

[−π,π]d
D̂(k)j−1ddk

≤ constL−dj−d/2, (5.6)

applying the estimate for j even in the last step. Now we expand [1− D̂(k)]−2

in (5.2) as
∑∞

j=1 jD̂(k)j−1, and use the above estimates to see that the left

hand side of (5.2) is bounded above by a multiple of L−d, assuming d > 4.

Exercise 5.4. Prove (5.2) for the nearest-neighbour model, with β = K(d −
4)−1.

The following lemma notes some useful implications of (5.2). The left hand
sides of (5.8)–(5.9) are respectively the random walk analogues of ‖Gzc‖2

2 and
of ‖[1 − cos(k · x)]Gzc(x)‖∞ = ‖[1 − cos(k · x)]Hzc(x)‖∞ (cf. (4.10)).

Lemma 5.5. If (5.2) holds, then for z ∈ [0, 1/|Ω|],

sup
x∈Zd

D(x) ≤ β, (5.7)

‖Cz‖2
2 ≤ 1 + 3β, (5.8)

‖[1 − cos(k · x)]Cz(x)‖∞ ≤ 5(1 + 3β)[1 − D̂(k)]. (5.9)

We first prove (5.7)–(5.8).

Proof of (5.7)–(5.8). The left hand side of (5.7) is simply |Ω|−1. Since the
left hand side of (5.2) is at least (2π)−d

∫
[−π,π]d

D̂(k)2ddk = |Ω|−1, the bound

(5.7) follows.
For (5.8) (and also (5.9)), it suffices to consider z = 1/|Ω|. We use the

Parseval relation to rewrite the left hand side as ‖Ĉ1/|Ω|‖2
2. By (1.18), this

equals

∫

[−π,π]d

1

[1 − D̂(k)]2
ddk

(2π)d

=

∫

[−π,π]d

(
1 + 2

D̂(k)

[1 − D̂(k)]
+

D̂(k)2

[1 − D̂(k)]2

)
ddk

(2π)d

≤
∫

[−π,π]d

(
1 + 3

D̂(k)2

[1 − D̂(k)]2

)
ddk

(2π)d
, (5.10)

by Exercise 5.6. The right hand side is at most 1 + 3β, assuming (5.2).

Exercise 5.6. Prove the inequality (5.10) by comparing the integrals of D̂[1−
D̂]−1 and D̂2[1 − D̂]−2.
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Before proving (5.9), we develop some useful preliminaries. We first note
that ∑

x

cos(k · x)Cz(x)eil·x =
1

2
[Ĉz(l + k) + Ĉz(l − k)]. (5.11)

Therefore, applying the general fact that ‖f‖∞ ≤ ‖f̂‖1, we obtain

‖[1 − cos(k · x)]Cz(x)‖∞ ≤ ‖Ĉz(l) −
1

2
[Ĉz(l + k) + Ĉz(l − k)]‖1, (5.12)

where the L1 norm involves integration with respect to l, with k fixed. The
expression Ĉz(l)− 1

2 (Ĉz(l+k)+ Ĉz(l−k)) is closely related to a sort of second

derivative of Ĉz(l), and in general we make the abbreviation

−1

2
∆kÂ(l) = Â(l) − 1

2
(Â(l + k) + Â(l − k)). (5.13)

In this notation, (5.12) reads

‖[1 − cos(k · x)Cz(x)‖∞ ≤ 1

2
‖∆kĈz(l)‖1, (5.14)

where the integration on the right hand side is with respect to l.

Lemma 5.7. Suppose that a(−x) = a(x) for all x ∈ Zd, and let

Â(k) =
1

1 − â(k)
. (5.15)

Then for all k, l ∈ [−π, π]d,

1

2
|∆kÂ(l)| ≤ 1

2
[Â(l − k) + Â(l + k)]Â(l)[âav(0) − âav(k)] (5.16)

+ 4Â(l − k)Â(l)Â(l + k)[âav(0) − âav(k)][âav(0) − âav(l)],

where aav(x) = |a(x)|.

Proof of (5.9). We use Lemma 5.7 to estimate the right hand side of (5.14),
with â(k) = D̂(k) and Â(k) = Ĉ1/|Ω|(k). Writing the latter simply as Ĉ(k),
this gives

1

2
|∆kĈ(l)| ≤ [1 − D̂(k)]

(
1

2
[Ĉ(l − k) + Ĉ(l + k)]Ĉ(l) + 4Ĉ(l − k)Ĉ(l + k)

)
.

(5.17)
Therefore, by the Cauchy-Schwarz inequality,

1

2
‖∆kĈ‖1 ≤ [1 − D̂(k)]5‖Ĉ‖2

2, (5.18)

and (5.9) follows from (5.8).
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Proof of Lemma 5.7. Since a is even, â(l) =
∑

x a(x) cos(l · x). For such an a,
we define

âcos(l, k) =
∑

x

a(x) cos(l · x) cos(k · x) =
1

2
[â(l − k) + â(l + k)], (5.19)

âsin(l, k) =
∑

x

a(x) sin(l · x) sin(k · x) =
1

2
[â(l − k) − â(l + k)]. (5.20)

We first show that, for all k, l ∈ [−π, π]d,

−1

2
∆kÂ(l) =

1

2
[Â(l − k) + Â(l + k)]Â(l)[â(l) − âcos(l, k)]

−Â(l − k)Â(l)Â(l + k)âsin(l, k)2. (5.21)

Let â± = â(l ± k) and write â = â(l). Direct computation using (5.13) gives

−1

2
∆kÂ(l) (5.22)

=
1

2
Â(l)Â(l + k)Â(l − k)

[
[2â − â+ − â−] + [2â+â− − ââ− − ââ+]

]

= Â(l)Â(l + k)Â(l − k)
[
[â(l) − âcos(l, k)] + [â+â− − â(l)âcos(l, k)]

]
,

using (5.19) in the last step. By definition, and using the identity cos(u+v) =
cos u cos v − sin u sin v,

â+â− =
∑

x,y

a(x)a(y) cos((l + k) · x) cos((l − k) · y)

= âcos(l, k)2 − âsin(l, k)2. (5.23)

Substitution of (5.23) in (5.22) gives

−1

2
∆kÂ(l) = Â(l−k)Â(l)Â(l+k)

[
[â(l)− âcos(l, k)][1− âcos(l, k)]− âsin(l, k)2

]
.

(5.24)
Finally, we use (5.19) to rewrite 1 − âcos(l, k) and obtain (5.21).

Now we use (5.21) to prove (5.16). First, we note that

|â(l) − âcos(l, k)| ≤
∑

x

[1 − cos(k · x)] | cos(l · x)| |a(x)|

≤ âav(0) − âav(k). (5.25)

Also, by (5.20) and the Cauchy-Schwarz inequality,

âsin(k, l)2 ≤
(

∑

x

|a(x)| sin2(k · x)

) (
∑

x

|a(x)| sin2(l · x)

)
. (5.26)
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With the elementary estimate sin2 t = 1 − cos2 t ≤ 2[1 − cos t], this gives

âsin(k, l)2 ≤
∑

x

|a(x)|[1 − cos2(k · x)]
∑

y

|a(y)|[1 − cos2(l · y)]

≤ 4[âav(0) − âav(k)][âav(0) − âav(l)]. (5.27)

The desired estimate (5.16) then follows from (5.21), (5.25) and (5.27).

5.2 Convergence of the Expansion

In this section we prove convergence of the lace expansion, assuming (5.2),
and also prove Theorem 5.1. Convergence will be proved in the process of
proving the following theorem, which shows that if the critical simple random
walk bubble diagram is sufficiently small, then the critical self-avoiding walk
bubble diagram is also small. (In both diagrams, the trivial term 1 is omitted
to obtain a small quantity.)

Theorem 5.8. There is a β0 > 0 and a constant c such that if (5.2) holds
with β ≤ β0, then B(zc) − 1 is less than cβ.

Proof of Theorem 5.1. This is an immediate consequence of Proposition 5.3,
Theorem 5.8, and Theorem 2.3.

We will prove Theorem 5.8 in the remainder of Section 5. The proof is
inspired by the method of [32]. It is possible to go beyond Theorem 5.8 in
several respects, and this will be discussed in Section 6. In particular, critical
exponents of the nearest-neighbour strictly self-avoiding walk in dimensions
d ≥ 5 are computed in [97, 98].

It is not obvious, at first, how to approach the issue of convergence of the
lace expansion. The conclusion of Theorem 5.8 is that ‖Hzc‖2 is small. On
the other hand, recall from (4.11) that

‖Hz ∗ Gz‖∞ ≤ ‖Hz‖∞ + ‖Hz‖2
2. (5.28)

To use this to perform the sum over N in Theorem 4.1 to estimate Πz, we
already need to know that ‖Hz‖2

2 is small uniformly in z < zc. The follow-
ing elementary lemma will be used to allow us to pick ourselves up by our
bootstraps.

Lemma 5.9. Let a < b, let f be a continuous function on the interval [z1, z2),
and assume that f(z1) ≤ a. Suppose for each z ∈ (z1, z2) that if f(z) ≤ b then
in fact f(z) ≤ a. Then f(z) ≤ a for all z ∈ [z1, z2).

Proof. By hypothesis, f(z) cannot lie strictly between a and b for any z ∈
(z1, z2). Since f(z1) ≤ a, it follows by continuity that f(z) ≤ a for all z ∈
[z1, z2).

For z ∈ [0, zc), we define p(z) ∈ [0, 1/|Ω|) by
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Ĝz(0) = χ(z) =
1

1 − p(z)|Ω| = Ĉp(z)(0), (5.29)

which is equivalent to

p(z)|Ω| = 1 − 1

χ(z)
. (5.30)

Our choice of f is motivated, in part, by the intuition that Ĝz(k) and Ĉp(z)(k)

are comparable in size. We also expect 1
2∆kĜz(l) and 1

2∆kĈp(z)(l) to be com-
parable. However, rather than comparing the latter directly, we will compare
1
2∆kĜz(l) with

Up(z)(k, l) = 16Ĉp(z)(k)−1
(
Ĉp(z)(l − k)Ĉp(z)(l) + Ĉp(z)(l + k)Ĉp(z)(l)

+Ĉp(z)(l − k)Ĉp(z)(l + k)
)

, (5.31)

which can be seen using (5.16) to be an upper bound for 1
2 |∆kĈp(z)(l)|.

We will apply Lemma 5.9 with z1 = 0, z2 = zc, b = 4, a = 1 + constβ (the
constant being determined in the course of the proof), and

f(z) = max{f1(z), f2(z), f3(z)}, (5.32)

where

f1(z) = z|Ω|, f2(z) = sup
k∈[−π,π]d

|Ĝz(k)|
Ĉp(z)(k)

, (5.33)

f3(z) = sup
k,l∈[−π,π]d

1
2 |∆kĜz(l)|
Up(z)(k, l)

. (5.34)

Note that the factor Ĉp(z)(k)−1 in the denominator of f3 becomes arbitrarily
small when k = 0 and z → z−c . We will verify in Lemmas 5.12, 5.14 and 5.16
that the hypotheses of Lemma 5.9 hold when β is sufficiently small. From this,
we can conclude that f(z) ≤ a = 1 + constβ uniformly in z ∈ [0, zc).

Proof of Theorem 5.8. We will show below in Lemma 5.10 that it follows from
f(z) ≤ a (which we will conclude as noted above) that ‖Hz‖2

2 ≤ caβ, where ca

is the constant of Lemma 5.10 when f(z) ≤ K = a. This proves ‖Hz‖2
2 ≤ caβ

uniformly in z < zc. By the monotone convergence theorem, this implies that

‖Hzc
‖2
2 = lim

z→z−
c

‖Hz‖2
2 ≤ caβ, (5.35)

which proves Theorem 5.8 since B(zc) − 1 = ‖Hzc‖2
2 by (4.12).

Note that the inequality f2(z) ≤ a implies the infrared bound

Ĝz(k) ≤ aĈp(z)(k) (5.36)

(we will actually prove in (5.53)–(5.60) that Ĝz(k)/Ĉp(z)(k) = 1+O(β), which

implies, in particular, that Ĝz(k) ≥ 0, permitting removal of the absolute value
on the left hand side of (5.36)).



The Lace Expansion and its Applications 43

Before going into the details, the basic strategy is as follows. First, it is
straightforward to verify the two hypotheses on f in Lemma 5.9 that f is
continuous and that f(0) ≤ a, and the main work goes into verifying that
f(z) ≤ b implies that f(z) ≤ a. For this, we use the assumption f(z) ≤ b to
compare norms of Hz with norms of Cp(z), and use (5.2) and Lemma 5.5 to
see that the latter are small. We then apply Theorem 4.1 to conclude that
Π̂z(k) is as small as we like, assuming that β is sufficiently small. Importantly,
this can be done even for a poor (large) value of b, because the effect of taking
β small compensates for the lack of sharpness in the bound f(z) ≤ b. This
implies that Gz(k) is close to a simple random walk quantity, and from this we
will be able to conclude the sharper bound f(z) ≤ a. The details are carried
out below.

Lemma 5.10. Fix z ∈ (0, zc), assume that f of (5.32) obeys f(z) ≤ K, and
assume (5.2). Then there is a constant cK , independent of z, such that

‖[1 − cos(k · x)]Hz‖∞ ≤ cK(1 + β)Ĉp(z)(k)−1, (5.37)

‖Hz‖2
2 ≤ cKβ, ‖Hz‖∞ ≤ cKβ. (5.38)

Proof. As in (5.14),

‖[1 − cos(k · x)]Hz‖∞ = ‖[1 − cos(k · x)]Gz‖∞
≤ 1

2
‖∆kĜz‖1. (5.39)

It then follows from f3(z) ≤ K, the Cauchy–Schwarz inequality, and (5.8)
that

‖[1 − cos(k · x)]Hz‖∞ ≤ 16KĈp(z)(k)−13‖Ĉp(z)‖2
2

≤ 48(1 + 3β)KĈp(z)(k)−1, (5.40)

which gives (5.37).
Next, we estimate ‖Hz‖2

2. We first use subadditivity and f1(z) ≤ K to
obtain

Hz(x) ≤ z|Ω|(D ∗ Gz)(x) ≤ K(D ∗ Gz)(x). (5.41)

Using f2(z) ≤ K, the Parseval relation, and (5.2), this implies that

‖Hz‖2
2 ≤ K2‖D ∗ Gz‖2

2 = K2‖D̂Ĝz‖2
2

≤ K4‖D̂Ĉp(z)‖2
2 = K4‖D ∗ Cp(z)‖2

2

≤ K4‖D ∗ C1/|Ω|‖2
2 = K4‖D̂[1 − D̂]−1‖2

2 ≤ K4β. (5.42)

This proves the first bound of (5.38).
Iteration of (5.41) gives Hz(x) ≤ KD(x) + K2(D ∗D ∗Gz)(x). Therefore,
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‖Hz‖∞ ≤ K‖D‖∞ + K2‖D̂2Ĝz‖1

≤ Kβ + K3‖D̂2Ĉp(z)‖1

= Kβ + K3(D ∗ D ∗ Cp(z))(0)

≤ Kβ + K3(D ∗ D ∗ Cp(z) ∗ Cp(z))(0)

≤ Kβ + K3(D ∗ D ∗ C1/|Ω| ∗ C1/|Ω|)(0)

≤ Kβ + K3β, (5.43)

using (5.7) in the second inequality, and the inverse Fourier transform and
(5.2) in the last.

Remark. The bounds of Lemma 5.10 can be combined with Theorem 4.1 to
give bounds on Π(N), and hence on Π. This is the content of the following
lemma. Note that once we have verified that the hypotheses of Lemma 5.9
all hold, we can conclude that f(z) ≤ a = 1 + constβ, thereby verifying the
hypothesis f(z) ≤ K of Lemma 5.11 with K = a. After the fact, this then
gives unconditional bounds on Πz (of course assuming (5.2)). These bounds
are then of lasting importance (see, e.g., Exercises 5.17–5.18).

Lemma 5.11. Fix z ∈ (0, zc), assume that f of (5.32) obeys f(z) ≤ K, and
assume that (5.2) holds. There is a constant c̄K , independent of z, such that
if β is sufficiently small (independent of z), then

∑

x∈Zd

|Πz(x)| ≤ c̄Kβ, (5.44)

∑

x∈Zd

[1 − cos(k · x)]|Πz(x)| ≤ c̄KβĈp(z)(k)−1. (5.45)

Proof. It follows from Theorem 4.1, Lemma 5.10, and the estimate (5.28) that
there is a constant c′K such that

∑

x∈Zd

Π(N)
z (x) ≤ (c′Kβ)N (5.46)

for all N ≥ 1, and

∑

x∈Zd

[1 − cos(k · x)]Π(N)
z (x)

{
= 0 if N = 1

≤ Ĉp(z)(k)−1N2(c′Kβ)N−1 if N ≥ 2.
(5.47)

The bounds (5.44)–(5.45) then follow immediately.
We now confirm that f of (5.32) obeys the hypotheses of Lemma 5.9, with

z1 = 0, z2 = zc, b = 4 and a = 1 + constβ (the particular value 4 for b is not
an essential choice). We first verify that f(0) = 1, which is of course less than
a.

Lemma 5.12. The function f of (5.32) obeys f(0) = 1.
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Proof. By definition, f1(0) = 0. Also, p(0) = 0 by (5.30) and hence f2(0) = 1.
Finally, f3(0) = 0.

To prove the continuity of f , we will use the following elementary lemma.

Lemma 5.13. Let (fα)α∈A be an equicontinuous family of functions on an
interval [t1, t2], and suppose that supα∈A fα(t) < ∞ for each t ∈ [t1, t2]. Then
supα∈A fα is continuous on [t1, t2].

Proof. Let f̄ = supα∈A fα, and let ǫ > 0 be given. The statement that (fα)α∈A

is equicontinuous means that there is a δ > 0 such that |fα(s) − fα(t)| < ǫ/2
whenever |s − t| < δ, uniformly in α ∈ A. Fix s, t with |s − t| < δ, and
assume without loss of generality that f̄(s) ≥ f̄(t). Choose α′ such that 0 ≤
f̄(s) − fα′(s) < ǫ/2. Then

0 ≤ f̄(s) − f̄(t) ≤ f̄(s) − fα′(t)

≤ [f̄(s) − fα′(s)] + |fα′(s) − fα′(t)|
<

ǫ

2
+

ǫ

2
= ǫ. (5.48)

Therefore, f̄ is continuous.

Lemma 5.14. The function f of (5.32) is continuous on the interval [0, zc).

Proof. It suffices to show that each of f1, f2, f3 is continuous on [0, zc). The
function f1 is linear, so it is certainly continuous.

For f2, it suffices to show that f2 is continuous in [0, r] for every r < zc.
By Lemma 5.13, it suffices to show that |Ĝz(k)|/Ĉp(z)(k) is equicontinuous in
z ∈ [0, r]. Here α is k. Since (|fα|)α∈A is an equicontinuous family whenever
(fα)α∈A is, it suffices to obtain a bound on the derivative

d

dz

Ĝz(k)

Ĉp(z)(k)
=

1

Ĉp(z)(k)2


Ĉp(z)(k)

dĜz(k)

dz
− Ĝz(k)

dĈp(k)

dp

∣∣∣∣∣
p=p(z)

dp(z)

dz


 ,

(5.49)
uniformly in k and in z ∈ [0, r]. This follows from the bounds

1

2
≤ 1

1 − p(z)|Ω|D̂(k)
= Ĉp(z)(k) ≤ Ĉp(z)(0) = χ(z) ≤ χ(r), (5.50)

|Ĝz(k)| ≤ χ(r), |dĜz(k)
dz | ≤ χ′(r), |dĈp(k)

dp | ≤ |Ω|χ(r)2, and dp(z)
dz ≤ |Ω|−1χ′(r).

For f3, it again suffices to show continuity in [0, r] for every r < zc. Again
we show equicontinuity on [0, r] for every r < zc, by obtaining a uniform
bound on the derivative with respect to z, and this follows as before.

Exercise 5.15. Fill in the missing details in the continuity proof of f3.

Finally, we verify that f obeys the substantial hypothesis of Lemma 5.9.
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Lemma 5.16. Fix z ∈ (0, zc) and suppose that f(z) ≤ 4. If (5.2) holds with
β sufficiently small (independent of z), then it is in fact the case that f(z) ≤
1 + cβ for some c > 0 independent of z.

Proof. For f1(z), we simply note that χ(z) > 0 and hence, by (3.30),

χ(z)−1 = 1 − z|Ω| − Π̂z(0) > 0. (5.51)

Therefore, by Lemma 5.11,

f1(z) = z|Ω| < 1 − Π̂z(0) ≤ 1 + c̄4β (5.52)

if β is sufficiently small.
For f2, we first write F̂z(k) = 1/Ĝz(k), so that

Ĝz(k)

Ĉp(z)(k)
=

1 − p(z)|Ω|D̂(k)

F̂z(k)
= 1 +

1 − p(z)|Ω|D̂(k) − F̂z(k)

F̂z(k)
. (5.53)

We will show that the last term on the right hand side is O(β), which implies
that f2(z) = 1 + O(β).

We first obtain bounds on the numerator of the last term in (5.53), and
afterwards consider the denominator. By (5.30) and (3.30), p(z)|Ω| = 1 −
F̂z(0) = z|Ω| + Π̂z(0), and thus the numerator of the last term in (5.53) is

1 − p(z)|Ω|D̂(k) − F̂z(k) = Π̂z(0)[1 − D̂(k)] − [Π̂z(0) − Π̂z(k)]. (5.54)

This is bounded above by 4c̄4β, by (5.44). Additionally, by (5.44)–(5.45), it is
also bounded above by

c̄4β[1 − D̂(k)] + c̄4β[1 − p(z)|Ω|D̂(k)]. (5.55)

Since

[1 − D̂(k)]Ĉp(z)(k) = 1 + D̂(k)
p(z)|Ω| − 1

1 − p(z)|Ω|D̂(k)
≤ 2, (5.56)

the numerator of (5.53) is bounded by

3c̄4β[1 − p(z)|Ω|D̂(k)] ≤ 3c̄4β
[
F̂z(0) + [1 − D̂(k)]

]
. (5.57)

The denominator of (5.53) is

F̂z(k) = F̂z(0) + [F̂z(k) − F̂z(0)]

= F̂z(0) + z|Ω|[1 − D̂(k)] + [Π̂z(0) − Π̂z(k)]. (5.58)

For z ≤ 1/2|Ω|, we use F̂z(0) ≥ Ĉz(0)−1 ≥ 1
2 , 1− D̂(k) ≥ 0, and (5.44) to see

that

F̂z(k) ≥ F̂z(0) − 2c̄4β ≥ 1

2
− 2c̄4β. (5.59)
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For 1/2|Ω| ≤ z < zc, we use F̂z(0) > 0, (5.45) and 1 − p(z)|Ω|D̂(k) =
1 − (1 − F̂z(0))D̂(k) ≤ 1 − D̂(k) + F̂z(0) to obtain

F̂z(k) ≥ F̂z(0) +
1

2
[1 − D̂(k)] − c̄4β[1 − p(z)|Ω|D̂(k)]

≥
[
1

2
− c̄4β

] [
F̂z(0) + [1 − D̂(k)]

]
. (5.60)

In either case, combining these inequalities with the bounds obtained above
for the numerator of (5.53) gives f2(z) = 1 + O(β).

Finally, we consider f3. We write

ĝz(k) = z|Ω|D̂(k) + Π̂z(k), (5.61)

so that

Ĝz(k) =
1

1 − ĝz(k)
. (5.62)

Note that gz(x) = gz(−x), so we can apply Lemma 5.7 to obtain

1

2
|∆kĜz(l)| ≤

1

2
[Ĝz(l − k) + Ĝz(l + k)]Ĝz(l)[ĝ

av
z (0) − ĝav

z (k)] (5.63)

+4Ĝz(l − k)Ĝz(l)Ĝz(l + k)[ĝav
z (0) − ĝav

z (k)][ĝav
z (0) − ĝav

z (l)].

Using f2(z) ≤ 1 + O(β), we can bound each factor of Ĝz above by [1 +
O(β)]Ĉp(z). Also,

ĝav
z (0) − ĝav

z (k) ≤
∑

x

[1 − cos(k · x)][z|Ω|D(x) + |Πz(x)|]

≤ z|Ω|[1 − D̂(k)] + c̄4βĈp(z)(k)−1

≤ [2 + O(β)]Ĉp(z)(k)−1, (5.64)

using (5.45) for the second inequality, and f1(z) ≤ 1 + O(β) and (5.56) for
the third. Combining these bounds gives f3(z) ≤ 1 + O(β).

This completes the proof that f(z) ≤ 1 + O(β).

This completes the proof that f obeys the hypotheses of Lemma 5.9, and
also completes the proof of Theorem 5.8.

Exercise 5.17. (a) Give a monotonicity argument to conclude that the factor
Ĉp(z)(k)−1 in (5.45) can be replaced by 1 − D̂(k).
(b) Use the result of (a) to prove that

∑
x |x|2|Πz(x)| is bounded above by

O(βσ2) uniformly in z < zc, where σ2 =
∑

x |x|2D(x).
(c) The correlation length of order 2, ξ2(z), is defined by

ξ2(z)2 =
1

χ(z)

∑

x

|x|2Gz(x). (5.65)

Prove that ξ2(z) ≃ (1 − z/zc)
−1/2.
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As a final observation, we note that by (5.46) and dominated convergence,
Π̂zc(k) is finite and is equal to the limit of Π̂z(k) as z approaches zc from the
left. Since χ(z) diverges to infinity in this limit, it follows from (3.30) that

1 − zc|Ω| − Π̂zc(0) = 0, (5.66)

and hence

zc =
1

|Ω|
(
1 − Π̂zc

(0)
)

=
1

|Ω| + O
( 1

|Ω|2
)
, (5.67)

where we have used |Π̂zc(0)| ≤ O(β) = O(|Ω|−1) (and we assume d > 4 for
the spread-out model). For the spread-out model in dimensions d > 4, an
extension of (5.67) can be found in [118].4 See [176] for related results for
the spread-out model in dimensions d ≤ 4. For the nearest-neighbour model,
(5.67) is the first step in the proof of the asymptotic formula (2.8) for µ = 1/zc.
The following exercise pushes (5.67) a bit further.

Exercise 5.18. Consider the nearest-neighbour model.
(a) Fix an integer m ≥ 1. Show that ‖[1−D̂]−m‖1 is nonincreasing in d > 2m.
Hint: A−m = Γ (m)−1

∫ ∞
0

um−1e−uAdu.

(b) Let H
(j)
z (x) =

∑∞
m=j cm(x)zm. Show that ‖H(j)

zc ‖∞ ≤ O(d−j/2), where
the constant may depend on j. To do so, it is helpful first to show that
‖D̂2j‖1 ≤ cj(2d)−j for some constant cj depending on j = 1, 2, . . ..
(c) Prove that

Π̂(1)
zc

(0) =
1

2d
+

3

(2d)2
+ O

( 1

(2d)3

)
. (5.68)

(d) Prove that

Π̂(2)
zc

(0) =
1

(2d)2
+ O

( 1

(2d)3

)
. (5.69)

(e) Conclude that the connective constant µ = z−1
c obeys

µ = 2d − 1 − 1

2d
+ O

( 1

(2d)2

)
. (5.70)

The strategy in this exercise is based on that used in [53, 122, 123], and is
simpler than that used in [101]. Equation (5.70) was first proved in [140], using
completely different methods.

5.3 Finite Bubble vs Small Bubble

According to Theorem 2.3, the susceptibility obeys the mean-field behaviour
χ(z) ≃ (1 − z/zc)

−1 if the critical bubble diagram B(zc) is finite. On the
other hand, convergence of the lace expansion has been proved only when
B(zc) − 1 is small. This leads to the restrictions that the dimension be large

4 The results of [118] are expressed in terms of pc defined by pc = zc|Ω|.
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for the nearest-neighbour model, or that L be large for the spread-out model
in dimensions d > 4, in our use of Proposition 5.3 to drive the convergence
proof.

For the nearest-neighbour model in dimension d = 5, it was shown in
[97, 98] that B(zc) − 1 ≤ 0.493. This is small, although not very small. With
considerable effort, and with a computer-assisted proof, convergence of the
lace expansion was proved in [97, 98] for the nearest-neighbour model in di-
mensions d ≥ 5.

It would be of great interest to find a proof of the bubble condition that
would be applicable in situations where the bubble diagram could be large,
rather than relying on it being small.

5.4 Differential Equality and the Bubble Condition

It is instructive now to revisit Theorem 2.3, which used inclusion-exclusion to
give upper and lower bounds on the derivative of zχ(z). As in the proof of
Lemma 5.16, we write

F̂z(0) =
1

χ(z)
= 1 − z|Ω| − Π̂z(0). (5.71)

Then direct calculation gives

d[zχ(z)]

dz
=

(
F̂z(0) − z

dF̂z(0)

dz

)
1

F̂z(0)2
= V (z)χ(z)2, (5.72)

with

V (z) = 1 + z
dΠ̂z(0)

dz
− Π̂z(0). (5.73)

The identity (5.72) gives an identity in place of the inequalities of (2.35), and
corresponds to inclusion-exclusion carried out to all orders.

It is significant that V (zc) is finite, under the basic assumption of Sec-
tion 5 that (5.2) is sufficiently small. We have already seen in Section 5.2 that
Π̂zc(0) is finite. To see that V (zc) is finite, we must verify that the derivative
dΠ̂zc(0)/dz is also finite. Here is a sketch of a proof of this last fact.

It suffices to obtain a bound on

∞∑

m=1

mπ̂(N)
m (0)zm−1

c (5.74)

which is summable in N . As in the proof of (4.10), we associate to π̂
(N)
m (0) a

diagram consisting of 2N − 1 subwalks, whose lengths m1, . . . ,m2N−1 sum to

m. We decompose the factor m in (5.74) as m =
∑2N−1

j=1 mj and obtain a sum

of 2N − 1 terms. In the jth term, there is a factor mj associated to the jth
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line. We apply Lemma 4.6 to estimate the jth term, associating the infinity
norm to the special line. Then we use the bound

‖
∞∑

m=1

mcm(x)zm−1
c ‖∞ = ‖dHzc(x)/dz‖∞

≤ ‖Hzc ∗ Gzc‖∞ ≤ ‖Hzc‖∞ + ‖Hzc‖2
2, (5.75)

and draw the desired conclusion. The first inequality of (5.75) follows as in
the upper bound of (2.35), and the second inequality is (4.11).

This shows that, as z → z−c ,

d[zχ(z)]

dz
∼ V (zc)χ(z)2. (5.76)

The left hand side is equal to the generating function of two mutually-avoiding
self-avoiding walks starting from the origin. The asymptotic formula (5.76)
shows that this generating function behaves in the same way as the generating
function for two independent self-avoiding walks, up to a vertex factor V (zc)
which takes into account the local effect of the mutual avoidance.

Exercise 5.19. Prove that when β of (5.2) is sufficiently small, the suscepti-
bility obeys the asymptotic formula

χ(z) ∼ A(1 − z/zc)
−1 as z → z−c , (5.77)

with A = z−1
c [|Ω|+ d

dz Π̂zc(0)]−1. This improves the conclusion of Theorem 5.1
to an asymptotic formula, and also avoids any appeal to Theorem 2.3.

6 Further Results for the Self-Avoiding Walk

The proof of convergence of the lace expansion was presented in Section 5 in
the context of proving the bubble condition, which is the simplest meaningful
result that can be derived from convergence. However, it is possible to go
substantially further, and in Section 6.1 we discuss several extensions for the
self-avoiding walk in dimensions d > 4. In Section 6.2, we discuss a result of
van der Hofstad [108] for a 1-dimensional self-avoiding walk. In Section 6.3,
we discuss a result of Ueltschi [204] for a self-avoiding walk with nearest-
neighbour attraction. Finally, in Section 6.4, we discuss applications of the lace
expansion to networks of mutually-avoiding self-avoiding walks in dimensions
d > 4.

6.1 The Self-Avoiding Walk in Dimensions d > 4

The lace expansion was invented by Brydges and Spencer [45] to prove the
following theorem for the weakly self-avoiding walk (see (2.2) and (2.14)).
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Theorem 6.1. Let d > 4 and consider the nearest-neighbour weakly self-
avoiding walk. There is a λ0 > 0 and an ǫ > 0 such that for all 0 < λ ≤ λ0

there are constants Aλ and vλ such that for every k ∈ Rd,

ĉ(λ)
n (k/

√
vλn) = Aλµn

λe−k2/2d[1 + O(n−ǫ)], (6.1)

E(λ)
n |ω(n)|2 = vλn[1 + O(n−ǫ)]. (6.2)

The above result was revisited in [81, 144], where the lace expansion was
treated as an example of a cluster expansion in statistical mechanics. The fact
that this is a natural setting for the lace expansion has been emphasized in
[40, 209].

A version of Theorem 6.1 was also obtained in [113], using a different
approach to the lace expansion based on induction. The inductive approach
notes that in the recursion

ĉn(k) = |Ω|D̂(k)ĉn−1(k) +

n∑

m=1

π̂m(k)ĉn−m(k) (6.3)

of (3.26), the right hand side can be analyzed using only information about
ĉj(k) for j < n. In fact, this is clear for those ĉj(k) occurring explicitly on
the right hand side, and diagrammatic estimates can be used to bound π̂m(k)

using only ĉj(k) for j < m. The results of [113] gives error estimates for ĉ
(λ)
n (0)

and the mean-square displacement that are likely optimal, namely

ĉ(λ)
n (0) = Aλµn

λ[1 + O(n−(d−4)/2)], (6.4)

E(λ)
n |ω(n)|2 =

{
vλn[1 + O(n−1∧(d−4)/2)] (d 6= 5)
vλn[1 + O(n−1 log n)] (d = 5).

(6.5)

In particular, the power in the error term for ĉ
(λ)
n (0) goes to infinity with the

dimension.
In [120], an inductive analysis was used to show that under appropriate

hypotheses, more general recursion relations have solutions with Gaussian
asymptotics. The result of the inductive analysis is quite general, and has
been applied in several contexts [119, 121, 124, 125, 204]. In particular, it
was used in [124] to prove a version of Theorem 6.1 for the spread-out model
(with L of (1.2) sufficiently large) of strictly self-avoiding walks (λ = 1) in
dimensions d > 4. Such a result had been obtained previously in [158], using
generating function methods rather than induction.

A variant of Theorem 6.1 was proved in [207] for a weakly self-avoiding
version of a walk that takes steps of length r parallel to the coordinate axes
with probability proportional to r−2. In this case, it was shown that for d > 2
and for sufficiently small λ there is convergence to the Cauchy distribution
rather than to a Gaussian. A related result was obtained for a spread-out
model in [52]. The fact that the upper critical dimension depends on the
range of interaction was discussed in [10] for spin systems.
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In the series of papers [183, 184, 185], it was shown that the conclusions of
Theorem 6.1 hold for the nearest-neighbour strictly self-avoiding walk (λ = 1)
if d ≥ d0, provided d0 is sufficiently large. It was also proved that the scaling
limit is Brownian motion in this case. This was improved in [97, 98] to give
the following theorem (see [97] for additional statements). The proof of the
theorem was computer assisted, and used precise numerical estimation of error
terms to show that d = 5 is large enough (barely!) to give convergence.

Theorem 6.2. Let d ≥ 5 and λ = 1 (strictly self-avoiding walk) and consider
the nearest-neighbour model. There are constants A and v (depending on d)
such that

cn = Aµn[1 + O(n−ǫ)] for any ǫ < d−4
2 ∧ 1, (6.6)

En|ω(n)|2 = vn[1 + O(n−ǫ)] for any ǫ < d−4
4 ∧ 1. (6.7)

The scaling limit is Brownian motion, in the sense that if we linearly in-
terpolate (vn)−1/2ω to obtain a continuous function from [0, 1] to Rd, then
this converges weakly to Brownian motion. For d = 5, 1 ≤ A ≤ 1.493 and
1.098 ≤ v ≤ 1.803.

In [173], the diffusion constant v is estimated to take the value 1.4767(13)
for d = 5.

The proofs of the above theorems are based on analysis of Fourier trans-
forms, and they have the character of the central limit theorem. However,
they do not provide a local central limit theorem, which is a statement that

c
(λ)
n (x)/c

(λ)
n converges to a suitably normalized5 version of the Gaussian den-

sity

pn(x) =
dd/2

(2πn)d/2
e−d|x|2/2n, (6.8)

directly in x-space. A result in this direction was obtained by Bolthausen
and Ritzmann [29], as stated in the following theorem. The method of [29]
introduced a new approach to the analysis of the lace expansion, based on
fixed-point methods.

Theorem 6.3. Let d > 4 and consider the nearest-neighbour model. There
are λ0 > 0, K > 0 and ǫ > 0 such that for all 0 < λ ≤ λ0 there is a v
(depending on λ, d) such that for all n and ‖x‖1 of the same parity,

∣∣∣∣∣
c
(λ)
n (x)

c
(λ)
n

− 2pvn(x)

∣∣∣∣∣ ≤ K


 1√

n
pvn(x) +

1

nd/2

n/2∑

j=1

jpvj(x)


 . (6.9)

The factor 2 on the left hand side of (6.9) is there for the same parity
reason that it is present for simple random walk (see, e.g., [149]). Namely, if

5 The function pn(x) of (6.8) is such that
∫

Rd |x|2pn(x)ddx = n in all dimensions.
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we sum the first term on the left hand side over x having the same parity as
n, we get 1, but we only get 1

2 (approximately) if we sum pvn(x) over x with
fixed parity.

Exercise 6.4. The right hand side of (6.9) is somewhat opaque, and this
exercise considers two consequences of (6.9).
(a) If we sum (6.9) over n, the Gaussian leading term

∑∞
n=0 2pvn(x) behaves

like a multiple of |x|2−d. Summation of the error term gives as upper bound
a multiple of

∞∑

j=1

(
1

j(d+1)/2
+

1

jd−2

)
e−d|x|2/2vj . (6.10)

By approximating the sum by an integral, this can be seen to be O(|x|1−d +
|x|6−2d). This is smaller than the leading term |x|2−d, and thus provides a
proof that η = 0 (see (2.27)) under the assumptions of Theorem 6.3. Fill in
the details of this discussion.
(b) Show that (6.9) implies that c

(λ)
n (x)/c

(λ)
n is bounded above by a multiple

of n−d/2.

In [120, 124], the following averaged version of a local central limit theorem
is proved. For the averaging, we denote the cube of radius R centred at x ∈ Zd

by
CR(x) = {y ∈ Zd : ‖x − y‖∞ ≤ R}. (6.11)

We use ⌊x⌋ to denote the closest lattice point in Zd to x ∈ Rd (with an
arbitrary rule to break ties).

Theorem 6.5. Consider the spread-out model of strictly self-avoiding walks.
Let d > 4. There is an L0 = L0(d) such that for L ≥ L0, the following holds.
Let Rn be any sequence with limn→∞ Rn = ∞ and limn→∞ Rnn−1/2 = 0.
Then for all x ∈ Rd with x2[log Rn]−1 sufficiently small, as n → ∞,

1

(2Rn + 1)d

∑

y∈CRn (⌊x√vn⌋)
cn(y) = Aµn

(
d

2πnv

)d/2

e−dx2/2[1+o(1)]. (6.12)

Note that (6.12) is not an immediate consequence of the convergence of
the Fourier transform of cn(x) to a Gaussian limit, which implies instead that
sums over sets of volume nd/2 converge to integrals of the Gaussian density
over the scaled set. The arbitrarily slow growth of Rn in Theorem 6.5 probes
cn(x) on a smaller scale.

See also Theorem 6.9 below for a related result, also proved using the
inductive method of [120], which gives upper and lower bounds on supx cn(x).

Alternate proofs of convergence of the lace expansion, which avoid use of
Fourier transforms, were developed in [90, 91], where the following theorem
was proved. Theorem 6.6 provides a statement that η = 0 for the self-avoiding
walk in dimensions d > 4.
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Theorem 6.6. (a) [90] For d ≥ 5, there is a constant a′ depending on d,
such that the critical two-point function of the nearest-neighbour strictly self-
avoiding walk obeys, as |x| → ∞,

Gzc(x) =
a′

|x|d−2

[
1 + O

( 1

|x|2/d

)]
. (6.13)

(b) [91] Fix any α > 0 (think of α small). For d > 4, there is a finite constant a
depending on d and L, and an L0 depending on d and α, such that for L ≥ L0

the critical two-point function of the spread-out model of strictly self-avoiding
walk obeys, as |x| → ∞,

Gzc(x) =
a

|x|d−2

[
1 + O

( 1

|x|[2∧2(d−4)]−α

)]
. (6.14)

The constant in the error term is uniform in x but may depend on L and α;
a more careful statement in this regard is given in [91].

The asymptotic formula ξ(z) ∼
√

v/2d(1 − z/zc)
−1/2 for the correlation

length (2.25) is proved in [97, 98] for the nearest-neighbour model in dimen-
sions d ≥ 5, using the method of [89]. The same result is obtained in [158]
for the spread-out model in dimensions d > 4 with L sufficiently large. This
confirms the prediction (2.26).

Finally, we mention a result concerning the infinite self-avoiding walk, a
concept first defined in [147]. Given n ≥ m and an m-step self-avoiding walk
ω, let Pm,n(ω) denote the fraction of n-step walks which extend ω, meaning
that the first m steps agree with ω. Then we define

Pm(ω) = lim
n→∞

Pm,n(ω) (6.15)

if the limit exists. If the limit does exist, then the probability measures Pm on
m-step walks will be consistent in the sense of Exercise 2.1. This consistency
property allows for the definition via cylinder sets of a measure P∞ on the set
of all infinite self-avoiding walks. The measure P∞ is the infinite self-avoiding
walk. In [148], the lace expansion was used to construct the nearest-neighbour
infinite self-avoiding walk in dimensions d ≥ d0, for some sufficiently large
d0. This was improved in [97] (see also [158]), where the nearest-neighbour
infinite self-avoiding walk was constructed in all dimensions d ≥ 5.

6.2 A Self-Avoiding Walk in Dimension d = 1

The above results all consider d > 4. An application to 1-dimensional nearest-
neighbour weakly self-avoiding walk has been given by van der Hofstad [108],
and we discuss this next.

For λ = 1, the 1-dimensional self-avoiding walk is easy: there are just
two self-avoiding walks that start at the origin, one travelling left and one
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travelling right. However, for λ ∈ (0, 1), the problem is much more difficult.
It was proved in [84] that the behaviour remains ballistic for all λ ∈ (0, 1),
i.e., the walk is asymptotically at position θn after n steps, where the speed
θ depends on λ. It remains an open problem to prove that θ is an increasing
function of λ, although this seems obvious intuitively. The substantial recent
progress in the study of 1-dimensional problems of this sort is reviewed in
[116].

When λ is close to 1, the weak avoidance is actually rather strong. In
the following theorem, due to [108], the lace expansion was used to treat the
weakly self-avoiding walk, with λ close to 1, as a small perturbation of the
one-dimensional strictly self-avoiding walk. This is the only time that the lace
expansion has been used to perturb around a non-Gaussian model.

We replace λ by

λ = λst = 1 − exp[−β|s − t|−p], (6.16)

with p ∈ [0, 1]. For factor |s − t|−p has the effect of diminishing β when
p ∈ (0, 1]. This corresponds to a “forgetful” self-avoidance, in the sense that
the penalty for a self intersection decreases when the time until the self-
intersection increases. Let

ĉ+
n (k) =

∑

x≥0

cn(x)eikx. (6.17)

This breaks the left-right symmetry, which is necessary if we are to observe
ballistic behaviour.

Theorem 6.7. Let d = 1 and p ∈ [0, 1], and consider the nearest-neighbour
model with λ = λst given by (6.16). There is a (large) β0 such that for all
β ≥ β0 there exists v = v(β, p) and θ = θ(β, p) such that

lim
n→∞

e−iθnk/v
√

n ĉ+
n (k/v

√
n)

ĉ+
n (0)

= e−k2/2. (6.18)

The first factor on the left hand side of (6.18) is an indication of ballistic
behaviour with speed θ. Extensions of (6.18) are given in [108]. See [138] for
earlier work on this model. It was shown in [113] that if p > 3

2 and λ is small
then the ballistic behaviour of Theorem 6.7 is replaced by diffusive behaviour.
Arguments were put forward in [47] that for λ > 0 and 1 ≤ p ≤ 3

2 the
mean-square displacement is asymptotic to a multiple of n2νp , where νp varies
linearly in p between ν1 = 1 and ν3/2 = 1

2 . Extensions to higher dimensions
are also discussed in [47].

6.3 Nearest-Neighbour Attraction

The self-avoiding walk models a single polymer in a good solution. In a bad
solution, it is energetically more favourable for the polymer to be in contact
with itself rather than with the solution. This is modelled as follows.



56 The Lace Expansion and its Applications

We fix κ > 0 and replace Ust of (2.1) by

Vst(ω) =





−λ if ω(s) = ω(t),
κ if ‖ω(s) − ω(t)‖1 = 1,
0 otherwise.

(6.19)

Define D : Zd → R by D(0) = 0, D(x) = aLe−|x|/L for x 6= 0, where aL is
chosen so that

∑
x∈Zd D(x) = 1. (In fact, the theorem below, due to [204],

allows for a more general choice of D.) For an n-step walk ω, let W (ω) =∏n
j=1 D(ω(j) − ω(j − 1)). Let

c(λ,κ)
n (x) =

∑

ω∈Wn(0,x)

W (ω)
∏

0≤s<t≤n

(1 + Vst(ω)), (6.20)

where the sum is over n-step walks taking arbitrary steps. Let c
(λ,κ)
n =∑

x∈Zd c
(λ,κ)
n (x). Then we define a measure by

E(λ,κ)
n X =

1

c
(λ,κ)
n

∑

ω∈Wn

X(ω)W (ω)
∏

0≤s<t≤n

(1 + Vst(ω)). (6.21)

In (6.19), there is a competition between two tendencies. The self-avoidance
tends to make the walk more spread out, whereas the nearest-neighbour at-
traction tends to make the walk more compact. The general picture [132, 205]
is that as κ is increased, with λ fixed, there is a collapse transition at a criti-
cal value κc = κc(λ). In this transition the walk’s length scale (measured e.g.
by average end-to-end distance) jumps from being of order nν with ν given
by (2.16) when κ < κc, to order n1/d for κ > κc. The critical value κc is
known as the theta point, and at the theta point it is predicted that the two
competing effects cancel each other, so that (for d ≥ 3) the length scale is
the Gaussian length scale n1/2. For simulations of the collapse transition in
dimension d = 5, see [174].

The following theorem of Ueltshi [204] proves that there is an uncollapsed
phase in the above model, for d > 4, λ = 1 and small κ. This theorem
is noteworthy in its application to a model for which the interaction is not
purely repulsive. The attractive nature of the interaction is problematic, as
the inequality 1 + Ust ≤ 1 used in the proof of existence of the connective
constant, and of Proposition 4.2, can now be violated. Specific properties of
the choice of D above are used in the proof of the theorem, to surmount this
difficulty.

Theorem 6.8. Fix6 d > 4, δ ∈ (0, 1 ∧ d−4
2 ), and let V be as above. There is

an L0 and a κ0 such that for all L ≥ L0 and 0 < κ ≤ κ0 there are positive
constants A = A(κ,L, d), µ = µ(κ,L, d) and v = v(κ,L, d) such that

6 The restriction on δ in [120, Theorem 1.1] contains a misprint and should involve
d−4
2

rather than d−4
4

.
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ĉ(1,κ)
n (0) = Aµn[1 + O(n−(d−4)/2)], (6.22)

E(1,κ)
n |ω(n)|2 = vn[1 + O(n−δ)]. (6.23)

The proof makes use of the general inductive theorem of [120], and, as
such, has consequences that go beyond (6.22)–(6.23).

6.4 Networks of Self-Avoiding Walks

Polymer networks can be modelled by networks of mutually-avoiding self-
avoiding walks. The scaling behaviour of such networks has been studied in the
physics literature for general dimensions [66, 67], but mathematically rigorous
results are restricted to d > 4. Networks in dimensions d > 4 having the
topology of a tree were studied in [124]. A special case of the results of [124]
pertains to star polymers, which we discuss now.

Let r ≥ 1, ~n = (n1, . . . , nr) with each nj a positive integer, and ~x =

(x1, . . . , xr) with each xj ∈ Zd. Let s
(r)
~n (~x) denote the number of star polymers

consisting of r self-avoiding walks of length n1, . . . , nr starting at the origin
and ending at x1, . . . , xr respectively, which are also mutually avoiding apart
from their common beginning at the origin. We consider the model in which

the walks take steps in the spread-out set Ω of (1.2). See Fig. 6.1. Let s
(r)
~n =∑

~x∈Zdr s
(r)
~n (~x).

Fig. 6.1. Star polymers with r = 2, 3, 4.

Theorem 6.9. Let7 d > 4, δ ∈ (0, 1 ∧ d−4
2 ), r ≥ 1, ~n = (n1, . . . , nr), and

n =
∑r

j=1 nj, and assume that nj ∼ ntj with tj ∈ (0, 1] for each j. There is
an L0 = L0(d) such that for L ≥ L0 there exist positive constants v, µ, A,
Vr (all depending on d and L) with V1 = 1 and V2 = A−1, and there exist
C1, C2 (depending on d but not L), such that the following statements hold as
n → ∞:

s
(r)
~n = VrA

rµn
[
1 + O(n−(d−4)/2)

]
, (6.24)

7 The footnote to Theorem 6.8 applies also here.
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1

s
(r)
~n

∑

~x∈Zdr

|xj |2 s
(r)
~n (~x) = vnj

[
1 + O(n−δ)

]
(j = 1, . . . , r), (6.25)

C1µ
nL−drn−dr/2 ≤ sup

~x∈Zdr

s
(r)
~n (~x) ≤ C2µ

nL−drn−dr/2. (6.26)

Since (6.24) with r = 1 gives s
(1)
n = cn = Aµn[1 + O(n−(d−4)/2)], µ must

be the connective constant given by µ = limn→∞ c
1/n
n . Thus the connective

constant µ also serves as the growth constant for star polymers. For d = 3,
a closely related result is proved in [194]; the proof extends to general d ≥ 2
[193]. Also, (6.25) gives c−1

n

∑
x∈Zd |x|2cn(x) = vn[1 + O(n−δ)], so v is the

diffusion constant.
Theorem 6.9 states that the constants A and V2 are related by V2 = A−1.

In fact, this is required for consistency of (6.24). To see this, consider the
statement of (6.24) for r = 1 and n = 2m. In this case, (6.24) gives c2m ∼
Aµ2m. On the other hand, we may regard a single polymer of length 2m as a
star polymer consisting of two branches of length m. With this interpretation,
(6.24) gives c2m ∼ A2V2µ

2m. Therefore it must be the case that V2 = A−1.
The constants Vr are referred to as vertex factors. It is proved in [124] that

Vr = 1 + O(L−d) for r ≥ 2. Although not explicitly stated in [124], it follows
easily from the results of [124] that there is a positive constant cr such that

Vr ≤ 1 − crL
−d (r ≥ 2). (6.27)

The vertex factors take into account the local effect of the mutual avoidance
of the walks that meet at the origin, and (6.27) reflects the natural fact that
the mutual avoidance diminishes the number of allowed configurations. This
is analogous to (5.76), and, in fact, it is the case that V (zc) of (5.76) is equal
to V2.

Since s
(1)
n (x) = cn(x), (6.26) provides both upper and lower bounds for

cn(x) of the form n−d/2. This is a kind of local central limit theorem (cf.
Theorems 6.3 and 6.5).

In [126], general graphical networks were considered, possibly containing
closed loops. The results of [126] are stated in terms of critical generating func-
tions. For simplicity, we state the result of [126] as it applies to the example
of watermelon networks. See Fig. 6.2. For r ≥ 2, let

W (r)
z (x) =

∑

(ω1,...,ωr)∈S(r)(0,x)

z|ω1|+···+|ωr|, (6.28)

where the sum is over all r-tuples of self-avoiding walks from 0 to x, of any
length, which are mutually avoiding apart from their common endpoints 0
and x. The walks are spread-out walks with steps given by (1.2).

Theorem 6.10. Let d > 4 and r ≥ 2. Fix ǫ1 < (d − 4) ∧ 1. Let zc be the
critical value, let Vr be the vertex factors of Theorem 6.9, and let a be the
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0 x 0 x
0 x

Fig. 6.2. Watermelon networks with r = 2, 3, 4.

constant of (6.14). There exists an L0 = L0(d, r) such that for L ≥ L0, as
|x| → ∞,

W (r)
zc

(x) = V 2
r

ar

|x|r(d−2)

[
1 + O

( 1

|x|ǫ1
)]

. (6.29)

Constants in the error term depend on L, d, r and ǫ1.

Comparing with the asymptotic formula for the critical two-point function
in Theorem 6.6, we can interpret Theorem 6.10 as stating that the leading
asymptotic behaviour of the watermelon network is that of r independent
self-avoiding walks joining 0 to x, apart from the vertex factors associated
with the two vertices of the watermelon network. The results of [126] provide
a similar conclusion for networks with the topology of an arbitrary graph.

The proofs of Theorems 6.9–6.10 are based on an extension of the notion
of laces on an interval, as defined in Section 3.3, to laces on a tree. A general
theory of such laces is developed in [124].

7 Lattice Trees

Lattice trees are natural combinatorial objects that fit within the general
framework of critical phenomena. They also model branched polymers. In
this section, we first give an overview of the predicted scaling properties of
lattice trees and state results obtained in dimensions d > 8 using the lace
expansion. We then show that the square condition plays a similar role for
lattice trees as the bubble condition does for the self-avoiding walk.

7.1 Asymptotic Behaviour

A lattice tree on Zd is defined to be a finite connected set of bonds which
contains no cycles (closed loops). Bonds are pairs {x, y} of vertices of Zd,
with y − x ∈ Ω, where Ω is given either by the nearest-neighbour set (1.1) or
the spread-out set (1.2). Although a tree T is defined as a set of bonds, we
will write x ∈ T if x is an element of a bond in T . The number of bonds in T
is denoted |T |, and the number of vertices in T is thus |T | + 1.

A basic combinatorial problem is to count the number of lattice trees of

fixed size. Let t
(2)
n (x) denote the number of n-bond lattice trees that contain



60 The Lace Expansion and its Applications

Fig. 7.1. A 2-dimensional lattice tree with n = 1000 bonds, generated using the
algorithm of [133]. The circle has radius n0.64.

the two vertices 0 and x, and let t
(1)
n = t

(2)
n (0) denote the number of n-bond

trees that contain the origin. Note that

t̂(2)n (0) =
∑

x∈Zd

t(2)n (x) =
∑

x∈Zd

∑

T :|T |=n,T∋0,x

1

=
∑

T :|T |=n,T∋0

∑

x∈T

1 = (n + 1)t(1)n (0). (7.1)

It is customary to count lattice trees modulo translation, namely to consider
tn defined by

tn =
1

n + 1
t(1)n =

1

(n + 1)2
t̂(2)n (0). (7.2)

A subadditivity argument [145] shows that there is a positive constant λ

such that limn→∞ t
1/n
n = λ. The precise asymptotic behaviour of tn as n → ∞

is believed to be given by

tn ∼ constλnn−θ, (7.3)

where θ is a universal critical exponent. The bounds

c1n
−c2 log nλn ≤ tn ≤ c3n

−(d−1)/dλn, (7.4)
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proved respectively in [131] and [157], are the best general bounds known at
present for tn.

In studying tn, it is convenient to introduce the two-point function

Gz(x) =

∞∑

n=0

t(2)n (x)zn =
∑

T :T∋0,x

z|T |, (7.5)

and the susceptibility χ(z) =
∑

x Gz(x) = Ĝz(0). The susceptibility has radius

of convergence zc = λ−1. It is a consequence of (7.2)–(7.3) that t̂
(2)
n (0) ∼

constλnn2−θ, and this corresponds, at least formally, to a singularity

χ(z) ∼ const
1

(1 − z/zc)γ
(7.6)

for the susceptibility, with γ = 3 − θ. As in (2.27)–(2.28), it is predicted that

Gzc(x) ∼ const
1

|x|d−2+η
(7.7)

as |x| → ∞, and that

Ĝzc(k) ∼ const
1

|k|2−η
(7.8)

as k → 0, where η is universal.
The typical length scale of a lattice tree is characterized by the average ra-

dius of gyration Rn, defined as follows. The squared average radius of gyration
is defined by

R2
n =

1

t
(1)
n

∑

T :|T |=n,T∋0

R(T )2, (7.9)

where

R(T )2 =
1

|T | + 1

∑

x∈T

|x − x̄T |2 (7.10)

is the squared radius of gyration of T . In (7.10), x̄T = (|T | + 1)−1
∑

x∈T x
denotes the centre of mass of T (considered as a set of equal masses at the
vertices of T ).

Exercise 7.1. Show that

R2
n =

1

2t̂
(2)
n (0)

∑

x

|x|2t(2)n (x). (7.11)

It is predicted that there is a universal critical exponent ν such that

Rn ∼ const nν . (7.12)

It is also believed that the critical exponents γ, η, ν are related by Fisher’s
relation γ = (2− η)ν. In principle, to construct a scaling limit of lattice trees
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the lattice spacing should be rescaled from 1 to n−ν , followed by the limit
n → ∞. It is not immediately obvious how to describe the scaling limit of
lattice trees, but a useful description for d > 8 will be discussed in Section 16.4.

A lattice animal is a connected set of bonds which may contain closed
loops. It is believed that lattice trees belong to the same universality class as
lattice animals, so that lattice trees and lattice animals have the same critical
exponents and scaling limits. A definition of weakly self-avoiding lattice trees
was given in [30], which presumably is also in the same universality class.

A model of continuous branched polymers, which is also expected to be
in the same universality class, was proposed by Brydges and Imbrie and an-
alyzed in [41, 42]. Inspired by ideas of Parisi and Sourlas [175], Brydges and
Imbrie [41] proved existence of critical exponents for their continuum model in
dimensions d = 2 and 3 (with partial results for d = 4), with values θ = 1 for
d = 2, and θ = 3

2 , ν = 1
2 , η = −1 for d = 3. It is believed that two-dimensional

lattice trees do not have a conformally invariant scaling limit, and that they
are not among the substantial class of models described by the Schramm–
Loewner evolution SLEκ. It has been conjectured [36] that η is negative for
all dimensions 2 < d < 8.

Based on a field theoretic representation, it was argued in [155] that the
upper critical dimension for lattice trees is 8. Further evidence for this was
given in [36, 199, 201]. The mean-field values of the exponents are γ = 1

2 ,
ν = 1

4 and η = 0. The value ν = 1
4 corresponds in (7.12) to n ∼ constR4

n,
which is a statement of 4-dimensionality. The fact that two 4-dimensional
objects generically do not intersect in more than eight dimensions gives a
quick prediction that d = 8 is the upper critical dimension for lattice trees.

The lace expansion has been used to prove a number of results for lattice
trees in dimensions d > 8. The following theorem [90, 91] shows that η =
0 for nearest-neighbour lattice trees in sufficiently high dimensions, and for
sufficiently spread-out models when d > 8. Similar results are proved in [90, 91]
for lattice animals.

Theorem 7.2. (a) [90] There is a d0 such that for d ≥ d0, there is a constant
a′ depending on d, such that the critical lattice tree two-point function obeys,
as |x| → ∞,

Gzc(x) =
a′

|x|d−2

[
1 + O

( 1

|x|2/d

)]
. (7.13)

(b) [91] Let d > 8, fix any α > 0 (think of α small), and consider the spread-
out model of lattice trees. There is a finite constant a depending on d and L,
and an L0 depending on d and α, such that for L ≥ L0, as |x| → ∞,

Gzc(x) =
a

|x|d−2

[
1 + O

( 1

|x|[2∧(d−8)]−α

)]
. (7.14)

The constant in the error term is uniform in x but may depend on L and α;
a more careful statement in this regard is given in [91].
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The following theorem, proved in [99], proves that θ = 5
2 and ν = 1

4 in
high dimensions. Weaker results have been obtained for lattice animals, at the
level of generating functions [95].

Theorem 7.3. For nearest-neighbour lattice trees with d sufficiently large, or
for spread-out lattice trees with d > 8 and L sufficiently large, there are positive
constants A and D (depending on d, L) such that for every ǫ < 1

2 ∧ d−8
4 ,

tn = Aλnn−5/2[1 + O(n−ǫ)], (7.15)

Rn = Dn1/4[1 + O(n−ǫ)]. (7.16)

As is the proof of Theorem 6.2, the proof of Theorem 7.3 proceeds first
by studying the singularity of Ĝz(k) at z = zc = λ−1, and then uses complex
variable methods to extract the asymptotics of tn and the radius of gyra-
tion. In particular, it is shown that under the hypotheses of the theorem the
susceptibility obeys

χ(z) =
A
√

π√
1 − z/zc

+ O(|1 − z/zc|−1/2+ǫ) (7.17)

for all complex |z| ≤ zc, which implies that γ exists and equals 1
2 .

The scaling limit of lattice trees in dimensions d > 8 will be discussed
in Section 16.4, but the following theorem of [62] gives a first step. For the
statement, let A and D be the constants of Theorem 7.3, and let

D0 = 23/4π−1/4D. (7.18)

Theorem 7.4. For nearest-neighbour lattice trees with d sufficiently large, or
for spread-out lattice trees with d > 8 and L sufficiently large, as n → ∞,

t̂(2)n (kD−1
0 n−1/4) ∼ Aλnn−1/2

∫ ∞

0

dt t e−t2/2e−|k|2t/2d. (7.19)

The integral on the right hand side of (7.19) will be discussed in Section 16.
Spatial scaling by n−1/4 corresponds to replacement of the Fourier variable

k by kn−1/4, and (7.19) is a statement about the scaling limit of t
(2)
n (x) in

Fourier language. Note that (7.15) can be combined with (7.2) to give t̂
(2)
n (0) ∼

Aλnn−1/2, which is consistent with (7.19).
We will not prove Theorems 7.2–7.4 here. The proofs involve deriving a

lace expansion for lattice trees, and diagrammatic estimates for the expansion,
followed by proof of convergence of the expansion. The latter can be handled
in various ways [91, 95, 99, 125]. Significant new issues do arise in the proofs
of Theorems 7.3–7.4. The modifications needed to apply the lace expansion
to lattice trees will be discussed in Section 8. But first, we indicate how the
role of the bubble condition for self-avoiding walks is replaced by the square
condition for lattice trees.
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7.2 Differential Inequalities and the Square Condition

In this section, we adapt the method and results of Section 2.2 to lattice trees.
For r ≥ 1, we define the r-point function by

G(r)
z (x1, . . . , xr−1) =

∑

T :T∋0,x1,...,xr−1

z|T |. (7.20)

In particular, G
(2)
z (x) is the two-point function Gz(x) of (7.5), and we will

write gz =
∑

T :T∋0 z|T | for the one-point function. For r ≥ 1,

d[zG
(r)
z (x1, . . . , xr−1)]

dz
=

∑

T :T∋0,x1,...,xr−1

(|T | + 1)z|T |

=
∑

xr

G(r+1)
z (x1, . . . , xr). (7.21)

For r = 1, 2, this implies that

d[zgz]

dz
=

∑

x∈Zd

Gz(x) = χ(z), (7.22)

and

d[zχ(z)]

dz
=

∑

x,y

G(3)
z (x, y). (7.23)

We seek upper and lower bounds for the right hand side of (7.23), which will
provide differential inequalities for the susceptibility.

For an upper bound, we note that a lattice tree containing vertices 0, x, y
contains a unique skeleton consisting of the union of the paths in the tree
joining 0 to x, and 0 to y. The skeleton divides naturally into three paths,
which join each of 0, x, y to the vertex u (say) where the path from 0 to y
separates from the path from 0 to x. By neglecting the mutual avoidance of
the three subtrees defined naturally by these paths (the “inclusion” part of
inclusion-exclusion), we obtain

G(3)
z (x, y) ≤

∑

u

Gz(u)Gz(x − u)Gz(y − u). (7.24)

Inserting this into (7.23) then gives the upper bound

d[zχ(z)]

dz
≤ χ(z)3. (7.25)

For a lower bound, we first define the square diagram by

S(z) =
∑

x,y,u

Gz(x)Gz(y − x)Gz(u − y)Gz(u). (7.26)
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Using the inverse Fourier transform, it follows from Exercise 1.1 that

S(z) =

∫

[−π,π]d
Ĝz(k)4

ddk

(2π)d
. (7.27)

The square condition states that S(zc) < ∞, and will be satisfied for d > 8 if
η = 0 in (7.7)–(7.8). Keeping only the term x = y = u = 0 in (7.26), we see
that S(z) ≥ g4

z ≥ gz, and hence the square condition implies that gzc < ∞.
For the “exclusion” part of the inclusion-exclusion, we note two sources of

overcounting in (7.24). One source is the fact that each two-point function on
the right hand side of (7.24) contributes a branch at u, and this overcount-
ing can be handled by inserting a factor 1/g2

z to prune two of the branches.
Another source arises from the possible intersection of the three subtrees.
Bounding this subtracted term from above, we are led to the lower bound de-
picted in Fig. 7.2 (see [95, Section 1.3] for more details). Summing this lower
bound gives

χ(z)3
[

1

g2
z

− 3[S(z) − g4
z ]

]
≤ d[zχ(z)]

dz
≤ χ(z)3. (7.28)

0

x yy x y

0 0

x y x y

0

− − −1
g2

z
≤ G

(3)
z (x, y) ≤

0

x

Fig. 7.2. The “skeleton inequalities” (7.28) for lattice trees.

The diagrams in Fig. 7.2 have a dual interpretation. On the one hand,
they give a schematic depiction of actual tree configurations (or of tree-like
configurations when self-intersections are imposed on the left hand side). On
the other hand, the diagrams have the interpretation that each line represents
a two-point function, with unlabelled vertices summed over Zd. The latter is
an upper bound on generating functions of the actual configurations, and it is
the latter interpretation that is literally intended in Fig. 7.2. It is nevertheless
instructive to keep the former interpretation in mind also.

Exercise 7.5. Fill in the missing details of the derivation of the lower bound
of (7.28).

The skeleton inequalities were derived and used to prove the following
theorem in [36, 199, 201].

Theorem 7.6. For all d, χ(z) ≥ const(1 − z/zc)
−1/2 for 0 ≤ z ≤ zc. If the

square condition is satisfied then the reverse inequality also holds, and hence

χ(z) ≃ (1 − z/zc)
−1/2. (7.29)
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Proof. We first discuss the integration of the upper bound of (7.28), to obtain
the lower bound in the statement of the theorem. Fix some z0 ∈ (0, zc). There
is no difficulty for z < z0. For z ≥ z0, (7.28) implies that

d[zχ(z)]

dz
≤ 1

z3
0

[zχ(z)]3 (7.30)

and hence

−d[zχ(z)]−2

dz
≤ 2

z3
0

. (7.31)

Integration of this inequality over the interval [z, zc] gives

[zχ(z)]−2 − [zcχ(zc)]
−2 ≤ 2

z3
0

(zc − z). (7.32)

If we knew that χ(zc) = ∞, this would give the desired lower bound on the
susceptibility. Since zc is the radius of convergence of χ, we do know that
χ(z) = ∞ for z > zc, and we need to rule out the possibility of a jump at zc.

To do so, we argue as follows. Consider lattice trees which lie in the finite
set ΛR given by the intersection of [−R, R]d with Zd; the lack of translation
invariance of ΛR complicates the argument. For x, y ∈ ΛR, let

GR,z(x, y) =
∑

T⊂ΛR:T∋x,y

z|T |, (7.33)

χR,x(z) =
∑

y∈ΛR

GR,z(x, y), (7.34)

χ̄R(z) = max
x∈ΛR

χR,x(z). (7.35)

Note that

χ(z) = lim
R→∞

χR,0(z) = sup
R

χR,0(z)

= lim
R→∞

χ̄R(z) = sup
R

χ̄R(z). (7.36)

It is not difficult to follow the steps leading to the upper bound of (7.28) to
see that for each x ∈ ΛR,

d[zχR,x(z)]

dz
≤ χR,x(z)χ̄R(z)2 ≤ χ̄R(z)3. (7.37)

Since each χR,x is a polynomial, and since there are finitely many x ∈ ΛR, for
each z there is an x such that the derivative of χR,x is equal to the derivative of
χ̄R, except possibly for finitely many values of z. Apart from this exceptional
set, it follows from (7.37) that

−d[zχ̄R(z)]−2

dz
≤ 2

z3
. (7.38)
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Each χR,x is a polynomial in z which is positive for all z ≥ 0, and hence
χ̄−2

R is continuous on [0,∞). The bound (7.38) implies that [zχ̄R(z)]−2 is
equicontinuous on [z0,∞). By Lemma 5.13, this implies that

[zχ(z)]−2 = inf
R

[zχ̄R(z)]−2 = − sup
R

(
− [zχ̄R(z)]−2

)
(7.39)

is continuous on [z0,∞). Since χ(z)−2 = 0 for z > zc, it follows that χ(zc)
−2 =

0, as required.
For the upper bound, we will only observe here the weaker result that

if S(zc) − g4
zc

< (3g2
zc

)−1, then the lower bound of (7.30) can be integrated
to give the upper bound on χ stated in the theorem. Since g2

zc
≤ S(zc) by

definition, the above inequality is implied if S(zc)(S(zc) − g4
zc

) < 1
3 , which

follows if S(zc)−g4
zc

is sufficiently small. In applications of the lace expansion,
it is always proved that S(zc) − g4

zc
is small, so the weaker result suffices in

practice. However, the method used in [12], to deal with the analogous issue
for percolation, can actually be applied to show that in fact S(zc) < ∞ is
sufficient to imply the desired upper bound on the susceptibility [199].

By analogy with the discussion of Section 5.4, it might be expected that
for d > 8 there is a constant v such that

d[zχ(z)]

dz
∼ vχ(z)3 as z → z−c . (7.40)

In fact, the lace expansion has been used to prove that under the hypotheses
of Theorem 7.3,

d[zχ(z)]

dz
=

1

2πA2
χ(z)3 + O(|1 − z/zc|−3/2+ǫ)

=
A
√

π

2(1 − z/zc)3/2
+ O(|1 − z/zc|−3/2+ǫ) (7.41)

holds uniformly in complex z with |z| < zc, where A is the constant of (7.15)
and (7.17). The proof of (7.41) in [99] actually uses a double expansion, al-
though the lace expansion on a tree derived in [124] can now be used instead
to do it with a single expansion [125].

The asymptotic formula (7.41) implies (7.15) via a Tauberian theorem, as
the following exercise shows.

Exercise 7.7. (a) Suppose that f(z) =
∑∞

n=0 anzn has radius of convergence
1. Suppose that |f(z)| ≤ const |1−z|−b uniformly in |z| < 1, with b ≥ 1. Prove
that |an| ≤ const nb−1 if b > 1, and that |an| ≤ const log n if b = 1. Hint:

an =
1

2πi

∮

Γ

f(z)
dz

zn+1

where Γ is the contour |z| = 1 − 1
n . (See [75] or [62] for a solution.)

(b) Conclude (7.15) from (7.41).
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8 The Lace Expansion for Lattice Trees

In this section, we derive the lace expansion for lattice trees. We also indicate
how the expansion can be modified to apply to lattice animals, as this gives
some insight into the expansion for percolation to be discussed later in Sec-
tion 10. Finally, we briefly discuss diagrammatic estimates for lattice trees.
The ideas in this section are from [95]. Convergence of the expansion will
not be discussed here; see [95, 91, 125] for three different methods to prove
convergence.

8.1 Expansion for Lattice Trees

We first discuss the derivation of the expansion using connected graphs and
laces, and then briefly indicate how to interpret the expansion as arising from
repeated inclusion-exclusion.

Given two distinct vertices x, y and a tree T ∋ x, y, the backbone is defined
to be the unique path, consisting of bonds of T , which joins x to y. If the
backbone consists of n bonds, and is considered to start at x and end at y,
then removal of the bonds in the backbone disconnects T into n + 1 mutually
nonintersecting trees R0, ..., Rn, which we refer to as ribs. This decomposition
is shown in Fig. 8.1.

x

y

R0

R1

R8

Fig. 8.1. Decomposition of a tree T containing vertices x and y into its backbone
and ribs R0, ..., R8. The vertices of the backbone are indicated by heavy dots.

Given a set ~R = {R0, ..., Rn} of n + 1 trees Rj , we define

Ust(~R) =

{
−1 if Rs and Rt share a common vertex

0 if Rs and Rt share no common vertex.
(8.1)

Then the two-point function can be written

Gz(x) =
∑

ω∈W(0,x)

z|ω|
∑

R0∋0

. . .
∑

R|ω|∋x

z|R0|+...+|R|ω||
∏

0≤s<t≤|ω|
(1 + Ust(~R)),

(8.2)
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where the sum over ω is over all simple random walks from 0 to x, and where
each sum over Ri is a sum over trees containing ω(i), and ~R = (R0, ..., R|ω|).
We will abbreviate the right hand side of (8.2) as

Gz(x) =
∑

ω∈W(0,x)

z|ω|




|ω|∏

i=0

∑

Ri∋ω(i)

z|Ri|




∏

0≤s<t≤|ω|
(1 + Ust(~R)), (8.3)

with the understanding that the sums over Ri cannot be completed in (8.3)
without taking into account the product over s, t. The identity (8.2) represents
the generating function for lattice trees containing 0 and x by a sum which
generates backbones ω and ribs ~R, with an interaction to prevent the ribs from
intersecting each other. The sum over ω is the sum over all random walks from
0 to x (taking steps in Ω), although walks that are not self-avoiding give zero
contribution to (8.2).

8.1.1 The Expansion

We use the terminology of Definitions 3.2 and 3.5, but with a change in the
definition of connected graph. A graph Γ on [a, b] is now be said to be con-
nected if both a and b are endpoints of edges in Γ , and if in addition for
each c ∈ (a, b) there are s, t ∈ [a, b] such that s < c < t with either (i)
{s, t} ∈ Γ , or (ii) {c, t} ∈ Γ and {s, c} ∈ Γ . Equivalently, Γ is connected if
∪st∈Γ [s, t] = [a, b]. This notion of connectedness is less restrictive than that
used for the self-avoiding walk, and is better suited for dealing with the inter-
action between ribs. This new definition of connected graph leads to a larger
set of laces than before, where we still define a lace to be a minimally con-
nected graph, i.e., a connected graph for which the removal of any edge would
result in a disconnected graph. The set of laces on [a, b] is denoted L[a, b]. We
also modify the prescription associating to each connected graph Γ a unique
lace LΓ , to conform with the new notion of connectedness. Namely, we now
define LΓ to consist of edges s1t1, s2t2, . . ., with t1, s1, t2, s2, . . . determined,
in that order, by

t1 = max{t : at ∈ Γ}, s1 = a,

ti+1 = max{t : ∃s ≤ ti such that st ∈ Γ}, si+1 = min{s : sti+1 ∈ Γ}.
As in Section 3.3, given a lace L, we define C(L) = {st6∈L : L|L∪{st} = L}.

Let
K[a, b] =

∏

a≤s<t≤b

(1 + Ust), (8.4)

and, as in (3.9) and (3.19),

J [0, a] =
∑

Γ∈G[a,b]

∏

st∈Γ

Ust

=
∑

L∈L[0,a]

∏

st∈L

Ust

∏

s′t′∈C(L)

(1 + Us′t′), (8.5)
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where now G[a, b] is the set of connected graphs with the new definition of
connectivity.

Exercise 8.1. Modify the proof of Lemma 3.4 to show that with the new
definition of connectivity,

K[0, b] = K[1, b] +

b−1∑

a=1

J [0, a]K[a + 1, b] + J [0, b], (8.6)

for b ≥ 1 (the empty sum is 0 if b = 1).

Substitution of (8.6) into (8.3) results in

Gz(x) =
∑

R0∋0

z|R0|δ0,x +
∑

ω ∈ W(0, x)
|ω| ≥ 1

z|ω|




|ω|∏

i=0

∑

Ri∋ω(i)

z|Ri|


K[1, |ω|]

+
∑

ω ∈ W(0, x)
|ω| ≥ 2

z|ω|




|ω|∏

i=0

∑

Ri∋ω(i)

z|Ri|




|ω|−1∑

a=1

J [0, a]K[a + 1, |ω|]

+
∑

ω ∈ W(0, x)
|ω| ≥ 1

z|ω|




|ω|∏

i=0

∑

Ri∋ω(i)

z|Ri|


J [0, |ω|]. (8.7)

The first term on the right hand side is due to the contribution to (8.3) from
the zero-step walk, and the other terms are due to the walks ω with |ω| ≥ 1.

Recalling our notation gz for the one-point function, and writing

Πz(x) =
∑

ω ∈ W(0, x)
|ω| ≥ 1

z|ω|




|ω|∏

i=0

∑

Ri∋ω(i)

z|Ri|


J [0, |ω|], (8.8)

the first and last terms on the right hand side of (8.7) are equal to gzδ0,x and
Πz(x), respectively. The second term on the right hand side of (8.7) is equal
to ∑

R0∋0

z|R0|z
∑

u∈Ω

Gz(x − u) = gz(z|Ω|D ∗ Gz)(x), (8.9)

where D is defined by (1.10). For the third term on the right hand side of
(8.7), we consider ω to be composed of an initial a-step walk ω1 from 0 to
(say) u, followed by a single step to (say) v, and then a final portion ω2 from
v to x. The term in question is then equal to
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z
∑

(u,v)

∑

ω1 ∈ W(0, u)
|ω1| ≥ 1

z|ω1|



|ω1|∏

i=0

∑

Ri∋ω1(i)

z|Ri|


J [0, |ω1|]

×
∑

ω2 ∈ W(v, x)
|ω2| ≥ 0

z|ω2|



|ω2|∏

i=0

∑

Ri∋ω2(i)

z|Ri|


K[0, |ω2|]

= z
∑

(u,v)

Πz(u)Gz(x − v) = (Πz ∗ z|Ω|D ∗ Gz)(x), (8.10)

where the sum over (u, v) denotes the sum over all directed steps with v−u ∈
Ω.

Summarizing, (8.7) can be rewritten as

Gz(x) = gzδ0,x + Πz(x) + gz(z|Ω|D ∗Gz)(x) + (Πz ∗ z|Ω|D ∗Gz)(x). (8.11)

This is the lace expansion for lattice trees. We can write this more compactly
by defining

hz(x) = gzδ0,x + Πz(x). (8.12)

Then (8.11) becomes

Gz(x) = hz(x) + (hz ∗ z|Ω|D ∗ Gz)(x). (8.13)

It is sometimes useful to modify the above analysis by introducing a “fu-
gacity” ζ associated to backbone length. Thus, we define

Gz,ζ(x) =
∑

T :T∋0,x

z|T |ζ |ωT (x)|, (8.14)

where ωT (x) denotes the backbone joining 0 to x in T . This is the same as
inserting a factor ζ |ω| in (8.3). Following the steps of the expansion, we obtain

Gz,ζ(x) = hz,ζ(x) + (hz,ζ ∗ zζ|Ω|D ∗ Gz,ζ)(x), (8.15)

where
hz,ζ(x) = gzδ0,x + Πz,ζ(x) (8.16)

with Πz,ζ given by (8.8) with an additional factor ζ |ω| inserted in the right
hand side.

8.1.2 Inclusion–Exclusion

We now interpret the expansion (8.11) as the result of repeated inclusion-
exclusion.

The case |ω| = 0 in (8.2) gives rise to the term gzδ0,x in (8.11). Consider
the case |ω| ≥ 1, and suppose that in (8.2) we neglect the fact that the rib
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R0 at the origin should avoid the other ribs. This is the same as replacing the
interaction K[0, |ω|] by K[1, |ω|]. The result can be factorized, and produces
the term gz(z|Ω|D ∗ Gz)(x) on the right hand side of (8.11).

In neglecting the fact that R0 should avoid the other ribs, we have included
terms in which a rib Rj with j ≥ 1 intersects R0, and we should exclude their
contribution by subtracting a correction term. Given a configuration in which
some Rj with j ≥ 1 intersects R0, let j0 be the smallest value of j for which
Rj intersects R0. As a first approximation, we neglect the fact that the ribs
Rj with j > j0 should avoid those with 1 ≤ j ≤ j0. In this approximation, the
subtracted term is the convolution with (z|Ω|D ∗Gz) of a generating function
for tree-like configurations in which the first and last ribs intersect each other.
To correct for the approximation, a term involving further rib intersections
must be added, and so on. This leads to an identity of the form (8.11), in which
Πz is represented by an alternating series. This alternating series will appear
in more detail when diagrammatic estimates are discussed in Section 8.3.

8.2 Expansion for Lattice Animals

A lattice animal on Zd is defined to be a finite connected set of bonds, which
may or may not contain cycles. Lattice animals are predicted to have the same
critical exponents and scaling limit as lattice trees.

The lace expansion for lattice trees can be modified to apply to lattice
animals. The main difference compared to lattice trees is that a lattice animal
containing vertices x and y need not contain a unique path joining x and y.
To deal with this, some definitions are needed.

A lattice animal A containing x and y is said to have a double connection
from x to y if there are two bond-disjoint self-avoiding walks in A between x
and y (the walks may share a common vertex, but no common bond), or if
x = y. A bond {u, v} in A is called pivotal for the connection from x to y if
its removal would disconnect the animal into two connected components with
x in one connected component and y in the other. There is a natural order
to the set of pivotal bonds for the connection from x to y, and each pivotal
bond is ordered in a natural way, as follows. The first pivotal bond for the
connection from x to y (assuming there is at least one) is the pivotal bond
for which there is a double connection between one endpoint of the pivotal
bond and x. The endpoint for which there is a double connection to x is then
the first endpoint of the first pivotal bond. To determine the second pivotal
bond, the role of x is then played by the second endpoint of the first pivotal
bond, and so on.

Let
Ga

z(x) =
∑

A:A∋0,x

z|A| (8.17)

denote the two-point function for lattice animals, where |A| is the number of
bonds in A. Given two vertices x, y and an animal A containing x and y, the
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y

x

R0

R1 R2

Fig. 8.2. Decomposition of a lattice animal A containing x and y into backbone
and ribs. The backbone, consisting of two bonds, is drawn in bold lines.

backbone of A is now defined to be the set of pivotal bonds for the connection
from x to y. In general this backbone is not connected. The ribs of A are the
connected components which remain after the removal of the backbone from
A. An example is depicted in Fig. 8.2. The set of all animals having a double
connection between x and y is denoted Dx,y, and we write

ga
z (y − x) =

∑

R∈Dx,y

z|R|. (8.18)

In particular Dx,x is the set of all animals containing x. Let B be an arbitrary
finite ordered set of directed bonds:

B =
(
(u1, v1), ..., (u|B|, v|B|)

)
.

Let v0 = 0 and u|B|+1 = x. Then

Ga
z(x) =

∑

B:|B|≥0

z|B|




|B|∏

i=0

∑

Ri∈Dvi,ui+1

z|Ri|


K[0, |B|],

where K[0, |B|] is defined in (8.4), with Ust of (8.1).
Recall the definition of J [0, a] in (8.5), and define

Πa
z (y) =

∑

B:|B|≥1

z|B|




|B|∏

i=0

∑

Ri∈Dvi,ui+1

z|Ri|


J [0, |B|] (8.19)

and
ha

z(x) = ga
z (x) + Πa

z (x). (8.20)

A calculation similar to that used to derive (8.11), using (8.6), gives

Ga
z(x) = ha

z(x) + (ha
z ∗ z|Ω|D ∗ Ga

z)(x). (8.21)

This is the lace expansion for lattice animals.
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8.3 Diagrammatic Estimates for Lattice Trees

To prove convergence of the lace expansion for lattice trees, bounds are re-
quired on Π̂z(k) and Π̂z(0)− Π̂z(k). In this section we sketch the idea of how
appropriate diagrammatic bounds can be obtained on Π̂z(k). The procedure
for obtaining bounds for lattice animals is similar but more involved, and will
not be discussed here. For further details on diagrammatic estimates, both for
lattice trees and lattice animals, see [95, 91].

We will not discuss the actual convergence proof here. One approach to
convergence, based on Lemma 5.9 and related in spirit to the proof for the self-
avoiding walk given in Section 5.2, can be found in [95]. A second approach,
also based on Lemma 5.9, works directly in x-space and does not use Fourier
transforms [91]. A third approach, based on the induction method of [120], is
given in [125].

For the diagrammatic estimates for lattice trees, we recall the (new) no-
tions of connectivity and lace discussed in Section 8.1.1. We take Ust to be
defined by (8.1), and we let L(N)[a, b] denote the set of laces in L[a, b] con-
sisting of exactly N edges. Let

J (N)[a, b] =
∑

L∈L(N)[a,b]

∏

st∈L

Ust

∏

s′t′∈C(L)

(1 + Us′t′) (8.22)

and

Π(N)
z (x) = (−1)N

∑

ω ∈ W(0, x)
|ω| ≥ 1

z|ω|




|ω|∏

i=0

∑

Ri∋ω(i)

z|Ri|


J (N)[0, |ω|]. (8.23)

By definition, Π
(N)
z (x) is non-negative. By (8.8) and (8.5),

Πz(x) =

∞∑

N=1

(−1)NΠ(N)
z (x). (8.24)

To state the diagrammatic estimates, we make the following definitions.
We extract the term in the definition (7.26) of the square diagram due to
x = y = u = 0 and define a generalized square diagram by

S̄(z) = sup
w∈Zd

[
∑

x,y,u

Gz(x)Gz(y − x)Gz(u − y)Gz(w − u) − δ0,wg4
z

]
. (8.25)

We also define a generalized triangle diagram

T̄(z) = sup
u∈Zd

[
∑

x,y

Gz(x)Gz(y − x)Gz(u − y) − δ0,ug3
z

]
. (8.26)
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Theorem 8.2. For z ≥ 0 and N ≥ 1,

∑

x∈Zd

Π(N)
z (x) ≤ T̄(z)

(
2S̄(z)

)N−1
. (8.27)

Proof. We discuss the proof in detail only for the case N = 1, and sketch the
proof for N ≥ 2.

For N = 1, there is a unique lace consisting of a single edge, and all other
bonds are compatible with this lace. Therefore, by (8.22),

J (1)[a, b] = Uab

∏

a ≤ s < t ≤ b
(s, t) 6= (a, b)

(1 + Ust), (8.28)

and (8.23) then gives

Π(1)
z (x) =

∑

ω ∈ W(0, x)
|ω| ≥ 1

z|ω|




|ω|∏

i=0

∑

Ri∋ω(i)

z|Ri|


 (−U0|ω|)

∏

0 ≤ s < t ≤ |ω|
(s, t) 6= (0, |ω|)

(1 + Ust).

(8.29)
The factor −U0|ω| gives a nonzero contribution only if R0 and R|ω| intersect,
and the final product in (8.29) disallows any further rib intersections. We
first consider the case x 6= 0. Relaxing the latter restriction somewhat and
overcounting an enforcement of the former gives the upper bound

Π(1)
z (x) ≤

∑

v∈Zd

∑

ω ∈ W(0, x)
|ω| ≥ 1

z|ω|
∑

R0∋0,v

|z||R0|
∑

R|ω|∋x,v

z|R|ω||

×



|ω|−1∏

i=1

∑

Ri∋ω(i), 6∋0,x

z|Ri|




∏

1≤s<t≤|ω|−1

(1 + Ust). (8.30)

Since ∑

R0∋0,v

z|R0| = Gz(v),
∑

R|ω|∋x,v

z|R|ω|| = Gz(v − x), (8.31)

and since

∑

ω ∈ W(0, x)
|ω| ≥ 1

z|ω|



|ω|−1∏

i=1

∑

Ri∋ω(i),6∋0,x

z|Ri|




∏

1≤s<t≤|ω|−1

(1 + Ust) ≤ Gz(x),

(8.32)
for x 6= 0 we have

Π(1)
z (x) ≤

∑

v∈Zd

Gz(x)Gz(v − x)Gz(v). (8.33)
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When x = 0 in (8.29), we can argue using similar ideas that

Π(1)
z (0) ≤

∑

v∈Ω

Gz(v)2, (8.34)

by neglecting the interaction between the last rib and all previous ribs. In
particular, the term v = 0 is not present in the above sum. Since Gz(0) =
gz ≥ 1, we can combine (8.33) and (8.34) to obtain

∑

x∈Zd

Π(1)
z (x) ≤

∑

x,v∈Zd

Gz(v)Gz(x − v)Gz(x) − g3
z ≤ T̄(z). (8.35)

This gives the desired result for N = 1. Note that the first upper bound in
(8.35) is just the u = 0 term of the supremum in (8.26).

A similar strategy can be used to bound Π
(N)
z (x) for N ≥ 2, and we

sketch the argument. The situation for N = 2 is shown in Fig. 8.3. For a
lace L = (0t1, s2|ω|) consisting of exactly two edges, there are two generic
configurations possible with

∏
st∈L Ust 6= 0, one with s2 = t1 and one with

s2 < t1.
We illustrate the method for the former case. The contribution to Π

(2)
z

due to laces with s2 = t1 can be written

∑

ω ∈ W(0, x)
|ω| ≥ 2

z|ω|




|ω|∏

i=0

∑

Ri∋ω(i)

z|Ri|




|ω|−1∑

s=1

U0sUs|ω|
∏

s′t′∈C(0s,s|ω|)
(1 + Us′t′).

(8.36)
For U0s 6= 0, R0 and Rs must intersect. Let y be a vertex where R0 and Rs

intersect, and let ωRs be the backbone of Rs joining ω(s) and y. For Us|ω| 6= 0,
R|ω| must intersect Rs, and hence there must be a rib emanating from a vertex
on the backbone ωRs which intersects R|ω| — see Fig. 8.3. By neglecting some
of the rib avoidance conditions, and by arguing in a similar fashion to the
case N = 1, (8.36) can be bounded above by the Feynman diagram depicted
at upper right in Fig. 8.3. The contribution from the other type of lace is
bounded by the Feynman diagram at lower right in Fig. 8.3. In evaluating the
diagrams, sums over vertices are constrained to disallow the coincidence of all
vertices on any loop.

Explicitly, the upper bound is

∑

x∈Zd

Π(2)
z (x) ≤ 2

∑
Gz(u)Gz(v)Gz(w − u)Gz(w − v)

×Gz(x − w)Gz(y − u)Gz(x − y), (8.37)

where the sum is taken over all u, v, w, x, y except the terms u = v = w = 0
and v = w = x = y. We estimate this by taking the supremum over u,w
of the sum over x, y of the second line, and obtain the desired upper bound
2S̄(z)T̄(z).
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0 x
0

x

0 x
0 x

Fig. 8.3. The two generic laces consisting of two bonds, schematic diagrams show-
ing the corresponding rib intersections for a nonzero contribution to Π

(2)
z (x), and

Feynman diagrams bounding the corresponding contributions to Π
(2)
z (x). Diagram

lines corresponding to the backbone joining 0 and x are shown in bold.

In general, Π
(N)
z (x) is bounded above by a sum of 2N−1 “ladder” diagrams,

each containing N non-trivial loops. The diagrams are shown in Fig. 8.4 for
N = 3. For general N , the diagrams can be estimated inductively to prove
the desired upper bound. See [95] for details.

0 x

+
0

x

+
0

x

+
0 x

Fig. 8.4. The Feynman diagrams bounding Π
(N)
z (x) for N = 3. Diagram lines

corresponding to the backbone joining 0 and x are shown in bold.

Exercise 8.3. (a) Show that the diagrams depicted in Fig. 8.4 are correct.
(b) Determine the diagrams for N = 4.

9 Percolation

This is the first of several sections that pertain to percolation. In the present
section, we define the model and discuss the phase transition, and then con-
sider several differential inequalities that are relevant for the critical be-
haviour. The discussion is similar to that of Section 2 for the self-avoiding
walk and the bubble condition, and to that of Section 7 for lattice trees and
the square condition. However, now it is the triangle condition that is rele-
vant, and the differential inequalities for percolation have a richer structure
than those for the other models.
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Looking ahead, in Section 10 we derive the lace expansion for percolation
and discuss its bounds. In Section 11, we survey results that have been proved
for percolation using the expansion. In Sections 12–13, we extend these ideas to
oriented percolation, in which bonds are directed in the direction of increasing
“time.” Then in Section 14, we discuss applications of the expansion to the
contact process, for which the time variable is continuous.

9.1 The Phase Transition

For an introduction to percolation, see [85]. Introductory material about per-
colation can also be found in [128], and [197] provides an introduction from a
physicist’s perspective.

We consider independent Bernoulli bond percolation on the integer lattice
Zd, with edge (bond) set consisting of pairs {x, y} of vertices of Zd with
y − x ∈ Ω, where Ω defines either the nearest-neighbour model (1.1) or the
spread-out model (1.2). This means that to each bond {x, y} we associate an
independent Bernoulli random variable n{x,y} which takes the value 1 with
probability p and the value 0 with probability 1 − p, where p is a parameter
in the closed interval [0, 1]. If n{x,y} = 1 then we say that the bond {x, y} is
occupied, and otherwise we say that it is vacant. A configuration is a realization
of the random variables for all bonds. The joint probability distribution of the
bond variables is denoted Pp, with corresponding expectation Ep.

Fig. 9.1. Bond percolation configurations on a 14 × 14 piece of the square lattice
Z2 for p = 0.25, p = 0.45, p = 0.55, p = 0.75. The critical value is pc = 1

2
.

Given a configuration and any two vertices x and y, we say that x and
y are connected, denoted x ↔ y, if there is a path from x to y consisting of
occupied bonds, or if x = y. We denote by C(x) the random set of vertices
connected to x, and denote its cardinality by |C(x)|. Let

θ(p) = Pp(|C(0)| = ∞). (9.1)

The most basic fact concerning percolation is that there is a phase transition
for dimensions d ≥ 2. That is, for d ≥ 2, there exists a critical value pc =
pc(d) ∈ (0, 1) such that the probability θ(p) that the origin is connected to
infinitely many vertices is zero for p < pc, but is strictly positive for p > pc.
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It is known that θ(pc) is zero for certain two-dimensional models [141], and
in high dimensions as discussed further in Section 11.1. It remains an open
problem to prove that θ(pc) is zero in general dimensions, even though it has
been proved that there can be no infinite cluster in any half-space of Zd when
p = pc [85, Section 7.3].

The two-point function τp(x) is defined to be the probability that 0 and x
are connected:

τp(x) = Pp(0 ↔ x). (9.2)

By the translation invariance of the lattice, Pp(x ↔ y) = τp(y − x). We will
sometimes find it convenient to write the two-point function as

τp(x, y) = τp(y − x). (9.3)

For p < pc the two-point function is known to decay exponentially as |x| → ∞,
so that the correlation length

ξ(p) = −
[

lim
n→∞

1

n
log τp(ne1)

]−1

, (9.4)

where e1 is the unit vector (1, . . . , 0), is finite and strictly positive. The sus-
ceptibility, or expected cluster size, is defined by

χ(p) =
∑

x∈Zd

τp(x) = Ep|C(0)|. (9.5)

An important theorem [7, 161, 162] asserts that the critical point is also
characterized by

pc = sup{p : χ(p) < ∞}; (9.6)

see Exercise 9.6 below.
Let

Pn(p) = Pp(|C(0)| = n). (9.7)

The magnetization is defined, for γ ∈ [0, 1], by8

M(p, γ) = 1 −
∞∑

n=1

(1 − γ)nPn(p). (9.8)

Note that
M(p, 0) = θ(p). (9.9)

The magnetization has a useful and standard probabilistic interpretation. We
define i.i.d. vertex variables taking the value “green” and “not green” by
declaring that each vertex is independently green with probability γ ∈ [0, 1].
The vertex variables are independent of the bond variables. Let G denote the

8 This γ should not be confused with the critical exponent of (9.12), which is
denoted by the same Greek letter.
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random set of green vertices. Then, for γ 6= 0, it follows from the definition of
the magnetization that

M(p, γ) = Pp,γ(0 ↔ G), (9.10)

where {0 ↔ G} denotes the event that 0 ↔ x for some x ∈ G, and Pp,γ denotes
the joint distribution of the bond and vertex variables. Note that the limit
of M(p, γ), as γ → 0+, is equal to M(p, 0) = θ(p), which is not the same as
Pp,0(0 ↔ G) = 0 for p > pc.

Another quantity of interest is the number of clusters per vertex, defined
by

κ(p) = Ep(|C(0)|−1) =

∞∑

n=1

1

n
Pn(p). (9.11)

Various critical exponents are predicted to describe the behaviour of the
above functions in the vicinity of the critical point. The critical exponents
are often assumed by mathematicians to exist in a rather weak sense, which
presumably would be easier to prove. However, it is worth emphasizing that
the exponents are actually predicted to exist in an asymptotic sense, as indi-
cated in the following. We use c to denote a positive constant whose value is
unimportant and may change from line to line.

On the subcritical side, the following power laws are believed to hold:

χ(p) ∼ c(pc − p)−γ as p → p−c , (9.12)

ξ(p) ∼ c(pc − p)−ν as p → p−c , (9.13)

κ′′′(p) ∼ c(pc − p)−1−α as p → p−c , (9.14)

Ep(|C(0)|m+1)

Ep(|C(0)|m)
∼ c(pc − p)−∆ as p → p−c , for m = 1, 2, . . ., (9.15)

for some dimension-dependent amplitudes c and critical exponents γ, ν, α,
∆. For the spread-out model, the amplitudes c may depend on L, but it is
believed that the critical exponents are independent of L, as long as L is finite.

At the critical point, the following power laws are believed to hold:

τpc(x) ∼ c
1

|x|d−2+η
as |x| → ∞, (9.16)

τ̂pc(k) ∼ c
1

|k|2−η
as k → 0, (9.17)

M(pc, γ) ∼ cγ1/δ as γ → 0, (9.18)

Pn(pc) ∼ c
1

n1+1/δ
as n → ∞, (9.19)

for critical exponents η, δ. Finally, on the supercritical side, it is believed that

θ(p) ∼ c(p − pc)
β as p → p+

c , (9.20)
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for a critical exponent β. Further exponents can also be defined, e.g. the
subcritical exponents have supercritical counterparts believed to take on the
same values, but we restrict attention to those above, since these are the ones
that will figure in the results discussed below.

Important recent advances, connected with the Schramm-Loewner evolu-
tions, have led to proofs of existence of most critical exponents, in a weaker
form than the above asymptotic form, for site percolation on the 2-dimensional
triangular lattice (see [190, 191, 206] and references therein).

The lace expansion has been used to prove that the critical exponents
exist and take their mean-field values in high dimensions. The mean-field
values are the values assumed by the critical exponents for percolation on an
infinite regular tree, namely

γ = 1, ν =
1

2
, α = −1, ∆ = 2,

η = 0, δ = 2, β = 1. (9.21)

A derivation of these exponents for the tree can be found in [85, Section 10.1].

Exercise 9.1. The infinite binary tree is the infinite labelled tree in which
every vertex has degree 3 except a root of degree 2. Consider bond percolation
on the infinite binary tree.
(a) Let θ(p) be the probability that the root is in an infinite cluster. Note that
η = 1 − θ(p) is the extinction probability of the Galton–Watson branching
process starting from a single individual, whose offspring distribution X is
binomial with parameters 2 and p. Thus η is the smallest non-negative root
of G(s) = s, where G(s) = EsX is the generating function for X (see, e.g.,
[87, p. 173]). Conclude that pc = 1

2 and

θ(p) =

{
0 if p ≤ 1

2
1
p2 (2p − 1) if p ≥ 1

2 ,

so that β = 1.
(b) By conditioning on the number of occupied bonds containing the root,
prove that χ(p) = (1 − 2p)−1 and hence γ = 1.

It was first predicted in [202] that the upper critical dimension for per-
colation is 6. The lace expansion has been applied to spread-out percolation
models in dimensions d > 6, and to the nearest-neighbour model in higher
dimensions (often d ≥ 19 is high enough). These results show that the upper
critical dimension is at most 6. On the other hand, it is known from the results
of [50, 200] (see also [34]) that the upper critical dimension of percolation is
at least six. In brief, these authors proved hyperscaling inequalities, such as
dν ≥ 2∆ − γ, assuming the exponents exist. Inserting the mean-field values
γ = 1, ∆ = 2, ν = 1

2 , we see that for d < 6 the inequality is not satisfied and
hence at least one of these exponents cannot take on its mean-field value.
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9.2 Differential Inequalities

One-sided mean-field bounds for the critical exponents γ, β and δ, valid in
all dimensions d ≥ 2 can be derived from differential inequalities for the
susceptibility and the magnetization. The first of these differential inequalities,
for χ, is summarized in the following proposition, which is due to [12]. The
proof of the proposition is deferred to Section 9.4.

Proposition 9.2. For 0 < p < pc, and for all dimensions d ≥ 2,

dχ(p)

dp
≤ |Ω|χ(p)2. (9.22)

In addition, limp→p−
c

χ(p) = ∞.

The following corollary to the proposition can be interpreted as the mean-
field bound γ ≥ 1, valid in all dimensions d ≥ 2.

Corollary 9.3. For 0 < p < pc, and for all dimensions d ≥ 2,

χ(p) ≥ 1

|Ω|(pc − p)
. (9.23)

Proof. The inequality (9.22) can be rewritten as

−dχ(p)−1

dp
≤ |Ω|. (9.24)

Integration over the interval [p, p2] then gives

χ(p)−1 − χ(p2)
−1 ≤ |Ω|(p2 − p). (9.25)

Taking the limit p2 → p−c and applying the last statement in the proposition
proves the corollary.

Partial differential inequalities for the magnetization are given in the fol-
lowing proposition, which is due to [7].

Proposition 9.4. For 0 < p < 1 and 0 < γ < 1, and for all dimensions
d ≥ 2,

(1 − p)
∂M

∂p
≤ |Ω|(1 − γ)M

∂M

∂γ
, (9.26)

M ≤ γ
∂M

∂γ
+ M2 + pM

∂M

∂p
. (9.27)

The derivative of M with respect to p can be eliminated from the above
pair of inequalities, by inserting (9.26) into (9.27) to obtain

M ≤ γ
∂M

∂γ
+ M2 +

p|Ω|
1 − p

(1 − γ)M2 ∂M

∂γ
. (9.28)
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We omit the proof of Proposition 9.4, which can be found in [7] or [85,
Section 5.3]. Instead, we will show how (9.26)–(9.27) can be integrated to
prove the following theorem from [7]. For its statement, we define

χ(p, γ) = (1 − γ)
∂M(p, γ)

∂γ

=

∞∑

n=1

n(1 − γ)nPn(p) (9.29)

and

χf (p) = Ep [|C(0)|I[|C(0)| < ∞]]

=

∞∑

n=1

nPn(p) = χ(p, 0) (9.30)

(the superscript f stands for finite).

Theorem 9.5. Fix p with χf (p) = ∞. There is a positive constant a = a(p)
such that

M(p, γ) ≥ aγ1/2. (9.31)

In addition, either θ(p) > 0, or it is the case that θ(p) = 0 and θ(p′) ≥
1

2p′ (p
′ − p) for all p′ ≥ p.

Exercise 9.6. Define pc = inf{p : θ(p) > 0} and πc = sup{p : χ(p) < ∞}.
(a) Prove that πc ≤ pc.
(b) Prove that πc = pc. Hint: assume that πc < pc and derive a contradiction
from Theorem 9.5.

The bounds of Theorem 9.5 can be interpreted as the mean-field bounds
δ ≥ 2 and β ≤ 1. In fact, if M(pc, 0) = θ(pc) > 0 then certainly M(pc, γ) ≥
θ(pc) ≥ θ(pc)γ

1/2. On the other hand, if θ(pc) = 0 then χf (pc) = χ(pc) = ∞
(by Corollary 9.3), and hence

M(pc, γ) ≥ aγ1/2 (9.32)

by Theorem 9.5. This says that δ ≥ 2. Similarly, if θ(pc) = 0 then Theorem 9.5
implies that

θ(p) ≥ 1

2p
(p − pc) (9.33)

for p ≥ pc, so that β ≤ 1. On the other hand, if θ(pc) > 0 then we similarly
have θ(p) ≥ θ(pc) ≥ θ(pc)(p − pc), for p ≥ pc.

Proof of Theorem 9.5. We fix p with χf (p) = ∞, and drop the p depen-
dence from the notation. We first prove (9.31). Note that (9.31) is vacuous if
M(p, 0) > 0, so we may assume that M(p, 0) = 0.
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In (9.28), we write A = p|Ω|
1−p , and use 1 − γ ≤ 1, to obtain

M ≤ γ
dM

dγ
+ M2 + AM2 dM

dγ
. (9.34)

We have used ordinary, rather than partial derivatives, in (9.34), since we are
considering p to be fixed. We use the fact that M > 0 when γ > 0, and that
M has a well-defined inverse function γ = γ(M). Multiplication of (9.34) by
1
M

dγ
dM gives

dγ

dM
≤ γ

M
+ M

dγ

dM
+ AM. (9.35)

Equivalently,
dγ

dM
− γ

M(1 − M)
≤ A

M

1 − M
. (9.36)

We multiply (9.36) by the integrating factor exp[−
∫

1
M(1−M)dM ] = 1−M

M to

obtain
d

dM

[
γ(1 − M)

M

]
≤ A. (9.37)

Integration over the interval [0,M ] then gives

γ(1 − M)

M
− lim

M→0

γ(1 − M)

M
≤ AM. (9.38)

To evaluate the limit, we observe that γ(0) = 0 (recall that we are assuming
M(p, 0) = 0), and conclude from the mean-value theorem and (9.29) that
there is a γ∗ ∈ (0, γ) such that

M

γ
=

dM

dγ

∣∣∣∣
γ=γ∗

=
1

1 − γ∗ χ(p, γ∗) → χf (p) = ∞ (9.39)

as γ → 0. Therefore,
γ(1 − M)

M
≤ AM. (9.40)

Since M ≤ 1
2 for small γ (because M → 0 as γ → 0), it follows that

M2 ≥ 1

2A
γ (9.41)

for small γ, which proves (9.31).
Next, we consider the statement for θ. If θ(p) > 0 then we are done, so we

assume θ(p) = 0. We multiply (9.27) by 1
γM to obtain

0 ≤ ∂ log M

∂γ
+

1

γ

∂

∂p̃
(p̃M − p̃), (9.42)
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where p̃ ∈ (0, 1) is arbitrary (and M is evaluated at p̃). We fix 0 < γ1 < γ2 < 1
and integrate (9.42) with respect to γ over the interval [γ1, γ2], and with
respect to p̃ over the interval [p, p′].

For the first term, we integrate first with respect to γ, and use the mono-
tonicity of M , to obtain

log M(p̃, γ2) − log M(p̃, γ1) ≤ log M(p′, γ2) − log M(p, γ1), (9.43)

obtaining
(p′ − p)[log M(p′, γ2) − log M(p, γ1)] (9.44)

as an upper bound for the double integral of the first term.
For the second term, we integrate first with respect to p̃, using

p′M(p′, γ) − pM(p, γ) − (p′ − p) ≤ p′M(p′, γ2) − p′ + p, (9.45)

and then complete the integration to obtain the upper bound

[p′M(p′, γ2) − p′ + p] log
γ2

γ1
(9.46)

for the double integral of the second term.
Altogether, this gives

0 ≤ (p′ − p)

[
log M(p′, γ2)

log γ2

γ1

− log M(p, γ1)

log γ2

γ1

]
+ p′M(p′, γ2) − p′ + p. (9.47)

Now we let γ1 → 0. The first term vanishes in this limit. For the second term,
we use (9.31) to conclude that

− log M(p, γ1)

log γ2

γ1

≤ − log a − 1
2 log γ1

log γ2 − log γ1
. (9.48)

Since the right hand side approaches 1
2 as γ1 → 0, we obtain

0 ≤ 1

2
(p′ − p) + p′M(p′, γ2) − p′ + p, (9.49)

which implies that

M(p′, γ2) ≥
1

2p′
(p′ − p). (9.50)

Now we take the limit γ2 → 0− to complete the proof.

9.3 Differential Inequalities and the Triangle Condition

In this section, we state differential inequalities involving the triangle diagram
which are complementary to the differential inequalities (9.22) for χ and (9.28)
for M . We also derive consequences of these differential inequalities.
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Let
∇p(w) =

∑

x,y∈Zd

τp(x)τp(y − x)τp(w − y). (9.51)

By Exercise 1.1,
∇̂p(k) = τ̂p(k)3. (9.52)

The triangle diagram is defined by

T(p) = ∇p(0) =

∫

[−π,π]d
τ̂p(k)3

ddk

(2π)d
, (9.53)

and the triangle condition is the statement that T(pc) < ∞. We also define

T̄(p) = sup
w∈Zd

[∇p(w) − δw,0] . (9.54)

A proof that τ̂p(k) ≥ 0 is given in [12], so the integrand of (9.53) is non-
negative. If we insert the conjectured behaviour τ̂pc(k) ∼ c|k|η−2 into the
integral of (9.53), the result is finite if d > 6− 3η, and infinite otherwise. The
mean-field value of η is zero, η = 5

24 for d = 2 (this has currently been proven
only for site percolation on the triangular lattice [191]), and η is conjectured
to be negative for 2 < d < 6 [1]. Thus, the triangle condition should hold if
and only if d > 6.

The following differential inequality is complementary to (9.22). We defer
its proof to Section 9.4.

Proposition 9.7. For 0 < p < pc, and for all dimensions d ≥ 2,

dχ(p)

dp
≥ [1 − T̄(p)]|Ω|χ(p)2. (9.55)

The following corollary to the proposition shows that γ ≤ 1 if T̄(pc) <
1. Since we have seen quite generally that γ ≥ 1, this means that γ = 1
if T̄(pc) < 1. In fact, it can be shown that γ ≤ 1 whenever the triangle
condition T(pc) < ∞ holds [12], rather than the stronger assumption T̄(pc) <
1. However, in practice, the stronger conclusion T̄(pc) < 1 is what has been
proved using the lace expansion, and this will suffice for our purposes. (As in
the discussion of Section 5.3, it would be desirable to find an approach to the
lace expansion that is based on the finiteness of the triangle diagram, rather
than on its smallness.)

Corollary 9.8. Let d ≥ 2 and 0 ≤ p < pc. If T̄(pc) < 1 then

χ(p) ≤ 1

[1 − T̄(pc)]|Ω|(pc − p)
. (9.56)
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Proof. By monotonicity, T̄(p) can be replaced by T̄(pc) in (9.55). As in the
proof of Corollary 9.3, integration of the resulting inequality over (p1, p2) (with
p2 < pc) gives

χ(p1)
−1 − χ(p2)

−1 ≥ [1 − T̄(pc)]|Ω|(p2 − p1). (9.57)

Taking p1 = p and p2 → p−c , the desired result then follows from the fact that
χ(p) → ∞ as p → p−c , by Proposition 9.2.

For the magnetization, we have the following differential inequality involv-
ing the triangle. This differential inequality is a variant of an inequality derived
by [20], and is complementary to (9.28). It was proved in essentially this form
in [31]. The proof will be given in Section 9.4. A factor M can be cancelled
on each side of (9.58), but we state the inequality in this form because this is
how it is proved, and for comparison with (9.28).

Proposition 9.9. Let 0 < γ < 1 and p ∈ [|Ω|−1, pc). There is a universal
constant a0 such that if T̄(pc) is sufficiently small then

M ≥ a0p|Ω|(1 − γ)M2 ∂M

∂γ
. (9.58)

The following theorem is a consequence of Proposition 9.9. When combined
with Theorem 9.5, it shows that M(pc, γ) ≃ γ1/2 and θ(p) ≃ (pc−p), i.e., that
the critical exponents δ and β exist and take their mean-field values δ = 2
and β = 1, whenever T̄(pc) is sufficiently small. This will be sufficient for
our needs, but it should be noted that in [20] the same conclusion is derived
under the weaker assumption that T(pc) is finite. Our proof of Theorem 9.10
is based on [31].

Theorem 9.10. Let a2
1 = max{2, 4/a0}, where a0 is the constant of Proposi-

tion 9.9. If T̄(pc) is sufficiently small, then for γ ≥ 0 and p ≥ pc,

M(pc, γ) ≤ a1γ
1/2, (9.59)

θ(p) ≤ 4a2
1|Ω|(p − pc). (9.60)

In particular, θ(pc) = 0.

Proof. We begin with the proof of the upper bound on M(pc, γ). Suppose first
that γ ≤ 1

2 , so that 1 − γ ≥ 1
2 . Let p ∈ [|Ω|−1, pc) (it is a standard fact that

pc > |Ω|−1; see [85, (1.13)]). Then p|Ω| ≥ 1 and it follows from (9.58) that

∂M2

∂γ
≤ 4

a0
≤ a2

1. (9.61)

Therefore,
M(p, γ)2 − M(p, 0)2 ≤ a2

1γ. (9.62)
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Since p < pc, the subtracted term on the right hand side is zero. Taking the
limit p → p−c , and using the continuity of M(p, γ) in p for γ > 0, we obtain
the desired bound

M(pc, γ) ≤ a1γ
1/2 (9.63)

for γ > 0. The same bound then holds for γ = 0 due to the monotonicity of
M(pc, γ) in γ. On the other hand, if γ ≥ 1

2 , then

M(pc, γ)2 ≤ 1 ≤ 2γ, (9.64)

which gives (9.59) in this case.
To extend (9.59) to (9.60), we apply an extrapolation principle [20, 7, 9, 73].

The extrapolation principle converts the upper bound (9.59) on M(pc, γ) to
an upper bound valid for p > pc. This is perhaps surprising, since M is an
increasing function of p. However, it is also increasing in γ, and the differential
inequality (9.26) can be used to compensate for an increase in p with a decrease
in γ.

In our context of nearest-neighbour or spread-out bond percolation on Zd,
we have pc ≤ 1

2 . Suppose first that p > 3
4 . Then

θ(p) ≤ 1 ≤ 4(p − pc) ≤ 4a2
1|Ω|(p − pc). (9.65)

Thus we may assume that p ∈ (pc,
3
4 ), and we make this assumption through-

out the rest of the proof.
We find it convenient to make the change of variables γ = 1 − e−h, and

define M̃(p, h) = M(p, 1 − e−h), for h ≥ 0. Since p ≤ 3
4 , the differential

inequality (9.26) implies that

∂M̃

∂p
≤ 4|Ω|M̃ ∂M̃

∂h
. (9.66)

For fixed fixed p ∈ (0, 1) and m ∈ [θ(p), 1), we can solve the equation
M̃(p, h) = m for h = h(p), so that M̃(p, h(p)) = m. Differentiation of this
identity with respect to p gives

∂M̃

∂p
+

∂M̃

∂h

∂h

∂p

∣∣∣∣
M̃=m

= 0. (9.67)

Therefore,

0 ≤ − ∂h

∂p

∣∣∣∣
M̃=m

=

∂M̃
∂p

∂M̃
∂h

≤ 4|Ω|m. (9.68)

Choose p ∈ (pc,
3
4 ), let P1 be the point (p, 0), and set m1 = M̃(p, 0). The

bound − ∂h
∂p

∣∣∣
M̃=m1

≤ 4|Ω|m1 implies that the point P2 = (pc, 4|Ω|m1(p−pc))

lies above the contour line M̃ = m1 in the (p, h) plane (see Fig. 9.2). Since
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p

pc

P1 (p, 0)

P2 (pc, 4|Ω|m1(p − pc))

h

M̃ = m1

Fig. 9.2. The extrapolation geometry.

M̃(pc, h) is monotone in h, the value of M̃ at P2 is bounded below by the
value at P1.

Therefore,

θ(p) = M(p, 0) ≤ M(pc, 4|Ω|θ(p)(p − pc)). (9.69)

Applying (9.59) gives

θ(p) ≤ a1

√
4|Ω|θ(p)(p − pc), (9.70)

which implies that
θ(p) ≤ 4a2

1|Ω|(p − pc). (9.71)

This completes the proof.

9.4 Proofs of the Differential Inequalities

9.4.1 Differential Inequality for the Susceptibility

In this section, we sketch the proof of the differential inequalities for the
susceptibility given in Propositions 9.2 and 9.7, which are restated here as
Proposition 9.11. We follow the original reasoning of Aizenman and Newman
[12].

Proposition 9.11. For d ≥ 2 and 0 < p < pc,

[1 − T̄(p)]|Ω|χ(p)2 ≤ dχ(p)

dp
≤ |Ω|χ(p)2. (9.72)

In addition, limp→p−
c

χ(p) = ∞.
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A complete proof requires an approximation of Zd by a finite graph, fol-
lowed by a limiting argument. This is quite similar to the argument used in
the proof of Theorem 7.6, and we will omit the details here. Full details can
be found in [12]. The proof that χ diverges as p approaches p−c uses the finite
volume argument, and will also be omitted here.

We write B for the set of all bonds. Given a bond configuration, a bond
{u, v} ∈ B (occupied or not) is called pivotal for the connection from x to y if
x ↔ y in the possibly modified configuration in which the bond is made occu-
pied, whereas x is not connected to y in the possibly modified configuration in
which the bond is made vacant. Bonds are not usually regarded as directed.
However, it will be convenient at times to regard a bond {u, v} as directed
from u to v, and we will emphasize this point of view with the notation (u, v).
A directed bond (u, v) is pivotal for the connection from x to y if x ↔ u, if
v ↔ y, and if x is not connected to y if {u, v} is made vacant.

Let E ◦ F denote the event that the events E and F occur disjointly.
In our applications, E and F will be events that certain connections take
place, and in this case E ◦ F is the event that both E and F occur and
that given a configuration it is possible to find one set of bonds providing the
connections needed by E and a disjoint set of bonds providing the connections
needed by F . The BK inequality implies that for such events E and F , Pp(E ◦
F ) ≤ Pp(E)Pp(F ) (see [85, Theorem 2.12] for a more complete and precise
discussion). The BK inequality has great importance in percolation theory,
and will be an key ingredient in our analysis. We will use it in the form
of the following proposition. The proposition plays the role for percolation
played by subadditive estimates for the self-avoiding walk and lattice trees,
and expresses a repulsive character of the model.

Proposition 9.12. Let V1, V2, . . . , Vn be sets of paths in the lattice, and let
Ei (i = 1, . . . , n) be the event that at least one of the paths in Vi is occupied.
Let F be the event that there are pairwise edge-disjoint occupied paths from
each of the sets V1, V2, . . . , Vn. Then

Pp(F ) ≤
n∏

i=1

Pp(Ei).

Sketch of proof of the upper bound in (9.72). By Russo’s formula (see [85,
Theorem 2.25]),

d

dp
τp(x, y) =

∑

{u,v}∈B

Pp({u, v} is pivotal for x ↔ y)

=
∑

(u,v)

Pp((u, v) is pivotal for x ↔ y), (9.73)

where the sum over (u, v) is a sum over directed bonds. The above is fine for a
finite graph, but is not directly legitimate for an infinite graph. We will ignore
this subtlety. By (9.73) and the BK inequality,
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d

dp
τp(x, y) ≤

∑

(u,v)

Pp({x ↔ u} ◦ {v ↔ y}) ≤
∑

(u,v)

τp(x, u)τp(v, y). (9.74)

We then perform the sums over y, v, u (in that order) and use translation
invariance to obtain the desired upper bound.

For the lower bound of (9.72), we will use the following definition.

Definition 9.13. (a) Given a bond configuration, and a random or determin-
istic set A ⊂ Zd, we say x and y are connected in A if there is an occupied
path from x to y whose vertices are all in A, or if x = y ∈ A. We define a
restricted two-point function by

τA(x, y) = Pp(x ↔ y in Zd\A). (9.75)

(b) Given a bond configuration, and a random or deterministic set A ⊂ Zd,

we say x and y are connected through A, denoted x
A↔ y, if x = y ∈ A or if

x ↔ y and every occupied path connecting x to y has at least one bond with
an endpoint in A, i.e., if x is connected to y but it is not the case that x ↔ y
in Zd\A.
(c) Given a bond configuration, and a bond b, we define C̃b(x) to be the set
of vertices connected to x in the new configuration obtained by setting b to be
vacant.

Exercise 9.14. Prove that

{(u, v) pivotal for 0 ↔ x}
= {0 ↔ u in C̃(u,v)(0)} ∩ {v ↔ x in Zd\C̃(u,v)(0)}. (9.76)

Sketch of proof of the lower bound in (9.72). Conditioning on C̃(u,v)(0), it
follows from (9.76) that

Pp((u, v) pivotal for 0 ↔ x)

=
∑

A:A∋0

Pp(C̃
(u,v)(0) = A, 0 ↔ u in A, v ↔ x in Zd\A)

=
∑

A:A∋0

Pp(C̃
(u,v)(0) = A, 0 ↔ u in A)Pp(v ↔ x in Zd\A)

=
∑

A:A∋0

Pp(C̃
(u,v)(0) = A, 0 ↔ u)τA

p (v, x). (9.77)

Here, the sum over A is the sum over lattice animals containing 0. Also, we
have used the fact that the events within the probabilities in the third line
are independent, and, in the last line, that if 0 ↔ u but it is not the case that
0 ↔ u in A then v must be in A and hence τA

p (v, x) = 0. It follows that

Pp((u, v) pivotal for 0 ↔ x) = Ep

(
I[0 ↔ u] τ C̃(u,v)(0)(v, x)

)
. (9.78)
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In the nested expectation on the right hand side of (9.78), the set C̃(u,v)(w)
is a random set with respect to the expectation Ep, but it is deterministic
with respect to the expectation defining the restricted two-point function.
The latter expectation effectively introduces a second percolation model on a
second lattice, which is coupled to the original percolation model via the set
C̃(u,v)(0).

Since

τA
p (v, x) = τp(v, x) −

[
τp(v, x) − τA

p (v, x)
]

= τp(v, x) − Pp(v
A↔ x), (9.79)

the identity (9.78) can be rewritten as

Pp((u, v) pivotal for 0 ↔ x)

= τp(0, u)τp(v, x) − Ep

(
I[0 ↔ u]Pp(v ←C̃(u,v)(0)−−−−−−→ x)

)
. (9.80)

By the BK inequality, for A ⊂ Zd we have

Pp(v ←A−→ x) ≤ Pp

( ⋃

y∈A

{v ↔ y} ◦ {y ↔ x}
)

≤
∑

y∈Zd

I[y ∈ A]Pp({v ↔ y} ◦ {y ↔ x})

≤
∑

y∈Zd

I[y ∈ A]τp(v, y)τp(y, x). (9.81)

Therefore, for A = C̃(u,v)(0) ⊂ C(0), we have

Pp(v ←C̃(u,v)(0)−−−−−−→ x) ≤
∑

y∈Zd

I[y ∈ C(0)]τp(v, y)τp(y, x). (9.82)

Substitution yields

Pp((u, v) pivotal for 0 ↔ x)

≥ τp(0, u)τp(v, x) −
∑

y∈Zd

Pp(0 ↔ u, 0 ↔ y)τp(v, y)τp(y, x). (9.83)

The tree-graph bound [12], which is an elementary consequence of the BK
inequality, implies that

Pp(0 ↔ u, 0 ↔ y) ≤
∑

z∈Zd

τp(0, z)τp(z, y)τp(z, u). (9.84)

Therefore,
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Pp((u, v) pivotal for 0 ↔ x) ≥ τp(0, u)τp(v, x) (9.85)

−
∑

y,z∈Zd

τp(0, z)τp(z, y)τp(z, u)τp(y, v)τp(y, x).

See Fig. 9.3. Recalling (9.73) (again we are careless about the infinite volume
limit), and performing the sums over u, v, x, leads to

dχ(p)

dp
≥ |Ω|χ(p)2 − χ(p)

∑

z∈Zd

τp(0, z)
∑

(u,v)

∑

y∈Zd

τp(z, y)τp(z, u)τp(y, v)

= |Ω|χ(p)2 − χ(p)
∑

z∈Zd

τp(0, z)|Ω| sup
e∈Ω

∇p(e)

≥ |Ω|χ(p)2[1 − T̄(p)], (9.86)

using symmetry in the second step.

0

z

u v

y

x

Fig. 9.3. The subtracted term in (9.85). The dotted lines arise from paths in
C̃{u,v}(0), while the solid line arises from a connection from v to x through C̃{u,v}(0).

9.4.2 Differential Inequality for the Magnetization

In this section, we prove the differential inequality (9.58), following the method
of [31]. Our proof is related to, but simpler than, the method used in [20] to
prove an inequality useful under the weaker assumption that the triangle
condition holds (rather than that T̄(pc) is small). Nevertheless, the proof is
not simple. Results related to (9.58) can also be found in [104, Section 3].

We restate (9.58) as (9.87) in the following proposition. Note that, by
(9.29), the factor (1−γ)∂M/∂γ on the right hand side of (9.58) can be replaced
by χ(p, γ).

Proposition 9.15. Let 0 < γ < 1 and p ∈ [|Ω|−1, pc). There is a universal
constant a0 such that if T̄(pc) is sufficiently small then

M ≥ a0p|Ω|M2χ(p, γ). (9.87)

Before beginning the proof, we discuss some preliminaries. Recall from
(9.10) that M(p, γ) = Pp,γ(0 ↔ G). We define {x ↔ G} to be the event that
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C(x) ∩ G 6= ∅. We say that (u, v) is pivotal for x ↔ G if x ↔ u, if v ↔ G,
and if x ↔/ G when (u, v) is made vacant. Let {v ⇔ G} denote the event
that there exist x, y ∈ G, with x 6= y, such that there are disjoint connections
v ↔ x and v ↔ y. Let F(u,v) denote the event that (i) the bond (u, v) is
occupied and pivotal for the connection from 0 to G, and that (ii) {v ⇔ G}.
Let F = ∪(u,v)F(u,v), and note that the union is disjoint. Since 0 ↔ G when
F occurs,

M = Pp,γ(0 ↔ G) ≥ Pp,γ(F ) =
∑

(u,v)

Pp,γ(F(u,v)), (9.88)

and it suffices to prove that Pp,γ(F ) is bounded below by the right hand side
of (9.87).

Let 0 < γ < 1. For x, y ∈ V, we define a “green-free” analogue of the
two-point function by

τp,γ(x, y) = Pp,γ(x ↔ y, x ↔/ G), (9.89)

so that
χ(p, γ) =

∑

x∈Zd

τp,γ(0, x). (9.90)

Exercise 9.16. Prove (9.90). (Recall (9.29).)

Given a subset A ⊂ V, we define τA
p,γ(x, y) to be the probability that (i) x ↔ y

in Zd\A, and (ii) x ↔/ G in Zd\A, which is to say that x ↔/ G after every bond
with an endpoint in A is made vacant. We write Ĩ{u,v}[E] for the indicator
that E occurs after {u, v} is made vacant.

Lemma 9.17.

Pp,γ(F(u,v)) = pEp,γ

[
τ C̃(u,v)(v)
p,γ (0, u)Ĩ{u,v}[v ⇔ G]

]
. (9.91)

Proof. We first observe that the event F(u,v) is equal to

{
0 ↔ u in Zd\C̃(u,v)(v)

}
∩

{
0 ↔/ G in Zd\C̃(u,v)(v)

}

∩ {{u, v} occupied}
∩

{
v ⇔ G after {u, v} made vacant

}
. (9.92)

Exercise 9.18. Prove that F(u,v) is equal to the above event.

The bond {u, v} has an endpoint in C̃(u,v)(v), and hence the event that {u, v}
is occupied is independent of the other events above. Therefore,

Pp,γ(F(u,v)) = p
∑

A:A∋v

Ep,γ

[
I[C̃(u,v)(v) = A]Ĩ{u,v}[v ⇔ G] (9.93)

×I[(0 ↔ u and 0 ↔/ G) in Zd\A]
]
.
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The two events in the first line depend only on bonds with an endpoint in A
(but not on {u, v}) and vertices in A, while those in the second line depend
only on bonds with no endpoint in A (so not on {u, v}) and on vertices in
Zd\A. Therefore,

Pp,γ(F(u,v)) = p
∑

A:A∋v

Ep,γ

[
I[C̃(u,v)(v) = A]Ĩ{u,v}[v ⇔ G]

]
τA
p,γ(0, u), (9.94)

which implies the desired result.

Proof of Proposition 9.15. We use the identities

τ C̃(u,v)(v)
p,γ (0, u) = τp,γ(0, u) −

(
τp,γ(0, u) − τ C̃(u,v)(v)

p,γ (0, u)
)

(9.95)

and

Ĩ{u,v}[v ⇔ G] = I[v ⇔ G] −
(
I[v ⇔ G] − Ĩ{u,v}[v ⇔ G]

)
. (9.96)

Recalling (9.90), it follows from Lemma 9.17 that

Pp,γ(F ) = p|Ω|χ(p, γ)Pp,γ(0 ⇔ G) (9.97)

− p
∑

(u,v)

τp,γ(0, u)Ep,γ

[
I[v ⇔ G] − Ĩ{u,v}[v ⇔ G]

]

− p
∑

(u,v)

Ep,γ

[(
τp,γ(0, u) − τ C̃(u,v)(v)

p,γ (0, u)
)

Ĩ{u,v}[v ⇔ G]
]
.

We write (9.97) as X1 − X2 − X3, bound X1 from below, and bound X2 and
X3 from above.

Lower bound on X1. We will prove that

Pp,γ(0 ⇔ G) ≥
(|Ω|

2

)
p2(1 − p)|Ω|−2M(p, γ)2

[
(1 − T̄(p))2 − T̄(p)

]
. (9.98)

The factor (
|Ω|
2 )p2 is bounded below by a universal constant, since p|Ω| ≥ 1.

Also, setting setting p1 = 0 and p2 = pc in (9.57) gives pc|Ω| ≤ [1− T̄(pc)]
−1,

and therefore the factor (1−p)|Ω|−2 is bounded below by a universal constant.
The final factor, in square brackets, is as close to 1 as desired, for T̄(pc)
sufficiently small, and thus there is a universal constant a such that

X1 ≥ p|Ω|χ(p, γ)aM(p, γ)2. (9.99)

To prove (9.98), we first note that the event {0 ⇔ G} contains the event
∪e,fEe,f , where the union is over unordered pairs of vertices e, f ∈ Ω, the
union is disjoint, and the event Ee,f is defined as follows. Let Ee,f be the
event that the bonds {0, e} and {0, f} are occupied, all other bonds incident
on 0 are vacant, and that in the reduced graph Zd

− obtained by deleting the
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origin and each of the |Ω| bonds incident on 0 from Zd, the following three
events occur: e ↔ G, f ↔ G, and C(e) ∩ C(f) = ∅. Let P−

p,γ denote the joint

bond/vertex measure on Zd
−. Then

Pp,γ(0 ⇔ G) ≥ Pp,γ

(
∪e,f Ee,f

)
=

∑

e,f

Pp,γ(Ee,f ) (9.100)

= p2(1 − p)|Ω|−2
∑

e,f

P−
p,γ(e ↔ G, f ↔ G, C(e) ∩ C(f) = ∅).

Let W denote the event whose probability appears on the right hand side
of (9.100). Conditioning on the set C(e) = A ⊂ Zd

−, we see that

P−
p,γ(W ) =

∑

A:A∋e

P−
p,γ(C(e) = A, e ↔ G, f ↔ G, A ∩ C(f) = ∅). (9.101)

The above can be rewritten as

P−
p,γ(W ) =

∑

A:A∋e

P−
p,γ(C(e) = A, e ↔ G, f ↔ G in Zd

− \ A), (9.102)

where {f ↔ G in Zd
− \A} is the event that there exists x ∈ G such that f ↔ x

in Zd
− \ A. The intersection of the first two events on the right hand side of

(9.102) is independent of the third event, and hence

P−
p,γ(W ) =

∑

A:A∋e

P−
p,γ(C(e) = A, e ↔ G) P−

p,γ(f ↔ G in Zd
− \ A). (9.103)

Let M−(x) = P−
p,γ(x ↔ G), for x ∈ Zd

−. Then, by the BK inequality and the

fact that the two-point function on Zd
− is bounded above by the two-point

function on Zd,

P−
p,γ(f ↔ G in Zd

− \ A) = M−(f) − P−
p,γ(f

A↔ G)

≥ M−(f) −
∑

y∈A

τp,0(f, y)M−(y). (9.104)

By definition and the BK inequality,

M−(x) = M(p, γ) − Pp,γ(x ←{0}−−→ G) (9.105)

≥ M(p, γ)(1 − τp,0(0, x)) ≥ M(p, γ)(1 − T̄(p)).

In the above, we also used τp,0(0, x) ≤ ∇p(x) ≤ T̄(p), which follows from
(9.51) and (9.54).

It follows from (9.103)–(9.105) and the upper bound M−(x) ≤ M that

P−
p,γ(W ) ≥ M(p, γ) (9.106)

×
∑

A:A∋e

P−
p,γ(C(e) = A, e ↔ G)

[
1 − T̄(p) −

∑

y∈A

τp,0(f, y)
]

= M(p, γ)
[
M−(e)(1 − T̄(p)) −

∑

y∈Zd
−

τp,0(f, y)P−
p,γ(e ↔ y, e ↔ G)

]
.
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By the BK inequality,

P−
p,γ(e ↔ y, e ↔ G) ≤

∑

w∈Zd
−

τp,0(e, w)τp,0(w, y)M−(w), (9.107)

and hence, by (9.105)–(9.106),

P−
p,γ(W ) ≥ M(p, γ)

×
[
M−(e)(1 − T̄(p)) −

∑

y,w∈Zd
−

τp,0(f, y)τp,0(e, w)τp,0(w, y)M−(w)
]

≥ M(p, γ)2
[
(1 − T̄(p))2 − T̄(p)

]
. (9.108)

This completes the proof of (9.98), and hence of (9.99).

Upper bound on X2. By definition,

X2 = p
∑

(u,v)

τp,γ(0, u)Ep,γ

[
I[v ⇔ G] − Ĩ{u,v}[v ⇔ G]

]
. (9.109)

For the difference of indicators to be nonzero, the double connection from v
to G must be realized via the bond {u, v}, which therefore must be occupied.
The difference of indicators is therefore bounded above by the indicator that
the events {v ↔ G}, {u ↔ G} and {{u, v} occupied} occur disjointly. Thus
we have

Ep,γ

[
I[v ⇔ G] − Ĩ{u,v}[v ⇔ G]

]
≤ pM(p, γ)2, (9.110)

and hence
X2 ≤ p2|Ω|M(p, γ)2χ(p, γ). (9.111)

But for v ∈ Ω,
p ≤ τp(v) ≤ ∇p(v) ≤ T̄(p) ≤ T̄(pc), (9.112)

and hence X2 is negligibly small compared to the lower bound (9.99) on X1.

Upper bound on X3. By definition,

X3 = p
∑

(u,v)

Ep,γ

[(
τp,γ(0, u) − τ C̃(u,v)(v)

p,γ (0, u)
)

Ĩ{u,v}[v ⇔ G]
]
. (9.113)

The difference of two-point functions is the expectation of

I[0 ↔ u, 0 ↔/ G] − I[0 ↔ u in Zd\C̃(u,v)(v), 0 ↔/ G]

+ I[0 ↔ u in Zd\C̃(u,v)(v), 0 ↔/ G] − I[(0 ↔ u, 0 ↔/ G) in Zd\C̃(u,v)(v)]

≤ I[0 ←C̃(u,v)(v)−−−−−−→ u, 0 ↔/ G], (9.114)

since the second line is non-positive and the first line equals the third line.
Since the indicator in (9.113) is bounded above by I[v ⇔ G], it follows that
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X3 ≤ p
∑

(u,v)

Ep,γ

[
Pp,γ

(
0 ←C̃(u,v)(v)−−−−−−→ u, 0 ↔/ G

)
I[v ⇔ G]

]
. (9.115)

To estimate the probability within the expectation, we first note that

Pp,γ [0
A↔ u, 0 ↔/ G] ≤

∑

y∈Zd

Pp,γ

(
{0 ↔ y}◦{y ↔ u}, 0 ↔/ G

)
I[y ∈ A]. (9.116)

By conditioning on G, it can be shown that

Pp,γ

(
{0 ↔ y} ◦ {y ↔ u}, 0 ↔/ G

)
≤ τp,γ(0, y)τp,0(y, u) (9.117)

(see [104, Lemma 4.3] for further discussion). The important point in (9.117)
is that the condition 0 ↔/ G on the left hand side is retained in the factor
τp,γ(0, y) on the right hand side (but not in τp,0(y, u)). With (9.115), this gives

X3 ≤ p
∑

(u,v)

∑

y∈Zd

τp,γ(0, y)τp,0(y, u)Ep,γ

[
I[v ⇔ G]I[y ∈ C̃(u,v)(v)]

]
. (9.118)

A further application of BK gives

X3 ≤ p
∑

y∈Zd

τp,γ(0, y)
∑

(u,v)

τp,0(y, u)
∑

w∈Zd

τp,0(v, w)τp,0(y, w)M(p, γ)2

≤ pM(p, γ)2χ(p, γ)|Ω|T̄(p), (9.119)

using symmetry in the last step. Since T(pc) may be assumed to be as small
as desired, the upper bound (9.119) is negligibly small compared to the lower
bound (9.99) on X1.

The combination of (9.99), (9.111) and (9.119) completes the proof of
(9.87).

10 The Expansion for Percolation

In Section 10.1, we derive the expansion for percolation. The expansion pro-
duces quantities Π(N), and we show in Section 10.2 how these quantities can
be bounded by Feynman diagrams. Finally, we show in Section 10.3 how the
diagrams can be bounded in terms of the triangle diagram. The methods of
this section are due to [94], but we follow the exposition of [32], often verbatim.

We do not prove convergence of the expansion here. Convergence proofs
can be found in [32, 91, 94], all based on the bootstrap Lemma 5.9.

10.1 The Expansion

The expansions discussed in Sections 3 and 8, for the self-avoiding walk, lattice
trees, and lattice animals, each have dual interpretations as arising either from
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repeated inclusion-exclusion or from expansion of an interaction
∏

st(1+Ust)
followed by resummation involving laces. For percolation, however, only the
inclusion-exclusion approach has been used. (For the case of oriented per-
colation, laces can be used; see Section 13.2.) In this section, we derive the
expansion using repeated inclusion-exclusion. The expansion applies to any
graph, finite or infinite, and we will derive the expansion in the setting of
an arbitrary connected finite or infinite graph G, which need not even be
transitive or regular.9

Let G = (V, B) be an arbitrary connected graph, finite or infinite, with
vertex set V and edge set B. We consider bond percolation on G. Given p ∈
[0, 1], we define

J(x, y) = pI[{x, y} ∈ B]

= p|Ω|D(x, y) if G is regular, (10.1)

with D(x, y) equal to the reciprocal of the degree |Ω| times the indicator that
{x, y} is an edge. We write τ(x, y) = τp(x, y) for brevity, and generally drop
subscripts indicating dependence on p.

Given a percolation cluster containing 0 and x, we call the connected com-
ponents that remain after removing all the pivotal bonds for 0 ↔ x sausages
(vertices are not removed when the bonds are removed). See Fig. 10.1. Since
they are separated by at least one pivotal bond by definition, no two sausages
can have a common vertex. Thus, the sausages are constrained to be mutually
avoiding. However, this is a weak constraint, since sausage intersections re-
quire a cycle, and cycles are unlikely in high dimensions. The fact that cycles
are unlikely also means that sausages tend to be trees. This makes it reason-
able to attempt to apply an inclusion-exclusion analysis, where the connection
from 0 to x is treated as a random walk path, with correction terms taking into
account cycles in sausages and the avoidance constraint between sausages.

0
x 0 x

Fig. 10.1. A percolation cluster with a string of 8 sausages joining 0 to x, and a
schematic representation of the string of sausages. The 7 pivotal bonds are shown
in bold.

The inclusion-exclusion expansion of [94] makes this procedure precise. For
each M = 0, 1, 2, . . ., the expansion takes the form

9 A graph is regular if very vertex has the same degree. A transitive graph is defined
in Section 11.4.2.
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τ(x, y) = δx,y +(J ∗τ)(x, y)+(ΠM ∗J ∗τ)(x, y)+ΠM (x, y)+RM (x, y), (10.2)

where the ∗ product denotes matrix multiplication (this reduces to convolution
when G = Zd and the graph is translation invariant). The function ΠM : V×
V → R is the central quantity in the expansion, and RM (x, y) is a remainder
term. The dependence of ΠM on M is given by

ΠM (x, y) =

M∑

N=0

(−1)NΠ(N)(x, y), (10.3)

with Π(N)(x, y) independent of M . The alternating sign in (10.3) arises via
repeated inclusion-exclusion. When the expansion converges, one has

lim
M→∞

∑

y

|RM (x, y)| = 0. (10.4)

This leads to

τ(x, y) = δx,y + (J ∗ τ)(x, y) + (Π ∗ J ∗ τ)(x, y) + Π(x, y), (10.5)

with Π = Π∞ (cf. (8.11) for lattice trees). For a translation invariant bond
percolation model on Zd, taking the Fourier transform of (10.5) and solving
for τ̂(k) gives

τ̂(k) =
1 + Π̂(k)

1 − p|Ω|D̂(k)[1 + Π̂(k)]
. (10.6)

This is similar to the formula (3.30) for the self-avoiding walk, but not iden-
tical.

The remainder of this section gives the proof of (10.2). Recall Defini-
tion 9.13. Also, given a bond configuration, we say that x is doubly connected
to y, and we write x ⇔ y, if x = y or if there are at least two bond-disjoint
paths from x to y consisting of occupied bonds. We denote by P(x,y) the set
of directed pivotal bonds for the connection from x to y.

To begin the expansion, we define

Π(0)(x, y) = P(x ⇔ y) − δx,y (10.7)

and distinguish configurations with x ↔ y according to whether or not there
is a double connection, to obtain

τ(x, y) = δx,y + Π(0)(x, y) + P(x ↔ y, x ⇔/ y). (10.8)

If x is connected to y, but not doubly, then P(x,y) is nonempty. There is
therefore a unique element (u, v) ∈ P(x,y) (the first pivotal bond) such that
x ⇔ u, and we can write

P(x ↔ y, x ⇔/ y) =
∑

(u,v)

P(x ⇔ u, (u, v) occupied , (u, v) ∈ P(x,y)). (10.9)
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Now comes the essential part of the expansion. Ideally, we would like to factor
the probability on the right hand side of (10.9) as

P(x ⇔ u) P((u, v) is occupied) P(v ↔ y) =
(
δx,u + Π(0)(x, u)

)
J(u, v)τ(v, y).

(10.10)
The expression (10.10) leads to (10.2) with ΠM = Π(0) and RM = 0. However,
(10.9) does not factor in this way because the cluster C̃(u,v)(u) is constrained
not to intersect the cluster C̃(u,v)(v), since (u, v) is pivotal. What we can do is
approximate the probability on the right hand side of (10.9) by (10.10), and
then attempt to deal with the error term.

For this, we will use the next lemma, which gives an identity for the proba-
bility on the right hand side of (10.9). In fact, we will also need a more general
identity, involving the following generalizations of the event appearing on the
right hand side of (10.9). Let x, u, v, y ∈ V, and let A ⊂ V be nonempty. Then
we define the events

E′(v, y; A) = {v A↔ y} ∩ {∄(u′, v′) ∈ P(v,y) such that v
A↔ u′} (10.11)

and

E(x, u, v, y; A) = E′(x, u;A) ∩ {(u, v) is occupied and pivotal for x ↔ y}.
(10.12)

Note that {x ⇔ y} = E′(x, y; V), while E(x, u, v, y; V) is the event appearing
on the right hand side of (10.9). A version of Lemma 10.1, with E′(x, u; A)
replaced by {0 ↔ u} on both sides of (10.13), appeared in (9.78).

x u v y

A

Fig. 10.2. The event E(x, u, v, y; A) of Lemma 10.1. The shaded regions represent
the vertices in A. Intersection between A and sausages to the right of (u, v) is
permitted.

Lemma 10.1. Let G be a finite or an infinite graph, let p ∈ [0, 1] be such
that there is almost surely no infinite cluster, let u ∈ V, and let A ⊂ V be
nonempty. Then

E (I[E(x, u, v, y; A)]) = pE
(
I[E′(x, u; A)] τ C̃{u,v}(x)(v, y)

)
. (10.13)

Proof. The event appearing in the left hand side of (10.13) is depicted in
Fig. 10.2. We first observe that the event E′(x, u;A) ∩ {(u, v) ∈ P(x,y)} is
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independent of the occupation status of the bond (u, v). This is true by defi-
nition for {(u, v) ∈ P(x,y)}, and when (u, v) is pivotal, the occurrence or not
of E′(x, u;A) cannot be affected by {u, v} since E′(x, u; A) is determined by
the occupied paths from x to u and in this case no such path uses the bond
{u, v}. Therefore, the left hand side of the identity in the statement of the
lemma is equal to

pE
(
I[E′(x, u; A) ∩ {(u, v) ∈ P(x,y)}]

)
. (10.14)

By conditioning on C̃{u,v}(x), (10.14) is equal to

p
∑

S:S∋x

E
(
I[E′(x, u;A) ∩ {(u, v) ∈ P(x,y)} ∩ {C̃{u,v}(x) = S}]

)
, (10.15)

where the sum is over all finite connected sets of vertices S containing x.
In (10.15), we can replace

{(u, v) ∈ P(x,y)} ∩ {C̃{u,v}(x) = S} (10.16)

by
{v ↔ y in V\S} ∩ {C̃{u,v}(x) = S}. (10.17)

The event {v ↔ y in V\S} depends only on the occupation status of bonds
which do not have an endpoint in S. On the other hand, when {v ↔ y in
V\S} ∩ {C̃{u,v}(x) = S} occurs, the event E′(x, u; A) is determined by the
occupation status of bonds which have an endpoint in S = C̃{u,v}(x). Simi-
larly, the event {C̃{u,v}(x) = S} depends on bonds which have one or both
endpoints in S. Hence, given S, the event E′(x, u; A) ∩ {C̃{u,v}(x) = S} is
independent of the event {v ↔ y in V\S}, and therefore (10.15) is equal to

p
∑

S:S∋x

E
(
I[E′(x, u; a) ∩ {C̃{u,v}(x) = S}]

)
τS
p (v, y). (10.18)

Bringing the restricted two-point function inside the expectation, replacing
the superscript S by C̃{u,v}(x), and performing the sum over S, gives the
desired result.

It follows from (10.9) and Lemma 10.1 that

P(x ↔ y, x ⇔/ y) =
∑

(u,v)

J(u, v)E
(
I[x ⇔ u] τ C̃(u,v)(x)(v, y)

)
. (10.19)

On the right hand side, τ C̃(u,v)(x)(v, y) is the restricted two-point function
given the cluster C̃(u,v)(x) of the expectation E, so that in the expectation

defining τ C̃(u,v)(x)(v, y), C̃(u,v)(x) should be regarded as a fixed set. The re-
stricted two-point function effectively introduces a second percolation model
on a second graph, as in (9.78).

We write
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τ C̃(u,v)(x)(v, y) = τ(v, y) −
(
τ(v, y) − τ C̃(u,v)(x)(v, y)

)

= τ(v, y) − P
(
v ←C̃(u,v)(x)−−−−−−→ y

)
, (10.20)

insert this into (10.19), and use (10.8) and (10.7) to obtain

τ(x, y) = δx,y + Π(0)(x, y) +
∑

(u,v)

(
δx,u + Π(0)(x, u)

)
J(u, v)τ(v, y)

−
∑

(u,v)

J(u, v)E

(
I[x ⇔ u] P(v ←C̃(u,v)(x)−−−−−−→ y)

)
. (10.21)

With R0(x, y) equal to the last term on the right hand side of (10.21) (includ-
ing the minus sign), this proves (10.2) for M = 0.

To continue the expansion, we would like to rewrite the final term of (10.21)
in terms of a product with the two-point function. A configuration contribut-
ing to the expectation in the final term of (10.21) is illustrated schematically
in Fig. 10.3, in which the bonds drawn with heavy lines should be regarded as
living on a different graph than the bonds drawn with lighter lines. Our goal
is to extract a factor τ(v′, y), where v′ is shown in Fig. 10.3.

x u v u′v′
y

Fig. 10.3. A possible configuration appearing in the second stage of the expansion.

Given a configuration in which v ←A−→ y, the cutting bond (u′, v′) is defined

to be the first pivotal bond for v ↔ y such that v ←A−→ u′. It is possible
that no such bond exists, as for example would be the case in Fig. 10.3 if
only the leftmost four sausages were included in the figure, with y in the
location currently occupied by u′. Recall the definitions of E′(v, y;A) and

E(x, u, v, y;A) in (10.11) and (10.12). By partitioning {v A↔ y} according to
the location of the cutting bond (or the lack of a cutting bond), we obtain
the partition

{v A↔ y} = E′(v, y;A)

·⋃ ·⋃

(u′,v′)

E(v, u′, v′, y;A), (10.22)

which implies that

P(v
A↔ y) = P(E′(v, y; A)) +

∑

(u′,v′)

P(E(v, u′, v′, y;A)). (10.23)
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Using Lemma 10.1, this gives

P(v
A↔ y) = P(E′(v, y;A))

+
∑

(u′,v′)

J(u′, v′) E
(
I[E′(v, u′; A)] τ C̃(u′,v′)(v)(v′, y)

)
. (10.24)

Inserting the identity (10.20) into (10.24), we obtain

P(v
A↔ y) = P(E′(v, y; A)) +

∑

(u′,v′)

J(u′, v′) P(E′(v, u′; A)) τ(v′, y)

−
∑

(u′,v′)

J(u′, v′) E1

(
I[E′(v, u′; A)] P2(v

′ ←C̃
(u′,v′)
1 (v)−−−−−−−→ y)

)
.

(10.25)

In the last term on the right hand side, we have introduced subscripts for C̃
and the expectations, to indicate to which expectation C̃ belongs.

Let

Π(1)(x, y) =
∑

(u,v)

J(u, v) E0

(
I[x ⇔ u]P1

(
E′(v, y; C̃

(u,v)
0 (x))

))
. (10.26)

Inserting (10.25) into (10.21), and using (10.26), we have

τ(x, y) = δx,y + Π(0)(x, y) − Π(1)(x, y) (10.27)

+
∑

(u,v)

(
δx,u + Π(0)(x, u) − Π(1)(x, u)

)
J(u, v) τ(v, y)

+
∑

(u,v)

J(u, v)
∑

(u′,v′)

J(u′, v′)

× E0

(
I[x ⇔ u]E1

(
I[E′(v, u′; C̃0

(u,v)
(x))]P2(v

′ ←C̃
(u′,v′)
1 (v)−−−−−−−→ y)

))
.

This proves (10.2) for M = 1, with R1(x, y) given by the last two lines of
(10.27).

We now repeat this procedure recursively, rewriting P2(v
′ ←C̃

(u′,v′)
1 (v)−−−−−−−→ y)

using (10.25), and so on. This leads to (10.2), with Π(0) and Π(1) given by
(10.7) and (10.26), and, for N ≥ 2,
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Π(N)(x, y) =
∑

(u0,v0)

· · ·
∑

(uN−1,vN−1)

[ N−1∏

i=0

J(ui, vi)
]
E0I[x ⇔ u0]

× E1I[E′(v0, u1; C̃0)] · · ·EN−1I[E′(vN−2, uN−1; C̃N−2)]

× ENI[E′(vN−1, y; C̃N−1)], (10.28)

RM (x, y) = (−1)M+1
∑

(u0,v0)

· · ·
∑

(uM ,vM )

[ M∏

i=0

J(ui, vi)
]
E0I[x ⇔ u0]

× E1I[E′(v0, u1; C̃0)] · · ·EM−1I[E′(vM−2, uM−1; C̃M−2)]

× EM

[
I[E′(vM−1, uM ; C̃M−1)]PM+1(vM ←C̃M−−→ y)

]
, (10.29)

where we have used the abbreviation C̃j = C̃
(uj ,vj)
j (vj−1), with v−1 = x.

Since

PM+1(vM ←C̃M−−→ y) ≤ τp(vM , y), (10.30)

it follows from (10.28)–(10.29) that

|RM (x, y)| ≤
∑

uM ,vM∈V

Π(M)(x, uM )J(uM , vM )τp(vM , y). (10.31)

This bound is typically used to show that the remainder vanishes in the limit
M → ∞, once we can show that

∑
u Π(M)(x, u) vanishes in the limit M → ∞.

In deriving the expansion, we have essentially been making an approxima-

tion in which τ C̃{u,v}(0)(v, x) is replaced by τ(v, x). This is a good approxima-
tion when the backbone joining v and x typically does not intersect the cluster
C̃{u,v}(0). Above the upper critical dimension, we expect the backbone to be-
have like Brownian motion, which is 2-dimensional, and the cluster C̃{u,v}(0)
to have the dimensionality of an ISE cluster (see Section 16.5 below), which
is 4-dimensional. These objects generically do not intersect above dimension
6 = 4+2, and this provides an interpretation of the upper critical dimension.

10.2 The Diagrams

In this section, we show how Π(N) of (10.28) can be bounded in terms of
Feynman diagrams. We follow the presentation of [32], and the method is
essentially that of [94, Section 2.2]. The results of this section apply to any
graph G = (V, B), finite or infinite, which need not be transitive nor regular.

Let P(N) denote the product measure on N + 1 copies of percolation on
G. By Fubini’s Theorem and (10.28),

Π(N)(x, y) =
∑

(u0,v0)

· · ·
∑

(uN−1,vN−1)

[ N−1∏

i=0

J(ui, vi)
]

(10.32)

× P(N)
(
{x ⇔ u0}0 ∩

( N−1⋂

i=1

E′(vi−1, ui; C̃i−1)i

)
∩ E′(vN−1, y; C̃N−1)N

)
,



106 The Lace Expansion and its Applications

where, for an event F , we write Fi to denote that F occurs on graph i. To
estimate Π(N)(x, y) for N ≥ 1, it is convenient to define the events

F0(x, u0, w0, z1) = {x ↔ u0} ◦ {x ↔ w0} ◦ {w0 ↔ u0} ◦ {w0 ↔ z1}, (10.33)

F ′(vi−1, ti, zi, ui, wi, zi+1) = {vi−1 ↔ ti} ◦ {ti ↔ zi} ◦ {ti ↔ wi} (10.34)

◦ {zi ↔ ui} ◦ {wi ↔ ui} ◦ {wi ↔ zi+1},

F ′′(vi−1, ti, zi, ui, wi, zi+1) = {vi−1 ↔ wi} ◦ {wi ↔ ti} ◦ {ti ↔ zi} (10.35)

◦ {ti ↔ ui} ◦ {zi ↔ ui} ◦ {wi ↔ zi+1},

F (vi−1, ti, zi, ui, wi, zi+1) = F ′(vi−1, ti, zi, ui, wi, zi+1) (10.36)

∪ F ′′(vi−1, ti, zi, ui, wi, zi+1),

FN (vN−1, tN , zN , y) = {vN−1 ↔ tN} ◦ {tN ↔ zN} ◦ {tN ↔ x} ◦ {zN ↔ y}.
(10.37)

The events F0, F ′, F ′′, FN are depicted in Fig. 10.4. Note that

FN (v, t, z, y) = F0(y, z, t, v). (10.38)

By the definition of E′ in (10.11),

E′(vN−1, y; C̃N−1)N ⊂
⋃

zN∈C̃N−1

⋃

tN∈V

FN (vN−1, tN , zN , y)N . (10.39)

Indeed, viewing the connection from vN−1 to y as a string of sausages be-
ginning at vN−1 and ending at y, for the event E′ to occur there must be a
vertex zN ∈ C̃N−1 that lies on the last sausage, on a path from vN−1 to y.
(In fact, both “sides” of the sausage must contain a vertex in C̃N−1, but we
do not need or use this.) This leads to (10.39), with tN representing the other
endpoint of the sausage that terminates at y.

Assume, for the moment, that N ≥ 2. The condition in (10.39) that zN ∈
C̃N−1 is a condition on the graph N − 1 that must be satisfied in conjunction
with the event E′(vN−2, uN−1; C̃N−2)N−1. It is not difficult to see that for
i ∈ {1, . . . , N − 1},

E′(vi−1, ui; C̃i−1)i ∩ {zi+1 ∈ C̃i} ⊂
⋃

zi∈C̃i−1

⋃

ti,wi∈V

F (vi−1, ti, zi, ui, wi, zi+1)i.

(10.40)
See Fig. 10.5 for a depiction of the inclusions in (10.39) and (10.40). Informally,
for (10.40), any path from vi−1 to ui must contain a vertex with a disjoint
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F0(x, u0, w0, z1) =

x

w0

u0

z1

F ′(vi−1, ti, zi, ui, wi, zi+1) =
vi−1 ti

zi

• ui

wi

zi+1

F ′′(vi−1, ti, zi, ui, wi, zi+1) =
vi−1 ti

zi

• ui

wi

zi+1

FN (vN−1, tN , zN , y) =
vN−1 tN

zN

• y

Fig. 10.4. Diagrammatic representations of the events F0(x, u0, w0, z1)),
F ′(vi−1, ti, zi, ui, wi, zi+1), F ′′(vi−1, ti, zi, ui, wi, zi+1), FN (vN−1, tN , zN , y). Lines
indicate disjoint connections.

connection to zi+1, and this can occur in the two topologically distinct man-
ners illustrated in Fig. 10.5. The definition of E′ requires the existence of a
vertex zi ∈ C̃i−1 on every path from ti to ui, where the latter are the end-
points of the last sausage, and so, in particular, such a vertex can be found
on the “other” side of the sausage, in the case where zi+1 connects to the last
sausage.

With an appropriate treatment for graph 0, (10.39) and (10.40) lead to

{x ⇔ u0}0 ∩
( N−1⋂

i=1

E′(vi−1, ui; C̃i−1)i

)
∩ E′(vN−1, y; C̃N−1)N (10.41)

⊂
⋃

~t,~w,~z

(
F0(x, u0, w0, z1)0 ∩

( N−1⋂

i=1

F (vi−1, ti, zi, ui, wi, zi+1)i

)

∩ FN (vN−1, tN , zN , y)N

)
, (10.42)

where ~t = (t1, . . . , tN ), ~w = (w0, . . . , wN−1) and ~z = (z1, . . . , zN ). Therefore,
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E′(vN−1, y; C̃N−1)N ⊂
⋃

zN∈C̃N−1

⋃

tN∈V

vN−1

tN zN
y

C̃N−1

E′(vi−1, ui; C̃i−1)i ∩ {zi+1 ∈ C̃i} ⊂
⋃

zi∈C̃i−1

⋃

ti,wi∈V

vi−1

ti
zi

ui

wi

zi+1

C̃i−1

⋃ vi−1

ti
zi

ui

wi

zi+1

C̃i−1

Fig. 10.5. Diagrammatic representations of the inclusions in (10.39) and (10.40).

Π(N)(x, y) ≤
∑

[
N−1∏

i=0

J(ui, vi)

]
Pp(F0(x, u0, w0, z1))

×
N−1∏

i=1

Pp(F (vi−1, ti, zi, ui, wi, zi+1))Pp(FN (vN−1, tN , zN , y)),

(10.43)

where the summation is over all vertices z1, . . . , zN , t1, . . . , tN , w0, . . . , wN−1,
u0, . . . , uN−1, v0, . . . , vN−1. The probability in (10.43) factors because the
events F0, . . . , FN are events on different percolation models. Each probability
in (10.43) can be estimated using the BK inequality. The result is that each of
the connections {a ↔ b} present in the events F0, F and FN is replaced by a
two-point function τp(a, b). This results in a large sum of two-point functions.

To organize a large sum of this form, we let

τ̃p(x, y) = (J ∗ τp)(x, y)

= p|Ω|(D ∗ τp)(x, y) if G is regular, (10.44)
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s

u

v

A3(s, u, v) B1(s, t, u, v) =

B2(u, v, s, t) = +

s

t

u

v

tu

s = v
s

tu

v

=

Fig. 10.6. Diagrammatic representations of A3(s, u, v), B1(s, t, u, v) and
B2(u, v, s, t).

and define

A3(s, u, v) = τp(s, v)τp(s, u)τp(u, v), (10.45)

B1(s, t, u, v) = τ̃p(t, v)τp(s, u), (10.46)

B2(u, v, s, t) = τp(u, v)τp(u, t)τp(v, s)τp(s, t)

+ δv,sτp(u, t)
∑

a∈V

τp(s, a)τp(a, u)τp(a, t). (10.47)

The two terms in B2 arise from the two events F ′ and F ′′ in (10.36). We will

write them as B
(1)
2 and B

(2)
2 , respectively. The above quantities are represented

diagrammatically in Fig. 10.6. In the diagrams, a line joining a and b represents
τp(a, b). In addition, small bars are used to distinguish a line that represents
τ̃p, in B1.

Application of the BK inequality yields

Pp(F0(x, u0, w0, z1)) ≤ A3(x, u0, w0)τp(w0, z1), (10.48)

∑

vN−1

J(uN−1, vN−1)Pp(FN (vN−1, tN , zN , y)) (10.49)

≤ B1(wN−1, uN−1, zN , tN )

τp(wN−1, zN )
A3(y, tN , zN ),
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∑

vi−1

J(ui−1, vi−1)Pp(F
′(vi−1, ti, zi, ui, wi, zi+1))

≤ B1(wi−1, ui−1, zi, ti)

τp(wi−1, zi)
B

(1)
2 (zi, ti, wi, ui)τp(wi, zi+1), (10.50)

∑

vi−1,ti

J(ui−1, vi−1)Pp(F
′′(vi−1, ti, zi, ui, wi, zi+1))

≤ B1(wi−1, ui−1, zi, wi)

τp(wi−1, zi)
B

(2)
2 (zi, wi, wi, ui)τp(wi, zi+1). (10.51)

Since the second and the third arguments of B
(2)
2 are equal by virtue of the

Kronecker delta in (10.47), we can combine (10.50)–(10.51) to obtain

∑

vi−1,ti

J(ui−1, vi−1)Pp(F (vi−1, ti, zi, ui, wi, zi+1))

≤
∑

ti

B1(wi−1, ui−1, zi, ti)

τp(wi−1, zi)
B2(zi, ti, wi, ui)τp(wi, zi+1). (10.52)

Upon substitution of the bounds on the probabilities in (10.48), (10.49)
and (10.52) into (10.43), the ratios of two-point functions form a telescop-
ing product that disappears. After relabelling the summation indices, (10.43)
becomes

Π(N)(x, y) ≤
∑

~s,~t,~u,~v

A3(x, s1, t1)

N−1∏

i=1

[
B1(si, ti, ui, vi)B2(ui, vi, si+1, ti+1)

]

× B1(sN , tN , uN , vN )A3(uN , vN , y). (10.53)

The bound (10.53) is valid for N ≥ 1, and the summation is over all s1, . . . , sN ,
t1, . . . , tN , u1, . . . , uN , v1, . . . , vN . For N = 1, 2, the right hand side is repre-
sented diagrammatically in Fig. 10.7. In the diagrams, unlabelled vertices are
summed over V.

(a)

(b)

x

x
x

+

y

y
y

Fig. 10.7. The diagrams bounding (a) Π(1)(x, y) and (b) Π(2)(x, y).
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10.3 Diagrammatic Estimates for Percolation

In this section, we indicate how the Feynman diagrams can be bounded in
terms of quantities related to the triangle diagram. We now specialize to the
case where the graph G has vertex set Zd and edge set given by y−x ∈ Ω with
either (1.1) or (1.2), and make use of the additive structure and the x 7→ −x
symmetry. We will write τp(y − x) in place of τp(x, y), p|Ω|D(y − x) in place
of J(x, y), and Π(N)(y − x) in place of Π(N)(x, y). We recall the definitions
of ∇p(x) and τ̃p(x) in (9.51) and (10.44), and define

Tp(x) = (τp ∗ τp ∗ τ̃p)(x), (10.54)

Tp = sup
x∈Zd

Tp(x), (10.55)

∇̄p = sup
x∈Zd

∇p(x) = sup
x∈Zd

(τp ∗ τp ∗ τp)(x). (10.56)

Theorem 10.2. For N = 0,

∑

x∈Zd

Π(0)(x) ≤ Tp. (10.57)

For N ≥ 1, ∑

x∈Zd

Π(N)(x) ≤ ∇̄p(2Tp∇̄p)
N . (10.58)

The bounds of Theorem 10.2 play the role played by Theorem 4.1 for
the self-avoiding walk, although for simplicity we discuss here only bounds on∑

x Π(N)(x) and not bounds weighted by |x|2 or [1−cos(k ·x)]. The latter can
be found in [94] or [32], respectively. The theorem can be applied in settings
where 2Tp∇̄p is small, to allow for summation of (10.58) over N . For this,
Proposition 5.3 is replaced by the estimate

∫

[−π,π]d

D̂(k)2

[1 − D̂(k)]3
ddk

(2π)d
≤ β, (10.59)

with β = K(d− 6)−1 for the nearest-neighbour model, and β = KL−d for the
spread-out model in dimensions d > 6 (see [32] for this perspective).

Proof of Theorem 10.2. We first prove (10.57). By (10.7) and the BK inequal-
ity,

Π(0)(x) = P(0 ⇔ x) − δ0,x ≤ τp(x)2 − δ0,x. (10.60)

For x 6= 0, the event {0 ↔ x} is the union over neighbors y of the origin of
{{0, y} occupied} ◦ {y ↔ x}. Thus, by the BK inequality,

τp(x) ≤ p|Ω|(D ∗ τp)(x) = τ̃p(x) (x 6= 0). (10.61)

Therefore,
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∑

x∈Zd

Π(0)(x) ≤
∑

x∈Zd

τp(x)τ̃p(x) ≤ Tp(0). (10.62)

This proves (10.57).
Next, we prove (10.58). For N ≥ 1, let

Ψ (N)(sN+1, tN+1) (10.63)

=
∑

~s,~t,~u,~v

A3(0, s1, t1)

N∏

i=1

[
B1(si, ti, ui, vi)B2(ui, vi, si+1, ti+1)

]
,

where the sum is over s1, . . . , sN , t1, . . . , tN , u1, . . . , uN , v1, . . . , vN . For conve-
nience, we define Ψ (0)(x, y) = A3(0, x, y), so that for N ≥ 1,

Ψ (N)(x, y) =
∑

uN ,vN ,sN ,tN

Ψ (N−1)(sN , tN )B1(sN , tN , uN , vN )B2(uN , vN , x, y).

(10.64)
Since ∑

x

A3(uN , vN , x) ≤
∑

x,y

B2(uN , vN , x, y), (10.65)

it follows from (10.53) that

∑

x

Π(N)(x) ≤
∑

x,y

Ψ (N)(x, y), (10.66)

and bounds on Π(N) can be obtained from bounds on Ψ (N). We prove bounds
on Ψ (N), and hence on Π(N), by induction on N .

The induction hypothesis is that

∑

x,y

Ψ (N)(x, y) ≤ ∇̄p(2Tp∇̄p)
N . (10.67)

For N = 0, (10.67) is true since

∑

x,y

A3(0, x, y) ≤ ∇̄p. (10.68)

If we assume (10.67) is valid for N − 1, then by (10.64),

∑

x,y

Ψ (N)(x, y) ≤
( ∑

sN ,tN

Ψ (N−1)(sN , tN )
)

(10.69)

×
(

sup
sN ,tN

∑

uN ,vN ,x,y

B1(sN , tN , uN , vN )B2(uN , vN , x, y)
)
,

and (10.67) then follows once we prove that

sup
s,t

∑

u,v,x,y

B1(s, t, u, v)B2(u, v, x, y) ≤ 2Tp∇̄p. (10.70)
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It remains to prove (10.70). There are two terms, due to the two terms in
(10.47), and we bound each term separately. The first term is bounded as

sup
s,t

∑

u,v,x,y

τ̃p(v − t)τp(u − s)τp(y − u)τp(x − v)τp(v − u)τp(x − y)

= sup
s,t

∑

u,v

τ̃p(v − t)τp(u − s)τp(v − u)
(∑

x,y

τp(y − u)τp(x − v)τp(x − y)
)

≤ ∇̄p sup
s,t

∑

u,v

τ̃p(v − t)τp(u − s)τp(v − u)

= Tp∇̄p. (10.71)

The second term is bounded similarly, making use of symmetry, by

sup
s,t

∑

u,v,x,y,a

τ̃p(v − t)τp(u − s)δv,xτp(y − u)τp(x − a)τp(u − a)τp(y − a)

= sup
s,t

∑

a,y,u

(
(τ̃p ∗ τ)(a − t)τp(u − s)

)(
τp(y − u)τp(u − a)τp(y − a)

)

= sup
s,t

∑

y′,a′

Tp(a
′ + s − t)τp(y

′)τp(a
′)τp(y

′ − a′)

≤
(

sup
a′,s,t

Tp(a
′ + s − t)

)( ∑

y′,a′

τp(y
′)τp(a

′)τp(y
′ − a′)

)

≤ Tp∇̄p, (10.72)

where a′ = a − u, y′ = y − u. This completes the proof of (10.70) and hence
of (10.58).

11 Results for Percolation

In this section, we survey results that have been obtained for percolation using
the expansion of Section 10, and extensions of this expansion. For the results
on Zd with bonds {x, y} specified by y − x ∈ Ω, we consider the nearest-
neighbour model with Ω given by (1.1) and the spread-out model with Ω
given by (1.2).

11.1 Critical Exponents

The following infrared bound was proved in [94] (abbreviated versions ap-
peared in [92, 93]).

Theorem 11.1. There is a constant independent of p and k such that

τ̂p(k) ≤ const |k|−2 (11.1)
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uniformly in p < pc and k ∈ [−π, π]d, for the nearest-neighbour model in
dimensions d ≥ d0 for some d0 ≥ 6, and for the spread-out model if d > 6
and L ≥ L0 for some L0 = L0(d) ≫ 1.

For the spread-out model, much more general models are actually consid-
ered in [94]. In particular, models with bonds of unbounded length are allowed
if the occupation probability decays sufficiently rapidly with bond length. For
the nearest-neighbour model, the constant d0 in Theorem 11.1 was found to
be d0 = 48 in [94], and this was improved to d0 = 19 in [100], although the
lengthy numerical calculations that produce these particular numbers were
never published.

The triangle condition follows immediately from the infrared bound. To
see this, we first note from (9.51), (9.53) and the monontone convergence
theorem10 that the infrared bound gives

T(pc) = lim
p→p−

c

∑

x,y∈Zd

τp(x)τp(y − x)τp(y)

= lim
p→p−

c

∫

[−π,π]d
τ̂p(k)3

ddk

(2π)d

≤ const

∫

[−π,π]d

1

|k|6
ddk

(2π)d
, (11.2)

and the integral is finite for d > 6. In addition, it is shown in [94] that
T̄(pc) ≤ O(d−1) for the nearest-neighbour model (see [94, Lemma 4.4]), and
the results of [94] can be extended in a straightforward way to prove that
T̄(pc) ≤ O(L−d) for the spread-out model (see [118, Lemma 3.1]). This is
important for application of Theorem 10.2.

It follows from the differential inequalities of Sections 9.2–9.3 (see Corol-
laries 9.3 and 9.8 and Theorems 9.5 and 9.10) that under the hypotheses of
Theorem 11.1,

χ(p) ≃ (pc − p)−1 as p → p−c , (11.3)

M(pc, γ) ≃ γ1/2 as γ → 0+, (11.4)

θ(p) ≃ (p − pc) as p → p+
c . (11.5)

(As defined in (2.32), the symbol ≃ implies upper and lower bounds with
possibly different constants.) This shows that γ = β = 1 and δ = 2. Also, it
was shown in [165] that the triangle condition implies that

Ep(|C(0)|m+1)

Ep(|C(0)|m)
≃ (pc − p)−2 as p → p−c , for m = 1, 2, . . ., (11.6)

so the gap exponent ∆ exists and takes the value ∆ = 2 under the hypotheses
of Theorem 11.1.
10 Continuity of τp(x) for all p is established in [11].
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Using a novel argument, it was shown in [89] that

ξ(p) ≃ (pc − p)−1/2 as p → p−c (11.7)

under the hypotheses of Theorem 11.1, which is to say that the critical expo-
nent ν for the correlation length (9.4) exists and equals 1

2 .
Concerning the critical exponent α for the free energy, less is known. In

[210], it is shown that for nearest-neighbour bond percolation on Zd, given any
non-negative integer n, there exists a dimension dn such that κ(p) is n times
continuously differentiable for p ∈ [0, pc], and hence the derivative κ(n)(p) is
uniformly bounded on [0, pc] if d ≥ dn. The derivatives at pc are interpreted as
left derivatives. The possibility is not ruled out in [210] that κ(n)(p−c ) is equal
to zero, although this is not expected to be the case. Comparing with (9.14),
the conclusion of [210] is that α ≤ −1 in high dimensions, consistent with
α = −1. The methods of [210] apply also to the spread-out model, but the
relevance of this is diminished by the fact that the dimension dn grows with
n, and results for all d > 6 have not been obtained. For a regular infinite tree
of degree |Ω| ≥ 3, it is known (see [210]) that the analogue κtree(p) of κ(p) is
twice differentiable on [0, 1], κ′′′

tree(p) has a jump discontinuity at p = 1
|Ω|−1 ,

and κ
(n)
tree(p) is bounded uniformly in p 6= 1

|Ω|−1 for each n. The exponent

α is generally tricky, and remains mysterious even for d = 2, where other
exponents are understood [191].

Concerning the critical exponent η, recalling the characterization of η as
τ̂pc

(k) ∼ c|k|η−2, the infrared bound of Theorem 11.1 can be interpreted as
a k-space statement of the mean-field bound η ≥ 0. This has been greatly
extended, in two ways.

Firstly, the following theorem from [91] gives an x-space statement that
η = 0. Note that it is, in general, not possible to conclude asymptotic be-
haviour |x|2−d directly from asymptotic behaviour |k|−2 of the Fourier trans-
form, without additional regularity of the Fourier transform. A detailed dis-
cussion of this point can be found in [158, pp. 32–33]. Thus, additional input
beyond Theorem 11.1 is needed to prove the following theorem. The proof
of Theorem 11.2 actually proceeds directly in x-space, without using Fourier
transforms, and is not a corollary of Theorem 11.1.

Theorem 11.2. (a) [90] For d ≥ 19, there is a constant a′ depending on
d, such that the critical two-point function of nearest-neighbour percolation
obeys, as |x| → ∞,

τpc(x) =
a′

|x|d−2

[
1 + O

( 1

|x|2/d

)]
. (11.8)

(b) [91] Fix any α > 0 (think of α small). For d > 6, there is a finite constant
a depending on d and L, and an L0 depending on d and α, such that for
L ≥ L0 the spread-out model of strictly self-avoiding walk obeys, as |x| → ∞,
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τpc
(x) =

a

|x|d−2

[
1 + O

( 1

|x|[2∧2(d−6)]−α

)]
. (11.9)

The constant in the error term is uniform in x but may depend on L and α;
a more careful statement in this regard is given in [91].

Secondly, in k-space, the infrared bound has been extended to a joint
asymptotic formula as k → 0 and γ → 0+, at p = pc, involving both η = 0
and γ = 1

2 . We use translation invariance to rewrite (9.89) as

τp,γ(x) = Pp,γ(0 ↔ x, 0 ↔/ G), (11.10)

and consider the Fourier transform

τ̂p,γ(k) =
∑

x∈Zd

τp,γ(x)eik·x. (11.11)

Theorem 11.3. Let p = pc, k ∈ [−π, π]d, γ ∈ (0, 1]. For nearest-neighbour
bond percolation with d sufficiently large, and for spread-out bond percolation
with d > 6 and L sufficiently large, there are functions ǫ1(z) and ǫ2(k) with
limγ→0+ ǫ1(γ) = limk→0 ǫ2(k) = 0, and constants C2 and D2 depending on d
and L, such that

τ̂ (2)
pc,γ(k) =

C2

D2
2|k|2 + 23/2γ1/2

[1 + ǫ(γ, k)] (11.12)

with |ǫ(γ, k)| ≤ ǫ1(γ)+ǫ2(k). In addition, the limit τ̂pc,0(k) = limγ→0+ τ̂pc,γ(k)
exists and is finite for k 6= 0, and obeys

τ̂pc,0(k) =
C2

D2
2|k|2

[1 + ǫ2(k)] . (11.13)

The factor 23/2 in (11.12) is present to agree with our convention in Sec-
tion 16, where (11.12) is related to integrated super-Brownian excursion. By
an appeal to universality, Theorem 11.3 strongly suggests that (11.12) and
(11.13) should also be valid for the nearest-neighbour model for all d > 6.

Equation (11.13) is a k-space statement that η = 0. There is good reason
to be careful with the limit γ → 0+ in (11.13). In fact, according to Theo-
rem 11.2, τpc,0(x) decays like |x|2−d. Therefore it is not summable in x, and its
Fourier transform is not well-defined without some interpretation. We use the
interpretation τ̂pc,0(k) = limγ→0+ τ̂pc,γ(k) because τpc,0(x) is then the inverse
Fourier transform of τ̂pc,0(k). In fact, using monotone convergence in the first
step, and using (11.12) and the dominated convergence theorem in the last
step, we have

τpc,0(x) = lim
γ→0+

τpc,γ(x)

= lim
γ→0+

∫

[−π,π]d
τ̂pc,γ(k)e−ik·x ddk

(2π)d

=

∫

[−π,π]d
τ̂pc,0(k)e−ik·x ddk

(2π)d
. (11.14)
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Recalling the definition of χ(p, γ) in (9.29), and the representation (9.90),
we have τ̂pc,γ(0) = χ(pc, γ). Setting k = 0 in (11.12) gives

χ(pc, γ) = τ̂pc,γ(0) = γ−1/2
[
2−3/2C2 + o(1)

]
, (11.15)

as γ → 0+. Integration of this with respect to γ, using M(pc, 0) = 0 and again
recalling (9.29), gives

M(pc, γ) =

∫ γ

0

1

1 − t
χ(pc, t)dt = γ1/2

[
2−1/2C2 + o(1)

]
. (11.16)

This improves (11.4) to a a statement that δ = 2 in the sense of an asymptotic
formula.

In [105], a stronger statement that the critical exponent δ equals 2 is proved
for the nearest-neighbour model in sufficiently high dimensions. Namely, it is
shown that

Ppc(|C(0)| = n) =
C2√
8π

1

n3/2
[1 + O(n−ǫ)], (11.17)

for any fixed ǫ < 1
2 , if d is large enough. In fact, much more is shown in [105],

and the results are summarized below in Section 16.5.
The proofs of Theorem 11.3 and (11.17) are based on an extension of

the expansion of Section 10 from an expansion for τp(x) = τp,0(x) to an
expansion for τp,γ(x). This new expansion relies heavily on the probabilistic
interpretation (9.89) of τp,γ(x), and is not a minor extension of the expansion
of Section 10. Details can be found in [104, 105].

Finally, we mention that it is indicated in [198] that the triangle condition
can been extended to continuum percolation [160], if the dimension d is large
enough, yielding existence of some critical exponents.

11.2 The Critical Value

Several authors have considered the asymptotic behaviour of the critical value
pc(d) of bond percolation on Zd, in the limit d → ∞. Bollobás and Ko-
hayakawa [27], Gordon [82], Kesten [143] and Hara and Slade [94] proved that
pc(d) is equal to 1

2d plus an error term of size O((log d)2d−2), O(d−65/64),
O((log log d)2(d log d)−1) and O(d−2), respectively. Recently, Alon, Benjamini
and Stacey [17] gave an alternate and relatively short proof that pc(d) is
asymptotic to 1

2d as d → ∞, with an estimate o(d−1) for the error. The ex-
pansion

pc(d) =
1

2d
+

1

(2d)2
+

7

2(2d)3
+

16

(2d)4
+

103

(2d)5
+ · · · (11.18)

was reported in [78], but with no rigorous bound on the remainder.
The lace expansion was used in [101, 102] to prove that
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pc(d) =
1

2d
+

1

(2d)2
+

7

2(2d)3
+ O((2d)−4), (11.19)

and a simpler proof of this fact, again using the lace expansion, was given in
[123]. Moreover, it was proved in [122] that there exist rational numbers ai

such that pc(d) has an asymptotic expansion

pc(d) ∼
∞∑

n=1

ai

(2d)i
. (11.20)

Presumably, this expansion is divergent (though there is no proof of this), and
the meaning of (11.20) is that for each M ≥ 1,

pc(d) =

M∑

i=1

ai

(2d)i
+ O

( 1

(2d)M+1

)
. (11.21)

The constant in the error term is permitted to depend on M , so (11.21) does
not imply convergence.

The basic method of the proofs of (11.19) and (11.20) is similar to that
employed to obtain the asymptotic expansion for the connective constant in
(2.8), which was discussed around (5.66) and in Exercise 5.18. The starting
point is the formula

χ(p) =
1 + Π̂p(0)

1 − 2dp[1 + Π̂p(0)]
(11.22)

for the susceptibility, which follows from (10.6) and χ(p) = τ̂p(0). The function

Π̂p(0) is well-behaved up to and including p = pc, and the critical point is
characterized by the equation

1 − 2dpc[1 + Π̂pc(0)] = 0, (11.23)

or, equivalently,

pc =
1

2d
[1 + Π̂pc(0)]−1. (11.24)

This equation can then be studied in a recursive fashion, using estimates on
Π̂pc(0).

For the spread-out model in dimensions d > 6, the results of [94] (combined
with the above observation from [118] that the triangle is O(L−d)) give pc =
|Ω|−1 + O(|Ω|−2) as L → ∞. This is improved in [118].11

11.3 The Incipient Infinite Cluster

For bond percolation on Zd, it is believed that there is no percolation at
the critical point in all dimensions d ≥ 2. At present, proofs of this fact

11 Note that pc in [118] is |Ω| times our pc.
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are restricted to 2-dimensional and high-dimensional models. The notion of
the incipient infinite percolation cluster (IIC) is an attempt to describe the
infinite structure that is emerging but not yet materialized at the critical
point. Various aspects of the IIC are discussed in [5]. There is currently no
existence theory for the IIC that is applicable in general dimensions.

For bond percolation on Z2, Kesten [142] constructed the IIC as a measure
on bond configurations in which the origin is almost surely connected to in-
finity. He gave two different constructions, both leading to the same measure.
One construction is to condition on the event that the origin is connected to
infinity, with p > pc, and take the limit p → p+

c . A second construction is to
condition on the event that the origin is connected to the boundary of a box
of radius n, with p = pc, and let n → ∞. More recently, Járai [135, 136] has
shown that several other definitions of the IIC on Z2 yield the same measure
as Kesten’s. These include the inhomogeneous model of [51], and definitions
in terms of invasion percolation [49], the largest cluster in a large box [35], and
spanning clusters [5]. The incipient infinite cluster is thus a natural and robust
object that can be constructed in many different ways, at least in dimension
d = 2.

In [115], van der Hofstad and Járai used the lace expansion to give two
constructions of the IIC above the upper critical dimension. To describe these
constructions, we need the following definitions.

Let F denote the σ-algebra of events. A cylinder event is an event that is
determined by the occupation status of a finite set of bonds. We denote the
algebra of cylinder events by F0. Then F is the σ-algebra generated by F0.
For a first definition of the IIC, given x ∈ Zd, we begin by defining Px by

Px(E) =
1

τpc
(x)

Ppc(E ∩ {0 ↔ x}) (E ∈ F0). (11.25)

We then define P∞ by setting

P∞(E) = lim
x→∞

Px(E) (E ∈ F0), (11.26)

assuming the limit exists. The following theorem shows that, at least in high
dimensions, this definition produces a probability measure on F , the IIC mea-
sure, under which the origin is almost surely connected to infinity.

Theorem 11.4. Consider nearest-neighbour or spread-out percolation on Zd.
For the nearest-neighbour model there is a d0 ≫ 6, and for the spread-out
model there is an L0 = L0(d) ≫ 1, such that the following statements hold for
d ≥ d0, and for d > 6 and L ≥ L0, respectively. The limit in (11.26) exists for
every cylinder event E ∈ F0, independently of the manner in which x goes to
infinity. Moreover, P∞ extends to a probability measure on the σ-algebra F ,
and the origin is almost surely connected to infinity under P∞.

The proof of Theorem 11.4 exhibits an explicit cancellation between the
numerator and denominator in (11.25). The asymptotic behaviour of the de-
nominator is given by Theorem 11.2 as a multiple of |x|2−d. For the numerator,
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an expansion is developed which is like the expansion for the two-point func-
tion, but with notice taken of the fact that the event E occurs. The event E
depends on only finitely many bonds, and hence is a local effect in the limit
|x| → ∞. Details of the method of proof can be found in [115].

In [115], a second construction of the IIC measure P∞ is also given. This
construction uses a limit from the subcritical side, and proceeds as follows.
For p < pc, let

Qp(E) =
1

χ(p)

∑

x∈Zd

Pp(E ∩ {0 ↔ x}) (E ∈ F0), (11.27)

and
Qpc(E) = lim

p→p−
c

Qp(E) (E ∈ F0), (11.28)

assuming the limit exists. It is a theorem of [115] that the limit does exist,
and that Qpc = P∞, under the high-dimension hypotheses of Theorem 11.4.

Once the IIC measure P∞ has been constructed, it is natural to ask for
its properties, beyond the fact that the origin is almost surely connected to
infinity under P∞. The following properties are proved in [115] for the spread-
out model, and they are expected to be true also for the nearest-neighbour
model.

An infinite connected graph is said to have a single end if the complement
of any finite subgraph contains exactly one infinite connected component. In
particular, an infinite connected graph has a single end if any two infinite self-
avoiding paths in the set have infinitely many bonds in common. It is proved
in [115] that for the spread-out model in dimensions d > 6 with L sufficiently
large, under P∞ any two infinite self-avoiding paths in the cluster of the origin
almost surely have infinitely many bonds in common, and hence the cluster
has a single end. In addition, the IIC two-point function obeys

P∞(0 ↔ y) ≃ 1

|y|d−4
, (11.29)

whereas

P∞({0 ↔ y} ◦ {y ↔ ∞}) ≃ 1

|y|d−2
. (11.30)

Intuitively, these two formulas say that the cluster of the origin is 4-dimensional
under P∞, whereas the infinite backbone connecting the origin to infinity is
2-dimensional.

It is plausible that the IIC could also be constructed by taking p = pc,
conditioning on the event that the origin is in a cluster containing exactly
n vertices, and letting n → ∞. This particular construction has not been
carried out, but a closely related issue has been studied in [103, 104, 105], in
high dimensions. In these papers, the cluster of the origin is conditioned to
have size n, the lattice spacing is simultaneously rescaled by n−1/4, and then
the limit n → ∞ is taken. This limit should be regarded as the scaling limit of
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the IIC. We discuss this issue in more detail in Section 16.5, where the scaling
limit of the IIC in high dimensions is related to integrated super-Brownian
excursion.

Exercise 11.5. The event {0 ↔ y} is not a cylinder event, but it is proved
in [115] that (11.26) nevertheless does hold for E = {0 ↔ y}. Assuming this,
complete the following outline of proof of the upper bound of (11.29).
(a) Apply (9.84) to conclude that

1

τpc(x)
Ppc(0 ↔ y, 0 ↔ x) ≤

∑

z∈Zd

τpc(z)τpc(y − z)
τpc(x − z)

τpc(x)
.

Using Theorem 11.2, show that the contribution to the above sum due to
|x − z| ≤ 1

2 |x| vanishes in the limit |x| → ∞.
(b) Suppose d > 4. Prove that if |f(x)| ≤ (|x|+1)2−d and |g(x)| ≤ (|x|+1)2−d

then |(f ∗g)(x)| ≤ const (|x|+1)4−d. (See [91, Proposition 1.7] for extensions.)
(c) Analyze the contribution due to |x− z| > 1

2 |x| by noting that in this case
the ratio of two-point functions in the summation is uniformly bounded and
converges to 1 as |x| → ∞.

11.4 Percolation on Finite Graphs

It is natural to ask how the percolation phase transition is modified if the in-
finite graph Zd is replaced by a large finite subgraph, such as a d-dimensional
box of large radius. Such matters are actually essential to interpret prop-
erly the results of computer simulations of percolation, which are necessarily
performed on a finite graph. Quite generally, one can inquire about the na-
ture of the percolation phase transition on arbitrary finite graphs. The best
understood setting for this question is the complete graph KV .

Fig. 11.1. The complete graphs K2, K3, K4, K5.

11.4.1 The Complete Graph

The complete graph KV is the graph consisting of V vertices, with an edge
joining each of the (V

2 ) pairs of vertices. The percolation model is defined as
usual: edges are independently occupied with probability p and vacant with
probability 1−p. In the combinatorial literature, percolation on the complete
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graph is often referred to as random subgraphs of the complete graph, or,
more briefly, as the random graph. The substantial theory currently known
for the random graph is described in the recent books [26, 134].

For KV , the susceptibility χ(p) = Ep|C(0)| (where 0 denotes an arbitrary
vertex) varies continuously between χ(0) = 1 and χ(p) = V . In particular, it is
of course never infinite. Similarly, the probability that the origin is an infinite
cluster is always zero, and thus the phase transition cannot be characterized
by the divergence of χ, or the non-vanishing of θ. Nevertheless, there is a
phase transition, as suggested by Fig. 11.2. The transition corresponds to an
abrupt change in the size |Cmax| of a cluster Cmax of maximal size, as p is
varied through the critical value pc = 1

|Ω| , where |Ω| = V − 1 is the degree of

the complete graph.

p = 3
4

1
Ω

= .00120 p = 5
4

1
Ω

= .00200

Fig. 11.2. The largest cluster (black) and second largest cluster (dots) in random
subgraphs of K625. These clusters have size 17 and 11 on the left, and 284 and 16
on the right. The hundreds of edges in the subgraphs are not clearly shown.

The phase transition on KV was first studied by Erdős and Rényi [71]. We
will say that a sequence of events EV occurs with high probability, denoted
w.h.p., if P(EV ) → 1 as V → ∞. Erdős and Rényi showed that when p is
scaled as (1 + ǫ)V −1, there is a phase transition at ǫ = 0 in the sense that
w.h.p.

|Cmax| ≃





log V if ǫ < 0,
V 2/3 if ǫ = 0,
V if ǫ > 0.

(11.31)

The bounds of (11.31) are valid for fixed ǫ, independent of V .
The results of Erdős and Rényi were substantially extended by Bollobás

[25] and ÃLuczak [156]. In particular, they showed that there is a scaling window
of width V −1/3 in the sense that if p = (1 + ΛV V −1/3)V −1, then w.h.p.
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|Cmax|





≪ V 2/3 if ΛV → −∞,
≃ V 2/3 if ΛV is uniformly bounded in V ,
≫ V 2/3 if ΛV → +∞.

(11.32)

Here, we are using the notation f(V ) ≪ g(V ) to mean that f(V )/g(V ) → 0
as V → ∞, while f(V ) ≫ g(V ) means that f(V )/g(V ) → ∞ as V → ∞. A
great deal more is known, and can be found in [26, 134]. In particular, above
the scaling window, taking ǫ > 0 independent of V for simplicity, the second
largest cluster has size ≃ log V , much smaller than the largest cluster. This is
analogous to the uniqueness of the infinite cluster for supercritical percolation
on Zd [46].

The complete graph is a particularly simple example of a finite graph. It
has a high degree of symmetry, and calculations based on counting arguments
can go a long way. What if the complete graph is replaced by a finite graph
with more geometrical structure, and less symmetry?

11.4.2 High-Dimensional Transitive Finite Graphs

A detailed study of the phase transition on high-dimensional finite graphs was
initiated in [31] and continued in [32, 33, 122, 123]. Let G = (V, B) be a graph,
where V is a vertex set of cardinality V , and B is the edge set. A bijective
map ϕ : V → V is called a graph isomorphism if {ϕ(x), ϕ(y)} ∈ B whenever
{x, y} ∈ B, and G is called vertex transitive if for every pair of vertices x, y ∈ V
there is a graph isomorphism ϕ with ϕ(x) = y. In a vertex transitive graph, the
graph “looks the same” from each vertex. Transitive graphs are by definition
regular, i.e., each vertex has the same degree. We denote the degree by |Ω|.
Let G be any finite connected vertex transitive graph.

In [31], the critical point of G is defined by analogy with the complete
graph, for which it is known that the expected cluster size of any particular
vertex, for p inside the scaling window, is of order V 1/3. Motivated by this
fact, the critical threshold pc = pc(G, λ) of G was defined to be the unique
solution to the equation

χ(pc) = λV 1/3, (11.33)

where λ is a positive parameter whose choice is at our disposal. This flexibility
in the choice of λ is based on the idea is that as long as λ varies only weakly
with V , e.g., if λ is a constant, then the value of pc(G, λ) should lie in the
critical scaling window. In any case, it is necessary to assume that 1 < λV 1/3 <
V , so that pc is well defined and 0 < pc < 1. To justify the definition, a theorem
that a transition really does take place at pc is required.

The definition (11.33) is appropriate for graphs that obey mean-field
behavior, which we expect only for graphs that are in some sense “high-
dimensional.” In particular, it is argued in [31] that (11.33) should be replaced
by χ(pc) = λV (δ−1)/(δ+1), where δ is the critical exponent for the magnetiza-
tion (9.18), when G is a finite periodic approximation to Zd with d < 6. Since
the mean-field value of δ is 2, this is consistent with the definition (11.33).
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In [31], the triangle condition is modified to apply to finite graphs, as
follows. Let

∇p(x, y) =
∑

u,v∈V

τp(x, u)τp(u, v)τp(v, y) (11.34)

denote the (open) triangle diagram. Then the triangle condition is the state-
ment that

max
x,y∈V

[
∇pc(G,λ)(x, y) − δx,y

]
≤ a0, (11.35)

where a0 is a sufficiently small number. This is a natural analogue of the
condition that T̄(pc) of (9.54) be small for Zd. Since

∑
y ∇p(x, y) = χ(p)3, the

triangle condition implies that λ3 ≤ V −1 + a0, which requires small λ.
It is proved in [31] that if the triangle condition holds, then many aspects

of the phase transition for G resemble their counterparts for the complete
graph. In particular, |Cmax| ≃ V 2/3 w.h.p. inside a scaling window of size
V −1/3 around pc(G, λ). Further consequences of the triangle condition are
discussed below. The method of proof is based in part on an adaptation of
the differential inequality methods of Section 9, and in part on ideas from
[35].

To apply the results of [31], it is necessary to establish the triangle con-
dition. This is the subject of [32], where the expansion of Section 10 is used
to prove the triangle condition for various high-dimensional graphs. These
graphs, denoted Tr,d, all have vertex set of the form V = {0, 1, . . . , r − 1}d,
and edge set such that {0, x} is an edge if and only if {y, y ± x} is an edge
for all vertices y (translation and reflection symmetry). The addition on V is
componentwise addition modulo r, corresponding to periodic boundary con-
ditions. It is shown that for such graphs a random walk version of the triangle
condition, closely related to (10.59), implies the percolation triangle condi-
tion. For many graphs, the random walk triangle condition is relatively easy
to establish. Full details can be found in [32]. Among the examples for which
the triangle condition is proven in [32] are:

1. the spread-out torus, with B = {{x, y} : 0 < maxi=1,...,d |xi − yi| ≤ L},
with d ≥ 7 fixed, L large and fixed, in the limit r → ∞. Here V = rd and
|Ω| = (2L + 1)d − 1.

2. the d-cube Qd, with V = {0, 1}d, and with an edge joining distinct vertices
that agree in all but one coordinate. Here V = 2d and |Ω| = d.

The following is a partial list of results from [32] for a finite connected
vertex transitive graph that is assumed to obey the triangle condition. The
results include upper and lower bounds below and within a scaling window
of width V −1/3, and upper bounds (but not lower bounds) above the scaling
window. For the particular case G = Qd, lower bounds above the scaling
window will be discussed later.

Asymptotic behaviour of the critical value pc. This is given by
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pc(G; λ) =
1

|Ω|
[
1 + O(|Ω|−1) + O(λ−1V −1/3)

]
. (11.36)

Asymptotics below the window. Let p = pc−|Ω|−1ǫ with ǫ ≥ 0. If ǫλV 1/3 → ∞
as V → ∞, then as V → ∞,

χ(p) =
1

ǫ

[
1 + O(|Ω|−1) + O((ǫλV 1/3)−1)

]
. (11.37)

Comparing with (9.12), this is a statement that γ = 1. In addition, for all
ǫ ≥ 0,

Pp

(
|Cmax| ≤ 2χ(p)2 log(V/χ(p)3)

)
≥ 1 −

√
e

[2 log(V/χ(p)3)]3/2
. (11.38)

In particular, if ǫλV 1/3 → ∞, then |Cmax| ≤ O(ǫ−2 log V ) w.h.p., and it is
also shown in [31] that in this case |Cmax| ≥ const ǫ−2 w.h.p.

Asymptotics inside the window. Fix Λ < ∞. There exist constants bi such
that the following hold for all p = pc + |Ω|−1ǫ with |ǫ| ≤ ΛV −1/3, i.e., inside
a scaling window of width proportional to V −1/3. If k ≤ b1V

2/3, then

b2√
k
≤ Pp(|C(0)| ≥ k) ≤ b3√

k
. (11.39)

The bounds (11.39) are a statement that δ = 2 (cf. (9.19)). If ω ≥ 1, then

Pp

(
ω−1V 2/3 ≤ |Cmax| ≤ ωV 2/3

)
≥ 1 − b6

ω
. (11.40)

Finally,
b7V

1/3 ≤ χ(p) ≤ b8V
1/3. (11.41)

In the above statements, the constants b2 and b3 can be chosen independent
of λ and Λ, the constant b8 depends on Λ and not on λ, and the constants b1,
b6 and b7 depend on both λ and Λ.

Upper bounds above the window. For the supercritical phase, let p = pc+ǫ|Ω|−1

with ǫ ≥ 0. Then for all ω > 0,

Pp

(
|Cmax| ≤ ω(V 2/3 + ǫV )

)
≥ 1 − 21

ω
, (11.42)

and
χ(p) ≤ 81(V 1/3 + ǫ2V ). (11.43)

Note that ǫV dominates V 2/3 and ǫ2V dominates V 1/3 when ǫ ≥ constV −1/3.
The bounds (11.42)–(11.43) provide upper bounds on the size of clusters in
the supercritical phase. To see that a phase transition occurs at pc, one wants
a lower bound. The results of [33] provide such a lower bound for the d-cube.



126 The Lace Expansion and its Applications

11.4.3 The d-Cube

For the d-cube, it is proved in [33] that there are strictly positive constants
c0, c1, c2 such that the following holds as d → ∞ for all d-independent λ with

0 < λ ≤ c0 and all p = pc + ǫd−1 with e−c1d1/3 ≤ ǫ ≤ 1:

|Cmax| ≥ c2ǫ2
d w.h.p., (11.44)

χ(p) ≥ (c2ǫ)
22d. (11.45)

These bounds are complementary to (11.42)–(11.43). This leaves only the

tantalizingly small interval 2−d/3 ≪ ǫ ≤ e−c1d1/3

where lower bounds are
lacking.

For the d-cube, (11.36) states that if λ is chosen such that λ−12−d/3 =
O(d−1), then pc(Qd, λ) = 1

d + O( 1
d2 ). This result has been extended in [122]

to show that there are rational numbers bi (i ≥ 1) such that for all positive
integers M , all c, c′ > 0, and all p for which χ(p) ∈ [cdM , c′d−2M2n],

p =

M∑

i=1

bid
−i + O(d−M−1), (11.46)

where the constant in the error term depends only on c, c′,M . In particular,
the above holds for p such that χ(p) = λ2d/3 for any fixed λ > 0. Thus

pc(Qd, λ) ∼
∞∑

i=1

bid
−i (11.47)

is an asymptotic expansion for any fixed λ (in fact, the asymptotic expan-
sion is shown in [122] to hold even with substantial d-dependence of λ). The
asymptotic expansion is conjectured to be divergent. It follows from (11.36)
that b1 = 1, and it is shown in [123] that b2 = 1 and b3 = 7

2 . Thus,

pc(Qd, λ) =
1

d
+

1

d2
+

7

2

1

d3
+ O

(
1

d4

)
, (11.48)

and the first three coefficients in the expansion agree with the first three coef-
ficients in the expansion (11.19) for the critical value for Zd. It is conjectured
that the expansions differ in the fourth term, i.e., that a4 6= b4.

These results for the d-cube extend results of [13], who identified 1
d as a

threshold by studying the largest cluster for p = 1
d (1 + ǫ) with ǫ independent

of d, and [28], who obtained results for ǫ depending on d but not as small as
1
d .

11.4.4 Large Finite Boxes in Zd

For percolation in a box of radius r in Zd, a study of the phase transition
was undertaken in [35]. The analysis of [35] is based on certain scaling and
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hyperscaling hypotheses which are conjectured to be valid in dimensions d =
3, 4, 5, 6 and are known to hold in dimension 2. It provides a partial description
of finite-size scaling for percolation below the upper critical dimension. In
dimensions d > 6, hyperscaling does not hold, and a different theory is needed.

In [5], Aizenman considered the size of the largest cluster inside a box of
radius r in Zd for d > 6, with the bulk boundary condition. Under the bulk
boundary condition, vertices inside the box are considered to be connected
if there is an occupied path that joins them in the infinite lattice Zd. In
particular, connections are permitted to exit the box. It was shown in [5] that
for d > 6, roughly speaking, at pc the largest cluster in the box has size r4

and there are of the order of rd−6 clusters of this size, under the assumption
that τpc(x) ≃ |x|2−d. This last hypothesis is supplied by Theorem 11.2, under
the usual high-d assumptions. The fact that the largest cluster has size r4 is
another indication of the 4-dimensional character of the IIC, when d > 6.

In terms of the volume V = rd of the box, the largest cluster at the
critical value pc(d) for Zd, under the bulk boundary condition, thus has size
of order r4 = V 4/d, for d > 6. The question was raised in [5] whether this
would change to r2d/3 = V 2/3 if the periodic boundary condition is used
instead of the bulk boundary condition. According to (11.40), for the spread-
out model in dimensions d > 6 with periodic boundary conditions, if p is
within a scaling window centred at pc(Tr,d; λ) (with λ small and constant)
and of width proportional to V −1/3, then the largest cluster is of size V 2/3.
As was pointed out in [32], an affirmative answer to the question would follow
if it could be proved that the critical value pc(d) of the infinite lattice Zd is
within this scaling window. It is an open problem to do so.

12 Oriented Percolation

Oriented percolation is a percolation model in which bonds and connections
are directed. The model enjoys a Markov property not present in ordinary
percolation, and this simplifies some aspects of the problem. In this section, we
survey some of the results that have been obtained for the critical behaviour of
oriented percolation, above its upper critical dimension d = 4. The expansions
used to obtain these results will be discussed in Section 13.

12.1 The Phase Transition

Let Ω denote either the nearest-neighbour or spread-out sets defined in (1.1)–
(1.2). Let Zd × Z+ denote the graph with vertex set consisting of pairs (x, n)
with x ∈ Zd and n a non-negative integer, and with directed edges given by
ordered pairs ((x, n), (y, n + 1)) of vertices whose time variables differ by 1
and whose space variables obey y − x ∈ Ω. As usual, we refer to edges as
bonds. Bonds are independently occupied with probability p and vacant with
probability 1−p. We write {(x,m) → (y, n)} to denote the event that there is
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a directed path from (x,m) to (y, n) consisting of occupied bonds, i.e., there
is a sequence of occupied bonds ((ui−1, i − 1), (ui, i)), for i = m + 1, . . . , n,
such that (um,m) = (x,m) and (un, n) = (y, n).

Fig. 12.1. The connected cluster C(0, 0) of the origin for oriented percolation on
Z × Z+. Here p = 0.7 is a little above pc ≈ 0.645. For the nearest-neighbour model
depicted, the lattice decomposes into two noncommunicating lattices. This will not
be the case for the spread-out model when L ≥ 2.

Let
C(0, 0) = {(x, n) : (0, 0) → (x, n)} (12.1)

(see Fig. 12.1). The susceptibility is defined by

χ(p) = Ep|C(0, 0)| (12.2)

and the percolation probability is defined by

θ(p) = Pp(|C(0, 0)| = ∞). (12.3)

The phase transition for oriented percolation occurs at a point that is char-
acterized exactly as it is for ordinary percolation, namely [7, 161, 162]

pc = sup{p : θ(p) = 0} = sup{p : χ(p) < ∞}. (12.4)

For oriented percolation it has been proved that θ(pc) = 0 for all dimensions
d ≥ 1 [22].
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The magnetization is defined, for γ ∈ [0, 1], by12

M(p, γ) = 1 −
∞∑

n=1

(1 − γ)nPp(|C(0, 0)| = n). (12.5)

Critical exponents analogous to those in Section 9.1 can also be defined
for oriented percolation. In particular, writing c to denote a positive constant
whose value is unimportant and may change from line to line, the following
power laws are believed to hold:

χ(p) ∼ c(pc − p)−γ as p → p−c , (12.6)

M(pc, γ) ∼ cγ1/δ as γ → 0, (12.7)

θ(p) ∼ c(p − pc)
β as p → p+

c , (12.8)

Ep(|C(0, 0)|m+1)

Ep(|C(0, 0)|m)
∼ c(pc − p)−∆ as p → p−c , for m = 1, 2, . . ., (12.9)

for some amplitudes c and universal critical exponents γ, δ, β, ∆.
It was first predicted in [172] that the upper critical dimension for perco-

lation is d = 4, or, to emphasize the additional time dimension, d+1 = 4+1.
This is now a theorem, as the hyperscaling inequalities of [180] show that the
upper critical dimension is not less than 4 + 1, and the results below show it
is not greater than 4 + 1.

12.2 The Infrared Bound and the Triangle Condition

The infrared bound and the triangle condition play important roles for the
critical behaviour of oriented percolation, just as they do for ordinary perco-
lation. In this section, we discuss this.

The two-point function τp,n(x) is defined by

τp,n(x) = Pp((0, 0) → (x, n)). (12.10)

When p is understood from the context, we often drop the subscript p, writing
simply τn(x).

By definition,

τ̂p,n(0) =
∑

x

τp,n(x) = Ep|C(0, 0) ∩ (Zd × {n})|. (12.11)

Thus τ̂p,n(0) is equal to the expected number of vertices that the origin is
connected to at time n. This quantity is submuliplicative, in the sense that

τ̂p,m+n(0) ≤ τ̂p,m(0)τ̂p,n(0). (12.12)

12 This γ should not be confused with the critical exponent in (12.6) which is denoted
by the same Greek letter.
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To see this, note that a connection from the origin to (x,m + n) implies the
existence of a vertex (y, m) such that (0, 0) → (y, m) and (y, m) → (x,m+n).
These two events are independent—this is the Markov property of oriented
percolation—so

τp,m+n(x) ≤
∑

y

τp,m(y)τp,n(x − y), (12.13)

and the desired inequality follows by summation over x. It then follows from
(12.12) that the limit

log r(p) = − lim
n→∞

1

n
log τ̂p,n(0) (12.14)

exists. By the monotonicity of τ̂p,n(0) in p, r(p) is non-increasing in p. Various
arguments lead to the conclusion that r(p) is finite and positive for p ≤ pc,
with r(pc) = 1 (see [167, 12]).

We define a generating function

t̂p(k, z) =

∞∑

n=0

τ̂p,n(k)zn, (12.15)

which has radius of convergence r(p) when k = 0, by definition of r(p). This
is a Fourier–Laplace transform of the two-point function. The infrared bound
is an upper bound on |t̂p(k, z)|, given in the following theorem of Nguyen and
Yang [167]. The form of the infrared bound can be predicted by comparison
with the random walk analogue of (12.15), which is

∞∑

n=0

D̂(k)nzn =
1

1 − zD̂(k)
=

1

[1 − D̂(k)] + (1 − z)D̂(k)
, (12.16)

with D given by (1.10). The first term in the denominator is quadratic in k, for
small k, while the second is linear in 1− z. If we take z = eiθ with θ ∈ [−π, π],
an upper bound on the absolute value of (12.16) is const [|k|2 + |θ|]−1.

Theorem 12.1. There exist d0 and L0 such that the following statement holds
for the nearest-neighbour model in dimensions d ≥ d0 and for the spread-out
model in dimensions d > 4 for L ≥ L0. Let p ∈ (0, pc], k ∈ [−π, π]d, z ∈ C
with |z| < r(p). Then

|t̂p(k, z)| ≤ C1

|k|2 + |r(p) − z| , (12.17)

where C1 is a constant that may depend on d and L.

In particular, for p < pc and z = eiθ, the denominator of the infrared
bound can be replaced by |k|2 + |θ| in an upper bound. The linear term |θ|,
which is a symptom of the orientation in the direction of increasing time, will
have an impact on the upper critical dimension.
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The proof of Theorem 12.1 uses the lace expansion discussed below in
Section 13.2, with a convergence proof based on the bootstrap Lemma 5.9.
An important consequence is an oriented percolation version of the triangle
condition, which we discuss next.

The derivation of differential inequalities involving the triangle condition
was given in [20] in a very general setting that allows for oriented bonds, and
the results of Section 9 have counterparts also for oriented percolation. In
brief, an appropriate statement of the triangle condition implies existence of
the critical exponents γ, δ, β, ∆, in the sense of ≃, with the mean-field values
γ = β = 1 and δ = ∆ = 2. The form of the triangle condition is modified by
the orientation, as follows.

Let

∇p(x, n) =
∑

(y,l)

∑

(w,m)

τp,l(y)τp,m−l(w − y)τp,m−n(w − x). (12.18)

Using |(x, n)| to denote the Euclidean norm of (x, n) in Zd+1, the triangle
condition is the statement that

lim
R→∞

sup{∇pc(x, n) : |(x, n)| ≥ R} = 0. (12.19)

Exercise 12.2. Complete the following outline to prove that the triangle con-
dition follows from (12.17), when d > 4. Consider p < pc and take z = eiθ.
Show that (12.18) can be rewritten as

∇p(x, n) =

∫ π

−π

dθ

2π

∫

[−π,π]d

ddk

(2π)d
t̂p(k, eiθ)2t̂p(k, e−iθ)e−ik·xe−iθn. (12.20)

The infrared bound implies that

|t̂p(k, e±iθ)| ≤ c

|k|2 + |θ| . (12.21)

Conclude from the Riemann–Lebesgue lemma that the triangle condition
holds if d > 4.

In [167], Nguyen and Yang used the generating function methods of [97]
to extend their results to obtain certain statements in terms of asymptotic
formulas, instead of upper and lower bounds with different constants. For the
important particular case p = pc, and for the spread-out model, the following
theorem from [121] extends the results of [167] (for results when p < pc, see
[167]). The theorem is proved using the general inductive approach to the lace
expansion [120]. Versions of parts (a) and (b) of the theorem are proved in
[167], with weaker error estimates, and also for the nearest-neighbour model
for d ≥ d0.

Theorem 12.3. Consider the spread-out model of oriented percolation. Let
d > 4, p = pc, and δ ∈ (0, 1 ∧ d−4

2 ). There is an L0 = L0(d) such that
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for L ≥ L0 there exist positive constants v and A (depending on d and L),
and C1, C2 (depending only on d), such that the following statements hold as
n → ∞:
(a)

τ̂pc,n(k/
√

vn) = Ae−|k|2/2d[1 + O(|k|2n−δ) + O(n−(d−4)/2)], (12.22)

(b)
1

τ̂pc,n(0)

∑

x

|x|2τpc,n(x) = vn[1 + O(n−δ)], (12.23)

(c)
C1L

−dn−d/2 ≤ sup
x∈Zd

τpc,n(x) ≤ C2L
−dn−d/2, (12.24)

with the error estimate in (a) uniform in k ∈ Rd with |k|2(log n)−1 sufficiently
small.

Theorem 12.3 is the r = 2 case of a family of results which give the
asymptotics of the critical oriented percolation r-point functions for all r ≥ 2.
The r-point functions for r ≥ 3 will be discussed in Section 17.3.

Theorem 12.3(a) shows that the expected number of particles τ̂n(0) to
which the origin is connected at time n converges to a nonzero finite constant
A as n → ∞, when p = pc. In contrast, for p < pc in general dimensions,
τ̂n(0) decays exponentially to zero, while for p > pc the limit is infinite. (See
[22, 86] for the relevant shape theorem when p > pc.)

Theorem 12.3(b) shows that at pc the length scale at time n is of order
n1/2.

The bounds of Theorem 12.3(c) are consistent with a local central limit
theorem. A version of the local central limit theorem similar to Theorem 6.5
applies also to oriented percolation [120, 121].

An extension of Theorem 12.3 to dimensions d ≤ 4 is discussed below
Theorem 14.3, for the case of an oriented percolation model whose range L is
unbounded.

Exercise 12.4. Complete the following outline to derive the triangle condi-
tion from Theorem 12.3(a, c).
(a) Argue that if |(x, n)| ≥ R in (12.18), then the summation index m can be
taken to be at least a multiple of R in the sum in (12.18). Thus it suffices to
prove that

lim
R→∞

∑

(y,l)

∑

(w,m):m≥cR

τpc,l(y)τpc,m−l(w − y)τpc,m−n(w − x) = 0. (12.25)

(b) Obtain this sufficient condition by considering separately the contributions
to the sum due to l ≤ m/2 and l > m/2. Use ‖τpc,n‖1 ≤ O(1) and ‖τpc,n‖∞ ≤
O(n−d/2), noting that the latter is most effectively applied when n is large.
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12.3 The Critical Value

It was observed in [167] that the estimates of [166] imply that the critical
value for nearest-neighbour oriented percolation is given asymptotically as

pc =
1

2d
+ O

(
1

(2d)2

)
. (12.26)

Other methods [57] have produced the stronger result that

d−1 +
1

2
d−3 + o(d−3) ≤ pc ≤ d−1 + d−3 + O(d−4), (12.27)

for a version of oriented percolation in which the forward degree of a vertex
is d rather than 2d. For the spread-out model, it is shown in [121] that pc =
|Ω|−1 + O(|Ω|−2) when d > 4, and this is improved in [118].13

12.4 The Incipient Infinite Cluster

The incipient infinite cluster for ordinary percolation was discussed in Sec-
tion 11.3. In this section, we state existence results for the IIC for spread-out
oriented percolation in dimensions d > 4, and indicate some properties of the
IIC.

We write F for the σ-algebra of events, and denote the algebra of cylinder
events (those determined by the occupation status of a finite set of bonds) by
F0. Then F is the σ-algebra generated by F0. The following are four possible
definitions of the IIC. In each definition, we assume initially that E ∈ F0.

1. Define Pn by

Pn(E) =
1

τ̂n(0)

∑

x∈Zd

P(E ∩ {(0, 0) → (x, n)}), (12.28)

and, assuming the limit exists, define P∞ by setting

P∞(E) = lim
n→∞

Pn(E). (12.29)

2. Let Sn = {∃x ∈ Zd such that (0, 0) → (x, n)} denote the event that the
cluster of the origin survives to time n. Define Qn by

Qn(E) = P(E|Sn), (12.30)

and, assuming the limit exists, define Q∞ by setting

Q∞(E) = lim
n→∞

Qn(E). (12.31)

13 Note that pc in [118] is |Ω| times our pc.
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3. Fix any x ∈ Zd, define P
(x)
n by

P(x)
n (E) = P(E|{(0, 0) → (x, n)}), (12.32)

and, assuming the limit exists, define P
(x)
∞ by

P(x)
∞ (E) = lim

n→∞
P(x)

n (E). (12.33)

4. For p < pc, let

Kp(E) =
1

χ(p)

∑

x∈Zd

∞∑

n=0

Pp(E ∩ {(0, 0) → (x, n)}), (12.34)

and, assuming the limit exists, define K∞ by

K∞(E) = lim
p→p−

c

Kp(E). (12.35)

It is natural to conjecture that the above limits exist in all dimensions, and
that, moreover, for all x,

P∞ = Q∞ = P(x)
∞ = K∞. (12.36)

The following theorem shows that for sufficiently spread-out oriented per-
colation in dimensions d > 4, the limits P∞ and K∞ exist and are equal. In
addition, Q∞ exists and equals P∞ = K∞ provided we also assume that the
critical survival probability

θn = P(Sn) (12.37)

obeys

θn ∼ 1

Bn
(12.38)

for some positive constant B. It is a classical fact that the probability that a
critical branching process survives for at least n generations is asymptotically
a constant multiple of n−1, and (12.38) assumes that this mean-field behaviour
applies also to oriented percolation when d > 4. Although there is currently
no proof of (12.38), an attempt to prove it is in progress [111, 112] using a
point-to-plane expansion rather than the usual point-to-point expansion. The

theorem does not make any statement about the limit P(x)
∞ .

Theorem 12.5. Let d + 1 > 4 + 1 and p = pc. There is an L0 = L0(d) such
that for L ≥ L0, the limits P∞ and K∞ exist and are equal for every cylinder
event E ∈ F0. If we also assume (12.38), then the limit Q∞ exists and equals
P∞ = K∞. Moreover, the limit P∞ (and hence also Q∞ and K∞) extends
to a probability measure on the σ-algebra F , and the origin is almost surely
connected to infinity under P∞.
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The proof of Theorem 12.5 can be found in [114], except for the statement
concerning K∞, which is proved in [115]. The proof is based on an extension
of the expansion methods discussed in Section 13.

Next, we discuss some properties of the IIC measure P∞, which are proved
in [114]. The Hausdorff dimension of the connected cluster of the origin under
the IIC is predicted to equal 4 almost surely, for d + 1 > 4 + 1. The following
theorem provides a weaker statement indicating a 4-dimensional aspect to the
IIC.

Theorem 12.6. Let d + 1 > 4 + 1 and p = pc. There exists L0 = L0(d) such
that for L ≥ L0,

E∞
[∣∣{(y,m) ∈ C(0, 0) : |y| ≤ R}

∣∣] ≃ R4, (12.39)

where the expectation is with respect to the IIC measure P∞, and the absolute
value signs represent cardinality of the set.

Let
Nm =

∣∣{y ∈ Zd : (0, 0) ↔ (y,m)}
∣∣ (12.40)

denote the number of vertices at time m to which the origin is connected. The
following theorems give the limiting distribution of Nm under P∞ and Qm.
The constants A and B in the theorems are the constants of Theorem 12.3(a)
and (12.38), while the constant V is the vertex factor which appears in the
scaling limit of the 3-point function (see Theorem 17.5 below). Also, we recall
that a size-biased exponential random variable with parameter λ has density

f(x) = λ2xe−λx (x ≥ 0). (12.41)

Theorem 12.7. (a) Let d + 1 > 4 + 1 and p = pc. There is an L0 = L0(d)
such that for L ≥ L0 and for l = 1, 2, . . .,

lim
m→∞

E∞
[(Nm

m

)l]
=

(A2V

2

)l

(l + 1)!. (12.42)

Consequently, under P∞, m−1Nm converges weakly to a size-biased exponen-
tial random variable with parameter λ = 2/(A2V ).
(b) Assume in addition that (12.38) holds. Then B = AV/2, and for l =
1, 2, . . .,

lim
m→∞

EQm

[(Nm

m

)l]
=

(A2V

2

)l

l!. (12.43)

Consequently, under Qm, m−1Nm converges weakly to an exponential random
variable with parameter λ = 2/(A2V ).

Exercise 12.8. Show that (12.42) and (12.43) imply the weak convergence
statements made in Theorem 12.7.
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Under the assumption that (12.38) holds, it follows from Theorems 12.7
that m−1Nm converges to a size-biased exponential random variable under
Q∞ = P∞, and to an exponential random variable under Qm. This is similar
to the situation for critical branching processes, for which the size-biased ex-
ponential distribution occurs when the branching random walk is conditioned
to survive to infinite time, and the exponential distribution occurs when the
branching random walk is conditioned to survive until time m.

The IIC r-point functions and the scaling limit of the IIC will be discussed
in Section 17.3. Exercise 17.6 concerns the proof of Theorem 12.7(a).

13 Expansions for Oriented Percolation

The expansion of Section 10.1 applies directly to oriented percolation, and is
sometimes the expansion of choice for oriented percolation [121]. The trans-
lation of the expansion of Section 10.1 to the oriented setting is described in
Section 13.3.

However, it is also possible to exploit the Markov property of oriented
percolation to give alternate, simpler versions of the expansion. A derivation
using laces and resummation, first carried out by Nguyen and Yang [166,
208], is described in Section 13.2. Later, a particularly simple derivation of
the expansion, based on inclusion-exclusion, was given by Sakai [179]. Sakai’s
method is described in Section 13.1.

Each expansion gives rise to a recursion equation

τn(x) = (p|Ω|D ∗ τn−1)(x) +

n−1∑

m=2

(πm ∗ p|Ω|D ∗ τn−1−m)(x) + πn(x), (13.1)

valid for n ≥ 1. The empty sum is zero for n ≤ 2, and substituting n = 1
shows that π1(x) = 0. The function D is given by (1.10). The identity (13.1)
can be used as a recursive definition of πm(x), by isolating the term πn(x) on
the right hand side and noting that this expresses it in terms of the two-point
function and πm with m < n. Therefore, πn(x) is uniquely determined by
(13.1). It follows that all methods for deriving (13.1) must yield exactly the
same quantities πm(x).

On the other hand, there are differences between the representations for
πm(x) that are produced by the different expansion methods. Each method
gives a representation of π as an alternating sum of terms π(N). For the perco-
lation expansion of Section 10.1 applied to oriented percolation, the individual
terms π(N) in the sum are again given by nested expansions as in (10.28). On
the other hand, the other two expansions each produce identical representa-
tions for π(N) by a single expectation, which is conceptually simpler. In all
cases, the diagrammatic estimates for π(N) are ultimately very similar, and
these are briefly discussed in Section 13.5.
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13.1 Inclusion-Exclusion

In this section, we derive the expansion (13.1) using the method of Sakai [179].
We write {(x, n) ⇒ (y, m)} to denote the event that there are at least two

bond-disjoint connections from (x, n) to (y, m), or that (x, n) = (y,m). As in
Definition 9.13(c), given a bond b we define C̃b(x, n) to be the random set of
vertices to which (x, n) remains connected after the bond b is made vacant.

As in (10.8), the first step of the expansion is to partition the event
{(0, 0) → (x, n)} according to whether or not there is a double connection.
This gives

τn(x) = P((0, 0) ⇒ (x, n)) + P((0, 0) → (x, n), (0, 0)⇒/ (x, n)). (13.2)

In the last term, there must be an occupied pivotal bond for the connection,
and hence a first such bond. Given a bond b = {(u, n), (v, n + 1)}, let b̄ =
(v, n + 1) be the “top” of b, and b = (u, n) be the “bottom” of b. Partitioning
according to the first pivotal bond gives

P((0, 0) → (x, n), (0, 0)⇒/ (x, n))

=
∑

b1

P((0, 0) ⇒ b1 → b̄1 → (x, n), (x, n) 6∈ C̃b1(0, 0)), (13.3)

where the condition (x, n) 6∈ C̃b1(0, 0) ensures that b1 is pivotal. We use
inclusion-exclusion for this condition, and then the Markov property, to ob-
tain

P((0, 0) ⇒ b1 → b̄1 → (x, n), (x, n) 6∈ C̃b1(0, 0))

= P((0, 0) ⇒ b1 → b̄1 → (x, n))

− P((0, 0) ⇒ b1 → b̄1 → (x, n), (x, n) ∈ C̃b1(0, 0))

= P((0, 0) ⇒ b1)pP(b̄1 → (x, n))

− P((0, 0) ⇒ b1 → b̄1 → (x, n), (x, n) ∈ C̃b1(0, 0)). (13.4)

To rewrite (13.4), we define

π(0)
m (x) = Pp((0, 0) ⇒ (x,m)) − δ0,xδ0,m, (13.5)

and note that π
(0)
0 (x) = π

(0)
1 (x) = 0 by definition. For n ≥ 1, the combination

of (13.2)–(13.4) can be written as

τn(x) = π(0)
n (x) + (p|Ω|D ∗ τn−1)(x) +

n−1∑

m=2

(π(0)
m ∗ p|Ω|D ∗ τn−1−m)(x)

−
∑

b1

P((0, 0) ⇒ b1 → b̄1 → (x, n), (x, n) ∈ C̃b1(0, 0)). (13.6)
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Note that if the last line of (13.6) is ignored, this is (13.1) with π replaced by
π(0).

The expansion continues with the last term of (13.6). To understand this
term, the concept of backbone is useful. Given a configuration in which b̄1

is connected to (x, n), the backbone is defined to consist of the vertices on
occupied paths from b̄1 to (x, n) (including b̄1 and (x, n)). The event {(x, n) ∈
C̃b1(0, 0)} is equivalent to the existence of a vertex (y,m) ∈ C̃b1(0, 0) in the
backbone. An important event is that all such vertices occur after any pivotal
bonds for b̄1 → (x, n). This motivates the following definition.

Given a bond b, a vertex (x, n), and a random or deterministic set A of
vertices, let E(b, (x, n);A) denote the event that:

• b is occupied, and
• there exists a vertex (y, m) ∈ A such that b̄ → (y, m) → (x, n), and
• there is no pivotal bond b′ for the connection from b̄ to (x, n) such that

the backbone joining b̄ to b′ contains a vertex of A.

This event plays a key role in the development of the expansion. We write
b̄ < b̄′ to mean that the temporal component of b̄ is less than that of b̄′, and,
similarly, we write b̄ < n when the temporal component of b̄ is less than n.

Exercise 13.1. Let w ∈ Zd, and suppose that l < b̄ ≤ n. Show that the above
event is related to the event of (10.11) by

E(b, (x, n); C̃b(w, l)) = {b is occupied} ∩ E′(b̄, (x, n); C̃b(w, l)), (13.7)

where here the event C̃b(w, l) belongs to the same probability space as the
events E and E′ (i.e., there is a single percolation model and not multiple
models as in Section 10.1).

Lemma 13.2. Let b be a bond, let F be an event that depends only on bonds
(u, j) with j ≤ b, let (v, k) be a vertex with k ≤ b, let (x, n) be a vertex
with b̄ ≤ n, and, given any vertex (y, m) with b̄ ≤ m, let F(y,m) = F ∩
E(b, (y,m); C̃b(v, k)). Then

P
(
F ∩ {b → b̄ → (x, n)} ∩ {(x, n) ∈ C̃b(v, k)}

)

= P(F(x,n)) +
∑

b′

P(Fb′)pP(b̄′ → (x, n))

−
∑

b′

P
(
Fb′ ∩ {b′ → b̄′ → (x, n)} ∩ {(x, n) ∈ C̃b′(b̄)}

)
. (13.8)

Proof. We partition the event on the left hand side according to the first piv-
otal bond b′ for b̄ → (x, n), if there is one, such that the event E(b̄, b′; C̃b(v, k))
occurs. If there is no such pivotal bond, then the event E(b̄, (x, n); C̃b(v, k))
occurs, producing the first term on the right hand side of (13.8). The remain-
ing contribution is
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∑

b′

P
(
Fb′ ∩ {b′ → b̄′ → (x, n)} ∩ {(x, n) 6∈ C̃b′(b̄)}

)
. (13.9)

After using inclusion-exclusion and then the Markov property on the last event
in (13.9), this gives (13.8).

Note that the summand in the last term on the right hand side of (13.8)
is of the same form as the left hand side, so the identity can be iterated. The
iteration begins with the last term on the right hand side of (13.4), whose
summand is equal to the left hand side of (13.8) with F = {(0, 0) ⇒ b1}.
To record the result of the iteration, we make the following definitions. For
N ≥ 1, let

BN (n) = {~b = (b1, . . . , bN ) : 0 < b̄1 < · · · < b̄N ≤ n} (13.10)

denote the ordered vectors of N bonds, up to time n. Given ~b ∈ BN (n), we
define b̄0 = (0, 0), bN+1 = (x, n). For N ≥ 1, we define

π(N)
m (x) =

∑

~b∈BN (m)

Pp

[
{(0, 0) ⇒ b1} ∩

N⋂

i=1

E(b̄i, bi+1; C̃
bi(b̄i−1))

]
. (13.11)

Also, we define

πm(x) =

∞∑

N=0

(−1)Nπ(N)
m (x), (13.12)

where the apparently infinite sum is actually a finite sum, since the sum in

(13.11) is empty if N > m, in which case π
(N)
m (x) = 0.

The last term of (13.6) is then computed iteratively using Lemma 13.2,
to produce the expansion (13.1). The iteration eventually terminates because
the remainder term in (13.8) will vanish after the number of iterations exceeds
n.

13.2 Laces and Resummation

In this section, we derive the expansion of Nguyen and Yang [166]. This ex-
pansion has been applied also in [167, 121]. The method is closely related to
the lace expansion for lattice trees and lattice animals, and uses the notion of
connected graph and lace from Section 8.1.1.

For t = 0, 1, 2, . . ., we define Wn,t(x) to be the event that (0, 0) → (x, n)
with exactly t occupied pivotal bonds for the connection, and let

τn,t(x) = Pp(Wn,t(x)). (13.13)

By definition, τn(x) =
∑∞

t=0 τn,t(x). We will rewrite τn,t(x) in terms of a re-
pulsive interaction between the sausages in the string of sausages representing
the connection (0, 0) → (x, n) (see Fig. 10.1). When Wn,t(x) occurs, there are
exactly t + 1 sausages.
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Recalling the definition of Bt(n) in (13.10), for t ≥ 1 and ~b ∈ Bt(n) we
define

T (~b, (x, n)) =

t⋂

i=1

{bi occupied}
t⋂

i=0

{b̄i ⇒ bi+1}. (13.14)

Note that if T (~b, (x, n)) occurs, then the only possible candidates for occupied

pivotal bonds for the event (0, 0) → (x, n) are the elements of ~b (but these
candidates need not be pivotal). We define the random variables

K[i, j] =
∏

i≤s<t≤j

(1 + Ust) with Uij = −I[b̄i ⇒ bj+1]. (13.15)

The product in (13.15) is 0 or 1. The event that both T (~b, (x, n)) occurs and
K[0, t] = 1 is the event that the occupied pivotal bonds for (0, 0) → (x, n) are

precisely the elements of ~b. Therefore, for t ≥ 1,

τn,t(x) =
∑

~b∈Bt(n)

Ep[I[T (~b, (x, n))]K[0, t]]. (13.16)

Using the terminology of graphs and connected graphs defined in Sec-
tion 8.1.1, we have

K[a, b] =
∑

Γ∈B[a,b]

∏

ij∈Γ

Uij , (13.17)

with K[a, a] = 1. Let

J [a, b] =
∑

Γ∈G[a,b]

∏

ij∈Γ

Uij . (13.18)

These are related by (8.6), which states that for t ≥ 1,

K[0, t] = K[1, t] +

t−1∑

s=1

J [0, s]K[s + 1, t] + J [0, t], (13.19)

where the empty sum is zero if t = 1. Let

πm,0(x) = Pp((0, 0) ⇒ (x,m)) − δ0,xδ0,m, (13.20)

πm,s(x) =
∑

~b∈Bs(m)

Ep

[
I[T (~b, (x,m))]J [0, s]

]
(s ≥ 1). (13.21)

It can be seen from the above definitions that πm,0(x) = τm,0(x) if m > 0,
and that πm,s(x) = 0 whenever m = 0, 1 or s > m. Let

πm(x) =

∞∑

s=0

πm,s(x) =

m∑

s=0

πm,s(x). (13.22)

Substitution of (13.19) into (13.16), followed by application of the Markov
property, then gives the recursion formula
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τn,t(x) = (p|Ω|D ∗ τn−1,t−1)(x) +

n−1∑

m=2

t−1∑

s=0

(πm,s ∗ p|Ω|D ∗ τn−1−m,t−1−s)(x)

+ πn,t(x), (13.23)

valid for all n, t ≥ 1. Summation of (13.23) over t ≥ 1, and using πn,0(x) =
τn,0(x) for n ≥ 1, then gives

τn(x) = (p|Ω|D ∗ τn−1)(x) +

n−1∑

m=2

(πm ∗ p|Ω|D ∗ τn−1−m)(x) + πn(x) (13.24)

for n ≥ 1. The identity (13.24) is identical to (13.1).
To obtain a useful representation for πm(x), we rewrite πm,s(x) in terms

of laces. Insertion of (8.5) into (13.21) leads to

πm,s(x) =

∞∑

N=0

(−1)Nπ(N)
m,s(x), (13.25)

with π
(0)
m,s(x) = πm,0(x)δ0,s, and, for N ≥ 1,

π(N)
m,s(x) =

∑

~b∈Bs(m)

Ep

[
I[T (~b, (x,m))]

×
∑

L∈L(N)[0,s]

∏

ij∈L

(−Uij)
∏

i′j′∈C(L)

(1 + Ui′j′)
]

(13.26)

(the right hand side is interpreted as 0 when s = 0). The product
∏

ij∈L(−Uij)

is either 0 or 1, so π
(N)
m,s(x) ≥ 0. The above gives the decomposition

πm(x) =

∞∑

N=0

(−1)Nπ(N)
m (x) with π(N)

m (x) =

∞∑

s=0

π(N)
m,s(x). (13.27)

With some effort, it can be seen that π
(N)
m of (13.26)–(13.27) is the same as

π
(N)
m of (13.11).

13.3 Application of the Percolation Expansion

Recall that the expansion

τ(0, y) = δ0,y+(p|Ω|D∗τ)(0, y)+(ΠM ∗p|Ω|D∗τ)(0, y)+ΠM (0, y)+RM (0, y),
(13.28)

of (13.28), with ΠM and RM given by (10.28)–(10.29), applies to an arbitrary
regular graph. In the derivation of (13.28), bonds were not directed. However,
the modifications due to orientation are simply notational, as we now explain.
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For oriented percolation on Zd × Z+, the variables 0 and y in (13.28)
now correspond to space-time vertices (0, 0) and (x, n) (say). The convolution
in (13.28) is a convolution on Zd × Z+, and thus involves both spatial and
temporal convolution.

The left hand side of (13.28) is simply the two-point function τn(x). We
assume that n ≥ 1, so the Kronecker delta on the right hand side of (13.28) is
zero. In an abuse of notation, the function D in (13.28), which is a function
on pairs ((u, j), (v, j +1)), will be also written as D(v−u). Thus, noting that
the factor D consumes exactly one unit of time, the first convolution term in
(13.28) can be written as the spatial convolution

p|Ω|(D ∗ τn−1)(x). (13.29)

All connections in oriented percolation between distinct vertices involve
a positive time difference between those vertices. In the definition of the re-
mainder term RM ((0, 0), (x, n)) in (10.29), there is a sum over oriented bonds
((ui,m), (vi,m + 1)), and the time associated with vi cannot be more than
the time associated with ui+1, since events in (10.29) require connections from
the former to the latter. The overall summation in (10.29) is therefore empty
when M > n. The same is true for Π(N) for N > m, and we may simply take
M = ∞ in (13.28), and drop the remainder term. Writing π = ΠM=∞, we
then have

(ΠM ∗ p|Ω|D ∗ τ)(0, y) + ΠM (0, y) =

∞∑

m=2

(πm ∗ p|Ω|D ∗ τn−m−1)(x) + πn(x)

(13.30)
(convolutions on the left are space-time and on the right space only). Thus
(13.28) becomes (13.1).

The representations for Π(N) and π(N) are quite different and there is no
apparent reason to expect them to be equal, even though their alternating
sums must agree.

13.4 The Upper Critical Dimension

It is interesting to reinterpret for oriented percolation the explanation of the
upper critical dimension given at the end of Section 10.1 for ordinary perco-

lation. For oriented percolation, the approximation in which τ C̃{u,v}(0)(v, x)
is replaced by by τ(v, x) is a good approximation when the backbone join-
ing v and x typically does not have a space-time intersection with the clus-
ter C̃{u,v}(0). Assuming Gaussian scaling limits, the backbone corresponds
to a Brownian path, whereas the cluster C̃{u,v}(0) corresponds to a super-
Brownian cluster (see Section 17.3). The upper critical dimension can then
be understood as the dimension above which the graphs of Brownian motion
and super-Brownian motion do not intersect.

Intersection of the graphs implies a collision of the two processes at the
same time. It is known that d = 4 is critical for such a collision [19]. This can
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be understood heuristically by the following very rough argument. We first
assume that since both processes are moving randomly it is reasonable to treat
one of them as being stationary (this is a leap of faith). Regarding the super-
Brownian motion as stationary, its support at fixed time is 2-dimensional. The
Brownian path, which is two-dimensional, will generically not hit this support
in dimensions greater than 4 = 2 + 2. Alternately, if we regard the Brownian
motion as being fixed, then its support is a point, hence 0-dimensional. The
4-dimensional range of super-Brownian motion will generically not hit this
point in dimensions above 4 = 4+0. Either way, this points to 4 as the upper
critical dimension.

13.5 Diagrams for Oriented Percolation

If the representation for πm of Section 13.3 is used, then πm is bounded
by diagrams precisely as in Section 10.2, with the understanding that now
the two-point function is that of oriented percolation rather than ordinary
percolation. These oriented percolation diagrams can then be estimated using
the method of Section 10.3, for example, taking into account the orientation.
There are different possibilities for how to proceed with this, and detailed
estimates can be found in [119, 121, 166, 179].

It is worth noting that the representations for πm of Section 13.1 and
13.2 can be estimated by diagrams that, although similar, are simpler than
the ordinary percolation diagrams of Section 10.2. For example, consider

π
(1)
m (x) of (13.11). It can be concluded from the definition of the event

E((b̄1, (x,m); C̃b1(0)) that the event

{(0, 0) ⇒ b1} ∩ E((b̄1, (x,m); C̃b1(0)) (13.31)

is a subset of the event that there exists a vertex (z, l) and such that the
following connections occur disjointly: (0, 0) → (z, l), (z, l) → b1, (0, 0) → b1,

b1 → (x, n), and (z, l) → (x, n). Therefore π
(1)
m (x) is bounded above by the left

diagram in Fig. 13.1. It can similarly be concluded that π
(2)
m (x) is bounded by

the diagrams shown in Fig. 13.1, and this can be extended in a straightforward

manner to obtain diagrams bounding π
(N)
m (x) for larger values of N .

14 The Contact Process

The contact process is a much-studied model of the spread of infection, first
introduced in [107]. For an introduction, see the books [153, 154]. In this
section, we survey results that have been obtained for the critical behaviour
of the contact process above its upper critical dimension d = 4.
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N = 1

(0, 0)

(x, m)
N = 2

(0, 0)

(x, m)

(0, 0)

(x, m)

Fig. 13.1. Diagrams bounding π
(1)
m (x) and π

(2)
m (x).

14.1 The Phase Transition

The contact process is a continuous-time Markov process with state space

{0, 1}Zd

, with d ≥ 1. In particular, the state of the contact process is deter-
mined by a variable ξx ∈ {0, 1}, for each vertex x ∈ Zd. When ξx = 0, then x
is considered “healthy,” and when ξx = 1, then x is considered “infected.” In-
fected particles spontaneously become healthy at rate 1, and healthy particles
become infected at a rate proportional to their number of infected neighbours,
i.e., at a rate λ

∑
y∈Ω ξx+y, where we will assume that Ω is given either by

(1.1) or (1.2).
The contact process has the convenient graphical representation depicted

in Fig. 14.1. In the graphical representation, to each vertex there is associated
a Poisson process of rate 1 called the recovery process, and to each directed
bond (x, y) (with y − x ∈ Ω) there is associated a Poisson process of rate λ
called the infection process. All the Poisson processes are independent. Re-
covery marks are placed on the times lines of each vertex according to the
recovery process at that vertex. Infection arrows are drawn from x to y at the
times of the infection process associated to (x, y). As time proceeds, an in-
fected particle at x becomes healthy at the recovery marks (nothing happens
to a healthy particle at these times), and an infection arrow (x, y) causes y
to become infected if x is infected. Thus, starting with an infected particle,
infection proceeds along directed paths from that particle which follow time
lines in the direction of increasing time, which do not cross recovery marks,
and which follow infection arrows in the direction of the arrow.

We are interested in the situation in which at time zero there is a single
infected particle at the origin and all other particles are healthy. The main
question asks whether there is a positive probability that the infection sur-
vives for all time, or whether instead all particles are eventually healthy with
probability one. The basic fact is that there is a critical value λc ∈ (0,∞) such
that the infection dies out with probability one if λ < λc but has a positive
probability of survival if λ > λc. A theorem of Bezuidenhout and Grimmett
[22] (see also [86] for the spread-out model) states that the infection dies out
with probability one at the critical value λ = λc.
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Fig. 14.1. The graphical representation of the contact process on Z1, with a single
infected particle at time 0. Time increases in the upward direction.

The phase transition can be studied in terms of several functions familiar
from percolation. Let Ct denote the set of infected particles at time t. The
two-point function is defined by

τλ,t(x) = Pλ(x ∈ Ct), (14.1)

for x ∈ Zd and t ≥ 0. The susceptibility is defined by

χ(λ) =

∫ ∞

0

dtτ̂λ,t(0) = Eλ

∫ ∞

0

dt|Ct| = Eλ‖C‖, (14.2)

where ‖C‖ =
∫ ∞
0

dt|Ct| is the total Lebesgue measure of all infection intervals
on all time lines. The spread probability is defined by

θ(λ) = Pλ(Ct 6= ∅, ∀t ≥ 0) = Pλ(‖C‖ = ∞). (14.3)

It is known [23] that the critical point has the dual characterization

λc = sup{λ : χ(λ) < ∞} = inf{λ : θ(λ) > 0}. (14.4)

The magnetization is defined by

Mλ(h) = 1 − Eλ

(
e−h‖C‖

)
. (14.5)

Critical exponents are defined, as usual, by

χ(λ) ∼ c(λc − λ)−γ as λ → λ−
c , (14.6)

Mλc(h) ∼ ch1/δ as h → 0, (14.7)

θ(λ) ∼ c(λ − λc)
β as λ → λ+

c . (14.8)
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The critical exponents are predicted to be universal, and it is an important
problem to prove that they exist and to calculate their values. The mean-field
values, corresponding to the contact process on a regular tree or to branching
random walk, are γ = β = 1 and δ = 2. The mean-field bounds

χ(λ) ≥ c(λc − λ)−1, (14.9)

Mλc(h) ≥ ch1/2, (14.10)

θ(λ) ≥ c(λ − λc) (14.11)

are proved in [23] (for β and δ) and in [21] (for γ), for all d ≥ 1. The hyper-
scaling inequalities proved in [180] imply that the upper critical dimension for
the contact process is at least 4, in the sense that not all critical exponents
can assume their mean-field values in dimensions less than 4 (assuming the
exponents exist).

14.2 Approximation by Oriented Percolation

The contact process can be approximated by an oriented percolation model.
This observation has been an important ingredient in the work of many au-
thors, including [21, 23, 117, 119, 179].

To discretize time, we replace the time interval [0,∞) by ǫZ+, and define
an oriented percolation model on Zd × ǫZ+, as follows. Bonds have the form
((x, t), (y, t + ǫ)) with t ∈ ǫZ+ and y − x ∈ {0} ∪ Ω. A bond is occupied
with probability 1 − ǫ if x = y, and with probability ǫλ if y − x ∈ Ω. Bonds
with x = y are called temporal and bonds with x 6= y are called spatial. See
Fig. 14.2.

Let Pǫ
λ denote the probability measure for the oriented percolation model

on Zd × ǫZ+. Then Pǫ
λ converges14 weakly as ǫ → 0+ to the contact process

measure Pλ (when formulated appropriately), and the critical value λǫ
c of the

discretized model converges to the critical value λc of the contact process (see
[23, 179]).

This provides an avenue for analyzing the contact process by first analyzing
an oriented percolation model on Zd × ǫZ+ and then taking the limit ǫ → 0+.
In particular, the expansions of Section 13 for oriented percolation can be
applied to the discretized model.

14.3 The Infrared Bound and the Triangle Condition

Let

τ̂λ(k, θ) =
∑

x∈Zd

∫ ∞

0

dtτλ,t(x)eik·xeiθt, (14.12)

for k ∈ [−π, π]d and θ ∈ [−π, π]. This is analogous to (12.15) with z = eiθ. The
following infrared bound was proved in [179]. The proof uses discretization by

14 Fig. 14.1 is in fact a simulation of Pǫ
λ with small ǫ.
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Fig. 14.2. Approximation of the contact process by oriented percolation on Z1×Z+.

oriented percolation, the oriented percolation expansion of Section 13.1, and
a convergence proof based on the bootstrap Lemma 5.9.

Theorem 14.1. There exist d0 ≫ 4 and L0(d) ≫ 1 such that for the nearest-
neighbour contact process in dimensions d ≥ d0 or for the spread-out contact
process in dimensions d > 4 with L ≥ L0(d), there is a constant C (depending
on d and L) such that the infrared bound

|τ̂λ(k, θ)| ≤ C

|k|2 + |θ| (14.13)

holds uniformly in λ < λc, k ∈ [−π, π]d and θ ∈ [−π, π].

The infrared bound implies the triangle condition for the contact process.
To state the triangle condition, we define

∇λ(R) = sup
x:|x|≥R,t≥0

∑

y,z

∫ ∞

0

ds1

∫ ∞

0

ds2τλ,s1(y)τλ,s2−s1(z − y)τλ,s2−t(z − x).

(14.14)
The triangle condition is the statement that

lim
R→∞

∇λc(R) = 0, (14.15)

and it is proved in [21] that if the triangle condition holds then the expo-
nents γ, β, δ exist and take their mean-field values, in the sense that there are
upper bounds (with different constants) complementary to the lower bounds
(14.9)–(14.11). As in Exercise 12.2, if d > 4 then the infrared bound (14.13)
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implies the triangle condition. Therefore, under the high-d hypotheses of The-
orem 14.1, the critical exponents γ, β, δ exist (in the sense of ≃) and take the
mean-field values γ = β = 1 and δ = 2.

For the spread-out model, this was extended in [119] to prove the following
theorem. The proof makes use of the induction method of [120], adapted to
incorporate uniformity in the discretization parameter ǫ.

Theorem 14.2. Consider the spread-out model of the contact process. Let
d > 4, λ = λc and δ ∈ (0, 1 ∧ d−4

2 ). There is an L0 = L0(d) such that for
L ≥ L0 there exist finite positive constants v and A (depending on d and L)
and C1, C2 (depending only on d) such that the following statements hold as
t → ∞:
(a)

τ̂λc,t(k/
√

vt) = Ae−|k|2/2d
[
1 + O(|k|2t−δ) + O(t−(d−4)/2)

]
, (14.16)

(b)
1

τ̂λc,t(0)

∑

x∈Zd

|x|2τλc,t(x) = vt
[
1 + O(t−δ)

]
, (14.17)

(c)
C1L

−dt−d/2 ≤ sup
x∈Zd

τλc,t(x) ≤ e−t + C2L
−dt−d/2, (14.18)

with the error estimate in (a) uniform in k ∈ Rd with |k|2/ log t sufficiently
small.

An extension of Theorem 14.2 to r-point functions for all r ≥ 2, due to
[117], is discussed in Section 17.4.

As is typical when the induction method of [120] is applied, the results of
[119] also include the statements that A = 1+O(L−d), that v = σ2[1+O(L−d)]
where σ2 =

∑
x |x|2D(x) is the variance of D, and that the critical value obeys

λc = |Ω|−1[1 + O(L−d)]. The latter is improved in [118]15 to

λc =
1

|Ω|

[
1 +

1

Ld

∞∑

n=2

U∗n(0) + O(L−(d+1))

]
, (14.19)

where U is the probability density function of a uniform random variable on
[−1, 1]d and U∗n denotes its n-fold convolution. This improves a result of [68],
where (14.19) was obtained with error term o(|Ω|−1) = o(L−d) by completely
different methods. On the other hand, the results of [68] gives estimates for
λc also in dimensions 2 ≤ d ≤ 4.

A related model is studied in [68, 119]. In this model, the infection range
L is assumed to scale as

L = LT = L1T
b, (14.20)

15 Note that pc in [118] is equal to our λc|Ω|.
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where b is a fixed parameter. This model allows for an analysis in dimensions
1 ≤ d ≤ 4, provided b is large enough. The result is consistent with the general
philosophy that the upper critical dimension is lowered when the range of
interaction is suitably increased. The following theorem is proved in [119].

Theorem 14.3. Let 1 ≤ d ≤ 4, b > 4−d
2d , and fix δ ∈ (0, 1 ∧ bd + d−4

2 ). Then
there exist α > 0, L0 ≫ 1, and a critical value λT , such that for λ = λT and
L1 ≥ L0 there exist C1, C2 (depending only on d) such that for all 0 < t ≤
log T , as T → ∞,
(a)

τ̂λT ,T t(k/
√

vT Tt) = e−|k|2/2d
[
1 + O(|k|2(1 + Tt)−δ) + O(T−α)

]
, (14.21)

(b)

1

τ̂λT ,T t(0)

∑

x

|x|2τλT ,T t(x) = vT Tt
[
1 + O((1 + Tt)−δ) + O(T−α)

]
, (14.22)

(c)

C1L
−d
T (1 + Tt)−d/2 ≤ sup

x∈Zd

τλT ,T t(x) ≤ e−Tt + C2L
−d
T (1 + Tt)−d/2, (14.23)

where vT is the variance of the range-LT D. The error estimate in (14.16) is
uniform in k ∈ Rd with |k|2(log(2 + Tt))−1 sufficiently small.

The assumption on b in Theorem 14.3 is

b >
4 − d

2d
=





3/2 if d = 1,
1/2 if d = 2,
1/6 if d = 3,
0 if d = 4.

(14.24)

Related results were obtained in [68] assuming b = 1 in dimensions d ≥ 3. On
the other hand, in [68], for d = 2 the weaker assumption LT = (T log T )1/2 is
required, whereas Theorem 14.3 requires b > 1

2 when d = 2.

To get some idea how the condition b > 4−d
2d arises, consider the following.

A quantity related to the critical triangle diagram (14.14) is

∑

y,z

∫ T log T

0

ds2

∫ s2

0

ds1τs1(y)τs2−s1(z − y)τs2(z), (14.25)

where we consider λ = λT , and where we have taken x = 0 and cut off the
integral at the maximum value T log T allowed for Tt in Theorem 14.3. The
estimates of Theorem 14.3 give good bounds on this quantity when b > 4−d

2d .
In fact, using these estimates (with k = 0 in (14.21)), (14.25) is at most a
multiple of
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∫ T log T

0

ds2

∫ s2

0

ds1

(
e−s2 +

1

Ld
T (1 + s2)d/2

)
≤ O(1 + T−bd(T log T )2−d/2),

(14.26)
and the condition b > 4−d

2d ensures that the right hand side is finite.

Remark 14.4. Theorems 14.2 and 14.3 are proved by obtaining versions of
the theorems for the discretized model, with the estimates in the theorems
uniform in ǫ ∈ (0, 1]. In particular, the results hold when ǫ = 1, which proves
versions of the theorems, including Theorem 14.3, for the spread-out oriented
percolation model with the usual unit time discretization.

14.4 Expansion for the Contact Process

In Section 13, we focussed attention on the nearest-neighbour and spread-
out oriented percolation models, but the analysis holds more generally. In
particular, the expansion (13.1) also applies to the oriented percolation model
obtained by discretizing the contact process, when suitably interpreted. Two
modifications are required to make (13.1) apply to the discretized contact
process. The first is replacement of p|Ω|D(x) in the first two terms of the
right hand side by

pǫ
λ(x) = λǫ|Ω|D(x) + (1 − ǫ)δx,0, (14.27)

where the first and second terms on the right hand side correspond to the
spatial and temporal bonds, respectively. The second modification is to inter-
pret the definition of πm in terms of the oriented percolation model with both
spatial and temporal bonds.

The expansion for the discretized contact process can then be written down
immediately from (13.1), as

τ ǫ
nǫ(x) = (pǫ ∗ τ ǫ

(n−1)ǫ)(x) +

n−1∑

m=2

(πǫ
mǫ ∗ pǫ ∗ τ ǫ

(n−1−m)ǫ)(x) + πǫ
nǫ(x). (14.28)

Here, and in the following, we omit subscripts λ from τ ǫ
nǫ(x), pǫ(x) and πǫ

mǫ(x).
If we consider momentarily the much simpler problem for which πǫ

mǫ is iden-
tically zero, then (14.28) becomes

τ ǫ
nǫ(x) = λǫ|Ω|(D ∗ τ ǫ

(n−1)ǫ)(x) + (1 − ǫ)τ ǫ
(n−1)ǫ(x). (14.29)

In terms of the Fourier transform, this can be rewritten as

τ̂ ǫ
nǫ(k) − τ̂ ǫ

(n−1)ǫ(k)

ǫ
= λ|Ω|D̂(k)τ̂ ǫ

(n−1)ǫ(k) − τ̂ ǫ
(n−1)ǫ(k). (14.30)

In the limit ǫ → 0+, where we also take nǫ → t, this formally becomes the
differential equation
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d

dt
τ̂t(k) = −[1 − λ|Ω|D̂(k)]τ̂t(k). (14.31)

With the initial condition τ̂0(k) = 1, (14.31) has solution

τ̂t(k) = e−[1−λ|Ω|D̂(k)]t. (14.32)

For λ = 1/|Ω|, this is the Fourier transform of the transition probability for
continuous-time random walk which jumps at rate 1.

If we now restore the omitted terms involving πǫ in (14.28), then the right
hand side of (14.30) contains the additional terms

ǫ

n−1∑

m=2

1

ǫ2
π̂ǫ

mǫ(k)p̂ǫ(k)τ̂ ǫ
(n−m−1)ǫ(k) +

1

ǫ
π̂ǫ

nǫ(k). (14.33)

The factor ǫ has been placed in front of the summation to produce a Riemann
sum. Since limǫ→0 p̂ǫ

λ(k) = 1, the limit of (14.33) apparently takes the form

∫ t

0

π̂s(k)τ̂t−s(k)ds, (14.34)

with, for mǫ → s as ǫ → 0,

π̂s(k) = lim
ǫ→0

1

ǫ2
π̂ǫ

mǫ(k) (14.35)

(note that the last term of (14.33) vanishes in the limit if (14.35) holds.) Thus,
provided it is possible to make sense of the limit (14.35), we expect that the
contact process two-point function obeys the integro-differential equation

d

dt
τ̂t(k) = −[1 − λ|Ω|D̂(k)]τ̂t(k) +

∫ t

0

π̂s(k)τ̂t−s(k)ds. (14.36)

A proof that this all works under the hypotheses of Theorem 14.2 or 14.3 is
given in [119].

Equation (14.36) is a continuous-time version of the lace expansion, and it
would be interesting to analyze it directly. However, such an analysis has not
been carried out. Instead, in [119, 179], properties of the solution to (14.28)
are analyzed directly, and estimates uniform in ǫ are obtained. The limit ǫ → 0
can then be taken to prove Theorems 14.1–14.3. A crucial step in the analysis
is to prove that π̂ǫ

mǫ(k) is O(ǫ2), consistent with (14.35). Next, we discuss the
main idea that permits this.

14.5 Diagrams for the Contact Process

Now we describe the new observation needed to prove that π̂ǫ
s(k) is O(ǫ2),

consistent with (14.35), where we write s = mǫ. The diagrams for the dis-
cretized contact process are the same as the oriented percolation diagrams
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discussed in Section 13.5, with the understanding that temporal bonds now
also occur.

The key observation already arises in the N = 0 term, which is (cf. (13.5))

(π̂ǫ
s)

(0)
(k) =

∑

x∈Zd

Pǫ
λ((0, 0) ⇒ (x, s))eik·x (14.37)

for s = mǫ > 0. Given that there are two disjoint connections from (0, 0) to
(x, s), and given that there is only one temporal bond leaving (0, 0) and one
temporal bond entering (x, s), it must be the case that one of the connections
uses a spatial bond to leave (0, 0) and one must use a spatial bond to enter
(x, s). Thus there are two possibilities, depending on whether these two spatial
bonds are part of the same connection or part of disjoint connections. This
leads to the upper bound

λ2|Ω|2ǫ2
∑

x∈Zd

∑

u∈Ω

∑

x′∈x−Ω

D(u)D(x − x′)

×
[
τ ǫ
s−ǫ(x − u)τ ǫ

s−ǫ(x
′) + τ ǫ

s (x)τ ǫ
s−2ǫ(x

′ − u)
]

(14.38)

for the absolute value of (14.37). If we now assume that the estimates (14.16)
and (14.18) apply to the discretized model, and that λ|Ω| = O(1), then we
can bound this above by O(ǫ2L−ds−d/2). In more detail, for the second term,
we use (14.18) to bound τ ǫ

s (x) by O(L−ds−d/2), and then bound the sums
using (14.16). Here we have used the theorem whose method of proof we are
discussing, but this can be handed inductively.

For the higher-order diagrams that bound π̂ǫ
s(k), each diagram vertex con-

tributes a factor ǫ due to the fact that there is only one temporal bond entering
and leaving any given vertex. For all vertices other than the origin and the
top vertex, this factor ǫ combines with the summation over the temporal co-
ordinate of the vertex to produce an overall contribution O(1). Thus, in the
end, the upper bound involves O(ǫ2). This procedure is carried out in detail
in [119] and [179] for different forms of the diagrams (space-time diagrams
and generating function diagrams, respectively).

15 Branching Random Walk

Branching random walk serves as the mean-field model for many interacting
models involving branching, including lattice trees and percolation. In Sec-
tion 15.1, we consider a natural mean-field model of lattice trees, which turns
out to be intimately related to branching random walk with Poisson offspring
distribution. In Section 15.2 we compute several generating functions impor-
tant for a particular model of branching random walk. These will be used to
derive the scaling limit of the branching random walk model in Section 16. In
Section 15.3, we define a model of weakly self-avoiding lattice trees in terms
of branching random walk.
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15.1 A Mean-Field Model

The mean-field model for the self-avoiding walk is simple random walk, which
forgets about the self-avoidance interaction. It is natural to attempt to define
a mean-field model of lattice trees by somehow forgetting about the mutual
avoidance of the branches in a lattice tree. In this section, we define such
a mean-field model, as in [61]. For simplicity, we consider only the nearest-
neighbour model.

It is convenient to switch to a site activity (or “fugacity”), rather than
a bond activity. This means that we weight vertices rather than bonds by

z, so that the one-point function of (7.20) becomes now g(z) = G
(1)
z =∑

T :T∋0 z|T |+1. If we remove the product containing the interaction in the

two-point function (8.2), we obtain
∑

ω∈W(0,x)(g(z))|ω|+1. It is also useful to
keep track of the length of the path ω by associating an activity ζ to each
bond in this path. This prompts us to define the two-point function of the
mean-field model by

Fz,ζ(x) =
∑

ω∈W(0,x)

(f(z))|ω|+1

(
ζ

2d

)|ω|
, (15.1)

where the function f(z), to be specified below, is the one-point function for the
mean-field model, and where the factor 1

2d has been included as a convenient
normalization. The sum in (15.1) is taken over simple random walks. Thus,
Fz,ζ(x) can be written in terms of the simple random walk two-point func-
tion (1.17) as Fz,ζ(x) = f(z)Cζf(z)/2d(0, x), and hence, by (1.18), its Fourier
transform is

F̂z,ζ(k) =
f(z)

1 − ζf(z)D̂(k)
, (15.2)

with D̂(k) given by (1.12). The random walk two-point function has critical
value 1

2d , corresponding to ζf(z) = 1. We will realize the latter with ζ =
f(z) = 1.

For the function f(z), we require by analogy with (7.22) (taking into ac-
count the switch to site activity), that f(z) satisfy the differential equation

F̂z,1(0) = z
df(z)

dz
. (15.3)

Combining (15.3) and (15.2) gives

f(z)

1 − f(z)
= z

df(z)

dz
. (15.4)

Integrating the separable equation (15.4) over an interval [z, z0] gives

f(z)e−f(z)

f(z0)e−f(z0)
=

z

z0
. (15.5)
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The initial condition z0 = 1 and f(z0) = 1 is a choice of normalization and
gives

f(z)e−f(z) = ze−1. (15.6)

By (15.6), f can be written as f(z) = −W (−ze−1), where W is the princi-
pal branch of the Lambert W function defined by W (w)eW (w) = w [56]. The
latter is analytic on the w-plane with branch cut (−∞,−e−1], corresponding
to a branch cut [1,∞) for f(z) (and gives f(0) = 0, as it should). This uniquely
specifies f(z), and hence F̂z,ζ(k). The same functions f(z) and F̂z,ζ(k) will
arise below in Theorem 15.2 for a model of branching random walk.

15.2 Branching Random Walk

In this section, we define a model of branching random walk in terms of
embeddings of trees into Zd. The presentation is based on [30]. Some related
ideas can be found in [36].

The trees are the family trees of the critical Galton–Watson branching
process with Poisson offspring distribution. In more detail, we begin with a
single individual having ξ offspring, where ξ is a Poisson random variable of
mean 1, i.e., P(ξ = m) = (em!)−1. Each of the offspring then independently
has offspring of its own, with the same critical Poisson distribution. To indi-
cate when two trees are the same, we describe them in terms of words. The
root is the word 0. The children of the root are the words 01, 02, . . . 0ξ0. The
children of 01 are the words 011, . . . , 01ξ01, and so on. A tree is then uniquely
represented by a set of words, and two trees are the same if and only if they
are represented by the same set of words. A tree T consisting of exactly n
individuals, with the ith individual having ξi offspring, has probability

P(T ) =
∏

i∈T

1

e ξi!
= e−n

∏

i∈T

1

ξi!
. (15.7)

The product in (15.7) is over the vertices of T .
We define an embedding ϕ of T into Zd to be a mapping from the vertices

of T into Zd, such that the root is mapped to the origin and adjacent vertices
in the tree are mapped to nearest neighbours in Zd. There is no assumption
that ϕ is injective, and different vertices of T can be mapped to the same
vertex in Zd. Given a tree T having |T | vertices, there are (2d)|T |−1 possible
embeddings ϕ of T . A branching random walk configuration is then a pair
(T, ϕ), with associated probability

P(T, ϕ) =
1

(2d)|T |−1
P(T ). (15.8)

Our aim in this section is to compute the r-point functions of this branch-
ing random walk model. These are generating functions for trees of fixed total
number of vertices n, which visit a specified set of r− 1 vertices in a specified
manner (the rth point is the origin, where the embedding is rooted).
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We begin with the simplest case r = 1. For z ∈ C with |z| ≤ 1, the
one-point function is defined by

b(1)
z =

∑

(T,ϕ)

P(T, ϕ)z|T | =
∑

T

P(T )z|T |. (15.9)

The series on the right hand side of (15.9) is the generating function for
the probability mass function for the total size of a critical Poisson tree. It

converges for |z| ≤ 1, with b
(1)
1 = 1. For general z, b

(1)
z is given in the following

theorem.
We write pm = P(ξ = m) = (em!)−1, and let

P (w) =

∞∑

m=0

pmwm = ew−1 (15.10)

denote the generating function for the critical Poisson distribution.

Theorem 15.1. For d ≥ 1, the one-point function is given by

b(1)
z =

∞∑

n=1

nn−1

n!
e−nzn, (15.11)

and obeys

b(1)
z e−b(1)z = ze−1. (15.12)

Proof. Conditioning on the number of offspring of the root gives

b(1)
z =

∞∑

m=0

pmz
(
b(1)
z

)m

= zP (b(1)
z ) = zeb(1)z −1, (15.13)

which implies (15.12). The Taylor expansion (15.11) then follows from La-
grange’s inversion formula (see, e.g., [196, p.43]).

Since b
(1)
z is real for real z and b

(1)
0 = 0, it follows from (15.12) that b

(1)
z is

identical to the function f(z) of the mean-field model of Section 15.1. Theo-
rem 15.1 rederives the standard result that for the critical Poisson branching
process,

P(|T | = n) =
nn−1

n!
e−n. (15.14)

By Stirling’s formula,

P(|T | = n) ∼ 1√
2π

1

n3/2
. (15.15)

Comparing with (7.2) and (7.3), this is a statement that the critical exponent
θ takes the value θ = 5

2 for branching random walk.
The two-point function is a generating function for critical Poisson branch-

ing random walk which starts at the origin, which has a family tree whose
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total size is dual to an activity z, and which visits the vertex x (possibly more
than once) at a time dual to an activity ζ. The two-point function is defined
for z, ζ ∈ C with |z| < 1, |ζ| ≤ 1, and for x ∈ Zd, by

b
(2)
z,ζ(x) =

∑

(T,ϕ)

P(T, ϕ)z|T |
∑

i∈T

I[ϕ(i) = x]ζ |i|, (15.16)

where |i| denotes the graph distance from i to the root of T . The series (15.16)
clearly converges for |z| < 1, |ζ| ≤ 1, as does its sum over x ∈ Zd. The following
theorem gives the Fourier transform of the two-point function, and shows that
it is identical to the mean-field two-point function of Section 15.1.

Theorem 15.2. For d ≥ 1, k ∈ [−π, π]d, |z| < 1, |ζ| ≤ 1,

b̂
(2)
z,ζ(k) =

b
(1)
z

1 − ζb
(1)
z D̂(k)

. (15.17)

The denominator of the right hand side vanishes for z = ζ = 1, k = 0, and in

that case b̂
(2)
1,1(0) = ∞.

Proof. The contribution to the right hand side of (15.16) arising when i is the

root is simply b
(1)
z δ0,x. When i is not the root, we condition on the number

of offspring of the root and on the location of the first step on the branch
containing i, to obtain

b
(2)
z,ζ(x) = b(1)

z δ0,x +

∞∑

m=1

pmm
(
b(1)
z

)m−1

z
(
ζD ∗ b

(2)
z,ζ

)
(x)

= b(1)
z δ0,x + zP ′(b(1)

z )
(
ζD ∗ b

(2)
z,ζ

)
(x). (15.18)

In the second term of the middle member of (15.18), the factor z is associated
with the root, and the factor m corresponds to choosing which of the root’s
offspring is an ancestor of the vertex j. The Poisson generating function obeys

zP ′(b(1)
z ) = zP (b

(1)
z ), and by (15.13), this equals b

(1)
z . Taking the Fourier

transform of (15.18) converts the convolution into a product, and we can then

solve for b̂
(2)
z,ζ(k) to obtain

b̂
(2)
z,ζ(k) =

b
(1)
z

1 − ζb
(1)
z D̂(k)

. (15.19)

Note that the denominator is zero when z = ζ = 1 and k = 0.
Finally, we observe that the Fourier transform of (15.16) is given by

b̂
(2)
z,ζ(k) =

∑

(T,ϕ)

∑

j∈T

P(T, ϕ)z|T |eik·ϕ(j)ζ |j|. (15.20)

We conclude from this and (15.15) that
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b̂
(2)
1,1(0) =

∑

(T,ϕ)

∑

j∈T

P(T, ϕ) =

∞∑

n=1

nP(|T | = n) = ∞. (15.21)

The two-point function given in Theorem 15.2 can be interpreted as the
two-point function of simple random walk with an activity ζ associated to

each step of the walk and an activity b
(1)
z associated to each vertex. We may

therefore regard a critical Poisson branching random walk configuration con-
taining 0 and x as corresponding to a simple random walk path from 0 to x
with a one-point function attached at each vertex along the way. This was the
philosophy of the mean-field model of Section 15.1.

Next, we define the r-point functions for r ≥ 3. Our definition keeps track
of a substantial amount of information, and requires as preparation the fol-
lowing definitions of shape, subshape, skeleton and compatibility.

Shape: Shapes are certain rooted binary trees. For r ≥ 2, we give a recursive
definition of the set Σr of r-shapes, as follows. Each r-shape has 2r− 3 edges,
r − 2 vertices of degree 3 (the branch points) and r vertices of degree 1 (the
leaves) labelled 0, 1, . . . , r − 1. There is a unique 2-shape given by the tree
consisting of vertex 0 joined by a single edge to vertex 1. We think of this
shape as indicating that vertex 0 is an ancestor of vertex 1. There is a unique
3-shape, consisting of three vertices 0, 1, 2 each joined by an edge to a fourth
vertex. We think of this shape as indicating that 0 is an ancestor of both 1
and 2. In general, for r ≥ 3, to each (r−1)-shape σ, we obtain 2r−5 r-shapes
by choosing one of the 2r−5 edges of σ, adding a vertex on that edge together
with a new edge that joins the added vertex to a new leaf r−1. The resulting
r-shapes represent the different ways in which an additional rth particle can
be added to the family tree of r − 1 particles represented by σ. Thus there is
a unique shape for r = 2 and r = 3, and (2r − 5)!! distinct shapes for r ≥ 4,
where we use the notation (−1)!! = 1, and, for r ≥ 3,

(2r − 5)!! =

r∏

j=3

(2j − 5). (15.22)

When r is clear from the context, we will refer to an r-shape simply as a
shape. For notational convenience, we associate to each shape an arbitrary
labelling of its 2r − 3 edges, with labels 1, . . . , 2r − 3. This arbitrary choice of
edge labels is fixed once and for all; see Fig. 15.1.

Subshape: A subshape of a shape σ ∈ Σr is a tree obtained by contracting a
subset of the edges of σ to a point. This can lead to multiply-labelled vertices,
and contracted edges lose their labels. The subshapes for r = 3 are shown in
Fig. 15.2. In general, there are 22r−3 subshapes of a shape σ ∈ Σr. We denote
subshapes by λ and write λ ≤ σ when λ is a subshape of σ. We denote the
set of edge labels of λ by e(λ).
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Fig. 15.1. The shapes for r = 2, 3, 4, and examples of the 7!! = 7 · 5 · 3 = 105
shapes for r = 6. The shapes’ edge labels are arbitrary but fixed.
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Fig. 15.2. The 23 = 8 subshapes for r = 3.

Skeleton: We write ı̄ = (i1, . . . , ir−1) for a sequence of r − 1 vertices ij (not
necessarily distinct) in a tree T , and define the skeleton B of (T, ı̄) to be the
subtree of T spanning 0, i1, . . . , ir−1. We will distinguish r − 1 and 2r − 3
component vectors by using ·̄ and~·, respectively.

Let βB denote the tree obtained from B by ignoring vertices of degree 2 in
B other than 0, i1, . . . , ir−1 (which may have degree 2 in B), and by assigning
label j to vertex ij for each j. This may lead to multiple labels at a vertex,
as is the case for subshapes.

Given σ ∈ Σr and a subshape λ ≤ σ, we say that βB is isomorphic to
λ if there is an edge preserving bijection from the set of all vertices of βB

to the set of all vertices of λ, which preserves the vertex labels of βB and λ
(including any multiple labels at vertices). Given such an isomorphism, the
edge labels of λ induce labels on the edges of βB and thus on the paths in T
comprising the skeleton B.

Compatibility: Let σ ∈ Σr, ~m = (m1, . . . ,m2r−3) for non-negative integers
mj , and ~y = (y1, . . . , y2r−3) for yj ∈ Zd. Given (T, ϕ), fix r − 1 vertices ı̄ in
T . We say that (T, ϕ, ı̄) is compatible with (σ; ~y, ~m) if the following hold:

1. βB is isomorphic to a subshape λ of σ (in which case the paths of the
skeleton B have an induced labelling).

2. Let lj > 0 denote the length of the skeleton path labelled j, and let lj = 0
for any edge in σ that is not in λ. Then lj = mj for each j = 1, . . . , 2r−3.

3. The image under ϕ of the skeleton path (oriented away from the root)
labelled j undergoes the displacement yj for each j labelling an edge in
λ, and yj = 0 for any edge j in σ that is not in λ.
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Fig. 15.3. A tree T containing i1, i2, i3, its skeleton B, the reduced skeleton βB ,
and the subshape λ of σ3 (see Fig. 15.1) to which βB is isomorphic.

For example, given (T, ı̄) of Fig. 15.3, and any embedding ϕ of T , (T, ϕ, ı̄) is
compatible with (σ3; (0, ϕ(i3), ϕ(i2), ϕ(i1) − ϕ(i2), 0), (0, 2, 1, 2, 0)).

The r-point functions: Let r ≥ 2, σ ∈ Σr, ~y = (y1, . . . , y2r−3) with each
yi ∈ Zd, and let ~m = (m1, . . . ,m2r−3) with each mi a non-negative integer.
We define

b(r)
n (σ; ~y, ~m) (15.23)

=
∑

(T,ϕ):|T |=n

P(T, ϕ)
∑

i1,...,ir−1∈T

I[(T, ϕ, ı̄) is compatible with (σ; ~y, ~m)].

Then we define the r-point function by

b
(r)

z,~ζ
(σ; ~y) =

∞∑

n=0

∞∑

m1,...,m2r−3=0

b(r)
n (σ; ~y, ~m)zn

2r−3∏

j=1

ζ
mj

j . (15.24)

Exercise 15.3. Show that (15.24) agrees with the definition (15.16) for r = 2.

The next theorem gives the Fourier transform of the r-point functions,
where

f̂(~k) =
∑

y1,...,y2r−3∈Zd

f(~y)ei~k·~y (15.25)

with ~k · ~y =
∑2r−3

j=1 kj · yj .

Theorem 15.4. For d ≥ 1, r ≥ 2, σ ∈ Σr, kj ∈ [−π, π]d, |z| < 1, |ζj | ≤ 1,

b̂
(r)

z,~ζ
(σ;~k) =

(
b(1)
z

)−2(r−2) 2r−3∏

j=1

b̂
(2)
z,ζj

(kj). (15.26)

Before proving the theorem, we remark that the factor (b
(1)
z )−2(r−2) has a

combinatorial interpretation. Namely, it “corrects” for an overcounting of the
branch at each of the r−2 shape vertices of degree 3, as this branch is counted
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in
∏2r−3

j=1 b̂
(2)
z,ζj

(kj) once by each of the three two-point functions incident at
that vertex. This factor is equal to 1 at the critical point z = 1, and does not
play a role in the leading critical behaviour.

Proof of Theorem 15.4. The statement of the theorem is a tautology for r = 2,
so we consider r ≥ 3. Let

q̂
(2)
z,ζ(k) = ζD̂(k)b̂

(2)
z,ζ(k). (15.27)

By (15.18), b̂
(2)
z,ζ(k) = b

(1)
z [1 + q̂

(2)
z,ζ(k)], so it suffices to show that

b̂
(r)

z,~ζ
(σ;~k) = b(1)

z

2r−3∏

j=1

(
1 + q̂

(2)
z,ζj

(kj)
)

. (15.28)

Expanding the product, the desired identity (15.28) is equivalent to

b̂
(r)

z,~ζ
(σ;~k) = b(1)

z

∑

λ≤σ

∏

j∈e(λ)

q̂
(2)
z,ζj

(kj). (15.29)

Given a subshape λ ≤ σ, we let b(λ) denote the result of restricting the
summation in (15.24) to mj = 0 (and thus yj = 0) for j 6∈ e(λ) and mj > 0

for j ∈ e(λ). Its Fourier transform will be denoted b̂(λ). We leave implicit the

dependence on the variables of ~k and ~ζ, as these are determined by the edge
labels of λ. Then

b̂
(r)

z,~ζ
(σ;~k) =

∑

λ≤σ

b̂(λ). (15.30)

Thus it suffices to show that

b̂(λ) = b(1)
z

∏

j∈e(λ)

q̂
(2)
z,ζj

(kj). (15.31)

This is clear if λ consists of a single vertex, so it suffices to consider the case
where λ contains at least one edge.

We use π to denote a subshape for which the root has degree 1, and write
q̂(π) = (zp1)

−1b̂(π). The factor (zp1)
−1 serves to cancel the factor zp1 = ze−1

associated to the root in b̂(π). Given a subshape λ having at least one edge,
let π1, . . . , πl be the branches emerging from its root. As in (15.18), using now

that the lth derivative of P obeys zP (l)(b
(1)
z ) = b

(1)
z ,

b̂(λ) =

∞∑

j=l

zpjj(j − 1) · · · (j − l + 1)
(
b(1)
z

)j−l l∏

a=1

q̂(πa)

= b(1)
z

l∏

a=1

q̂(πa). (15.32)
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Let π̄ denote the subshape obtained from π by contracting the edge inci-
dent to the root. We claim that

q̂(π) = q̂
(2)
z,ζ(k)

1

b
(1)
z

b̂(π̄), (15.33)

where ζ and k bear the subscript of the label of the edge incident on the root
of π. From this, the desired result (15.31) then follows by substituting (15.33)
into (15.32) recursively.

To prove (15.33), we condition on whether the length of the tree’s skeleton
path, corresponding to the edge of π incident on the root, is equal to or greater
than 1. This leads, by conditioning as in (15.18), to

q̂(π) = ζD̂(k)b̂(π̄) + ζD̂(k)b(1)
z q̂(π). (15.34)

Solving and using (15.17) and (15.27), we obtain

q̂(π) =
ζD̂(k)

1 − ζD̂(k)b
(1)
z

b̂(π̄) = q̂
(2)
z,ζ(k)

1

b
(1)
z

b̂(π̄), (15.35)

which is (15.33).

15.3 Weakly Self-Avoiding Lattice Trees

The weakly self-avoiding walk has played an important role in the development
of the theory of self-avoiding walks. There has been no parallel situation for
lattice trees, perhaps because it is less obvious how to define weakly self-
avoiding lattice trees. In this section we give a natural definition of weakly
self-avoiding lattice trees and prove that it corresponds to usual lattice trees
in the limit of infinite self-avoidance strength. Throughout the section, we
follow the presentation of [30]. Presumably weakly self-avoiding lattice trees
are in the same universality class as usual lattice trees, no matter how weak
the self-avoidance.

Let P(T, ϕ) be given by (15.7)–(15.8). Given β ≥ 0, let

Zβ
n =

∑

(T,ϕ):|T |=n

P(T, ϕ) exp
[
− 1

2β
∑

i,j∈T :i 6=j I[ϕ(i) = ϕ(j)]
]
, (15.36)

and, for |T | = n, define

Qβ
n(T, ϕ) =

1

Zβ
n

P(T, ϕ) exp
[
− 1

2β
∑

i,j∈T :i 6=j I[ϕ(i) = ϕ(j)]
]
. (15.37)

The measure Qβ
n on the set of n-vertex branching random walk configurations

rewards self-avoidance by giving a penalty e−β to each self-intersection. For
β = 0, Q0

n is just branching random walk conditional on |T | = n. The next
theorem shows that the weakly self-avoiding lattice trees interpolate between
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branching random walk and lattice trees, in the sense that Q∞
n corresponds

in an appropriate sense to the uniform measure on the set of n-vertex lattice
trees containing the origin.

In the statement of the theorem t
(1)
n denotes the number of n-vertex lattice

trees containing the origin, as in Section 7.1. Given an injective ϕ and a lattice
tree L, we abuse notation by writing ϕ(T ) = L if ϕ(T ) consists of the vertices
in L and the edges in T are mapped to the bonds in L.

Theorem 15.5. For d ≥ 1 and n ≥ 1,

lim
β→∞

Qβ
n(T, ϕ) = 0 (15.38)

if ϕ is not injective. On the other hand, given an n-vertex lattice tree L con-
taining the origin,

lim
β→∞

∑

(T,ϕ):ϕ(T )=L

Qβ
n(T, ϕ) =

1

t
(1)
n

. (15.39)

Proof. The first statement of the theorem, for non-injective ϕ, follows imme-
diately from the definition of Qβ

n.
For the second statement of the theorem, let Tn denote the set of n-vertex

lattice trees containing the origin. This has cardinality t
(1)
n . We will prove that

∑

(T,ϕ):ϕ(T )=L

P(T, ϕ) = (2d)−(n−1)e−n (15.40)

for every L ∈ Tn. The important point for the proof is that the right hand
side is the same for all L ∈ Tn, and its particular value plays no role. In fact,
given (15.40), we then have

Z∞
n =

∑

L∈Tn

∑

(T,ϕ):ϕ(T )=L

P(T, ϕ) = t(1)n (2d)−(n−1)e−n, (15.41)

which gives the desired result that

∑

(T,ϕ):ϕ(T )=L

Q∞
n (T, ϕ) =

1

Z∞
n

∑

(T,ϕ):ϕ(T )=L

P(T, ϕ) =
1

t
(1)
n

. (15.42)

To prove (15.40), we first note that by (15.7) and (15.8),

∑

(T,ϕ):ϕ(T )=L

P(T, ϕ) = (2d)−(n−1)e−n
∑

(T,ϕ):ϕ(T )=L

∏

i∈T

1

ξi!
, (15.43)

where ξi is the number of offspring of vertex i. It suffices to show that

∑

(T,ϕ):ϕ(T )=L

∏

i∈T

1

ξi!
= 1. (15.44)
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Let b0 be the degree of 0 in L, and given nonzero x ∈ L, let bx be the degree
of x in L minus 1 (the forward degree of x). Then the set {bx : x ∈ L} (with
repetitions) must be equal to the set of ξi (with repetitions) for any T that can
be mapped to L. Defining ν(L) to be the cardinality of {(T, ϕ) : ϕ(T ) = L},
(15.44) is therefore equivalent to

ν(L) =
∏

x∈L

bx!. (15.45)

We prove (15.45) by induction on the number N of generations of L.
By this, we mean the length of the longest self-avoiding path in L, starting
from the origin. The identity (15.45) clearly holds if N = 0. Our induction
hypothesis is that (15.45) holds if there are N−1 or fewer generations. Suppose
L has N generations, and let L1, . . . , Lb0 denote the lattice trees resulting from
deleting from L the origin and all bonds incident on the origin. We regard each
La as rooted at the neighbour of the origin in the corresponding deleted bond.
It suffices to show that ν(L) = b0!

∏b0
a=1 ν(La), since each La has fewer than

N generations.
To prove this, we note that each pair (T, ϕ) with ϕ(T ) = L induces a set of

(Ta, ϕa) such that ϕa(Ta) = La. This correspondence is b0! to 1, since (T, ϕ)
is determined by the set of (Ta, ϕa), up to permutation of the branches of T

at its root. See Exercise 15.6. This proves ν(L) = b0!
∏b0

a=1 ν(La).

Exercise 15.6. Let L be the 2-dimensional lattice tree consisting of bonds
{0, e2}, {0,−e2}, {0, e1}, {e1, 2e1}, {e1, e1 + e2}, where e1 = (1, 0) and e2 =
(0, 1). Let T1 be the single vertex 01 and T2 be the single vertex 02, with
ϕ1(01) = e2 and ϕ2(02) = −e2. Let T3 be the tree consisting of the root 0 and
its two offspring 00 and 01, with ϕ3(0) = e1, ϕ3(00) = 2e1, ϕ3(01) = e1 + e2.
Write down the six distinct (T, ϕ) that correspond to the collection (Ta, ϕa)
(a = 1, 2, 3) as in the last paragraph of the proof of Theorem 15.5.

16 Integrated Super-Brownian Excursion

In this section, we discuss integrated super-Brownian excursion (ISE), and
describe how it arises as a scaling limit of branching random walk in all
dimensions, and of lattice trees and critical percolation clusters above their
upper critical dimensions.

To formulate a scaling limit of branching random walk, it is necessary to
decide how much information the limit should keep track of. One possibility,
discussed in this section, is to condition the branching random walk to have a
total of n particles (counting multiple occupations of a vertex and including all
generations), to assign mass n−1 to each vertex, and to take the scaling limit of
this random mass distribution. The mass distribution due to a configuration of
branching random walk is a random discrete probability measure on Rd, and
we are led naturally to study random probability measures on Rd, which is to
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say that we study probability measures on probability measures. The scaling
limit in this framework is ISE. Much of the theory of ISE was developed in
[14, 15, 151]. Our analysis will be based on explicit formulas for the moment
measures of ISE, which can be found in [15, 152]. The material in this section
is based on [30, 61, 105, 188].

The above description of a branching random walk configuration as a mass
distribution ignores issues of time evolution and genealogy. As we will see,
information about both of these can be recovered, but the focus in this section
is primarily on mass distribution alone. We will return to the other issues in
Section 17, where the canonical measure of super-Brownian motion will be
discussed.

16.1 Moment Measures of Branching Random Walk

Let M1(Rd) denote the set of Borel probability measures on Rd, equipped
with the topology of weak convergence. Borel sets in M1(Rd) can be defined
using this topology, and we consider Borel measures on M1(Rd).

Branching random walk configurations (T, ϕ) with |T | = n induce a mea-
sure µn on M1(Rd), as follows. Let δy be the point mass at y ∈ Rd, i.e.,
δy(A) = 1 if the Borel set A contains y, and otherwise δy(A) = 0. Given a
tree T with |T | = n, and an embedding ϕ of T , let

µ(T, ϕ) =
1

n

∑

i∈T

δn−1/4ϕ(i). (16.1)

Thus µ(T, ϕ) is the probability measure on Rd which assigns mass 1
n to

n−1/4ϕ(i) for each i ∈ T . We then define the measure µn on M1(Rd) to
be the measure that assigns mass P((T, ϕ)| |T | = n) to each µ(T, ϕ) with
|T | = n. In other words, we obtain a random probability measure on Rd by
assigning equal mass to each of the n embedded vertices of a rescaled version
of an embedded tree.

We may then ask if the measures µn converge weakly to some measure
µISE on M1(Rd). Here, weak convergence (see [24]) is the assertion that for
any real-valued bounded continuous function F on M1(Rd),

lim
n→∞

∫

M1(Rd)

F (ν)dµn(ν) =

∫

M1(Rd)

F (ν)dµISE(ν). (16.2)

A useful ingredient in answering this question is to study the convergence of
the moment measures of µn. The lth moment measure M (l) of a probabil-
ity measure µ on M1(Rd) is the deterministic probability measure on (Rd)l

defined, for l ≥ 1, by

dM (l)(x1, . . . , xl) =

∫

M1(Rd)

dµ(ν)dν(x1) · · ·dν(xl). (16.3)
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To prove weak convergence of the moment measures, it is sufficient to prove
pointwise convergence of their characteristic functions.

To write down the moment measures for µn, for l ≥ 1 we define

s(l+1)
n (x̄) =

∑

(T,ϕ):|T |=n

P(T, ϕ)
∑

i1,...,il∈T

l∏

j=1

I[ϕ(ij) = xj ], (16.4)

where x̄ = (x1, . . . , xl). Note that summation of (16.4) over x̄ ∈ Rdl gives
nlP(|T | = n). Interpreting (16.3) in this context, the lth moment measure

M
(l)
n of µn is the probability measure on Rdl which places mass equal to

[nlP(|T | = n)]−1s
(l+1)
n (x̄) at n−1/4x̄, for x̄ ∈ Zdl. The characteristic function

M̂
(l)
n (k̄) of M

(l)
n is therefore given by

M̂ (l)
n (k̄) =

1

nlP(|T | = n)
ŝ(l+1)

n (k̄n−1/4), (16.5)

where
f̂(k̄) =

∑

x̄

f(x̄)eik̄·x̄ (16.6)

with k̄ · x̄ =
∑l

j=1 kj ·xj . We wish to compute the limit of M̂
(l)
n (k̄) as n → ∞.

The asymptotic behaviour of the denominator of (16.5) is given by (15.15) as
(2π)−1/2nl−3/2, so we are left with the numerator.

The limiting behaviour of the numerator will be discussed in Section 16.3.
It seems clear that there should be a close relationship between the coefficients

b̂
(r)
n (σ;~k, ~m) of (15.23)–(15.24) and ŝ

(r)
n (k̄). In fact, b

(r)
n (σ; ~y, ~m) contains more

information than s
(r)
n (x̄), as it specifies the skeleton displacements in addition

to x̄. So we first consider the asymptotic behaviour of b̂
(r)
n (σ;~k, ~m). Since we

know the generating functions b̂
(r)

z,~ζ
(σ;~k) from Section 15.2, this will be studied

within the framework of the question: If we know the generating function of
a sequence, what can we say about the asymptotic behaviour of the sequence
itself? The rule of thumb is that the latter is determined by the singularity of
the generating function that is closest to the origin. Moreover, the nature of
the singularity can be described in terms of critical exponents.

16.2 Critical Exponents and Generating Functions

In this section, we determine the asymptotic behaviour of b̂
(r)
n (σ;~k, ~m). To do

so, we first study the singularity structure of the generating function b̂
(r)

z,~ζ
(σ;~k),

beginning with r = 2. This holds the key to the study of r ≥ 3, by Theo-
rem 15.4.

The generating function b̂
(2)
z,ζ(k) is given by (15.17), in terms of the one-

point function b
(1)
z of Theorem 15.1. Properties of the one-point function can
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be derived from known properties of the Lambert function, or derived directly

from (15.12). In particular, b
(1)
z has a square root singularity at z = 1, and

b(1)
z = 1 −

√
2(1 − z)1/2 + O(|1 − z|), (16.7)

with the absolute value of the error term bounded by a constant multiple of
|1 − z| uniformly in the cut plane C \ [1,∞). The square root is the branch
with (1 − z)1/2 > 0 for z < 1.

Exercise 16.1. Prove (16.7).

Using also the fact that D̂(k) = 1 − (2d)−1k2 + O(k4) by (1.12), it follows
from (15.17) that

b̂
(2)
z,ζ(k) =

1 + E1

(2d)−1|k|2 + 21/2
√

1 − z + (1 − ζ) + E2

, (16.8)

where E1 = −
√

2(1 − z)1/2 + O(|1 − z|) is small compared to 1 for z near 1,
and where E2 is a sum of terms of order |k|4, |k|2(1 − ζ), |1 − z|, and similar
terms which are higher order than |k|2,

√
1 − z and (1 − ζ).

The formula (16.8) has significance for the values of the critical exponents
of branching random walk. Namely, setting k = 0 and ζ = 1 in (16.8), we

see that b̂
(2)
z,1(0) ∼ 2−1/2(1− z)−1/2, and hence the critical exponent γ for the

susceptibility of branching random walk is γ = 1
2 . Setting z = 1 and ζ = 1 in

(16.8), we see that b̂
(2)
1,1(k) ∼ 2d|k|−2, and hence the critical exponent η for the

critical two-point function of branching random walk is η = 0. Finally, setting

k = 0 and z = 1 gives b̂
(2)
1,ζ(0) ∼ (1 − ζ)−1 (this is, in fact, an equality by

(15.17)), so the “backbone exponent” is equal to 1. In addition, information
is provided by (16.8) concerning the additive form in the denominator for the
joint behaviour as k → 0, z → 1, and ζ → 1.

The error terms E1 and E2 in (16.8) need to be taken into account in
an analysis of the moment measures of branching random walk, but this is
merely a nuisance and they do not add anything meaningful. In the following,
we will simplify the problem by temporarily setting these error terms equal
to zero, obtaining

b̂
(2)
z,ζ(k) ≈ 1

(2d)−1|k|2 + 21/2
√

1 − z + (1 − ζ)
. (16.9)

Thus, for our simplified version of the two-point function, for k ∈ Rd and

ζ, z ∈ C with |ζ|, |z| < 1, we define H
(2)
z,ζ (k) by

H
(2)
z,ζ (k) =

1

(2d)−1|k|2 + 21/2
√

1 − z + (1 − ζ)
, (16.10)

where the square root has branch cut [1,∞) and is positive for real z < 1.

In addition, for r ≥ 2, kj ∈ Rd and ζj ∈ C, with |ζj | < 1, we write ~k =

(k1, . . . , k2r−3) and ~ζ = (ζ1, . . . , ζ2r−3), and define
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H
(r)

z,~ζ
(~k) =

2r−3∏

j=1

H
(2)
z,ζj

(kj), (16.11)

analogous to (15.26). We write the coefficients in the Taylor expansion of
(16.11) as

H
(r)

z,~ζ
(~k) =

∞∑

m1,...,m2r−3=0

∞∑

n=0

h
(r)
n,~m(~k)zn

2r−3∏

j=1

ζ
mj

j . (16.12)

We write g
(r)
~m (~k) =

∑∞
n=0 h

(r)
n,~m(~k) for the coefficient of

∏2r−3
j=1 ζ

mj

j in H
(r)

1,~ζ
(~k).

Writing ~1 = (1, . . . , 1), we denote the coefficient of zn in H
(r)

z,~1
(~k) by

h(r)
n (~k) =

∞∑

m1,...,m2r−3=0

h
(r)
n,~m(~k). (16.13)

To state the scaling limits of h
(r)
n (~k) and h

(r)
n,~m(~k), for ki ∈ Rd and ti ≥ 0,

we define

â(r)(~k,~t) =

(
2r−3∑

i=1

ti

)
e−(

∑2r−3

i=1
ti)

2/2e−
∑2r−3

i=1
|ki|2ti/2d (16.14)

and

Â(r)(~k) =

∫ ∞

0

dt1 · · ·
∫ ∞

0

dt2r−3â
(r)(~k,~t). (16.15)

Explicitly, for r = 2,

Â(2)(k) =

∫ ∞

0

te−t2/2e−|k|2t/2d dt. (16.16)

The integral (16.16) can be written in terms of the parabolic cylinder function

D−2 as Â(2)(
√

dk) = ek4/16D−2(|k|2/2) [83, 3.462.1]. The integrals (16.15)
obey

Â(r)(~0) =
1

(2r − 5)!!
, (16.17)

where we recall the notation of (15.22), see Exercise 16.4.
We write ⌊~tn⌋ to denote the vector with components ⌊tjn⌋.

Proposition 16.2. For r ≥ 2, as n → ∞,

g
(r)

⌊~tn⌋(
~kn−1/2) → e

−
∑2r−3

j=1
|kj |2tj/2d

, (16.18)

h(r)
n (~kn−1/4) ∼ 1√

2π
nr−5/2Â(r)(~k), (16.19)

h
(r)

n,⌊~tn1/2⌋(
~kn−1/4) ∼ 1√

2π

1

n
â(r)(~k,~t). (16.20)
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Proof. For (16.18), we use the fact that H
(2)
1,ζ (k) is the sum of a geometric

series in ζ, namely

H
(2)
1,ζ (k) =

1

(2d)−1|k|2 + (1 − ζ)
=

∞∑

m=0

1

(1 + |k|2/2d)m+1
ζm. (16.21)

Therefore g
(r)
~m (~k) =

∏2r−3
j=1 (1 + |kj |2/2d)−(mj+1), and (16.18) follows.

For the remainder of the proof, we follow [62], and to simplify the formulas
we put d = 1 (the general case then easily follows). For (16.19), it follows from
the Cauchy integral formula that

h(r)
n (~kn−1/4) =

1

2πi

∮
dz

zn+1

2r−3∏

j=1

2

|kj |2n−1/2 + 23/2(1 − z)1/2
, (16.22)

where the integral is taken around a small circle centred at the origin. For
simplicity, in the proof of (16.19) we suppose that kj 6= 0 for all j. See Exer-
cise 16.3 for the general case. We make the change of variables w = n(z − 1),
and then deform the contour to the branch cut [0,∞) in the w-plane. The
resulting contour goes from right to left below the branch cut and from left
to right above the cut. We then apply the identity

2

|kj |2 + 23/2(−w)1/2
=

∫ ∞

0

dtj e−|kj |2tj/2e−21/2(−w)1/2tj . (16.23)

Taking into account the correct branch of the square root on either side of
the branch cut, and applying Fubini’s theorem, this gives

h(r)
n (~kn−1/4) = nr−5/2

∫ ∞

0

dt1 · · ·
∫ ∞

0

dt2r−3 e
−(

∑2r−3

j=1
|kj |2tj)/2

× 1

π

∫ ∞

0

dw

(1 + w/n)n+1
sin((

∑2r−3
j=1 tj)

√
2w). (16.24)

Since (1 + w
n )n+1 ≥ 1 + (n+1)n

2 (w
n )2 ≥ 1 + w2

2 for all n ≥ 1, the dominated
convergence theorem can be applied to conclude that as n → ∞ the w-integral
converges to

∫ ∞

0

dw e−w sin((
∑2r−3

j=1 tj)
√

2w) =
(π

2

)1/2




2r−3∑

j=1

tj


 e

−(
∑2r−3

j=1
tj)

2/2
.

(16.25)
Therefore, as required,

h(r)
n (~kn−1/4) ∼ 1√

2π
nr−5/2Â(r)(~k). (16.26)

Next, we prove (16.20) (again taking d = 1 for simplicity). Since each
factor in the product in (16.11) is the sum of a geometric series in ζj ,



The Lace Expansion and its Applications 169

h
(r)

n,⌊~tn1/2⌋(
~kn−1/4)

=
1

2πi

∮
dz

zn+1

2r−3∏

j=1

(
1 +

|kj |2
2
√

n
+
√

2(1 − z)1/2

)−(⌊tjn1/2⌋+1)

, (16.27)

where the integration is performed around a small circle centred at the origin.
Making the change of variables w = n(z − 1) and deforming the contour of
integration to the branch cut [0,∞) in the w-plane, the above is equal to

1

πn
Im

∫ ∞

0

dw

(1 + w/n)n+1

2r−3∏

j=1

(
1 +

|kj |2
2
√

n
− i

√
2w√
n

)−(⌊tjn1/2⌋+1)

. (16.28)

The integrand here is dominated by (1 + w2

2 )−1 · 1, so by the dominated
convergence theorem, this is asymptotic to

1

πn
e
−(

∑2r−3

j=1
|kj |2tj)/2

∫ ∞

0

dw e−w sin((
∑2r−3

j=1 tj)
√

2w) =
1√
2πn

â(r)(~k,~t),

(16.29)
using (16.25) in the last step.

Exercise 16.3. Prove (16.19) in the degenerate case where one or more kj is
zero.

Exercise 16.4. Compute the asymptotic behaviour of h
(r)
n (~0) directly from

its definition, and conclude (16.17) from (16.19).

By taking a little additional care with the error terms E1 and E2 in (16.8),
a similar analysis shows that for r ≥ 2, as n → ∞,

∑

~m

b̂(r)
n (σ;~kn−1/4, ~m) ∼ 1√

2π
nr−5/2Â(r)(~k), (16.30)

b̂(r)
n (σ;~kn−1/4, ⌊~tn1/2⌋) ∼ 1√

2π

1

n
â(r)(~k,~t). (16.31)

The implications of this for the scaling limit of branching random walk will
be discussed in the next section. For now, we note that in (16.31) the scaling
of time (distance along the skeleton) is n1/2. Since space is being scaled as
n1/4, this is Brownian scaling. Thus (16.31) provides an interpretation of the

variables tj in â(r)(~k,~t) as rescaled Brownian time variables along skeleton
paths. The sum over ~m in (16.30) can be interpreted as a Riemann sum
approximation to the integral defining Â(r)(k).

16.3 Construction of ISE

In this section, we present a proof that rescaled critical Poisson branching
random walk converges to ISE, constructing ISE in the process. The proof
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is based on [30]. We will also derive explicit formulas for the characteristic
functions of the ISE moment measures. Our proof applies directly only to
the Poisson case, due to its reliance on the particular form of the generating
functions derived in Theorems 15.1, 15.2 and 15.4. However, the theorem
actually holds more generally, whenever the random variable ξ for the offspring
distribution has a finite second moment [14, 15].

Fig. 16.1. A random mass distribution drawn from µn, with d = 2 and n ≈ 96, 000.
Darker shading represents higher mass, and the arc has radius n1/4.

As an important first step, we prove convergence of the moment measures
of the probability measures µn on M1(Rd) defined in Section 16.1.

Theorem 16.5. For d ≥ 1 and l ≥ 1, the moment measures M
(l)
n of µn

converge weakly to limiting measures M (l).

Proof. It suffices to prove that for k̄ ∈ Rdl the limits

lim
n→∞

M̂ (l)
n (k̄) = M̂ (l)(k̄) (16.32)

exist for all l ≥ 1, with M̂ (l) continuous at 0̄. By (16.5) and (15.15), the

characteristic function of M
(l)
n is
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M̂ (l)
n (k̄) =

1

nlP(|T | = n)
ŝ(l+1)

n (k̄n−1/4)

∼
√

2πn−(l−3/2)ŝ(l+1)
n (k̄n−1/4), (16.33)

where s
(l+1)
n is given by (16.4).

Define b
(r)
n (σ; ~y), for r ≥ 2, by

b(r)
n (σ; ~y) =

∑

~m

b(r)
n (σ; ~y, ~m), (16.34)

where the summand is defined in (15.23). For r = 2, 3, there is only one shape
and, suppressing σ in the notation, we have

s(2)
n (x) = b(2)

n (x), s(3)
n (x1, x2) =

∑

y∈Zd

b(3)
n (y, x1 − y, x2 − y). (16.35)

It then follows from (16.30) that

lim
n→∞

M̂ (1)
n (k) = Â(2)(k) = M̂ (1)(k) (16.36)

and

lim
n→∞

M̂ (2)
n (k1, k2) = Â(3)(k1 + k2, k1, k2) = M̂ (2)(k1, k2), (16.37)

where M̂ (1)(k) and M̂ (2)(k1, k2) are defined by the second equalities. These
are continuous at zero by definition.

The situation is more subtle for l ≥ 3. To begin, we define a way of asso-
ciating a 2l − 1 component vector ~k to an l component vector k̄, generalizing
the expression ~k = (k1 +k2, k1, k2) in (16.37) for l = 2. This is done as follows.
Given a shape σ ∈ Σl+1, for each vertex j of degree 1 in σ, other than vertex 0,
we let ωj be the set of edges in σ on the path from 0 to j (j = 1, . . . , l). Given

k̄ = (k1 . . . , kl) ∈ Rdl, we define ~k(σ) ∈ R(2l−1)d by setting its ith component
~ki(σ) ∈ Rd, for i = 1, . . . , 2l − 1, to be

~ki(σ) =

l∑

j=1

kjI[i ∈ ωj ], (16.38)

where, on the right hand side, kj denotes the jth component of k̄ and I is
an indicator function. For example, for l = 3 and the shape σ1 of Fig. 15.1,
~k(σ1) = (k1 + k2 + k3, k1, k2 + k3, k2, k3). We will prove (16.32) with

M̂ (l)(k̄) =
∑

σ∈Σl+1

Â(l+1)(~k(σ)), (16.39)

which is continuous at 0̄ by definition. The limit (16.39) has been established
already for l = 1, 2.
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For l ≥ 3, we first note that (15.15) and (16.30) imply that

lim
n→∞

∑
σ∈Σl+1

b̂
(l+1)
n (σ;~kn−1/4)

nlP(|T | = n)
=

∑

σ∈Σl+1

Â(l+1)(~k). (16.40)

Let
e(l+1)
n (k̄) = ŝ(l+1)

n (k̄) −
∑

σ∈Σl+1

b̂(l+1)
n (σ;~k(σ)). (16.41)

In view of (16.33) and (16.40), to prove convergence of the lth moments, for
l ≥ 3, it suffices to show that

|e(l+1)
n (k̄)| ≤ O(nl−2). (16.42)

The remainder of the proof is devoted to obtaining (16.42).
Recall the definition of ωj = ωj(σ) above (16.38). For σ ∈ Σl+1, let

Yx̄(σ) = {~y ∈ Rd(2l−1) :
∑

i∈ωj(σ)

yi = xj ∀j = 1, . . . , l}. (16.43)

Recall the definitions above (15.23), and note that if (T, ϕ, ı̄) is compatible
with (σ; ~y, ~m), then the statements (i) ϕ(ij) = xj for all j = 1, . . . , l, and
(ii) ~y ∈ Yx̄(σ), are equivalent. Consequently,

e(l+1)
n (k̄) =

∑

x̄

eik̄·x̄


s(l+1)

n (x̄) −
∑

σ∈Σl+1

∑

~y∈Yx̄(σ)

∑

~m

b(l+1)
n (σ; ~y, ~m)




=
∑

x̄

eik̄·x̄
∑

(T,ϕ):|T |=n

P(T, ϕ)
∑

i1,...,il∈T




l∏

j=1

I[ϕ(ij) = xj ]




×


1 −

∑

σ∈Σl+1

∑

~y∈Yx̄(σ)

∑

~m

I[(T, ϕ, ı̄) comp. with (σ; ~y, ~m)


 .

(16.44)

The last line of the above expression need not be zero. For example, let
T be the unique tree having just two vertices, let ϕ be the embedding of T
which maps the root of T to 0 and the other vertex of T to a neighbour e1 of
the origin, let i1 and i2 be the root of T , and let i3 be the other vertex of T .
In this example, the subtracted sum in (16.44) is equal to 3, due to the terms
with σ = σ1, y1 = (0, 0, 0, 0, e1); σ = σ2, y2 = (0, 0, 0, 0, e1); and σ = σ3,
y3 = (0, e1, 0, 0, 0), where the shapes σi are given in Fig. 15.1.

However, given (T, ϕ, ı̄), and given σ ∈ Σl+1, if (T, ϕ, ı̄) is compatible with
(σ; ~y, ~m) then ~y and ~m are uniquely determined by (T, ϕ, ı̄) and σ. Thus for
each σ contributing to the last line of (16.44), there is exactly one ~y and
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one ~m that contribute to the sums over ~y and ~m. Also, each (T, ϕ, ı̄), such
that the reduced skeleton βB(T, ı̄) of (T, ı̄) is isomorphic to a shape in Σl+1

(rather than to a strict subshape), receives a contribution to (16.44) due to
that shape and only to that shape. Therefore, writing Λσ for the set of all
strict subshapes of σ ∈ Σl+1,

|e(l+1)
n (k̄)| ≤

∑

σ∈Σl+1

∑

λ∈Λσ

∑

x̄

∑

(T,ϕ):|T |=n

P(T, ϕ)

×
∑

i1,...,il∈T




l∏

j=1

I[ϕ(ij) = xj ]


 I[βB(T, ı̄) ≃ λ]

=
∑

σ∈Σl+1

∑

λ∈Λσ

∑

(T,ϕ):|T |=n

P(T, ϕ)
∑

i1,...,il∈T

I[βB(T, ı̄) ≃ λ]. (16.45)

Let f
(l+1)
n denote the right hand side of (16.45). It suffices to show that

f
(l+1)
n ≤ O(nl−2). For this, we introduce the generating function F (l+1)(z) =∑∞

n=1 f
(l+1)
n zn. This is a sum of terms of the form b̂(λ) (defined below (15.29)),

where λ is a strict subshape and all kj = 0, ζj = 1. By (15.31), (15.27) and
(16.8),

|b̂(λ)| ≤ O(1)
∏

j∈e(λ)

1

|1 − z|1/2
, (16.46)

and hence |F (l+1)(z)| ≤ O(|1−z|−(l−1)) uniformly in |z| < 1, where the power
l − 1 = 1

2 (2l − 2) arises because at least one of the 2l − 1 skeleton paths is

contracted. Then Exercise 7.7 implies the desired bound f
(l+1)
n ≤ O(nl−2).

Using Theorem 16.5, we can now prove convergence of µn to a limiting
measure µISE on M1(Rd), thereby constructing ISE. We will use the fact that
M1(Rd) is a metric space (in fact it is a Polish space) whose metric induces
the weak topology; references for this are given in [177, p. 148].

Theorem 16.6. For d ≥ 1, there is a measure µISE on M1(Rd) such that µn

converges weakly to µISE on M1(Rd).

Proof. We will prove that µn is relatively compact, i.e., that every subsequence
of µn contains a weakly convergent subsequence (see [24]). Given a subse-
quence of µn, relative compactness implies that some further subsequence
converges to a limit. In principle, this limit could depend on the subsequence.
But Theorem 16.5 implies that the limit has moment measures M (l), which
determines it uniquely.16 We call the common limit µISE.

16 It is a consequence of [60, Lemma 2.4.1] that moment measures uniquely deter-
mine a measure on M1(Ṙ

d), where Ṙd is the one-point compactification of Rd.
Since the moments have no mass at infinity, they therefore uniquely determine a
measure on M1(R

d).
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To prove relative compactness, we apply Theorem II.4.1 of [177]. This the-
orem actually applies in the more general context of convergence of measure-
valued processes. We have no time-dependence here, so our processes are con-
stant. Condition (ii) of Theorem II.4.1 is vacuous for our purpose.17 It suffices
to verify Condition (i) of Theorem II.4.1, which asserts that given ǫ > 0 there
is a compact set Kǫ such that

sup
n

µn(ν(Kc
ǫ ) > ǫ) < ǫ. (16.47)

Take Kǫ = BR = {x ∈ Rd : |x| ≤ R}, where we will choose R = R(ǫ)
below. Let ψR be a smooth function which takes values in [0, 1], which is 1 on
Bc

R, and which is 0 on BR−1. Then

µn(ν(Kc
ǫ ) > ǫ) ≤ ǫ−1Eµn [ν(Kc

ǫ )]

≤ ǫ−1Eµn [ν(ψR)]

= ǫ−1

∫

Rd

ψR(x)dM (1)
n (x). (16.48)

By Theorem 16.5,

lim
n→∞

∫

Rd

ψR(x)dM (1)
n (x) =

∫

Rd

ψR(x)dM (1)(x)

≤
∫

|x|>R−1

dM (1)(x). (16.49)

Since
∫

Rd dM (1)(x) = 1, the right hand side is less than ǫ2/2 if we choose R
large depending on ǫ, and therefore the integral on the left hand side is less
than ǫ2 for this R if we choose n large depending on R and hence on ǫ, say
n ≥ n0(ǫ). We have proved that

sup
n≥n0(ǫ)

µn(ν(Kc
ǫ ) > ǫ) < ǫ, (16.50)

and we are left with n < n0(ǫ).
Note that (16.50) continues to hold if we increase R, since this only de-

creases the left hand side. However, if we now increase R (if necessary) until
it exceeds n0(ǫ), then ν(Kc

ǫ ) = 0 almost surely under µn for any n < n0(ǫ),
since under µn it is the case that ν is supported on the ball in Rd of radius
n1−1/4 = n3/4. Thus (16.50) implies (16.47).

16.4 Lattice trees and ISE

It was conjectured by Aldous [15] that ISE describes the scaling limit of lattice
trees in dimensions d > 8. In this section, we discuss the theorem of [62]

17 We take eik·x as our separating class and observe that its integral with respect to
a probability measure ν is bounded by 1, so ν(eik·x) is relatively compact.
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that this is the case for sufficiently spread-out lattice trees, following the
presentation of [188].

Basic definitions for lattice trees were given in Section 7.1. In particular,

t
(1)
n was defined to be the number of n-bond lattice trees that contain the

origin, and t
(2)
n (x) was defined to be the number of n-bond lattice trees that

contain the origin and x. Now we also define functions t
(r)
n (σ; ~y,~s) for r ≥ 2,

using the terminology introduced above Theorem 15.4 for branching random
walk, which we recast here in a form appropriate for lattice trees.

0

x1

x2

x3

Fig. 16.2. A 2-dimensional lattice tree contributing to t
(4)
78 (σ1; ~y, ~m), with σ1 de-

picted in Fig. 15.1, ~y = ((2,−1), (0,−2), (4,−1), (−1,−3), (2, 2)), ~m = (3, 2, 5, 4, 4).

Given a lattice tree T containing the vertices 0, x1, . . . , xr−1 (not nec-
essarily distinct), we define the skeleton B to be the subtree of T span-
ning 0, x1, . . . , xr−1. Let βB be the tree (not a lattice tree) obtained by ig-
noring vertices in B of degree 2, other than 0, x1, . . . , xr−1. Let σ ∈ Σr,
~m = (m1, . . . , m2r−3) for non-negative integers mj , and ~y = (y1, . . . , y2r−3)
for yj ∈ Zd. We say that (T ; x̄) is compatible with (σ; ~y, ~m) if the following
hold:

1. βB is isomorphic to a subshape λ of σ (in which case the paths of the
skeleton B have an induced labelling).

2. Let lj > 0 denote the length of the skeleton path labelled j, and let lj = 0
for any edge in σ that is not in λ. Then lj = mj for each j = 1, . . . , 2r−3.

3. The skeleton path (oriented away from the origin) labelled j undergoes
the displacement yj for each j labelling an edge in λ, and yj = 0 for any
edge j in σ that is not in λ.

Then we define t
(r)
n (σ; ~y, ~m) to be the number of n-bond lattice trees T ,

containing the origin, for which there are vertices x1, . . . , xr−1 ∈ T such that
(T ; x̄) is compatible with (σ; ~y, ~m). (Note that x̄ is in fact uniquely determined
by σ and ~y.) See Fig. 16.2. We also define

t(r)n (σ; ~y) =
∑

~m

t(r)n (σ; ~y, ~m), (16.51)
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where the sum over ~m denotes a sum over the non-negative integers mj . For
r = 2, 3 there is a unique shape and we sometimes omit it from the notation.
We also define the generating functions

G
(r)

z,~ζ
(σ; ~y) =

∞∑

n=0

∑

~m

t(r)n (σ; ~y, ~m)zn
2r−3∏

j=1

ζ
mj

j , (16.52)

for r ≥ 2. For r ≥ 3, these generating functions keep track of more information
than those defined in (7.20). The sum over ~y ∈ Rd(2r−3) of (16.52) is finite for
|z| < zc and |ζj | ≤ 1, for all r.

The critical exponents η and γ were defined in (7.8) and (7.6) by

Ĝ
(2)
zc,1(k) ∼ const

1

|k|2−η
as k → 0, Ĝ

(2)
z,1(0) ∼ const

1

(1 − z/zc)γ
as z → zc.

(16.53)
Their mean-field values are η = 0 and γ = 1

2 . By analogy with (16.9), we
might hope and expect that in dimensions d > 8,

Ĝ
(2)
z,ζ(k) =

C0

D2
0|k|2 + 23/2(1 − z/zc)1/2 + 2T0(1 − ζ)

+ error, (16.54)

where C0, D0, T0 are positive constants, and where the error term is of lower
order than the main term in some suitable sense, as k → 0, z → zc, and ζ → 1.
Furthermore, by analogy with Theorem 15.4, we might expect that for d > 8
there is approximate independence of the form

Ĝ
(r)

z,~ζ
(σ;~k) = V r−2

2r−3∏

j=1

Ĝ
(2)
z,ζj

(kj) + error, (16.55)

where V is a finite positive constant which encompasses the self-avoidance
interactions of lattice trees in a renormalized vertex factor (cf. (7.41), and
also Section 5.3 and Theorems 6.9 and 6.10).

For the nearest-neighbour model with d sufficiently large, and for spread-
out models for d > 8 with L sufficiently large, relations of the form (16.54)

and (16.55) are proved in [62], for all r ≥ 2 if ~ζ = ~1 and for r = 2, 3 for general
~ζ. The results given below arise as a consequence. For the statement of the
results, we define

p(r)
n (σ; ~y) =

t
(r)
n (σ; ~y)

∑
σ∈Σm

t̂
(r)
n (σ;~0)

, (16.56)

which is a probability measure on Σr ×Zd(2r−3). The following theorem from
[61, 62], whose proof extends the methods of [95, 99], shows that (16.56) has
the corresponding ISE density as its scaling limit in high dimensions. In its
statement, the scaling of ~k corresponds to scaling down the lattice spacing by
a multiple of n−1/4.
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Theorem 16.7. Let r ≥ 2, σ ∈ Σr, kj ∈ Rd (j = 1, . . . , 2r − 3), and let D0

be given by (7.18). For nearest-neighbour lattice trees in sufficiently high di-
mensions d ≥ d0, and for spread-out lattice trees with d > 8 and L sufficiently
large depending on d, there is a constant18 c1 depending on d and L such that
as n → ∞

t̂(r)n (σ;~kD−1
0 n−1/4) ∼ c1n

r−5/2z−n
c Â(r)(~k). (16.57)

In particular,
lim

n→∞
p̂(r)

n (σ;~kD−1
0 n−1/4) = Â(r)(~k). (16.58)

It is a corollary of Theorem 16.7 that high-dimensional lattice trees con-
verge weakly to ISE, as we now explain. Given an n-bond lattice tree T con-
taining the origin, we define νT to be the probability measure on Rd which
for each of the n + 1 vertices x ∈ T assigns mass (n + 1)−1 to xD−1

0 n−1/4 in
Rd. We then define a probability measure µLT

n on M1(Rd), supported on the

νT , by µLT
n ({νT }) = (t

(1)
n )−1 for each n-bond lattice tree T containing 0. In

this way, n-bond lattice trees induce a random probability measure on Rd.

Corollary 16.8. For nearest-neighbour lattice trees in sufficiently high di-
mensions d ≥ d0, and for spread-out lattice trees with d > 8 and L sufficiently
large, µLT

n converges weakly to µISE, as measures on M1(Rd).

The argument leading from Theorem 16.7 to Corollary 16.8 is a straight-
forward adaptation of the proof of Theorem 16.6. The details are made explicit
in [188, Appendix A], where weak convergence of µLT

n to µISE is proved.19

For a more refined statement than Theorem 16.7, we define

p(r)
n (σ; ~y, ~m) =

t
(r)
n (σ; ~y, ~m)

∑
σ∈Σr

t̂
(r)
n (σ;~0)

, (16.59)

which is a probability measure on Σr×Zd(2r−3)×Z2r−3
+ . The following theorem

is due to [61, 62]. In its statement we drop σ, since there is a unique shape
for r = 2, 3.

Theorem 16.9. Let r = 2 or r = 3, kj ∈ Rd, and tj ∈ (0,∞) (j = 1, . . . , 2r−
3). For nearest-neighbour lattice trees in sufficiently high dimensions d ≥ d0,
and for spread-out lattice trees with d > 8 and L sufficiently large depending
on d, there is a constant T0 depending on d and L, such that as n → ∞,

t̂(r)n (~kD−1
0 n−1/4, ⌊~t T0n

1/2⌋) ∼ c1T
−(2r−3)
0 n−1z−n

c â(r)(~k,~t), (16.60)

18 The constant c1 is equal to the constant A of Theorems 7.3 and 7.4, but A is
already in use with a different meaning in (16.57).

19 In [188], convergence is proved as measures on probability measures on the one-
point compactification of Rd, but the one-point compactification can be avoided
as in the proof of Theorem 16.6.
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where c1 and D0 are the constants of Theorem 16.7. In particular,

lim
n→∞

(T0n
1/2)2r−3 p̂(r)

n (~kD−1
0 n−1/4, ⌊~t T0n

1/2⌋) = â(r)(~k,~t). (16.61)

It would be very surprising if Theorem 16.9 did not extend to all r ≥ 2,
but technical difficulties arise for r ≥ 4 and the theorem has been proved20

only for r = 2 and r = 3. Theorem 16.9 indicates that, at least for r = 2 and
r = 3, skeleton paths with length of order n1/2 are typical. This is Brownian
scaling, since distance is scaled as n1/4, and the variables tj correspond to
rescaled skeleton time variables.

See Section 17.5 for further results in this direction. See also [182] for a
study of the time evolution of ISE.

16.5 Critical Percolation and ISE

In this section, we discuss results of [103, 104, 105] which relate critical perco-
lation and ISE above the upper critical dimension, following the presentation
of [188].

Consider independent Bernoulli bond percolation on Zd, nearest-neighbour
or spread-out, with p fixed and equal to its critical value pc. The basic defini-
tions are laid out in Section 9. As usual, we let C(0) denote the random set
of vertices connected to 0, of cardinality |C(0)|. Let

τ (2)(x; n) = Ppc(C(0) ∋ x, |C(0)| = n) (16.62)

denote the probability at the critical point that the origin is connected to x
via a cluster containing n vertices, and define the generating function

τ (2)
z (x) =

∞∑

n=1

τ (2)(x;n)zn, (16.63)

which converges absolutely if |z| ≤ 1. Assuming no infinite cluster at pc,

τ
(2)
1 (x) is the probability that 0 is connected to x. Also, if we set z = 1 − γ,

then τ̂
(2)
z (0) is equal to χ(p, γ) of (9.29).

The definitions of the critical exponents η and δ in (9.17) and (9.18),
together with (9.29), suggest that

τ̂
(2)
1 (k) ∼ c1

|k|2−η
as k → 0, τ̂ (2)

z (0) ∼ c2

(1 − z)1−1/δ
as z → 1−. (16.64)

Inserting the mean-field values η = 0 and δ = 2, the simplest combination of
the above asymptotic relations for d > 6 would be

τ̂ (2)
z (k) =

C2

D2
2|k|2 + 23/2(1 − z)1/2

+ error, (16.65)

20 The statement of Theorem 16.9 for r = 3 in [11, 12] incorrectly included the case
where tj = 0 for some j.
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for some constants C2, D2. This is analogous to (16.8) with ζ = 1. Theo-
rem 11.3 shows that (16.65) is correct for sufficiently spread-out percolation
above six dimensions, in the sense that there are functions ǫ1(z) and ǫ2(k)
with limz→1− ǫ1(z) = limk→0 ǫ2(k) = 0, and constants C2 and D2 depending
on d and L, such that

τ̂ (2)
z (k) =

C2

D2
2|k|2 + 23/2(1 − z)1/2

[1 + ǫ(z, k)] (16.66)

for real z ∈ [0, 1), with |ǫ(z, k)| ≤ ǫ1(z) + ǫ2(k).
We have seen in (16.19) that the coefficient of zn in [|k|2+23/2(1−z)1/2]−1

is intimately related to Â(2)(k) and hence to ISE. Thus (16.66) is highly sug-
gestive that ISE occurs as a scaling limit for percolation, but the control of
the error term in (16.66) is too weak to obtain bounds on τ̂ (2)(kD−1

2 n−1/4; n)
via contour integration. However, for the nearest-neighbour model in suffi-
ciently high dimensions, better control of the error terms has been obtained,
for complex z with |z| < 1, leading to the following theorem [103, 105]. The
theorem also gives an asymptotic formula for the three-point function

τ (3)(x, y;n) = Ppc(x, y ∈ C(0), |C(0)| = n), (16.67)

in terms of its Fourier transform

τ̂ (3)(k, l; n) =
∑

x,y∈Zd

τ (3)(x, y; n)eik·x+il·y. (16.68)

Theorem 16.10. Let p = pc. Fix k, l ∈ Rd and any ǫ ∈ (0, 1
2 ). There is a d0

such that for nearest-neighbour percolation with d ≥ d0, there are constants
C2, D2 (depending on d) such that as n → ∞

τ̂ (2)(kD−1
2 n−1/4; n) =

C2√
8πn

Â(2)(k)[1 + O(n−ǫ)], (16.69)

τ̂ (3)(kD−1
2 n−1/4, lD−1

2 n−1/4; n) =
C2√
8π

n1/2Â(3)(k + l, k, l)[1 + O(n−ǫ)].

(16.70)

It follows from (16.69) that

Ppc(|C(0)| = n) = n−1τ̂ (2)(0;n)

= C2(8π)−1/2n−3/2[1 + O(n−ǫ)]. (16.71)

Comparing with (9.19), this is a statement that the critical exponent δ is equal
to 2 in high dimensions.

The proof of (16.70) considers the generating function

τ̂ (3)
z (k, l) =

∞∑

n=1

τ (3)(k, l;n)zn, (16.72)
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and shows that there is a positive constant V such that

τ̂ (3)
z (k, l) = V τ̂ (2)

z (k + l)τ̂ (2)
z (k)τ̂ (2)

z (l) + error, (16.73)

where the error term is treated using Exercise 7.7. The variables in (16.70)
are arranged schematically as:

0 x ,

y

k+l

l

k

and (16.73) asserts that the three-point function approximately decouples
into the vertex factor V times a product of three two-point functions. An
asymptotic relation in the spirit of (16.73), with k = l = 0, was conjectured
for d > 6 already in [12].

We expect that Theorem 16.10 should extend to general r-point functions,
for all r ≥ 2, but this has not been proven. This is essentially the conjecture
of [103] that the scaling limit of the incipient infinite cluster is ISE for d > 6.
We now discuss this conjecture in more detail.

Fix n and let S be a site lattice animal containing n sites, i.e., a set of n
vertices in Zd any two of which are connected by a sequence of vertices in S
separated by unit distance. Supposing that S contains the origin, define the
probability measure νS ∈ M1(Rd) to assign mass n−1 to xD−1

2 n−1/4, for each
x ∈ S. We define µPerc

n to be the probability measure on M1(Rd) which assigns
probability Ppc

(C(0) = S | |C(0)| = n) to νS , for each such S. We regard the
limit of µPerc

n , as n → ∞, as the scaling limit of the incipient infinite cluster.
This is related to Kesten’s definitions of the incipient infinite cluster [142] (see
Section 11.3), but here we are conditioning the cluster to have a fixed large
size rather than to reach a distant hyperplane, and, more importantly, here
we are taking the lattice spacing to zero as n → ∞. The conjecture of [103] is
that, as in Corollary 16.8 above, µPerc

n converges weakly to µISE for d > 6.
The conjecture is supported by Theorem 16.10. In fact, the characteristic

functions M̂
(1)
n (k) and M̂

(2)
n (k, l) of the first and second moment measures

M
(1)
n and M

(2)
n of µPerc

n are given by

M̂ (1)
n (k) =

τ̂ (2)(kD−1
2 n−1/4; n)

τ̂ (2)(0;n)
, (16.74)

M̂ (2)
n (k, l) =

τ̂ (3)(kD−1
2 n−1/4, lD−1

2 n−1/4; n)

τ̂ (3)(0, 0; n)
, (16.75)

and in high dimensions these converge respectively to the characteristic func-
tions Â(2)(k) and Â(3)(k + l, k, l) of the corresponding ISE moments, by The-
orem 16.10 (see also (16.39)).

From this point of view, the IIC is regarded as a cluster in Rd arising
in the scaling limit, represented by ISE. ISE is almost surely supported on
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a compact subset of Rd, but on the scale of the lattice, this corresponds to
an infinite cluster. The scaling here is consistent with the fact, discussed in
Section 11.4.4, that in high dimensions the largest cluster in a box of radius
r with bulk boundary condition has size of order r4, and suggests that the
largest cluster in a large box looks like an ISE cluster. In Section 17.3, a
related but different construction is discussed for oriented percolation, where
the IIC is first constructed as an infinite object on the lattice, and then the
scaling limit of this is taken. This order of limits naturally produces an infinite
continuous object, rather than a compact one.

ISE was defined in Section 16.3 as the law of a random probability measure
on Rd. However, ISE can also be formulated in such a way as to contain more
detailed information including the structure of paths joining any finite set
of points in the cluster, with these described by the functions a(r)(~k,~t). See
[152]. This is consistent with the approach of [4, 5, 6, 8] to the scaling limit,
although here our focus is on a single percolation cluster, rather than on many
clusters as in those references.

17 Super-Brownian Motion

Super-Brownian motion (SBM) is an active field in probability theory and
has an extensive literature. Introductory accounts can be found in [152, 177],
and a nontechnical introduction is [189]. SBM is a continuous time Markov
process whose state space is the set of finite measures on Rd. The subject
can be technical, and some of the techniques used to study SBM require tools
that many researchers interested in statistical mechanics do not have handy
in their kit. Our account is introductory, and develops only those aspects that
are essential for our specific purposes. In particular, attention is limited to the
canonical measure of SBM.

In recent years, it has been realized that SBM is the scaling limit of several
interacting particle systems at criticality. One aspect of this is the fact, already
discussed in Sections 16.4–16.5, that ISE describes the scaling limit of lattice
trees in dimensions d > 8 and of critical percolation clusters in dimensions
d > 6. In this section, we discuss results showing that the canonical measure of
SBM describes the scaling limit of critical oriented percolation for d+1 > 4+1,
of the critical contact process for d > 4 (and also in lower dimensions when
the infection range is suitably unbounded), and of lattice trees for d > 8.
In addition, SBM is the scaling limit of the voter model in dimensions d ≥ 2
[37, 58, 59], but the voter model will not be discussed further here. The relation
between super-Brownian motion and the voter model, contact process, and
oriented percolation is discussed in the introductory article [178].

17.1 The Canonical Measure of SBM

The canonical measure of SBM describes the scaling limit of critical branching
random walk, started from a single particle at the origin as in the construction
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of ISE. With ISE, we conditioned critical branching random walk clusters to
have exactly n particles, assigned mass n−1 to each particle, rescaled space
by n−1/4, and let n → ∞. The result was a random probability measure on
Rd. For the canonical measure of SBM we will scale differently.

Let (T, ϕ) be a critical branching random walk configuration with law
(15.8), as in Section 15.2. We make no assumption about the total number of
vertices in T . Typically, T will have few vertices, but we are most interested
in the rare trees that are long-lived. Let Tm denote the set of vertices at graph
distance m from the root of T . We refer to Tm as the mth generation of T .
Since T is almost surely finite, eventually Tm = ∅.

We introduce a scaling variable n, which is a large integer that will be sent
to infinity. Four simultaneous scalings are made, as follows.

• Scaling of time. We define a time variable t = m
n . This fixes attention on

the individuals Tm in generations m of order n.
• Scaling of space. In a configuration (T, ϕ), an individual in generation n

(if T lives so long) is mapped by ϕ to the endpoint of an n-step random
walk path. Such a point is typically at distance order n1/2 from the origin,
so we rescale the lattice to n−1/2Zd.

• Scaling of mass. A critical tree that survives to a generation of order n
typically has order n members in that generation. To obtain a generation
mass of order 1, we assign mass n−1 to each embedded vertex.

• Scaling of probability. By a theorem of Kolmogorov, the probability that a
critical tree survives for order n generations is of order n−1. The long-lived
trees of interest thus have a vanishingly small probability. To compensate,
we multiply probabilities by n, so that survival to order n generations
will have measure of order 1, rather than probability of order n−1. This
produces an unnormalized measure, rather than a probability measure.

The above is carried out, in detail, as follows. Given a critical branching
random walk configuration (T, ϕ), we rescale the lattice to n−1/2Zd, and de-

note by R
(m/n)
n the mass distribution in n−1/2Zd of the mth generation Tm

of T . Explicitly, R
(m/n)
n is the discrete finite measure on Rd that places mass

n−1 at each embedded vertex of Tm, with multiplicity, i.e.,

R(m/n)
n =

1

n

∑

i∈T :|i|=m

δn−1/2ϕ(i). (17.1)

Note that R
(m/n)
n need not be a probability measure. The measure R

(m/n)
n

is a random measure. Let R(m/n)
n denote the probability law of this random

measure. Thus R(m/n)
n is a probability measure on the space MF (Rd) of finite

measures on Rd, which quantifies how likely it is that a particular mass dis-
tribution occurs for the mth generation of a critical branching random walk
in n−1/2Zd. So far, we have rescaled generation m to time m/n, space to
n−1/2Zd, and vertex mass has been set equal to n−1.
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Fig. 17.1. The evolution of a mass distribution under the canonical measure, with
time vertical and 1-dimensional space horizontal. Darker shading represents higher
mass, and the parabola t = x2 shows the spatial scaling.

It remains to scale the probability measure R(m/n)
n . When m is of order

n, the random measure R
(m/n)
n is the zero measure on Rd with probability

1−O(n−1), since the probability of survival for m generations is order m−1 ≈
n−1. To amplify the rare event of survival to m generations, we consider the

measure nR(m/n)
n on MF (Rd), which has total measure n. This measure places

measure n−O(1) on the zero measure on Rd, and the remaining measure O(1)
on the nontrivial mass distributions due to the rare trees that survive for m
generations.

It is known that the limit of nR(⌊tn⌋/n)
n , as n → ∞, consists of an infinite

point mass on the zero measure on Rd, plus a nontrivial finite measure R(t)

on M0(Rd), the finite measures on Rd excluding the zero measure (see [177]).

More precisely, there is a measure R(t) on M0(Rd) such that nR(⌊tn⌋/n)
n con-

verges weakly to R(t) plus an infinite point mass on the zero measure on Rd.
In particular, for every bounded continuous function f on M0(Rd),
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lim
n→∞

n

∫

M0(Rd)

f(R)dR(⌊tn⌋/n)
n (R) =

∫

M0(Rd)

f(R)dR(t)(R). (17.2)

In other words, when normalized by n, the average of a function over the
long-lived, random configurations of the discrete mass distribution defined by

R(⌊tn⌋/n)
n converges to a corresponding integral over the configurations of the

continuous mass distribution defined by R(t).
Moreover, stronger results [178, Section 7] assert the convergence of the

scaling limit in the sense of convergence of measures on functions R(·) from the
time interval (0,∞) into MF (Rd). The measure-valued path R(·) represents
the evolving mass distribution of the embedded critical tree. The canonical
measure of super-Brownian motion, denoted N0, is a measure on measure-
valued paths that gives the appropriate weight to R(·). Fig. 17.1 illustrates
the evolution.

17.2 Moment Measures of the Canonical Measure

Later we will state results showing convergence of critical oriented percolation
and the critical contact process to the canonical measure, in the sense of
convergence of the moment measures. This is a form of convergence of finite-
dimensional distributions. The results make use of explicit formulas for the
moment measures of the canonical measure of SBM, and we now discuss these
formulas.

By definition, the lth moment measure of the canonical measure N0 has
Fourier transform

M̂
(l)
t̄ (k̄) = N0

( ∫

Rdl

dR(t1)(x1) · · · dR(tl)(xl)

l∏

j=1

eikj ·xj
)
. (17.3)

Here k̄ = (k1, . . . , kl) with each kj ∈ Rd, and R(·) has distribution N0, so that
each R(t) is a non-negative finite measure on Rd. It is possible to guess the
form of (17.3) by thinking about the approximating branching random walk.
In this section, we explain the guess, and sketch a proof for the case of critical
Poisson branching considered in Section 15.2.

According to the description of the canonical measure in Section 17.1, the
discrete analogue of (17.3) is

M̂
(l)
n,t̄(k̄) =

1

nl−1
Ŝ

(l+1)
⌊nt̄⌋ (k̄/

√
n), (17.4)

where

S
(l+1)
m̄ (x̄) =

∑

(T,ϕ)

P(T, ϕ)
∑

i1, . . . , il ∈ T
|ij | = mj ∀j

l∏

j=1

I[ϕ(ij) = xj ]. (17.5)
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The factors involving n in (17.4) arise as follows. The scaling of k̄ by n−1/2

corresponds to scaling the lattice spacing, the scaling of t̄ by n is the temporal
scaling, a factor n−l is due to mass n−1 at each of the l vertices x1, . . . , xl,
and an additional factor n changes n−l to n−(l−1) to rescale probability.

Recall the notions of shape, skeleton and compatibility from Section 15.2.
Suppose that (σ; ~y,~s) is compatible with (T, ϕ, ı̄) contributing to the sum
in (17.5), where σ ∈ Σl+1, and where, as in Section 15.2, we write e.g.
~s = (s1, . . . , s2l−1) for (2l − 1)-component vectors (l corresponds to r − 1).
Compatibility forces relationships between ~s and m̄ and between ~y and x̄. To
be specific about these relationships, we make the following definitions.

Given a shape σ ∈ Σl+1, for each vertex j of degree 1 in σ, other than
vertex 0, we let ωj be the set of edges in σ on the path from 0 to j (j = 1, . . . , l).
Given ~s ∈ R2l−1

+ , we define the jth component m̄j(σ,~s) of m̄(σ,~s) ∈ Rl
+ by

m̄j(σ,~s) =
∑

i∈ωj

si, (17.6)

and compatibility requires (17.6). For ti > 0 we also define an (l − 1)-
dimensional subset Jt̄(σ) of R2l−1

+ by

Jt̄(σ) = {~s : m̄(σ,~s) = t̄ }. (17.7)

For example, for l = 2, there is a unique shape σ and we have simply

Jt̄(σ) = {(s, t1 − s, t2 − s) : s ∈ [0, t1 ∧ t2]}. (17.8)

The relation between m̄ and ~s has a natural counterpart for x̄ and ~y. This
translates into a dual relation for the Fourier variable k̄, which we recall from
Section 16.3. Given a shape σ ∈ Σl+1 and k̄ = (k1 . . . , kl) ∈ Rdl, we define
~k(σ) ∈ R(2l−1)d by setting the ith component ~ki(σ) ∈ Rd (i = 1, . . . , 2l− 1) of
~k(σ) to be

~ki(σ) =

l∑

j=1

kjI[i ∈ ωj ], (17.9)

where, on the right hand side, kj denotes the jth component of k̄ and I is an
indicator function.

For l ≥ 3, there are redundancies in replacing the sum over (T, ϕ, ı̄) in

S
(l+1)
m̄ (x̄) by an appropriate sum over (σ; ~y,~s), as discussed in the proof of

Theorem 16.5. However, such overcounting arises from degenerate configura-
tions with at least one sj equal to zero, and it can be shown that these are
lower order and do not contribute to the limit. Therefore, in place of the right
hand side of (17.4), we consider instead

∑

σ∈Σl+1

1

nl−1

∑

~s∈J⌊nt̄⌋(σ)∩Z
l−1
+

∞∑

N=0

b̂
(l+1)
N (σ;~k(σ)n−1/2, ~s) (17.10)
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(where b̂N is the Fourier transform of (15.23) with respect to ~y), which can
be shown to have the same limit as (17.4) when n → ∞. By Theorem 15.4,

the quantity
∑∞

N=0 b
(l+1)
N (σ;~kn−1/2, ~s) is the coefficient of

∏2l−1
j=1 ζ

sj

j in the
generating function

2l−1∏

j=1

1

1 − ζjD̂(kjn−1/2)
. (17.11)

As in (16.18), this coefficient converges to a product of Gaussians. The set
J⌊nt̄⌋(σ) is (l − 1)-dimensional, and the factor n−(l−1) converts the sum into
a Riemann sum. It is therefore entirely plausible, and it can be proven, that
if ti > 0 for all i then

lim
n→∞

M̂
(l)
n,t̄(k̄) =

{
e−|k|2t/2d (l = 1),∑

σ∈Σl+1

∫
Jt̄(σ)

d~s
∏2l−1

j=1 e−|kj(σ)|2sj/2d (l ≥ 2).
(17.12)

A different but related and more general proof of (17.12) is discussed in [109].

The right hand side of (17.12) is equal to M̂
(l)
t̄ (k̄) of (17.3). The latter fact is

essentially [2, Theorem 3.1] (see also [69] and [152, Proposition IV.2.(ii)]).

Exercise 17.1. Fill in the details missing in the above discussion to give a
complete proof of (17.12).

Explicitly, for l = 2,

M̂
(2)
t1,t2(k1, k2) =

∫ t1∧t2

0

ds e−|k1+k2|2s/2de−|k1|2(t1−s)/2de−|k2|2(t2−s)/2d.

(17.13)
In x-space, recalling the definition of the Gaussian density pt(x) in (6.8), this
is equivalent to the density

M
(2)
t1,t2(x1, x2) =

∫ t1∧t2

0

ds

∫

Rd

dy ps(y)pt1−s(x1 − y)pt2−s(x2 − y). (17.14)

This last formula clearly shows the branching structure. Mass arrives at x1

at time t1 and at x2 at time t2 via a Brownian path that leaves the origin
and splits into two at a time s chosen uniformly from [0, t1 ∧ t2], with the two
particles then continuing to x1 and x2 at their appointed times.

Exercise 17.2. Starting with the right hand side of (17.12) as an expression

for the Fourier transform M̂
(l)
t̄ (k̄) of the moment measures, prove the recursion

relation

M̂
(l)
t̄ (k̄) =

∫ t

0

dt M̂
(1)
t (k1 + · · · + kl)

∑

I⊂J1:|I|≥1

M̂
(i)
t̄I−t(k̄I)M̂

(l−i)
t̄J\I−t(k̄J\I)

(17.15)
for l ≥ 2, where i = |I|, J = {1, . . . , l}, J1 = J\{1}, t = mini ti, t̄I denotes
the vector consisting of the components ti of t̄ with i ∈ I, and t̄I − t denotes
subtraction of t from each component of t̄I .
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A solution to a slightly weakened version of the following exercise can be found
in [114].

Exercise 17.3. Prove that for l ≥ 1, t1 ≥ s = max{t2, . . . , tl} and kj ∈ Rd,

M̂
(l)
t1,t2,...,tl

(0, k2, . . . , kl) = M̂
(l)
s,t2,...,tl

(0, k2, . . . , kl). (17.16)

A solution to the following exercise can be found in [114].

Exercise 17.4. Prove that for l ≥ 1,

M̂
(l)
t,...,t(~0) = tl−12−l+1l!. (17.17)

17.3 Critical Oriented Percolation and SBM

For r ≥ 2, the oriented percolation r-point functions are defined by

τ
(r)
p,n̄(x̄) = Pp((0, 0) → (xi, ni) for each i = 1, . . . , r − 1). (17.18)

The event on the right hand side makes no statement about the occurrence
of (xi, ni) → (xj , nj) for any i 6= j. The following theorem is proved in [121].
In its statement, the constants A and v are the same as those appearing in
Theorem 12.3.

Theorem 17.5. Consider the spread-out model of oriented percolation. Let
d > 4, p = pc, δ ∈ (0, 1 ∧ d−4

2 ), r ≥ 2, t̄ = (t1, . . . , tr−1) ∈ (0,∞)r−1,

and k̄ = (k1, . . . , kr−1) ∈ R(r−1)d. There is a constant V = V (d, L), with
|V − 1| ≤ CL−d, and an L0 = L0(d) (independent of r) such that for L ≥ L0,

τ̂
(r)
pc,⌊nt̄⌋(k̄/

√
vn) = nr−2V r−2A2r−3

[
M̂

(r−1)
t̄ (k̄) + O(n−δ)

]
, (17.19)

with the error estimate uniform in k̄ in a bounded subset of R(r−1)d (but not
in L or the tj).

The theorem is proved using induction on r. The induction is started at
r = 2 with Theorem 12.3, which gives control of the critical two-point function
(and which was proved using induction on n). The induction on r is advanced
using a second expansion for the r-point functions for r ≥ 3, which goes
beyond the expansion methods of Section 13.

For r = 3, the main term on the right hand side of (17.19) reduces to

nV A3

∫ t1∧t2

0

ds e−|k1+k2|2s/2de−|k1|2(t1−s)/2de−|k2|2(t2−s)/2d. (17.20)

Equation (17.20) can be interpreted as indicating that a cluster connecting
the origin to (x1, ⌊nt1⌋) and (x2, ⌊nt2⌋), with the xi of order n1/2, can be
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considered to decompose into a product of three independent two-point func-
tions joined together at a branch point. Each two-point function gives rise
to a Gaussian, together with a factor A, according to Theorem 12.3(a). This
decomposition into independent two-point functions is not exact, but is com-
pensated by the vertex factor V associated with the branch point. The integral
with respect to s corresponds to a sum over possible temporal locations of the
branch point, with the additional factor n accounting for the change from a
sum to an integral.

Similar considerations apply to (17.19), with additional structure due to
the proliferation of shapes. There are r − 2 branch points in the general case,
each contributing nV , and 2r − 3 two-point functions, each contributing A
times a Gaussian. The integral over Jt̄(σ) corresponds to a sum over time
intervals between the various branch points, and is constrained so that the
shape’s leaves are specified by the times ⌊nt̄⌋.

The tree graph bounds (derivations in [12, 85] extend easily to the ori-
ented setting), together with the bound on the two-point function of Theo-
rem 15.2(a), immediately imply that the left hand side of (17.19) is bounded
above by a multiple of nr−2. By (17.19), this elementary upper bound gives
the correct power of n, above the upper critical dimension.

Theorem 17.5 can be rephrased to say that, under its hypotheses, the mo-
ment measures of rescaled critical oriented percolation converge to those of
the canonical measure of super-Brownian motion. We now make this interpre-
tation more explicit.

First, for t ∈ (0,∞), we define Xn,t to be the discrete finite random
measure on Rd placing mass (A2V n)−1 at each vertex at time ⌊nt⌋ in
(vn)−1/2C(0, 0). The characteristic function of the lth moment measure of
the measure-valued process Xn,· is defined as in (17.3) and is given by

N̂
(l)
n,t̄(k̄) = (A2V n)−lτ̂

(l+1)
⌊nt̄⌋ (k̄/

√
vn). (17.21)

It then follows immediately from Theorems 15.2 and 17.5 that, under their
hypotheses, for all l ≥ 1,

lim
n→∞

AV nN̂
(l)
n,t̄(k̄) = M̂

(l)
t̄ (k̄). (17.22)

This can be regarded as a statement that AV nP({Xn,t}t>0 ∈ ·) converges to
N0 in the sense of convergence of finite-dimensional distributions.

This shows that spread-out critical oriented percolation and critical branch-
ing random walk have the same scaling limit, for d > 4 (compare [177, Theo-
rem II.7.3(a)]). A crucial difference between oriented percolation and branch-
ing random walk is that particles can coexist at the same vertex for the latter,
but not for the former.

The above gives a statement of convergence of finite-dimensional distri-
butions. To prove weak convergence, as a measure-valued process, of rescaled
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spread-out oriented percolation for d > 4 to the canonical measure of super-
Brownian motion, it would be necessary also to prove tightness. Currently,
this is an open problem.

By Theorem 12.7, if the survival probability is as expected asymptotic to
(Bn)−1 then it must be the case that B = AV/2, which in turn implies that
the factor AV n in (17.22) corresponds asymptotically to twice the reciprocal
of the survival probability.

The incipient infinite cluster of spread-out oriented percolation in dimen-
sions d + 1 > 4 + 1 was discussed in Section 12.4. In [121], the natural conjec-
ture was formulated that the scaling limit of the incipient infinite cluster for
oriented percolation in dimensions d + 1 > 4 + 1 is the canonical measure of
super-Brownian motion, conditioned on survival for all time. The proof makes
use of the IIC r-point functions, defined by

ρ
(r)
m̄ (ȳ) = P∞((0, 0) → (yi,mi) for each i = 1, . . . , r − 1), (17.23)

where P∞ is the measure of Theorem 12.5. It is proved in [114] that the scaling
limit of the IIC r-point functions is given by

lim
m→∞

1

(mA2V )r−1
ρ̂
(r)
⌊mt̄⌋(k̄/

√
vm) = M̂

(r)
1,t̄ (0, k̄), (17.24)

for all r ≥ 2, t̄ = (t1, . . . , tr−1) ∈ (0, 1]r−1 and k̄ ∈ Rd(r−1), and it is pointed
out in [109] that this proves the conjecture at the level of convergence of
finite-dimensional distributions.

Solutions to the following two exercises can be found in [114]. Each makes
use of the following extension of Theorem 17.5 that was proved in [121]. Let m
denote the second largest component of n̄ = (n1, . . . , nr−1). Then [121, (2.52)]
states that for each r ≥ 3,

τ̂
(r)
n̄ (k̄/

√
v n) = nr−2V r−2A2r−3

[
M̂

(r−1)
n̄/n (k̄) + O((m + 1)−δ)

]
(17.25)

holds uniformly in n ≥ m.

Exercise 17.6. Prove Theorem 12.7(a), using (17.25), Exercises 17.3 and
17.4, and

E∞[N l
m] = lim

n→∞
τ̂

(l+2)
n,m,...,m(0)

τ̂
(2)
n (0)

. (17.26)

Exercise 17.7. Prove (17.24) for all r ≥ 2. Use Exercise 17.3 and (17.25).

17.4 The Critical Contact Process and SBM

A version of Theorem 17.5 is proven in [117] for the contact process. This shows
that in dimensions d > 4 the spread-out contact process with L sufficiently
large converges to the canonical measure of super-Brownian motion in the
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sense of convergence of finite-dimensional distributions. The proof uses the
approximation by oriented percolation discussed in Section 14.2. In addition, a
similar result is obtained in [117] for dimensions 1 ≤ d ≤ 4, for the model with
L = L1T

b with parameters as in Theorem 14.3. In particular, the assumption
on the exponent b is that b > 4−d

2d , as in (14.24).
This should be compared with the results of [68], who proved convergence

to super-Brownian motion for the model of the contact process with L propor-
tional to T for d > 2 and proportional to (T log T )1/2 for d = 2. This requires
faster growth in T for d > 2 but is sharper for d = 2. The results of [68]
use completely different methods than the lace expansion methods discussed
in these lecture notes. In particular, they work entirely with continuous time
and do not use an approximation by oriented percolation. The convergence
statements of [68] are stronger than those of [117] in the sense that they also
prove tightness and thus go beyond the convergence of moment measures. In
addition, their results are not formulated in terms of the canonical measure,
but rather prove convergence to super-Brownian motion with an arbitrary
finite measure as initial condition. On the other hand, their assumption that
b = 1 in dimensions d > 4 is considerably stronger than the assumption in
[117] that L is large but finite for dimensions d > 4.

17.5 Lattice Trees and SBM

Corollary 16.8 shows that in dimensions d > 8 spread-out lattice trees converge
to ISE when appropriately rescaled. In that scaling, we considered lattice trees
with exactly n bonds, mass (n + 1)−1 was placed at each vertex, space was
rescaled by a multiple of n−1/4, and the limit n → ∞ was taken. Now we
consider instead the scaling of Section 17.1, appropriate to give the canonical
measure of SBM as limit.

For this, we need a time variable for lattice trees. The time variable is graph
distance from the origin, i.e., vertices at “time” m are those at graph distance
m from the origin in the lattice tree. Let |x|g denote the graph distance of
x, and for r ≥ 2, m̄ = (m1, . . . ,mr−1), and x̄ = (x1, . . . , xr−1) such that
|xi|g = mi for all i, define

t
(r)
m̄ (x̄) =

∑

T :T∋0,x1,...,xr−1

z|T |
c . (17.27)

Note that the activity z dual to the size of the lattice tree has been set equal
to its critical value zc, and that lattice trees of arbitrary size contribute to
(17.27).

We then rescale x̄ by n−1/2 and rescale m̄ by n−1. Under this scaling, the
analogue of (17.19) is proved in [125] to hold for sufficiently spread-out lattice
trees in dimensions d > 8. The proof uses an adaptation of the induction
method of [120] for the two-point function, and then applies induction on r
for the r-point functions with r ≥ 3. The induction on r is advanced using the
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lace expansion on a tree [124] in place of the more difficult double expansion
used in [62, 99].
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