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Abstract

The purpose of this paper is to extend the construction of the PSS-type isomorphism between
the Floer homology and the quantum homology of a monotone Lagrangian submanifold L of
a symplectic manifold M , provided that the minimal Maslov number of L is at least two, to
arbitrary coefficients. We provide a proof, again over arbitrary coefficients, that this isomorphism
respects the natural algebraic structures on both sides, such as the quantum product and the
quantum module action. This isomorphism serves as the technical foundation for the construction
of Lagrangian spectral invariants in [LZ15]. Our constructions work when the second Stiefel–
Whitney class of L vanishes on the image of the boundary homomorphism π3(M,L) → π2(L),
a condition strictly weaker than being relatively Pin; in particular we do not require L to be
orientable. The constructions are done using canonical orientations, and require no further choices
such as relative Pin-structures. Such structures do however play a significant role when endowing
the various complexes and homologies with structures of modules over Novikov rings, and in
calculations.
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1 Introduction and main result

1.1 Introduction

The Piunikhin–Salamon–Schwarz isomorphism between the Hamiltonian Floer homology and the
quantum homology of a symplectic manifold M was constructed in [PSS96]. Nowadays it has become a
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standard tool of symplectic topology and is known under the abbreviated name of the PSS isomorphism.
The analogs of the PSS isomorphism for Lagrangian Floer homology were constructed at varying levels
of generality and rigor in [KM05, CL05, BC07, Alb08, Lec08, BC09, HLL11]. Applications of these
isomorphisms include spectral invariants, see [Oh05, Lec08, LZ15] and references therein, as well as
problems such as homological Lagrangian monodromy [HLL11].

Our contribution in the present paper is as follows:

• We extend the construction of the PSS isomorphism for a monotone Lagrangian submanifold
L ⊂ M with minimal Maslov number at least two, appearing in [BC07, BC09], to arbitrary
coefficients, under a certain assumption on the second Stiefel–Whitney class of L.

• We show that the natural algebraic structures on Lagrangian Floer and quantum homology, such
as products and the quantum module action, are intertwined by this isomorphism. This has been
known to experts (see [BC07, BC09]), and here we provide details of the relevant construction,
again with arbitrary coefficients.

• We use and develop the approach of canonical orientations, appearing for instance in [Wel08,
Sei08, Abo13], to tackle the issue of signs, rather than using the usual approach of coherent
orientations; this allows us to generalize the construction of the Lagrangian Floer and quantum
complexes, as well as of the PSS isomorphism, and in particular our Lagrangian is not assumed
to be orientable or to carry a relative Pin-structure.

The canonical Floer and quantum complexes that we construct in this paper distinguish homotopy
classes of cappings. In applications it is often more desirable to have smaller complexes in which
cappings are only distinguished by their area or homology class. Relative Pin-structures allow us to do
that. They are also used in order to endow the canonical complexes and their homologies with module
structures over Novikov rings.

The existing literature does not explicitly cover one particular case appearing when proving that
the quantum boundary operator squares to zero, namely the case analogous to bubbling off of a
holomorphic disk of Maslov index 2 in Floer homology. Even though it is fairly straightforward, at
least with coefficients in Z2 [BC], we include a treatment of this case with arbitrary coefficients in §6.2
for the sake of completeness.

We also provide a description of various auxiliary algebraic structures, which have already appeared
in the literature, such as augmentations and duality [BC07, BC09], and spectral sequences [Oh96a,
BC07, BC09, Bir06]. These require careful formulation due to the presence of orientations.

Lastly, we compute the canonical quantum complexes for the standard monotone RPn ⊂ CPn,
n ≥ 1, as well as certain monotone Lagrangian tori in CP 2 and CP 1 × CP 1.

1.2 Main result

Let us fix a closed 1) connected symplectic manifold (M,ω) of dimension 2n and a closed connected
Lagrangian submanifold L. There are two natural homomorphisms associated to L:

ω: π2(M,L) → R , the symplectic area, and

µ: π2(M,L) → Z , the Maslov class.

1)With straightforward modifications, everything said here can be formulated for open symplectic manifolds which are
convex at infinity [EG91].
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We say that L is monotone if there is a positive constant τ such that ω = τµ. We denote by NL the
positive generator of µ(π2(M,L)) ⊂ Z if this subgroup is nonzero, otherwise we put NL = ∞. This is
called the minimal Maslov number of L.

Throughout this paper we assume that L is monotone and that its minimal Maslov
number is at least 2.

Since we are dealing with Lagrangian Floer theory with arbitrary coefficients, we need to impose a
condition on the second Stiefel–Whitney class of L.

Assumption (O): the class w2(TL) vanishes on the image of the boundary homomor-
phism π3(M,L) → π2(L).

We impose assumption (O) throughout.

Remark 1.1. If only coefficients in a ring of characteristic 2 are required, this assumption is not
needed. See also §3.10.

Remark 1.2. Assumption (O) is implied by and is strictly weaker than being relatively Pin±, see
§7.1.

Given a commutative ground ring R, we construct the Lagrangian Floer complex

(CF∗(H : L), ∂H,J )

of L over R, relative to a Hamiltonian perturbation H , where J is an ω-compatible almost complex
structure on M , and the Lagrangian quantum complex

(QC∗(D : L), ∂D) ,

where D = (f, ρ, I) is a quantum datum, (f, ρ) being a Morse–Smale pair on L, and I another compat-
ible almost complex structure. We prove that the homologies HF∗(L) and QH∗(L) of these complexes
are independent of the auxiliary data. These carry the structure of unital associative algebras over R.
Our main result in this paper is

Theorem 1.3. There is a canonical PSS isomorphism

PSS : HF∗(L) → QH∗(L) ,

which is a unital algebra isomorphism.

We wish to emphasize that the Lagrangian Floer and quantum complexes, and the PSS isomorphism
that we construct, are a generalization of existing constructions, and that the main points here are
the use of canonical orientations, the generalization of the construction of the PSS isomorphism to
arbitrary coefficients, and a proof of the fact that the natural algebraic structures are intertwined by
it.

This theorem is proved as part of the constructions of §5. In addition the PSS isomorphism respects
the so-called quantum module structures on both sides. Namely, HF∗(L) is a superalgebra over the
Hamiltonian Floer homology HF∗(M) of M , and analogously QH∗(L) is a superalgebra over the
quantum homology QH∗(M). The PSS isomorphism we construct intertwines the two structures.
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1.3 Overview of the construction

Let us briefly review these constructions. We have the path space

ΩL = {γ: [0, 1] →M | γ(0), γ(1) ∈ L , [γ] = 0 ∈ π1(M,L)}

and its covering space
Ω̃L = {[γ, γ̂] | γ ∈ ΩL , γ̂ a capping of γ} ,

where a capping of γ is a map from the closed half-disk to M where the diameter maps to γ while
the boundary maps to L. Two cappings γ̂, γ̂′ of the same path γ are equivalent if their concatenation
γ̂♯ − γ̂′ is nullhomotopic relative to L, and [γ, γ̂] denotes the equivalence class of a capping. Given a
Hamiltonian H : M × [0, 1] → R its action functional is

AH:L: Ω̃L → R , AH:L([γ, γ̂]) =

∫ 1

0

Ht(γ(t)) dt −
∫
γ̂∗ω .

The critical points CritAH:L are those points [γ, γ̂] for which γ is a Hamiltonian arc of H , that is
γ̇ = XH ◦ γ. We call H nondegenerate if for every such critical point the linearized map

φH,∗: Tγ(0)M → Tγ(1)M

maps Tγ(0)L to a subspace transverse to Tγ(1)L. For such H the underlying module of its Floer complex
is defined as

CF∗(H : L) =
⊕

γ̃∈CritAH:L

C(γ̃) ,

where C(γ̃) is a canonical rank 1 free R-module 2) associated to γ̃. It is generated by the two possible
orientations of the determinant line bundle of a certain natural family of Fredholm operators, which
are formal linearizations of the Floer PDE defined on cappings γ̂ in class γ̃. This module is graded by
the Conley–Zehnder index mH:L.

Remark 1.4. We wish to remark that until quite recently there was no complete treatment of the
topic of determinant lines of Fredholm operators, except the paper [KM76], which however is very
abstract, and in which the useful properties were not formulated. To the best of our knowledge the
first complete exposition including such properties, only appeared in 2013 in Zinger’s paper [Zin13],
on which the present paper relies very heavily. The somewhat unfortunate reality of this topic is that
the word “canonical” is very much used, often without specifying which one of the possible canonical
choices is selected. Zinger’s paper remedies the situation. See §2.

Given a sufficiently generic compatible almost complex structure J the Floer boundary operator

∂H,J : CF∗(H : L) → CF∗−1(H : L)

is defined via its matrix elements which are homomorphisms

∑

[u]∈M(H,J;γ̃−,γ̃+)

C(u): C(γ̃−) → C(γ̃+) ,

2)For R = Z it is a “fake Z,” as J.-Y. Welschinger would call it.
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where for γ̃± ∈ CritAH:L of index difference 1 we have the moduli space of solutions M(H, J ; γ̃−, γ̃+)
of the Floer PDE, which is a finite set. Here

C(u): C(γ̃−) → C(γ̃+)

is an isomorphism defined roughly as follows: linear gluing of Fredholm operators allows us to produce,
starting from a formal linearization of the Floer PDE on a capping γ̂−, a formal linearization on a
capping γ̂+ in the class γ̃+. It then follows from the existence of canonical isomorphisms of determinant
lines for Fredholm operators that there is a bijection between the orientations of the linearized operator
Du of u and isomorphisms C(γ̃−) ≃ C(γ̃+). The isomorphism C(u) is the one corresponding to the
orientation of Du given by the positive direction of the natural R-action on its kernel.

We then prove that ∂H,J squares to zero. This includes a fairly standard argument involving the
compactification of the 2-dimensional solution spaces of the Floer PDE by broken trajectories, as well
as bubbling analysis in case NL = 2. We denote by

HF∗(H, J : L)

the resulting Lagrangian Floer homology. Usual continuation maps yield canonical isomorphisms

ΦH′,J′

H,J : HF∗(H, J : L) → HF∗(H ′, J ′ : L) ,

which satisfy the cocycle identity and therefore allow us to define the abstract Floer homology HF∗(L).
This is endowed with the structure of an associative unital algebra using moduli spaces of solutions of
the Floer PDE on the disk with three boundary punctures. The Hamiltonian Floer homology HF∗(M)
is made to act on HF∗(L) using the disk with two boundary and one interior puncture.

The quantum complex of a quantum datum D = (f, ρ, I) as above has

QC∗(D : L) =
⊕

q∈Crit f
A∈π2(M,L,q)

C(q, A)

as the underlying R-module, where C(q, A) is a certain rank 1 free R-module, again generated by the
orientations of a certain natural family of Fredholm operators. The boundary operator

∂D: QC∗(D : L) → QC∗−1(D : L)

has quite an involved definition via the pearly spaces [BC07, BC09], and therefore we will not review
it here. The quantum homology

QH∗(D : L)

is the homology of the chain complex (QC∗(D : L), ∂D). We include a treatment of the particular case
NL = 2 when “bubbling” may arise, see §6.2. We construct a product and a superalgebra structure
over QH∗(M).

Finally the PSS morphism

PSSD
H,J : CF∗(H : L) → QC∗(D : L)

is defined via mixed Floer-pearly moduli spaces. We show that it induces an isomorphism on homology
and that it respects continuation maps, which implies that it induces an isomorphism

HF∗(L) → QH∗(D : L) .
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We also construct an opposite isomorphism

QH∗(D : L) → HF∗(L)

using an analogous strategy. Composing the two isomorphisms for different quantum data we obtain
“continuation maps” for quantum homology

ΦD′

D : QH∗(D : L) → QH∗(D′ : L) ,

which are isomorphisms by construction, and which satisfy a cocycle identity. This allows us to
define the abstract quantum homology QH∗(L). PSS isomorphisms are shown to respect the algebraic
structures on both sides, such as the quantum product and the quantum module action, which means
that QH∗(L) inherits a product and a superalgebra structure over QH∗(M), and in particular the
product is unital and associative.

1.4 Relation with previous results and constructions

Lagrangian Floer homology was, of course, defined by Floer [Flo88a, Flo88b, Flo89] for weakly
exact Lagrangians and extended to the monotone case by Oh [Oh93], both over Z2. For the pants
product on Lagrangian Floer homology see [Oh99] and references therein. The superalgebra structure
of HF∗(L) over HF∗(M) is known to experts and is a generalization of the so-called “closed-open”
map, see also [Alb08]. Lagrangian quantum homology was constructed by Biran–Cornea [BC07, BC09]
using the pearly complex which was described by Oh [Oh96b]. In [BC07, BC09] the authors construct
a product and a quantum module action on the Lagrangian quantum homology. Lagrangian Floer
homology with arbitrary coefficients is defined, in the most general case, in [FOOO09a, FOOO09b].
Hu–Lalonde treat the monotone case in [HL10]. Also see Seidel’s book [Sei08] for the exact case; the
approach in it is closest to what is done in this paper. Quantum homology with orientations is defined
in [BC12] for L being oriented and Spin. The use of (relative) (S)Pin structures to produce coherent
orientations appears in [FOOO09a, FOOO09b], as well as in [Sol06, HL10, BC12, WW15].

The Lagrangian PSS isomorphism appears already in [CL05], in the context of cluster homology.
The papers [BC07, BC09] define this isomorphism between Lagrangian quantum and Floer homology,
in a way that is used in the present paper. Certain particular cases of the Lagrangian PSS morphism
for monotone Lagrangians were handled by Albers [Alb08]. The case of the zero section of a cotan-
gent bundle appears in [KM05]. For conormal bundles see [Dju15]. For weakly exact Lagrangians a
description of the PSS isomorphism appears in [Lec08] over Z2 and over arbitrary rings in [HLL11].
The fact that the Lagrangian PSS morphism respects the natural product structures was proved in
[KMS11] for the zero section of a cotangent bundle. In general, the fact that the algebraic structures
on Lagrangian Floer and quantum homology are canonically isomorphic has been known to experts,
although a proof does not seem to be written anywhere.

Coherent orientations were introduced into symplectic topology by Floer and Hofer [FH93]. This
approach is mainstream now. The use of canonical orientations was inspired by conversations with
J.-Y. Welschinger and by his paper [Wel08], as well as by Seidel’s book [Sei08]. In particular our
spaces C(γ̃) and C(q, A) appearing in §1.3 are similar to the orientation spaces of [Sei08, Chapter 11].
See also Abouzaid’s expository paper [Abo13]. Coherent orientations for the PSS isomorphism in the
cotangent bundle case were constructed by Katić–Milinković [KM09]. Coherent orientations in the
context of cluster complexes can be found in [Cha12]; the approach of that paper resembles what we
do here to an extent.
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Lagrangian spectral invariants using Floer theory were defined in [Oh97] for the zero section of a
cotangent bundle, in [Lec08] for weakly exact Lagrangians, and most recently in [LZ15] for monotone
Lagrangians using the technical results of the present paper.

1.5 Overview of the paper

Since our approach is to use canonical orientations, and the existing literature on this topic is quite
scarce, we decided to include an extensive treatment of Floer and quantum homology, which also serves
to establish notation. The methods developed while constructing these serve as a foundation for the
construction of the PSS isomorphism and for the proofs of its various properties.

It is best to read the paper linearly. In order to avoid redundancies, each section builds upon
the previous ones. Since the subject matter is quite technical, the exposition is terse, therefore short
summaries are given at the beginning of each section.

In §2 we review the basic notion of the determinant line of a Fredholm operator and state the
properties necessary for the rest of the paper.

In §3 we define the canonical Floer complex (CF∗(H : L), ∂H,J) associated to a regular Floer datum
(H, J). We define the boundary operator and prove that it squares to zero, when bubbling of Maslov
2 disks is absent. Various algebraic structures are defined, such as the quantum product, the unit,
and the quantum module structure, and their properties are proved, such as the associativity of the
product and the like. The abstract Floer homology HF∗(L) is defined.

In §4 we define the quantum complex (QC∗(D : L), ∂D), using the canonical orientation approach.
We similarly define the boundary operator, prove that it squares to zero in absence of bubbling, and
define the quantum product and quantum module action.

In §5 we construct the canonical PSS maps between the Floer and quantum homology of L, and
prove that they are in fact isomorphisms. As a result of their properties, PSS isomorphisms are used
to define “continuation maps” in quantum homology, which we use instead of the more direct approach
of Biran–Cornea [BC07, BC09]. Thus we obtain the abstract quantum homology QH∗(L). We prove
that the PSS isomorphisms intertwine the algebraic structures on both sides, such as products and
quantum module actions.

In §6 we prove that the Lagrangian Floer and quantum boundary operators square to zero when
there is bubbling present.

In §7 we describe the construction of quotient complexes, which are the more familiar objects in
Floer theory. We start with a summary of relative Pin structures and how to use them to define a
system of coherent orientations on formal linearized operators corresponding to disks with boundary
on L. We obtain a simplification of the usual process of constructing such orientations via framings.
We describe the construction of quotient complexes in Hamiltonian Floer homology and the quantum
homology of M , which require no choices at all, and then proceed with the Lagrangian case, which is
much less trivial and for which coherent orientations are needed.

In §8 we compute the canonical quantum complexes for RPn ⊂ CPn, as well as for three monotone
tori, the Clifford torus and the Chekanov torus in CP 2, and the exotic torus in CP 1 × CP 1.

Acknowledgements. I wish to thank David Blanc, Strom Borman, François Charette, Boris Chorny,
Tobias Ekholm, Misha Entov, Oli Fabert, Penka Georgieva, Luis Haug, Vladimir Hinich, Marco Maz-
zucchelli, Dusa McDuff, Cedric Membrez, Will Merry, Fabien Ngô, Tony Rieser, Dietmar Salamon,
Matthias Schwarz, and Egor Shelukhin for numerous stimulating discussions and general interest, Paul
Biran and Octav Cornea for reading a portion of the manuscript and providing valuable comments
which allowed me to write the abstract and the introduction more clearly, and Leonid Polterovich for
useful suggestions. The approach chosen in this project was largely inspired by a conversation with
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J.-Y. Welschinger at a pierogi restaurant in  Lódź; he taught me canonical orientations in Morse theory,
and answered many questions about generalizations to Floer homology. Jacqui Espina kindly agreed to
listen to a number of preliminary results and took notes, which later helped me write this manuscript.
Special thanks go to Judy Kupferman who listened to me ramble about this paper over innumerable
cups of coffee, and to my collaborator Rémi Leclercq for reading a portion of the text, and for his
support and patience during the long time that it took me to complete this project, which is necessary
for our [LZ15].

2 Determinant lines for Fredholm operators

In this section we collect the necessary preliminaries concerning Fredholm operators, their deter-
minant lines and properties. We refer the reader to the wonderful paper by Zinger [Zin13], which
constructs determinant lines of Fredholm operators and proves their various properties and classifica-
tion in complete detail.

Given two real Banach spaces X,Y , a Fredholm operator between them is a bounded linear operator

D: X → Y

with closed range, whose kernel and cokernel are both finite-dimensional. We let F(X,Y ) be the set of
Fredholm operators. It is an open subspace of the space of bounded linear operators between X and
Y relative to the norm topology. The index of D is the integer

indD = dim kerD − dim cokerD .

The index is a continuous function on F(X,Y ) and consequently it is locally constant.
A Z2-graded line, or a graded line for short, is a one-dimensional real vector space together with

a grading, which is an element of Z2 = {0, 1}. For a graded line L we let degL ∈ Z2 be its grading.
For a finite-dimensional real vector space V we denote by

d(V )

the graded line whose underlying line is the top exterior power
∧max

V and whose grading is dimV
(mod 2). The determinant line of a Fredholm operator D ∈ F(X,Y ) is the graded line

d(D) = d(kerD) ⊗
(

d(cokerD)
)∨

with grading deg d(D) = indD (mod 2) .

We let
dX,Y =

⊎

D∈F(X,Y )

d(D) .

For now this is just a set with fiberwise linear structure with respect to the obvious projection

dX,Y → F(X,Y ) .

We wish to put a topology on dX,Y so that it becomes a line bundle over F(X,Y ). However, not any
topology would do. The reason for this is that in applications there are a plethora of natural operations
on Fredholm operators, and we wish our topology to be compatible with these operations.

Abstractly, we have the collection of spaces (yet without topology) dX,Y , indexed by pairs of real
Banach spaces (X,Y ). Therefore a priori we can topologize each one of these spaces to make them
into real line bundles. As we just pointed out, not every such system of topologies will have the desired
properties. Zinger [Zin13] lists a number of very natural properties which should be satisfied by any
useful such system of topologies, and proves the following fundamental result.
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Theorem 2.1. There exist systems of topologies on the collection of spaces dX,Y , indexed by pairs of
Banach spaces (X,Y ), satisfying the desired natural properties.

It would take us too far afield to list all the properties formulated by Zinger. Instead we refer the
reader to his paper, which also contains a precise formulation of Theorem 2.1.

In this paper we fix once and for all a single compatible system of topologies whose existence is
guaranteed by Theorem 2.1, for instance the system explicitly described in [Zin13, Section 4.2]. We
will now list the properties which will be needed in the applications presented in the paper. Note that
in this section we only list properties pertaining to abstract Fredholm operators. Later in the paper we
will specialize to real Cauchy–Riemann operators (see §3, 4); these have additional properties specific
to them, and we will introduce them at appropriate points in the text.

Remark 2.2. Systems of topologies whose existence is asserted in Theorem 2.1 are not unique. In
fact, Zinger classifies all such systems in [Zin13, Theorem 2]. From this classification it is apparent that
there are infinitely many such systems. However, this has no bearing on results of computations, since
they are based solely on the properties of these topologies, which ultimately boil down to canonical
constructions involving solely finite-dimensional vector spaces. Since all the compatible systems of
topologies satisfy the same properties, computations will always yield the same result, whatever system
of topologies is chosen.

2.1 Properties of determinant lines

2.1.0.1 Naturality with respect to isomorphisms If f : V → W is an isomorphism of finite-
dimensional real vector spaces, we let

d(f): d(V ) → d(W )

be the induced isomorphism of determinant lines. If φ: X → X ′, ψ: Y → Y ′ are Banach space
isomorphisms, there is an induced homeomorphism

F(X,Y ) → F(X ′, Y ′) , D 7→ ψ ◦D ◦ φ−1 .

This lifts to an isomorphism of line bundles

dX,Y → dX′,Y ′ ,

as follows. For D ∈ F(X,Y ) let D′ = ψ ◦D ◦ φ−1. The map between d(D) and d(D′) is given by

d(φ|kerD) ⊗
(

d(ψ)−1
)∨

: d(kerD) ⊗
(

d(cokerD)
)∨ → d(kerD′) ⊗

(
d(cokerD′)

)∨
,

where ψ: cokerD → cokerD′ is the isomorphism induced by ψ.

Remark 2.3 (Banach bundles). Given a system of topologies on the spaces dX,Y satisfying the natu-
rality property, we can topologize the determinant line of a Fredholm morphism between two Banach
bundles. In more detail, let p: X → B and q: Y → B be two locally trivial Banach bundles over a space
B, with fibers X and Y , respectively. A Fredholm morphism between these is a fiber-preserving
fiberwise linear continuous map D: X → Y such that for each b ∈ B, Db ∈ F(Xb,Yb). We have the
associated space

d(D) =
⊎

b∈B

d(Db) .

10



Local trivializations of X and Y over U ⊂ B conjugate D|U to a map DU : U → F(X,Y ), which leads
to the line bundle d(DU ) := (DU )∗ dX,Y . We can push the topology on d(DU ) to a topology on the
space d(D)|U . The induced topology on d(D) is then well-defined thanks to the naturality property,
and it makes d(D) into a line bundle over B.

2.1.0.2 Exact triples An exact triple of Fredholm operators, or an exact Fredholm triple for
short, is a commutative diagram with exact rows

0 // X ′ //

D′

��

X //

D

��

X ′′ //

D′′

��

0

0 // Y ′ // Y // Y ′′ // 0

where X ′, X,X ′′, Y ′, Y, Y ′′ are Banach spaces, D′, D,D′′ are Fredholm operators. We will denote an
exact triple by t = (D′, D,D′′) with the Banach spaces and maps between them being implicit. To
each such exact Fredholm triple there corresponds an isomorphism

Ψt: d(D′) ⊗ d(D′′) → d(D) ,

called the exact triple isomorphism. These isomorphisms lift to line bundle isomorphisms over the
spaces of exact triples with fixed Banach spaces.

Remark 2.4. We will often omit the Banach spaces and write an exact triple in an abbreviated form
as

0 → D′ → D → D′′ → 0 .

This should cause no confusion.

Remark 2.5. Oftentimes in applications exact triples come in the form of a family of exact triples
where instead of fixed Banach spaces we have Banach bundles and Fredholm morphisms between them.
It is then apparent that the exact triple isomorphisms depend continuously on the base space of the
bundle.

2.1.0.3 Normalization Given a short exact sequence of finite-dimensional real vector spaces

0 → V ′ ι−→ V
π−→ V ′′ → 0 ,

there is a naturally induced isomorphism

d(V ′) ⊗ d(V ′′) → d(V ) , (1)

defined as follows. Pick ordered bases v′1, . . . , v
′
k ∈ V ′ and v′′k+1, . . . , v

′′
k+l ∈ V ′′, where k = dimV ′,

l = dimV ′′, define vi = ι(v′i) for i ≤ k, and let vi ∈ V be such that π(vi) = v′′i for i > k. The
isomorphism then sends ∧k

i=1 v
′
i ⊗

∧l
i=1 v

′′
k+i 7→

∧k+l
i=1 vi .

It can be checked that this is independent of the chosen bases.
Note that if 0 denotes the zero vector space, we have canonically d(0) ≡ R. If D is a surjective

Fredholm operator, then there is a canonical isomorphism

d(kerD) → d(D) = d(kerD) ⊗ R
∨ , σ 7→ σ ⊗ 1∨ . (2)
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We will sometimes tacitly identify the determinant line of a surjective operator with the determinant
line of its kernel.

If t = (D′, D,D′′) is an exact Fredholm triple of surjective operators, then there is an induced short
exact sequence of kernels:

0 → kerD′ → kerD → kerD′′ → 0 .

The isomorphism
d(kerD′) ⊗ d(kerD′′) → d(kerD)

induced from this short exact sequence coincides with the isomorphism Ψt if we use the identification
(2).

Also, if V is a finite-dimensional space, we have the Fredholm operator 0V : V → 0 and an obvious
isomorphism

d(0V ) = d(V ) .

2.1.0.4 The exact squares property Given two graded lines L1, L2 we define the interchange
isomorphism

R: L1 ⊗ L2 → L2 ⊗ L1 , v1 ⊗ v2 7→ (−1)degL1·degL2v2 ⊗ v1 .

An exact square of vector spaces is by definition a short exact sequence of short exact sequences
of vector spaces, that is a commutative diagram with exact rows and columns consisting of nine vectors
spaces and maps between them, plus bounding zero vector spaces. An exact square of Fredholm
operators is a commutative diagram consisting of two layers of exact squares of Banach spaces and
nine Fredholm operators between those layers. We denote such a square schematically as follows, where
the bounding zeroes are implicit and are omitted for the sake of economy of space:

DLT
//

��

DCT
//

��

DRT

��
DLM

//

��

DCM
//

��

DRM

��
DLB

// DCB
// DRB

The various exact triple isomorphisms form the following commutative diagram:

d(DLT) ⊗ d(DRT) ⊗ d(DLB) ⊗ d(DRB)
ΨT⊗ΨB//

(ΨL⊗ΨR)◦(id⊗R⊗id)

��

d(DCT) ⊗ d(DCB)

ΨC

��
d(DLM) ⊗ d(DRM)

ΨM // d(DCM)

where ΨL, ΨC, ΨR, ΨT, ΨM, ΨB denote the exact triple isomorphisms corresponding to the left, center,
right, top, middle, and bottom exact triples appearing in the diagram, respectively. A parametrized
version of this commutative diagram exists when the given exact squares involve Banach bundles and
Fredholm morphisms.

12



2.1.0.5 Direct sum isomorphisms Given Fredholm operators Di ∈ F(Xi, Yi), i = 1, 2, there is
the direct sum operator D1 ⊕D2: X1 ⊕X2 → Y1 ⊕ Y2 and an obvious exact triple

0 → D1 → D1 ⊕D2 → D2 → 0 .

This exact triple gives rise to an isomorphism

d(D1) ⊗ d(D2) → d(D1 ⊕D2) .

This isomorphism pervades the present paper and is of great importance. We refer to it as the direct
sum isomorphism.

Since direct sum isomorphisms are a particular case of exact triple isomorphisms, the exact squares
property of the latter implies two properties of the former, namely supercommutativity and associa-
tivity. Using the exact Fredholm square

0 //

��

D1
//

��

D1

��
D2

//

��

D1 ⊕D2
//

��

D1

��
D2

// D2
// 0

we obtain the following commutative diagram:

d(D1) ⊗ d(D2)

R

��

d(D1) ⊗ d(D2)

⊕

��
d(D2) ⊗ d(D1)

⊕ // d(D1 ⊕D2)

where ⊕ denotes the direct sum isomorphism. This means that the composition of direct sum isomor-
phisms

d(D1) ⊗ d(D2) → d(D1 ⊕D2) → d(D2) ⊗ d(D1)

coincides with the interchange isomorphism R. This is the supercommutativity property of the direct
sum isomorphisms.

Next, if we have a third operator D3 ∈ F(X3, Y3), then we have the exact square

D1
//

��

D1 ⊕D2
//

��

D2

��
D1

//

��

D1 ⊕D2 ⊕D3
//

��

D2 ⊕D3

��
0 // D3

// D3

which yields the commutative diagram

d(D1) ⊗ d(D2) ⊗ d(D3)
⊕⊗id //

id⊗⊕

��

d(D1 ⊕D2) ⊗ d(D3)

⊕

��
d(D1) ⊗ d(D2 ⊕D3)

⊕ // d(D1 ⊕D2 ⊕D3)
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which means that the direct sum isomorphisms are associative.
Again, all these properties hold in parametric versions as well.

2.1.0.6 Final remark on terminology In this paper we will be interested in orientations of a
Fredholm operator D, which are elements of the two-point set (d(D)−{0})/R>0, and therefore we will
often say that a diagram of real lines and isomorphisms commutes to mean that it commutes up to
multiplication by a positive real number. Also we will say that a given isomorphism between real lines
is canonical, even if it is only canonically defined up to a positive multiple.

3 Floer homology

In this section we construct the canonical chain complexes computing Lagrangian and Hamiltonian
Floer homology. We define the various algebraic structures on these complexes, such as products,
the module action of the Hamiltonian Floer homology on the Lagrangian Floer homology, and prove
various relations between these operations. We develop these structures in a TQFT-like framework,
which allows us to describe all of them in a transparent and unified manner.

In §3.1 we define punctured Riemann surfaces, their gluing, and related concepts. §3.2 we define
real-linear Cauchy–Riemann operators, their determinant lines and gluing of such operators defined on
surfaces undergoing gluing. In §3.3 we define the technical notion of b-smooth maps, which are maps on
punctured Riemann surfaces satisfying the property that they extend to suitable compactifications of
the surfaces; the main property of b-smooth maps is that solutions of the Floer PDE are b-smooth. In
§3.4 we describe the Cauchy–Riemann operators arising from b-smooth maps as a formal linearization
of the Floer operator, and how pregluing b-smooth maps relates to gluing of the corresponding formal
linearizations. In §3.5 we define the Floer PDE on a punctured Riemann surface, as well as on a
family of such surfaces. In §3.6 we define solution spaces and moduli spaces of solutions of the Floer
PDE, and describe their compactness properties. In §3.7 we describe the canonical orientations of the
linearized operators corresponding to solutions of the Floer PDE of the lowest dimension as well as the
orientations of compactified moduli spaces induced on them by the canonical orientations corresponding
to the boundary points. In §3.8 we define the matrix elements of operations in Floer homology, using
the canonical orientations defined in §3.7, and prove that the various matrix elements are subject to
identities, a fact whose proof uses the induced orientations. In §3.9 we define the Floer complexes and
homology, various algebraic operations on them, and prove their properties. §3.10 deals with the case
of arbitrary rings and twisting by local systems. In §3.11 we treat duality in Floer homology and define
the augmentation map as the dual of the unit.

We refer the reader to the papers [Flo88a, Flo88b, Flo89, Oh93], Schwarz’s thesis [Sch], Seidel’s
book [Sei08], and references therein for the analytical results used here. We do not provide precise
references for all the results, mainly because they are more or less standard by now. The material
presented here is largely borrowed from the wonderful book [Sei08], especially Part II, which has also
been extremely influential on the style of exposition chosen here.

3.1 Punctured Riemann surfaces and their gluing

Fix a compact connected Riemann surface Σ̂ with (possibly empty) boundary, and a finite subset

Θ ⊂ Σ̂. The elements of Θ are called punctures. We let Σ = Σ̂ − Θ; the surface Σ is called a
punctured Riemann surface. The set of punctures Θ is decomposed into two disjoint subsets,
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Θ = Θ+ ∪ Θ− of positive and negative punctures. A puncture θ is called boundary if θ ∈ ∂Σ̂,
otherwise it is interior.

Set R± = {s ∈ R | ± s ≥ 0}. Throughout we use the following standard surfaces with boundary
and corners:

S = R× [0, 1] , C = R× S1 ,

the standard strip and the standard cylinder, and

S± = R
± × [0, 1] , C± = R

± × S1

the standard half-strips and half-cylinders. The strips S, S± are given the conformal structures
coming from the obvious embeddings into C while C,C± are given conformal structures by viewing
S1 = R/Z. We let (s, t) be the standing notation for the standard conformal coordinates on S±, C±.

Let θ ∈ Θ± be a puncture. An end associated to θ is a proper conformal embedding

ǫθ: C± → Σ if θ is interior,

ǫθ: S± → Σ if θ is boundary,

in which case we also require that ǫ−1
θ (∂Σ) = R± × {0, 1}, where lims→±∞ ǫθ(s, t) = θ in Σ̂.

A choice of ends for Σ is a family {ǫθ}θ∈Θ of ends associated to all the punctures of Σ, with
pairwise disjoint images.

3.1.0.7 Gluing punctured Riemann surfaces Let T be a finite tree with vertex set V = V(T )
and edge set E = E(T ) ⊂ V × V . Assume each vertex v ∈ V is labeled by a punctured Riemann
surface Σv with puncture set Θv, and that each edge e = (v, v′) is labeled by a pair of punctures
(θ, θ′) ∈ Θ+

v × Θ−
v′ of the same type (both boundary or both interior) and a positive real number

Re called a gluing length. Fix a choice of ends for each Σv. We can define the glued surface ΣT

corresponding to these data as follows. Take the disjoint union

⊎

v∈V

Σv ,

and for each edge e labeled by (θ, θ′) ∈ Θ+
v × Θ−

v′ , remove from it the subset

ǫθ([Re,∞) × [0, 1]) ∪ ǫθ′((−∞,−Re] × [0, 1]) if θ, θ′ are boundary, or

ǫθ([Re,∞) × S1) ∪ ǫθ′((−∞,−Re] × S1) if they are interior,

where ǫθ, ǫθ′ are the ends associated to θ, θ′. On the resulting subset of
⊎

v Σv make the identification

ǫθ(s, t) ≃ ǫθ′(−Re + s, t)

for e = (θ, θ′) and s ∈ (0, Re). The glued surface ΣT inherits a conformal structure from the Σv. It
also inherits punctures and a choice of ends from the Σv, namely all the punctures that did not appear
in labels of the edges of T , and the ends associated to them.

Gluing of punctured Riemann surfaces satisfies an associativity property. To formulate it, let
F = T1 ⊎ · · · ⊎ Tk be a subforest of T , that is a graph obtained from T by deleting some of the edges.
We can then form the glued surfaces ΣT1 , . . . ,ΣTk

according to the procedure just described. The
quotient tree T = T /F has vertex set V = {Ti}i. An edge of T is an edge of T connecting a pair of the
subtrees Ti. Label the vertices of T by the surfaces ΣTi . Note that all the ΣTi have a choice of ends
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and puncture sets coming from gluing. Labels of edges of T not appearing in F define in a natural
way labels of edges of T . Therefore we can form the glued surface ΣT . The associativity of gluing is
expressed by means of an obvious canonical identification

ΣT = ΣT ,

which preserves the conformal structures, the punctures, and the choice of ends.

3.2 Cauchy–Riemann operators, their determinant lines and gluing

Let Σ be a punctured Riemann surface and endow it with a set of ends. Let (E,F ) → (Σ, ∂Σ) be a
Hermitian bundle pair, that is E is a vector bundle endowed with a symplectic form ω and a compatible
almost complex structure J , and F ⊂ E|∂Σ is a Lagrangian subbundle. Choose a connection ∇ on E.
A real Cauchy–Riemann operator is an operator of the form

∂∇ = ∇0,1: C∞(Σ, ∂Σ;E,F ) → C∞(Σ,Ω0,1
Σ ⊗ E) ,

that is the complex-antilinear part of ∇, which is defined as follows:

∇0,1ξ = ξ + J∇j·ξ ,

where j denotes the conformal structure on Σ. When Σ is compact, such an operator can be extended
to suitable Sobolev completions, where it becomes a Fredholm operator. In order to have an analogous
statement for noncompact Σ, we need to have sufficient control on the behavior of our data at infinity.

A limiting datum at a boundary puncture θ is a quintuple

(Eθ, Fθ, ωθ, Jθ,∇θ) ,

where (Eθ, Fθ) → ([0, 1], {0, 1}) is a Hermitian bundle pair with symplectic form ωθ and complex
structure Jθ, and ∇θ is a symplectic connection on Eθ, meaning its parallel transport maps along [0, 1]
are symplectic. If θ is interior, a limiting datum is a quadruple (Eθ, ωθ, Jθ,∇θ), where Eθ → S1 is a
Hermitian bundle, while the rest of the symbols carry the same meaning as in the boundary case.

Assume we have fixed a choice of limiting data at all the punctures of Σ. Let π: S± → [0, 1] or
π: C± → S1 be the projection onto the t variable and assume that for every puncture θ we have fixed
identifications

ǫ∗θE ≃ π∗Eθ (3)

with respect to which all the data on Σ are asymptotic in suitable topologies to the limiting data at θ,
that is ω → ωθ, J → Jθ, F → Fθ, and ∇ → ∇θ. In this case we call ∂∇ admissible. Note for future
use that these identifications can be deformed so that ω, J, F,∇ all become constant on the ends. This
will be useful for gluing in the next subsection.

We call the connection ∇θ nondegenerate if, in case θ is boundary, the parallel transport map
along [0, 1] maps Fθ,0 to a subspace of Eθ,1 transverse to Fθ,1, and in case θ is interior, the parallel
transport map around S1 does not have 1 as an eigenvalue. If all the connections ∇θ are nondegenerate,
we call the operator ∂∇ nondegenerate.

Using the measure induced on Σ by the choice of ends, one can define Sobolev completions

W 1,p(Σ, ∂Σ;E,F ) , Lp(Σ,Ω0,1
Σ ⊗ E)

of the corresponding spaces of smooth sections for p > 2; these are Banach spaces. An admissible
nondegenerate Cauchy–Riemann operator extends to a Fredholm operator

∂∇: W 1,p(Σ, ∂Σ;E,F ) → Lp(Σ,Ω0,1
Σ ⊗ E) .
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3.2.0.8 Gluing Cauchy–Riemann operators and their determinant lines Let now T be a
gluing tree as in §3.1.0.7, whose vertex set V is labeled by punctured Riemann surfaces {Σv}v∈V with
puncture sets Θv and a choice of ends for each Σv. Assume each edge e = (v, v′) of T is labeled by
a positive gluing length Re and by a pair (θ, θ′) ∈ Θ+

v × Θ−
v′ , where θ, θ′ are of the same type (both

boundary or interior). As described in §3.1.0.7, we can form the glued surface ΣT .
For each v ∈ V let (Ev, Fv) → (Σv, ∂Σv) be a Hermitian bundle pair with Hermitian structure

(ωv, Jv) and let ∇v be a connection on Ev. Then we have the corresponding Cauchy–Riemann operator
Dv := ∂∇v . Assume now that all the operators Dv are admissible and nondegenerate, and assume that
if a pair of punctures (θ, θ′) label an edge, then they have identical limiting data. Assume also that
the identifications (3) are such that the data ωv, Jv, Fv,∇v are constant at each puncture undergoing
gluing. We can then glue the bundle pairs, the Hermitian structures, and the connections in an obvious
manner to form a bundle pair

(ET , FT ) → (ΣT , ∂ΣT )

with Hermitian structure (ωT , JT ) and a connection ∇T . The corresponding operator DT := ∂∇T is
admissible and nondegenerate.

We can use cutoff functions to patch sections of (Ev, Fv) together to form sections of (ET , FT ).
Using the orthogonal projection 3) onto kerDT we get a linear map

⊕

v

kerDv → kerDT ,

which for large enough gluing lengths Re becomes an isomorphism. Similarly, we get a linear map
⊕

v

cokerDv → cokerDT ,

which is also an isomorphism for large gluing lengths. Therefore we have that

indDT =
∑

v

indDv

and we obtain an isomorphism

d
(⊕

v

Dv

)
≃ d(DT ) ,

independent of the choices. We refer to it as the gluing isomorphism throughout.
This gluing of Cauchy–Riemann operators and the resulting gluing isomorphism of the determinant

lines are associative, in the following sense. If F =
⊎

i Ti ⊂ T is a subforest as in §3.1.0.7, we can
form the glued operators DTi over ΣTi , which are admissible and nondegenerate. These have matching
limiting data at punctures labeling edges of T = T /F , and therefore can also be glued. The resulting
operator DT can be canonically identified with DT . The corresponding diagram of isomorphisms of
determinant lines commutes:

d
(⊕

v∈V Dv

)
//

��

d
(⊕

iDTi

)

��
d(DT ) d(DT )

where all the arrows except = are the gluing isomorphisms.

3)Even though we only defined the Cauchy–Riemann operators for p > 2, they can also be defined for p = 2, in which
case the Sobolev spaces involved are Hilbert spaces. It is a standard fact that the kernel and cokernel of such an operator
are independent of p. Therefore we can take elements of the kernels, patch them together, get an element in W 1,2 and
use the inner product to project. The resulting section belongs to W 1,p for all p. The same applies to cokernels.
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3.2.0.9 Gluing isomorphisms and direct sum isomorphisms commute We will now formu-
late a crucial property satisfied by gluing isomorphisms, which is the foundation of many computations
leading to various properties of algebraic operations in Floer theory. Recall the direct sum isomorphism
defined in §2.1.0.5. If we have operators Di, i = 1, 2, 3, where D1, D2 can be glued, that is they are
defined on Hermitian bundle pairs with matching limiting data at a gluing puncture, and we let D1♯D2

be the resulting glued operator, then the following diagram commutes:

d(D1 ⊕D2 ⊕D3)
⊕ //

♯

��

d(D1 ⊕D2) ⊗ d(D3)

♯⊗id

��
d(D1♯D2 ⊕D3)

⊕ // d(D1♯D2) ⊗ d(D3)

3.3 B-smooth maps and their pregluing

If H : [0, 1] ×M → R is a time-dependent Hamiltonian, the associated Hamiltonian vector field is
defined by

ω(Xt
H , ·) = −dHt .

We call a smooth curve γ: [0, 1] →M a Hamiltonian orbit of H with L as the boundary condition
if γ(0), γ(1) ∈ L and

γ̇(t) = Xt
H(γ(t)) .

Similarly if H : S1 ×M → R is time-periodic, a smooth loop x: S1 →M is a periodic Hamiltonian
orbit of H if

ẋ(t) = Xt
H(x(t)) .

Let S+ = [0,∞]× [0, 1], and similarly define S− and C±. We endow S+ with the unique structure
of a smooth manifold with corners by declaring the map

S+ → [0, 1] × [0, 1] , (s, t) 7→
( s√

1 + s2
, t
)

to be a diffeomorphism, and we do the same with S−, C±. If Σ is a punctured Riemann surface endowed
with a choice of ends for its punctures, we let Σ be the smooth manifold with corners obtained from Σ
by gluing S±, C± along the ends ǫθ. Intuitively this amounts to compactifying Σ by adding a copy of
the interval [0, 1] for each boundary puncture and a copy of S1 for each interior puncture.

A smooth map f : Σ → M is called b-smooth 4) if it has a smooth extension to the whole of
Σ. This in particular means that f extends continuously to the compactified surface Σ and that its
derivatives (with respect to the s variable on the ends) decay sufficiently rapidly at the punctures. We
let

C∞
b (Σ,M)

be the set of b-smooth maps and
C∞

b (Σ, ∂Σ;M,L)

be the subset mapping ∂Σ → L.
For u ∈ C∞

b (Σ, ∂Σ;M,L) and a puncture θ of Σ we let

uθ = lim
|s|→∞

u(ǫθ(s, ·))

4)This concept is borrowed from [Sch], where it appears under a different name.
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be the limiting curve at θ, defined either on [0, 1] or on S1. Assume that we have chosen a time-
dependent Hamiltonian Hθ for every puncture θ, with the additional condition that Hθ is time-periodic
if θ is interior, and a Hamiltonian orbit yθ of Hθ, which has L as the boundary condition if θ is boundary
or is a loop if θ is interior. We let

C∞
b (Σ, ∂Σ;M,L; {yθ}θ) = {u ∈ C∞

b (Σ, ∂Σ;M,L) |uθ = yθ for all θ} .

For u ∈ C∞
b (Σ, ∂Σ;M,L; {yθ}θ), a fixed puncture θ, and a Riemannian metric ρ on M , which in case

θ is boundary satisfies the additional condition that L be totally geodesic with respect to it, we can
express u near θ using the exponential map of ρ. To illustrate, assume that θ is a positive interior
puncture. Then there is a section U ∈ C∞(C+, π∗y∗θTM) (π: C+ → S1 the projection) such that

u(ǫθ(s, t)) = expρ,yθ(t)
(U(s, t))

for all sufficiently large s.

3.3.0.10 Pregluing b-smooth maps Let again T be a gluing tree as in §3.1.0.7 with vertices
labeled by Σi. Assume that for each i and for each puncture of Σi we have chosen a time-dependent
Hamiltonian, which is time-periodic in case the puncture is interior, and a Hamiltonian orbit thereof,
which has L as the boundary condition if the puncture is boundary, and is a loop if the puncture is
interior. Assume that if two punctures label an edge of T , then the corresponding Hamiltonians and
Hamiltonian orbits coincide. Let ui ∈ C∞

b (Σi, ∂Σi;M,L) have these Hamiltonian orbits as asymptotics.
Using the expression of ui via exponential maps as above at each puncture undergoing gluing, we

can piece together the corresponding vector fields with the help of cutoff functions to get a b-smooth
map u ∈ C∞

b (Σ, ∂Σ;M,L) defined on the surface Σ obtained from the Σi by gluing according to T ,
where we take the gluing lengths to be large enough. Note that u has asymptotics dictated by the
orbits corresponding to the punctures of Σ. We refer to a b-smooth map obtained in such a fashion
from the maps ui as the result of pregluing the ui.

3.4 Cauchy–Riemann operators associated to b-smooth maps

We will now describe how to construct an admissible Cauchy–Riemann operator starting from a
b-smooth map asymptotic to Hamiltonian orbits. Let Σ be a punctured Riemann surface endowed
with a choice of ends. Assume that to each puncture θ we associate a Hamiltonian Hθ and an orbit yθ
of Hθ. Fix

u ∈ C∞
b (Σ, ∂Σ;M,L; {yθ}θ) .

Let Eu = u∗TM , Fu = (u|∂Σ)∗TL and ωu = u∗ω. Assume that for each puncture θ we have a family
of almost complex structures Jθ on M compatible with ω, such that Jθ is parametrized by [0, 1] if θ
is boundary, and by S1 if it’s interior. We let Ju be any compatible almost complex structure on Eu

satisfying
Ju(ǫθ(s, t)) = Jθ

t (u(ǫθ(s, t)))

for all θ and (s, t).
For each puncture θ let Eθ = y∗θTM , ωθ = y∗θω, Jθ(t) = Jθ

t (yθ(t)), and let ∇θ be the symplectic
connection whose parallel transport maps along t are given by the linearized flow of Hθ along yθ.
Finally, if θ is boundary, let Fθ = (yθ|{0,1})∗TL. Since u is b-smooth, it extends to a smooth map

u: Σ → M , see §3.3. Choose a connection ∇u on u∗TM which is a smooth extension of the set of
connections ∇θ over the limiting curves uθ = yθ.
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We therefore have all the necessary data, (Eu, Fu, ωu, Ju,∇u), in order to define the associated
admissible Cauchy–Riemann operator

Du = ∂∇u .

Let us say that a Hamiltonian orbit γ: [0, 1] → M of H with endpoints on L is nondegenerate if
φ1H∗,γ(0)(Tγ(0)L) is transverse to Tγ(1)L, and an orbit x: S1 → M is nondegenerate if φ1H∗,x(0) has no
eigenvalue equal to 1.

If all the orbits yθ are nondegenerate, so are the connections ∇θ and therefore Du is nondegenerate.
Thus it extends as a Fredholm operator to the Sobolev completions:

Du: W 1,p(Σ, ∂Σ;Eu, Fu) → Lp(Σ,Ω0,1
Σ ⊗ Eu) .

We refer to Du as a formal linearization of Du. See Remark 3.2 for a relation between this operator
and the linearization of Floer’s PDE.

3.4.0.11 Gluing Cauchy–Riemann operators and pregluing b-smooth maps Now we de-
scribe how gluing Cauchy–Riemann operators on surfaces relates to pregluing b-smooth maps. We keep
the notation of §3.3.0.10: T is a gluing tree with vertices Σi, to each puncture of every Σi there is asso-
ciated a Hamiltonian and a nondegenerate orbit thereof, so that for every pair of punctures appearing
as a label of an edge the corresponding Hamiltonians and orbits coincide. Finally, let ui: Σi → M be
b-smooth maps asymptotic to the chosen Hamiltonian orbits. We also have a preglued b-smooth map
u defined on the glued surface Σ.

We then have Cauchy–Riemann operators Di = Dui constructed as above, the operator D glued
from the Di as described in §3.2.0.8, and the operator Du, where the almost complex structure Ju
and the connection ∇u coincide with the data Jui and ∇ui outside the parts of Σi participating in
the gluing process. We can make an identification of the bundle E, obtained from gluing the bundles
Eui , and the bundle Eu. The operator D acting on E and the operator Du acting on Eu can now
be deformed into one another relative to this identification, keeping the limiting data intact. This
deformation induces an isomorphism

d(D) ≃ d(Du) ,

independent of the choices. Details are left to the reader. We refer to this isomorphism as the
deformation isomorphism below.

3.5 The Floer PDE

A Floer datum associated to a puncture θ of Σ is a pair (H, J) where H is a smooth time-
dependent Hamiltonian on M , while J is a smooth time-dependent family of ω-compatible almost
complex structures. Both H, J are required to be time-periodic in case θ is interior. We call a Floer
datum (H, J) associated to a boundary puncture nondegenerate if all the Hamiltonian orbits of H
with boundary on L are nondegenerate. If the datum (H, J) is associated to an interior puncture, it is
called nondegenerate if all the periodic Hamiltonian orbits of H are nondegenerate.

Fix a punctured Riemann surface Σ, a choice of ends {ǫθ}θ∈Θ for it, and a Floer datum (Hθ, Jθ)
associated to each puncture θ. A perturbation datum on Σ is a pair (K, I) where K is a smooth
1-form on Σ with values in C∞(M), satisfying the requirement that

K|∂Σ vanishes along L ,
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while I is a family of compatible almost complex structures on M parametrized by Σ. A perturbation
datum (K, I) is said to be compatible with the Floer data {(Hθ, Jθ)}θ associated to the punctures
of Σ if

ǫ∗θK = Hθ
t dt and I(ǫθ(s, t)) = Jθ

t for all (s, t) and θ .

We can now define the Floer PDE. Assume that Σ is a punctured Riemann surface, and we have
fixed a choice of ends for it, as well as Floer data associated to every puncture, and a compatible
perturbation datum (K, I). We let XK be the 1-form on Σ with values in Hamiltonian vector fields on
M , defined via

ω(XK(ξ), ·) = −dK(ξ) for ξ ∈ TΣ .

The Floer PDE is the equation
∂K,Iu := (du −XK)0,1 = 0

for u ∈ C∞(Σ, ∂Σ;M,L).

3.6 Moduli spaces of solutions of the Floer PDE

Here we define solutions spaces of the Floer PDE, the corresponding moduli spaces, and describe
their compactness properties.

3.6.1 Cappings and action functionals

Let D2 ⊂ C be the closed unit disk and let Ḋ2 = D2 − {1} be the punctured disk where the
puncture is considered to be positive. The standard end is defined by

ǫstd: S+ → Ḋ2 , ǫstd(z) =
eπz − i

eπz + i
. (4)

Let y: ([0, 1], {0, 1}) → (M,L) be a smooth curve. By definition, a capping of y is a b-smooth map

ŷ ∈ C∞
b (Ḋ2, ∂Ḋ2;M,L; y)

with respect to the standard end. A capping has a canonical extension to the compactified disk where
we glue in an interval [0, 1] at the puncture along the end ǫstd. Two cappings ŷ, ŷ′ are equivalent if
the concatenation of the canonical extension of ŷ and of the canonical extension of −ŷ′ defines a disk
with boundary on L representing the trivial class in π2(M,L), where

−ŷ′(a+ ib) = ŷ′(−a+ ib) .

We use the notation
ỹ = [y, ŷ]

to denote the equivalence class of cappings of y containing ŷ.
Similarly let Ṡ2 be the sphere punctured once, with the puncture being positive. The standard end

for it is defined by

ǫstd: C+ → Ṡ2 , ǫstd(z) =
e2πz − i

e2πz + i
,

where we view S2 = CP 1 = C∪{∞}. Let y: S1 →M be a smooth loop. A capping of y is a b-smooth
map

ŷ ∈ C∞
b (Ṡ2,M ; y)
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relative to the standard end. Such a capping has a canonical extension to the compactified sphere
where we add a circle at infinity according to the standard end. We call two cappings ŷ, ŷ′ equivalent
if the concatenation of the canonical extension of ŷ and the canonical extension of −ŷ′ is a contractible
sphere. Again, we denote ỹ = [y, ŷ] the equivalence class of cappings containing ŷ.

We now define the action functionals. Let

ΩL = {y: [0, 1] →M | [y] = 0 ∈ π1(M,L)}

and let
Ω̃L = {ỹ = [y, ŷ] | ŷ is a capping of y} .

We denote by p: Ω̃L → ΩL the obvious projection. Let H be a time-dependent Hamiltonian. The
action functional associated to H is

AH:L: Ω̃L → R , AH:L([y, ŷ]) =

∫ 1

0

Ht(y(t)) dt −
∫
ŷ∗ω .

A point ỹ is critical for AH:L if and only if y = p(ỹ) is a Hamiltonian orbit of H . If all the orbits of H
with boundary on L are nondegenerate, there is a Conley-Zehnder index

mH:L: CritAH:L → Z .

We use the definition of this index, which satisfies the following shift property: for two cappings ŷ, ŷ′

of the same orbit y we have

mH:L([y, ŷ]) −mH:L([y, ŷ′]) = −µ(ŷ♯− ŷ′) .

In addition, we normalize it as follows. Assume f is a C2-small Morse function on L, and that we
have identified a neighborhood of L with a neighborhood of the zero section in T ∗L; let H be obtained
by cutting off the pullback of f to T ∗L outside the neighborhood. Then the Hamiltonian orbits of H
with boundary on L are precisely the constant curves at the critical points of f . We let the Conley-
Zehnder index of such an orbit together with the constant capping be equal the Morse index of the
corresponding critical point.

We use the abbreviated notations

|ỹ| := mH:L(ỹ) , |ỹ|′ := n−mH:L(ỹ) ,

which should cause no confusion.
Similarly, let

Ω = {y: S1 →M | [y] = 0 ∈ π1(M)}
and

Ω̃ = {ỹ = [y, ŷ] | ŷ is a capping of y} .
We have the projection p: Ω̃ → Ω. Let H be a time-periodic Hamiltonian. The associated action
functional is

AH : Ω̃ → R , AH([y, ŷ]) =

∫

S1

Ht(y(t)) dt −
∫
ŷ∗ω .

Its critical points are ỹ with y = p(ỹ) being a periodic Hamiltonian orbit of H . If all the periodic orbits
of H are nondegenerate, there is a Conley-Zehnder index

mH : CritAH → Z .
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This has the shift property

mH([y, ŷ]) −mH([y, ŷ′]) = −2c1(ŷ♯− ŷ′) ,

and is normalized to coincide with the Morse index of a critical point of H provided H is C2-small,
autonomous, and Morse, and the critical point is considered as a constant periodic orbit taken with
the constant capping.

We use the abbreviated notations

|ỹ| := mH(ỹ) , |ỹ|′ := 2n−mH:L(ỹ) .

Remark 3.1. Below we have to use action functionals of both types, AH:L and AH , on almost equal
footing. In order to keep the notation less cumbersome, we will oftentimes denote both of them just
by AH . The context will make it clear on which space (Ω̃ or Ω̃L) it is defined.

3.6.2 Solution spaces and moduli spaces

Until the end of §3, we assume that Σ̂ is either the sphere or the closed disk, and that there is a
unique positive puncture θ and negative punctures {θi}ki=1 (possibly k = 0). Recall that Σ = Σ̂ − Θ.
Fix a choice of ends for Σ, nondegenerate Floer data (H, J) associated to θ and {(Hi, J i)}i associated
to θi, and a compatible perturbation datum (K, I). Choose critical points ỹ, ỹi of the action functionals
corresponding to H and Hi. We define the solution space

MΣ(K, I; {ỹi}i, ỹ) = {u ∈ C∞
b (Σ, ∂Σ;M,L; {yi}i, y) |u♯ŷ1♯ . . . ♯ŷk ∈ ỹ , ∂K,Iu = 0} ,

that is the set of solutions of Floer’s PDE with boundary conditions on L, asymptotics given by the
orbits yi, y and homotopy class coming from the chosen equivalence classes of cappings for the orbits.
Here u♯ŷ1♯ . . . ♯ŷk denotes a map obtained by pregluing the b-smooth maps u, ŷ1, . . . , ŷk according to
the obvious gluing tree. To every u ∈ MΣ(K, I; {ỹi}, ỹ) there is associated the linearized operator (see
[Sei08, Chapter 9])

Du: W 1,p(Σ, ∂Σ;Eu, Fu) → Lp(Σ,Ω01,
Σ ⊗ Eu) .

Remark 3.2. In [Sei08, Chapter 8] it is explained how to choose a connection ∇u on Eu for which
this linearized operator coincides with the formal linearized operator ∇0,1

u introduced §3.4 for b-smooth
maps. In the sequel we shall always reserve the notation Du to mean the linearized operator in case u
is a solution of the Floer PDE.

The perturbation datum (K, I) is called regular if for every choice of critical points ỹi, ỹ and every
u ∈ MΣ(K, I; {ỹi}i, ỹ) the operator Du is onto. In this case MΣ(K, I; {ỹi}i, ỹ) is naturally a smooth
manifold of dimension

dimMΣ(K, I; {ỹi}i, ỹ) = |ỹ|′ −
k∑

i=1

|ỹi|′ .

The set of regular perturbation data (K, I) compatible with the given Floer data is dense in the set of
all compatible perturbation data [Sei08].

We single out the special case of a translation-invariant perturbation datum: assume Σ = S or C
and assume the perturbation datum has the form:

K(s, t) = Ht dt , I(s, t) = Jt
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for all (s, t). In this case the Floer PDE is the original equation for the negative gradient flow of the
action functional, to wit

〈∂K,Iu, ∂s〉 = ∂su+ J(u)
(
∂tu−XH(u)

)
= 0 .

If ỹ± ∈ CritAH , we let

M̃(H, J ; ỹ−, ỹ+) := MΣ(K, I; ỹ−, ỹ+) .

This space admits a natural R-action by translation in the s variable. We let

M(H, J ; ỹ−, ỹ+)

denote the quotient if the action is free, otherwise we declare it to be empty. We call the Floer datum
(H, J) regular if the corresponding translation-invariant perturbation datum is regular. In this case

M̃(H, J ; ỹ−, ỹ+) is a smooth manifold of dimension

|ỹ+|′ − |ỹ−|′ = |ỹ−| − |ỹ+| ,

while M(H, J ; ỹ−, ỹ+) has dimension |ỹ−| − |ỹ+| − 1. We note that the set of regular data is dense in
the set of all nondegenerate Floer data [FHS95].

Remark 3.3. Note that by definition a regular Floer datum is nondegenerate.

3.6.2.1 Parametrized solution spaces Next we treat families of surfaces and the Floer PDE
on them. Assume for the moment that we have a smooth compact connected oriented surface with
boundary Σ̂ equipped with a finite set of punctures Θ and let Σ = Σ̂ − Θ. Let S → R be a fiber
bundle with fiber Σ, whose structure group is the group of orientation-preserving diffeomorphisms of
Σ̂ which are the identity on Θ. In this case S → R extends to a fiber bundle Ŝ → R with fiber Σ̂ and
the punctures of Σ give rise to canonical smooth sections R → Ŝ. We identify a puncture with the
corresponding section. We denote the fiber of S → R over r ∈ R by Σr.

Assume there is a smooth family of conformal structures on the fibers of S → R. A choice of ends
for S → R is a family of fiberwise maps

ǫθ: R× S± → S or ǫθ: R× C± → S

whose restrictions to the fibers over r constitute a choise of ends for the Riemann surface Σr, such that
ǫθ is asymptotic to θ.

Assume that we have fixed a choice of ends for S and nondegenerate Floer data {(Hθ, Jθ)}θ as-
sociated to the punctures of Σ. A perturbation datum on S is a pair (K, I) where I is a family of
compatible almost complex structures parametrized by S, while K is a smooth family of 1-forms on
the vertical tangent bundle of S → R such that the restriction (Kr, Ir) is a perturbation datum on
Σr. The notion of compatibility of the perturbation datum with the Floer data extends to families in
an obvious manner.

Let now Σ̂ be either the sphere or the closed disk, and assume that it carries a unique positive
puncture θ and negative punctures {θi}ki=1. Fix a choice of ends for S, Floer data (H, J), {(Hi, J i)}i
associated to punctures of Σ and a compatible perturbation datum (K, I). Fix also critical points ỹ, ỹi
of the action functionals of H and Hi. We define

MS(K, I; {ỹi}i, ỹ) = {(r, u) | r ∈ R , u ∈ MΣr (Kr, Ir ; {ỹi}i, ỹ)} .

24



For (r, u) ∈ MS(K, I; {ỹi}i, ỹ) we have the extended linearized operator

Dr,u: TrR×W 1,p(Σr, ∂Σr;Eu, Fu) → Lp(Σr,Ω
0,1
Σr

⊗ Eu) .

See [Sei08] for the precise definition. Note for future use that the restriction

Dr,u|0×W 1,p(Σr ,∂Σr;Eu,Fu)

coincides with the linearized operator Du of u ∈ MΣr (Kr, Ir; {ỹi}i, ỹ). We call the perturbation datum
(K, I) for S regular if for every choice of critical points ỹi, ỹ and every (r, u) ∈ MS(K, I; {ỹi}i, ỹ) the
extended operator Dr,u is onto. In this case MS(K, I; {ỹi}i, ỹ) is a smooth manifold of dimension

dimMS(K, I; {ỹi}i, ỹ) = dimR + |ỹ|′ −
k∑

i=1

|ỹi|′ .

The set of regular perturbation data compatible with the given Floer data is dense in the set of all
compatible perturbation data.

Remark 3.4. We note here that a regular solution of the Floer PDE is necessarily a b-smooth map
[Sch]. Therefore all the constructions regarding b-smooth maps in §3.3, §3.4 apply to them and their
linearized operators.

3.6.3 Compactness and gluing

Here we discuss the relevant compactness and gluing results for the above solution spaces. The
general statement is that whenever a moduli space is zero-dimensional, it is compact, therefore a
finite number of points, whereas when it is one-dimensional, it can be compactified into a compact
1-dimensional manifold with boundary, where the boundary consists either of boundary points already
present in the moduli space, or else of pairs of elements of 0-dimensional moduli spaces. Moreover, the
converse to compactness, called gluing, states that all suitable pairs are obtained in this way.

We start with the description of the relevant 0-dimensional moduli spaces. There are three basic
types of moduli spaces used in Floer homology:

(i) when the surface is either a strip or a cylinder and the perturbation datum is translation-invariant
— this leads to the definition of boundary operators;

(ii) there is a single surface — this is used to define various operations on Floer homology;

(iii) there is a family of surfaces S → R with R being 1-dimensional — this leads to relations between
the operations and the boundary operators, such as chain homotopies and various algebraic
identities.

3.6.3.1 The case of translation-invariant perturbation datum on S or C We treat the case
Σ = S, the case of the cylinder C being entirely similar. We fix a regular Floer datum (H, J). The set

M̃(H, J ; ỹ−, ỹ+) is a smooth manifold of dimension

|ỹ−| − |ỹ+| .

When this difference is 1, the quotient manifold M(H, J ; ỹ−, ỹ+) is 0-dimensional and compact, there-
fore a finite set of points. When the difference is 2, there are two cases:
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Case I: NL ≥ 3 or y− 6= y+, and
Case II: NL = 2 and y− = y+.

In case I, the manifold M(H, J ; ỹ−, ỹ+) admits a compactification M(H, J ; ỹ−, ỹ+) whose boundary is

∂M(H, J ; ỹ−, ỹ+) =
⋃

ỹ∈CritAH:L

M(H, J ; ỹ−, ỹ) ×M(H, J ; ỹ, ỹ+) ,

that is the only way to noncompactness is through Floer breaking.
Consider now case II. For q ∈ L, A ∈ π2(M,L, q), and an almost complex structure J , define

M̃1(J ; q, A) = {u ∈ C∞(D2, S1, 1;M,L, q) | ∂Ju = 0, [u] = A} ,

where ∂J = ∂0,J is the Floer operator of the perturbation datum (0, J) on D2, that is with vanishing

Hamiltonian term. We let M1(J ; q, A) be the quotient of M̃1(J ; q, A) by the conformal automorphism

group of D2 preserving 1 ∈ S1. We call J regular if for every q, A, and u ∈ M̃1(J ; q, A) the linearized

operator Du is onto. Since L is monotone and NL ≥ 2, it follows that all disks in M̃1(J ; q, A) are simple
[BC07, BC09], therefore the set of regular J is dense. If J is regular, M1(J ; q, A) is a zero-dimensional
manifold for generic q. The set of regular Floer data (H, J) for which J0, J1 are regular is dense. If
(H, J) is such, we have in case II:

∂M(H, J ; ỹ−, ỹ+) =
⋃

z̃∈CritAH:L

M(H, J ; ỹ−, z̃) ×M(H, J ; z̃, ỹ+)

∪M1(J0; y(0), [ŷ+♯− ŷ−]) ∪M1(J1; y(1), [ŷ+♯− ŷ−]) ,

where y = y− = y+. This means that in this particular case another possibility for noncompactness
opens up, that of bubbling off of Maslov 2 disks attached to endpoints of the Hamiltonian orbit y.

Bubbling off of holomorphic spheres of Chern number 1 is also possible, however the set of points
through which they pass has high codimension and therefore generically they do not appear in the
boundary of the moduli space [HS95]. Also see [HL10] .

The treatment in the case Σ = C is entirely analogous, with the difference that the Floer datum
(H, J) is 1-periodic in t and for a generic datum there is no bubbling, the noncompactness being only
due to Floer breaking.

3.6.3.2 The case of a single surface Assume Σ̂ is the sphere or the closed disk and endow it
with punctures, where exactly one puncture θ is positive, the other punctures {θi}ki=1 being negative;
let Σ be the resulting punctured Riemann surface. Endow Σ with a choice of ends, and fix regular
Floer data (Hi, J i) and (H, J) associated to the punctures θi and θ. Fix also a regular perturbation
datum (K, I) compatible with the Floer data, and critical points ỹi, ỹ of the action functionals of Hi,
H , and consider

MΣ(K, I; {ỹi}i, ỹ) .

This is a smooth manifold of dimension |ỹ|′ − ∑
i |ỹi|′. If this dimension is 0, MΣ(K, I; {ỹi}i, ỹ) is

compact and therefore a finite number of points.
When MΣ(K, I; {ỹi}i, ỹ) is 1-dimensional, the only possible noncompactness is due to Floer break-
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ing, namely we have

∂MΣ(K, I; {ỹi}i, ỹ) =

k⋃

j=1

⋃

ỹ′
j∈CritAHj

M(Hj , Jj ; ỹj , ỹ
′
j) ×MΣ(K, I; {ỹi}i6=j , ỹ

′
j , ỹ)

∪
⋃

ỹ′∈CritAH

MΣ(K, I; {ỹi}i, ỹ′) ×M(H, J ; ỹ′, ỹ) .

3.6.3.3 The case of a 1-dimensional family Here we have a family of punctured surfaces S → R
as in §3.6.2.1. We will only need the cases when R = [0, 1] or R = [0,∞).

Assume first that R = [0, 1], that S = Σ×[0, 1], where Σ is either a punctured sphere or a punctured
disk, that the punctures are Θ = {θ, θ1 . . . , θk}, where θ is the unique positive puncture, that we have
fixed a choice of ends for S which are constant near the boundary of R, and regular Floer data (H, J)
and (Hi, J i) associated to θ and θi. Let (K, I) be a regular compatible perturbation datum, which is
constant near the boundary of R. Fix critical points ỹ, ỹi of the action functionals of H,Hi. The set

MS(K, I; {ỹi}i, ỹ)

is a smooth manifold of dimension

dimMS(K, I; {ỹi}i, ỹ) = 1 + |ỹ|′ −
∑

i

|ỹi|′ .

When this dimension is zero, MS(K, I; {ỹi}i, ỹ) is compact and therefore a finite number of points.
When it equals 1, MS(K, I; {ỹi}i, ỹ) can be compactified by adding Floer breaking, that is we have

∂MS(K, I; {ỹi}i, ỹ) = {0} ×MΣ0(K0, I0; {ỹi}i, ỹ) ∪ {1} ×MΣ1(K1, I1; {ỹi}i, ỹ)

∪
k⋃

j=1

⋃

ỹ′
j∈CritAHj

M(Hj , Jj; ỹj , ỹ
′
j) ×MS(K, I; {ỹi}i6=j , ỹ

′
j , ỹ)

∪
⋃

ỹ′∈CritAH

MS(K, I; {ỹi}i, ỹ′) ×M(H, J ; ỹ′, ỹ) .

When R = [0,∞), we require that the family S and the choice of ends on it have a specific form.
Namely, let Σ1,Σ2 be two punctured Riemann surfaces with puncture sets Θi = {θi, θi1, . . . , θiki

}, θi

being positive and the rest being negative. Fix a choice of ends for the Σi. Let R0 > 0 and for r ≥ R0

let Σr be obtained from gluing Σ1,Σ2, where the tree has two vertices corresponding to the surfaces
Σ1,Σ2 and the unique edge between them is labeled by (θ1, θ2j ) and the gluing length is r. Note that

Σr has θ2, {θ1i }i, {θ2i }i6=j as punctures. We require the family S → R = [0,∞) to have fiber Σr for
r ≥ R0 and to have conformal structures and choices of ends to come from gluing as described.

Similarly, the choice of perturbation datum on S comes from gluing. More precisely, assume we
have chosen regular Floer data associated to the punctures of the Σi: (Hi, J i) for θi and (Hi,l, J i,l)l for
θil , , i = 1, 2, such that H1 = H2,j, J1 = J2,j . Let (Ki, Ii) be regular compatible perturbation data on
Σi. There is an obvious perturbation datum (Kr, Ir) on the glued surface Σr, since the perturbation
data on the Σi agree on the overlap, and we require the perturbation datum on S to equal (Kr, Ir)
on the fibers Σr over r ≥ R0. Note that the Floer data associated to punctures of Σr (for all r) are
(H2, J2) for θ2 and {(H1,i, J1,i)}i, {(H2,i, J2,i)}i6=j for {θ1i }i, {θ2i }i6=j .
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Let therefore S → R = [0,∞) be such a family. Endow S with a choice of ends as above, with
additional condition that they are locally constant near 0 ∈ R. We already have a choice of Floer data
for the punctures of S, which we now assume to be regular, and we let (K, I) be a regular compatible
perturbation datum, locally constant near 0 ∈ R, and which has the aforementioned form for r ≥ R0.
The set of such (K, I) is dense. Fix critical points ỹ2, {ỹ1,i}i, {ỹ2,i}i6=j of the action functionals of
H2, {H1,i}i, {H2,i}i6=j . Then the set

MS(K, I; {ỹ1,i}i, {ỹ2,i}i6=j, ỹ2)

is a smooth manifold of dimension

dimMS(K, I; {ỹ1,i}i, {ỹ2,i}i6=j , ỹ2) = 1 + |ỹ2|′ −
∑

i

|ỹ1,i|′ −
∑

i6=j

|ỹ2,i|′ .

When this dimension is zero, MS(K, I; {ỹ1,i}i, {ỹ2,i}i6=j , ỹ2) is compact and therefore a finite number of
points. When it equals 1, MS(K, I; {ỹ1,i}i, {ỹ2,i}i6=j , ỹ2) can be compactified by adding Floer breaking
and breaking at the noncompact end of R, that is we have

∂MS(K, I; {ỹ1,i}i, {ỹ2,i}i6=j , ỹ2) = {0} ×MΣ0(K0, I0; {ỹ1,i}i, {ỹ2,i}i6=j , ỹ2)

∪
⋃

ỹ2,j∈CritAH1

MΣ1(K1, J1; {ỹ1,i}i, ỹ2,j) ×MΣ2(K2, I2; {ỹ2,i}i, ỹ2)

∪
⋃

ỹ′
2∈CritAH2

MS(K, I; {ỹ1,i}i, {ỹ2,i}i6=j , ỹ
′
2) ×M(H2, J2; ỹ′2, ỹ2)

∪
⋃

l

⋃

ỹ′
1,l∈CritA

H1,l

M(H1,l, J1,l; ỹ1,l, ỹ
′
1,l) ×MS(K, I; {ỹ1,i}i6=l, ỹ

′
1,l, {ỹ2,i}i6=j , ỹ2)

∪
⋃

l 6=j

⋃

ỹ′
2,l∈CritA

H2,l

M(H2,l, J2,l; ỹ2,l, ỹ
′
2,l) ×MS(K, I; {ỹ1,i}i, {ỹ2,i}i6=j,l, ỹ

′
2,l, ỹ2) .

3.7 Orientations

3.7.1 Canonical Z-modules associated to critical points of action functionals

Recall the definition of a capping for a smooth curve y: ([0, 1], {0, 1}) → (M,L), §3.6.1. Fix an
equivalence class of cappings ỹ of y and regard it as a topological space. Since a capping is a b-smooth
map Ḋ2 →M , it has a canonical extension to a continuous map defined on the compactification of Ḋ2

obtained by gluing a copy of [0, 1] along the standard end, §3.3. This compactification is diffeomorphic
to D2 ∩ {Re z ≤ 0}, and we view the canonical extension of ŷ as a map D2 ∩ {Re z ≤ 0} →M .

Let Cỹ be the space of continuous maps D2 ∩ {Re z ≤ 0} → M mapping the semicircle to L, the
diameter to y, and belonging to the homotopy class dictated by ỹ. It is easy to see that the map taking
a capping to the corresponding continuous extension is a homotopy equivalence between ỹ and Cỹ. We
have the following obvious lemma.

Lemma 3.5. Fix ŷ0 ∈ Cỹ and let −ŷ0: D2 ∩ {Re z ≥ 0} → M be defined by −ŷ0(s, t) = ŷ0(−s, t).
Then the concatenation map

Cỹ → {w: (D2, S1,−i) → (M,L, y(0)) | [w] = 0 ∈ π2(M,L, y(0))} , ŷ 7→ ŷ♯− ŷ0

is well-defined and is a homotopy equivalence. In particular the fundamental group π1(Cỹ , ŷ0) is iso-
morphic to π3(M,L, y(0)), and since it is abelian, the isomorphism is independent of ŷ0.
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This means that we have canonically identified the fundamental group of the space of cappings ỹ with
π3(M,L, y(0)).

Let now H : [0, 1] ×M → R be a nondegenerate Hamiltonian, that is all its orbits with boundary
on L are nondegenerate, and fix an orbit y of H . Pick an equivalence class of cappings ỹ = [y, ŷ],
that is a critical point of AH:L. For any ŷ we have an associated linearized operator Dŷ, see §3.4. Its
construction depends on various choices, such as an almost complex structure and a connection on the
pullback bundle ŷ∗TM . Let Dỹ denote the collection of all the operators obtained in this way for all the
cappings ŷ in class ỹ and all the auxiliary choices. Since the spaces of almost complex structures and
connections are contractible, we see that the parameter space of Dỹ is homotopy equivalent to the space
ỹ of cappings in class ỹ. Therefore its fundamental group is canonically isomorphic to π3(M,L, y(0))
by Lemma 3.5. The determinant lines of the operators in the family Dỹ glue into the line bundle
d(Dỹ). We have

Lemma 3.6. Relative to the canonical isomorphism of π3(M,L, y(0)) with the fundamental group of
the space of parameters over which the line bundle d(Dỹ) is defined, its first Stiefel–Whitney class
equals

w1(d(Dỹ)) = w2(TL) ◦ ∂: π3(M,L) → Z2 .

Proof. Let (ŷτ )τ∈S1 be a loop of cappings and lift it to a loop of operators Dτ = Dŷτ
. Recall that

for a fixed capping ŷ0 ∈ ỹ we defined the reverse capping −ŷ0 via −ŷ0(s, t) = ŷ0(−s, t). To it there
corresponds a Cauchy–Riemann operator D−ŷ0

on D2 − {−1}. The latter surface has a negative end,
and therefore we can form the glued operator Dτ ♯D−ŷ0

over D2 for some gluing length. Combining
the direct sum and the gluing isomorphisms, we obtain an isomorphism

d(Dτ ) ⊗ d(D−ŷ0
) ≃ d(Dτ ♯D−ŷ0

) ,

which is continuous in τ , and which implies that the loop (Dτ )τ is orientable if and only if the loop
Dτ ♯D−ŷ0

is. Let us therefore compute the first Stiefel–Whitney class of d(Dτ ♯D−ŷ0
) over S1. The

w1 of a loop of Cauchy–Riemann operators on a compact surface has been computed, see for instance
[Sei08, Geo13]. Since in our case the boundary condition of the loop of operators d(Dτ ♯D−ŷ0

) is
stationary on the right half of the disk, we obtain

w1

(
(d(Dτ ♯D−ŷ0

))τ
)

= 〈w2(TL), [U ]〉 ,

where U is the image in L of the evaluation map

∂D2 × S1 → L , (σ, τ) 7→ (ŷτ ♯− ŷ0)(σ) .

Unraveling the definitions, we see that the number 〈w2(TL), [U ]〉 equals w2(TL) ◦ ∂ evaluated on the
loop in the space of contractible disks at y(0) given by (ŷτ ♯− ŷ0)τ∈S1 .

Due to assumption (O), we obtain that the determinant line d(Dỹ) is orientable. We let

C(ỹ)

be the free Z-module of rank 1 whose two generators are the two possible orientations of this determi-
nant line bundle. Note that since ỹ is connected, this definition makes sense.

Similarly, recall the definition of a capping for a smooth loop y: S1 → M . Pick a nondegenerate
Hamiltonian H : S1 ×M → R, that is all of its Hamiltonian orbits which are loops are nondegenerate.
For a capping ŷ of a periodic orbit y of H we have defined a linearized operator Dŷ, see §3.4. Similarly
to the above, we have the family Dỹ of all the linearized operators associated to cappings in a given
class ỹ. We have
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Lemma 3.7. The determinant line d(Dỹ) is orientable.

Proof. It suffices to prove that the determinant bundle of a loop Dτ = Dŷτ
of operators above a loop

of cappings is orientable. Fix a capping ŷ0 ∈ ỹ. We can form the glued operator Dτ ♯D−ŷ0
over S2.

The direct sum and the gluing isomorphisms combine to the isomorphism

d(Dτ ) ⊗ d(D−ŷ0
) ≃ d(Dτ ♯D−ŷ0

) ,

which is continuous in τ , and which implies that we only have to prove the orientability of the de-
terminant bundle (d(Dτ ♯D−ŷ0

))τ . However this latter bundle is a bundle of real Cauchy–Riemann
operators on S2, which is a closed Riemann surface. It is well-known that the set of real Cauchy–
Riemann operators on a Hermitian vector bundle over a closed Riemann surface deformation retracts
onto the subspace of complex-linear Cauchy–Riemann operators. The determinant lines of the complex
linear operators are canonically oriented since their kernels and cokernels are complex vector spaces.
It follows that the determinant bundle of the whole space of real Cauchy–Riemann operators over a
closed Riemann surface is canonically oriented. This shows that our bundle over S1 is orientable.

We therefore let
C(ỹ)

be the free Z-module of rank 1 whose two generators are the two possible orientations of this determi-
nant line bundle. Again, since ỹ is connected, this definition makes sense.

3.7.2 Orientations and isomorphisms

Let Σ be a punctured sphere or closed disk with punctures θ, {θi}i with θ being the only positive
puncture. Assume we have chosen nondegenerate Floer data (H, J), (Hi, J i) associated to θ, θi. Choose
critical points ỹi ∈ CritAHi and let y be a Hamiltonian orbit of H . Let

w ∈ C∞
b (Σ, ∂Σ;M,L; {yi}i, y) .

Fix representative cappings ŷi ∈ ỹi. We can preglue the maps ŷi and w, according to the obvious gluing
tree, to form a new map, which is b-smooth and has y as the unique asymptotic orbit. It therefore can
be viewed as a capping for y, and so we denote it ŷ, and let ỹ be its equivalence class. Let Dŷi

∈ Dỹi

be linearized operators for the cappings. We can glue these operators with a linearized operator Dw

cooresponding to w so that the result can be deformed into a linearized operator Dŷ for the capping
ŷ. We therefore have an isomorphism

d(Dŷ) ≃ d
(
Dw ⊕

⊕

i

Dŷi

)

which is the composition of the deformation and gluing isomorphisms.
The direct sum isomorphism (§2.1.0.5) yields

d
(
Dw ⊕

⊕

i

Dŷi

)
≃ d(Dw) ⊗

⊗

i

d(Dŷi
) ,

and it depends on the ordering of the punctures of Σ. Composing the two isomorphisms, we obtain
the isomorphism

d(Dŷ) ≃ d(Dw) ⊗
⊗

i

d(Dŷi
) .

30



Passing to the families, we finally get

d(Dỹ) ≃ d(Dw) ⊗
⊗

i

d(Dỹi
) .

This means that there is a canonical bijection between orientations of Dw and isomorphisms

d(Dỹ) ≃
⊗

i

d(Dỹi
) ,

or equivalently isomorphisms

C(ỹ) ≃
⊗

i

C(ỹi) .

We emphasize that this bijection depends on the chosen ordering of the orbits yi. Note that this
bijection is continuous with respect to w.

Now we’ll show how such isomorphisms correspond to orientations of solution spaces. There are
two cases: the case of a single surface and the case of a family.

3.7.2.1 A single surface Assume the Floer data associated to the punctures of Σ are regular and
choose a compatible regular perturbation datum (K, I) on Σ, so that for every u ∈ MΣ(K, I; {ỹi}i, ỹ)
the linearized operator Du is onto and we have canonically

kerDu = TuMΣ(K, I; {ỹi}i, ỹ) .

As we have just seen, isomorphisms
⊗

i C(ỹi) ≃ C(ỹ) are in bijection with orientations of Du for any
u ∈ MΣ(K, I; {ỹi}i, ỹ), therefore we obtain: for every connected component of MΣ(K, I; {ỹi}i, ỹ),
there is a bijection between such isomorphisms and orientations of that connected component.

3.7.2.2 A family Let S → R be a family of punctured Riemann surfaces with a single positive
puncture θ and negative punctures {θi}i, and assume we have chosen a set of ends for it, a set of
regular Floer data (H, J), (Hi, J i) associated to θ, θi, and a compatible regular perturbation datum
(K, I). Fix ỹi ∈ CritAHi , ỹ ∈ CritAH . For every (r, u) ∈ MS(K, I; {ỹi}i, ỹ) we have canonically

kerDr,u = T(r,u)MS(K, I; {ỹi}i, ỹ) .

The exact Fredholm triple
0 → Du → Dr,u → 0TrR → 0 (5)

leads to the canonical isomorphism

d(Dr,u) ≃ d(Du) ⊗ d(TrR) . (6)

As we have just seen, there is a bijection between isomorphisms
⊗

iC(ỹi) ≃ C(ỹ) and orientations of
Du. Therefore there is a bijection between such isomorphisms and orientations of MS(K, I; {ỹi}i, ỹ)
relative to R. In our applications below R is always an interval in R and so it carries the posi-
tive orientation inherited from R, which therefore implies that we have a canonical bijection between
isomorphisms

⊗
i C(ỹi) ≃ C(ỹ) and orientations of components of MS(K, I; {ỹi}i, ỹ).
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3.7.3 Canonical orientations

Having defined the relevant moduli spaces of solutions of the Floer PDE, we now pass to the canon-
ical orientations of the corresponding linearized operators. We distinguish the cases of a translation-
invariant perturbation datum, a single surface, and a family.

3.7.3.1 Translation-invariant perturbation datum Let (H, J) be a regular Floer datum, which
is time-periodic in case we consider periodic orbits, and fix ỹ± ∈ CritAH of index difference 1. For

any u ∈ M̃(H, J ; ỹ−, ỹ+) the linearized operator Du is onto and has index 1, therefore its kernel is
1-dimensional, and it is spanned by the infinitesimal translation ∂s. We call the orientation

∂u := ∂s ⊗ 1∨

of Du canonical.

3.7.3.2 A single surface Let Σ be a Riemann surface with θ being the only positive puncture and
{θi}i being the negative punctures, and assume we have chosen a set of ends for it, regular Floer data
(H, J), (Hi, J i) associated to θ, θi and a compatible regular perturbation datum (K, I); fix critical
points ỹi ∈ CritAHi , ỹ ∈ CritAH . Assume the moduli space MΣ(K, I; {ỹi}i, ỹ) is zero-dimensional
and let u be an element therein. The linearized operator Du is surjective and has index zero. Therefore
it is an isomorphism and we let

ou = 1 ⊗ 1∨ ∈ d(Du)

be the positive orientation. We call this orientation ou of Du canonical.

3.7.3.3 A family Assume we have a family of Riemann surfaces S → R where R ⊂ R is an
interval. Let θ, θi be the punctures of S with θ being the only positive puncture, and assume we have
chosen a set of ends for S, regular Floer data (H, J), (Hi, J i) associated to θ, θi, a regular compatible
perturbation datum (K, I), and critical points ỹi ∈ CritAHi , ỹ ∈ CritAH , such that MS(K, I; {ỹi}i, ỹ)
is zero-dimensional. Assume (r, u) ∈ MS(K, I; {ỹi}i, ỹ). The operator Dr,u is onto and has index zero,
therefore it is an isomorphism. Recall the isomorphism (6)

d(Dr,u) ≃ d(Du) ⊗ d(TrR) .

Let ∂r be the positive orientation of R. We let ou ∈ d(Du) be the orientation such that this isomorphism
maps

1 ⊗ 1∨ 7→ ou ⊗ ∂r .

We call this orientation ou canonical. Note that Du has index −1.

3.7.4 Induced orientations

Whenever we have a 1-dimensional moduli space M, it can be compactified to a 1-dimensional
compact manifold M with boundary consisting of elements of 0-dimensional moduli spaces. Here we
show how the canonical orientations of the Fredholm operators corresponding to these 0-dimensional
spaces induce orientations on M. These computations will be used in §3.8.2 to prove that the various
operations in Floer homology satisfy suitable identities.

The notations and the treatment here parallel those of §3.6.3, where the types of boundary points
arising in compactification are described. Note that all Floer and perturbation data in sight are
assumed to be regular and sufficiently generic so that compactness results of §3.6.3 apply.
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3.7.4.1 The case of translation-invariant perturbation datum Consider the 1-dimensional
moduli space M(H, J ; ỹ−, ỹ+) and a boundary point

δ = ([u], [v]) ∈ M(H, J ; ỹ−, ỹ) ×M(H, J ; ỹ, ỹ+) .

Let ∆ be the connected component of M(H, J ; ỹ−, ỹ+) such that δ ∈ ∆. Let w ∈ M̃(H, J ; ỹ−, ỹ+) be
obtained by gluing u, v for some large gluing length. The canonical orientations of Du, Dv correspond,
by §3.7.2, to isomorphisms

C(u): C(ỹ−) ≃ C(ỹ) and C(v): C(ỹ) ≃ C(ỹ+) .

The isomorphism
C(v) ◦ C(u): C(ỹ−) ≃ C(ỹ+)

corresponds to an orientation of Dw, which we will now compute. First, consider the isomorphism

d(Dv) ⊗ d(Du) ≃ d(Dw) (7)

which is the composition of the direct sum, gluing, and deformation isomorphisms. Let ow ∈ d(Dw)
be the image of ∂v ⊗ ∂u under this isomorphism. We claim that ow corresponds to the isomorphism
C(v) ◦ C(u). Indeed, we have the following commutative diagram:

d(Dỹ−) //

))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
d(Dv) ⊗ d(Du) ⊗ d(Dỹ−) //

��

d(Dv) ⊗ d(Dỹ)

��
d(Dw) ⊗ d(Dỹ−) // d(Dỹ+

)

(8)

where the leftmost horizontal arrow maps o− 7→ ∂v⊗∂u⊗o− while the slanted arrow maps o− 7→ ow⊗o−.
The triangle then commutes by the definition of ow. The square consists of combinations of direct sum,
gluing, and deformation isomorphisms, and therefore commutes. Fix o− ∈ d(Dỹ−) and let o = C(u)(o−)
and o+ = C(v)(o). Then by the definition of C(u), C(v) we know that this diagram maps

o−
✤ //
☞

%%▲▲
▲▲

▲▲
▲▲▲

▲▲
∂v ⊗ ∂u ⊗ o−❴

��

✤ // ∂v ⊗ o❴

��
ow ⊗ o−

✤ // o+

We see that the composition of the slanted arrow and the bottom arrow maps o− 7→ o+. On the other
hand, by the definition of the correspondence between isomorphisms C(ỹ−) ≃ C(ỹ+) and orientations of
d(Dw) we have that the isomorphism C(v)◦C(u), which maps o− 7→ o+, corresponds to the orientation
ow. It remains to explicitly compute ow.

Recall that the gluing map is a local diffeomorphism (see for instance [Sch])

M̃(H, J ; ỹ−, ỹ) × M̃(H, J ; ỹ, ỹ+) → M̃(H, J ; ỹ−, ỹ+)

defined near (u, v) and mapping a neighborhood of this point diffeomorphically to a neighborhood of
w. The main property of this gluing map is that its differential, which is an isomorphism

dg: TuM̃(H, J ; ỹ−, ỹ) ⊕ TvM̃(H, J ; ỹ, ỹ+) ≃ TwM̃(H, J ; ỹ−, ỹ+)

33



is such that if we let d(dg): d(Du ⊕Dv) → d(Dw) be the induced map on determinant lines, then the
composition with the direct sum isomorphism

d(Dv) ⊗ d(Du)
⊕−→ d(Du ⊕Dv)

d(dg)−−−→ d(Dw)

yields the isomorphism (7), which also enters in the left vertical arrow in the diagram (8). Here we
have of course identified

d(Du) = d(kerDu) = d(TuM̃(H, J ; ỹ−, ỹ))

and similarly for v, w. Therefore we know that ow is the image of ∂v ⊗ ∂u by the composition

d(Dv) ⊗ d(Du)
⊕−→ d(Dv ⊕Du)

d(dg)−−−→ d(Dw) .

The first map maps ∂v ⊗ ∂u 7→ ∂v ∧ ∂u. Next, from the structure of the gluing map g it follows that

dg(∂v + ∂u) = ∂w

while 5)

dg(∂v − ∂u) = inwardδ ,

where inwardδ ∈ TwM̃(H, J ; ỹ−, ỹ+) is a vector pointing away from δ. Therefore

ow = d(dg)(∂v ∧ ∂u) = d(dg)((∂v + ∂u) ∧ (−∂v + ∂u)) = ∂w ∧ (−inwardδ) .

This means that the isomorphism C(v) ◦C(u) induces the orientation −∂w ∧ inwardδ on the connected

component of M̃(H, J ; ỹ−, ỹ+) containing w.

3.7.4.2 The case of a single surface Consider a 1-dimensional moduli space MΣ(K, I; {ỹi}i, ỹ).
The boundary points correspond to Floer breaking, either at an incoming or at the outgoing end.
Consider breaking at the outgoing end:

δ = (u, [v]) ∈ MΣ(K, I; {ỹi}i, ỹ′) ×M(H, J ; ỹ′, ỹ) .

Let ∆ ⊂ MΣ(K, I; {ỹi}i, ỹ) be the connected component with δ ∈ ∆. Let w ∈ ∆ be obtained by gluing
u, v for some large gluing length. The canonical orientations of Du, Dv correspond to isomorphisms

C(u):
⊗

i

C(ỹi) ≃ C(ỹ′) and C(v): C(ỹ′) ≃ C(ỹ) ,

and the composition

C(v) ◦ C(u):
⊗

i

C(ỹi) ≃ C(ỹ)

5)This can be seen intuitively as follows. Fix a large gluing length R. Then the glued trajectory w satisfies that w(0)
is close to u(0) while w(2R + 1) is close to v(0). If we now let u′, v′ be trajectories which satisfy, say u′(0) = u(−1),
v′(0) = v(1), so that the passage from (u, v) to (u′, v′) is in the direction of the vector −∂u + ∂v, and we let w′ be the
trajectory glued from u′, v′ for the same gluing length, then w′(0) is close to u′(0) = u(−1), and w′(2R + 1) is close to
v′(0) = v(1), that is the points w′(0), w′(2R+1) are futher apart than the points w(0), w(2R+1), which means that w′

is faster than w, because it traverses a longer distance in the same amount of time. Therefore it spends less time near
ỹ, meaning it is further away from δ. Therefore dg maps −∂u + ∂v to inwardδ.
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corresponds to an orientation of Dw, and therefore of ∆. Let us compute this orientation. The
differential of the gluing map is an isomorphism

dg: TuMΣ(K, I; {ỹi}i, ỹ′) × TvM̃(H, J ; ỹ′, ỹ) ≃ TwMΣ(K, I; {ỹi}i, ỹ)

mapping the spanning vector 6) ∂v to inwardδ. Thus the induced isomorphism on determinant lines

d(Dv) ⊗ d(Du)
⊕−→ d(Dv ⊕Du)

d(dg)−−−→ d(Dw)

maps ∂v ⊗ ou 7→ inwardδ.
The operator Dv ⊕Du⊕

⊕
iDŷi

glues into: Dv ⊕Dŷ′ , Dw ⊕⊕
iDŷi

, and Dŷ. Using a combination
of direct sum, linear gluing, and deformation isomorphisms, we obtain the commutative diagram

d(Dv) ⊗ d(Du) ⊗⊗
i d(Dỹi

)

**❯❯❯
❯❯❯❯

❯❯❯❯
❯❯❯❯

❯

dg⊗id

��

d(Dv) ⊗ d(Dỹ′) //

tt✐✐✐✐
✐✐✐✐

✐✐✐✐
✐✐✐✐

d(Dỹ)

d(Dw) ⊗
⊗

i d(Dỹi
)

22❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

Pick oi ∈ C(ỹi) and denote o
′ = C(u)

(⊗
i oi

)
∈ C(ỹ′) and o = C(v)(o′) ∈ C(ỹ). This diagram maps

∂v ⊗ ou ⊗
⊗

i oi
✎

''❖❖
❖❖❖

❖❖❖
❖❖❖❴

dg⊗id

��

∂v ⊗ o
′ ✤ //✴

ww♦♦♦
♦♦♦

♦♦♦
♦♦♦

o

inwardδ ⊗
⊗

i oi

✮

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

This means that the orientation of Dw corresponding to the isomorphism C(v) ◦ C(u), which maps⊗
i oi 7→ o, is given by inwardδ. This is also the induced orientation on ∆.
When the breaking happens at the j-th incoming end, we get a boundary point

δ = ([u], v) ∈ M(Hj , Jj; ỹj , ỹ
′
j) ×MΣ(K, I; {ỹi}i6=j , ỹ

′
j , ỹ) .

Let again ∆ be the connected component of MΣ(K, I; {ỹi}i, ỹ) with δ ∈ ∆. Let w ∈ MΣ(K, I; {ỹi}i, ỹ)
be obtained by gluing u, v for some large gluing length. The canonical orientations of the operators
Du, Dv correspond to isomorphisms

C(u): C(ỹj) ≃ C(ỹ′j) and C(v):
⊗

i<j

C(ỹi) ⊗ C(ỹ′j) ⊗
⊗

i>j

C(ỹi) ≃ C(ỹ) .

The isomorphism

C(v) ◦ (id⊗ · · · ⊗ C(u) ⊗ · · · ⊗ id):
⊗

i

C(ỹi) ≃ C(ỹ)

6)This can be seen using the argument of the footnote on page 34.
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corresponds to an orientation of Dw, and therefore of ∆. Let us compute it. The differential of the
gluing map is an isomorphism

dg: TuM̃(Hj , Jj ; ỹj , ỹ
′
j) × TvMΣ(K, I; {ỹi}i6=j , ỹ

′
j , ỹ) → TwMΣ(K, I; {ỹi}i, ỹ)

mapping the spanning vector ∂u to −inwardδ.
The operator Dv ⊕Du ⊕⊕

iDŷi
glues into Dv ⊕

⊕
i6=j Dŷi

⊕Dŷ′
j
, Dw ⊕⊕

iDŷi
, and Dŷ. Noting

that direct sum isomorphisms obey the Koszul rule with respect to the grading of the determinant
lines, we have the following commutative diagram

d(Dv) ⊗⊗
i<j d(Dỹi

) ⊗ d(Du) ⊗ d(Dỹj
) ⊗⊗

i>j d(Dỹi
)

R

��ss❣❣❣❣❣
❣❣❣❣❣

❣❣❣❣❣
❣❣❣❣❣

❣❣❣

d(Dỹ) d(Dv) ⊗ d(Du) ⊗⊗
i d(Dỹi

)

d(dg)⊗id

��

oo

d(Dw) ⊗
⊗

i d(Dỹi
)

kk❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲

where R differs from the mere exchange of factors by the Koszul sign (−1)
∑

i<j |ỹi|
′

. Fix generators
oi ∈ C(ỹi) and let o = C(v) ◦ (id⊗ · · · ⊗ C(u) ⊗ · · · ⊗ id)(

⊗
i oi) ∈ C(ỹ). We have

ov ⊗
⊗

i<j oi ⊗ ∂u ⊗ oj ⊗
⊗

i>j oi❴

��

✱

uu❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧❧

o (−1)
∑

i<j |ỹi|
′

ov ⊗ ∂u ⊗⊗
i oi❴

��

✤oo

−(−1)
∑

i<j |ỹi|
′

inwardδ ⊗
⊗

i oi

✒

hh❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘

(9)

This means that the isomorphism C(v)◦(id⊗ · · ·⊗C(u)⊗· · ·⊗ id) which maps
⊗

i oi 7→ o, corresponds

to the orientation −(−1)
∑

i<j |ỹi|
′

inwardδ of Dw. This is therefore the induced orientation on ∆.

3.7.4.3 The case of a family Let S → R be a family of punctured Riemann surfaces, and fix
regular Floer data associated to its punctures and a regular compatible perturbation datum. We only
deal with R being a connected interval in R of the form R = [0, 1] or R = [0,∞). We orient R by the
orientation ∂r = 1 ∈ d(TrR) = d(R). We consider a 1-dimensional moduli space MS(K, I; {ỹi}i, ỹ)
and the boundary of its compactification. There are three types of boundary points: the boundary
points of the original moduli space before compactification, internal Floer breaking, and breaking at a
noncompact end of R, see §3.6.3.

We start with boundary points belonging to the moduli space itself: let

δ = (r, u) ∈ ∂R×MΣr (Kr, Ir; {ỹi}i, ỹ) .

The operator Du is canonically oriented by 1⊗1∨, since it is an isomorphism. We have the isomorphism
(6)

d(Dr,u) ≃ d(Du) ⊗ d(TrR) .
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Since the operators Du, Dr,u are onto, by the normalization property (§2.1.0.3) this isomorphism in
fact comes from the short exact sequence

0 → kerDu → kerDr,u
pr−→ TrR → 0 ,

where pr : kerDr,u → TrR is the restriction of the projection TrR⊕W 1,p(u) → TrR. Since kerDu = 0,
this pr is an isomorphism; by abuse of notation we denote ∂r the preimage of ∂r by pr. It follows that

∂r 7→ (1 ⊗ 1∨) ⊗ ∂r .

Therefore the induced orientation on Dr,u is given by ∂r. This is therefore also the induced orientation
on the connected component of MS(K, I; {ỹi}i, ỹ) containing (r, u). Note that if r = 0, this orientation
coincides with inwardδ, while if r = 1, it coincides with − inwardδ.

Next we consider internal Floer breaking. This can happen at the outgoing end or at an incoming
end. Consider first breaking at the outgoing end: let

δ = ((r, u), [v]) ∈ MS(K, I; {ỹi}i, ỹ′) ×M(H, J ; ỹ′, ỹ) .

Let ∆ be the connected component of MS(K, I; {ỹi}i, ỹ) with δ ∈ ∆. Let (s, w) ∈ ∆ be obtained by
gluing (r, u) and v for some large gluing length. The canonical orientations of Du, Dv correspond to
isomorphisms

C(u): C(ỹ′) ≃ C(ỹ) and C(v):
⊗

i

C(ỹi) ≃ C(ỹ′) .

The isomorphism

C(v) ◦ C(u):
⊗

i

C(ỹi) ≃ C(ỹ)

corresponds to an orientation of Dw, and to an orientation of MS(K, I; {ỹi}i, ỹ) via the isomorphism
(6). Let us compute these orientations. The differential of the gluing map is an isomorphism

dg: T(r,u)MS(K, I; {ỹi}i, ỹ′) ⊕ TvM̃(H, J ; ỹ′, ỹ) → T(s,w)MS(K, I; {ỹi}i, ỹ)

mapping the spanning vector ∂v to inwardδ. We have the exact square of Fredholm operators

Dv

��

Dv
//

��

0

��
Dv ⊕Du

//

��

Dv ⊕Dr,u
//

��

0TrR

Du
// Dr,u

// 0TrR

which induces the following commutative diagram:

d(Dv) ⊗ d(Du) ⊗ d(TrR) //

��

d(Dv) ⊗ d(Dr,u)

��
d(Dv ⊕Du) ⊗ d(TrR) // d(Dv ⊕Dr,u)
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where the vertical arrows are direct sum isomorphisms while the horizontal arrows come from exact
triples.

There is an isomorphism
d(Dv ⊕Du) ≃ d(Dw) (10)

which is the combination of linear gluing and deformation isomorphisms. Since s is close to r, we have
the isomorphism

d(Dv ⊕Du) ⊗ d(TrR) ≃ d(Dw) ⊗ d(TsR) .

The main property of the gluing map is the commutativity of the following diagram:

d(Dv ⊕Du) ⊗ d(TrR) //

��

d(Dv ⊕Dr,u)

d(dg)

��
d(Dw) ⊗ d(TsR) // d(Ds,w)

where the horizontal arrows come from exact triples. Combining the two diagrams, we obtain the
diagram on the left:

d(Dv) ⊗ d(Du) ⊗ d(TrR) //

��

d(Dv) ⊗ d(Dr,u)

��
d(Dv ⊕Du) ⊗ d(TrR) //

��

d(Dv ⊕Dr,u)

d(dg)

��
d(Dw) ⊗ d(TsR) // d(Ds,w)

∂v ⊗ ou ⊗ ∂r
✤ //

❴

��

∂v ⊗ (1 ⊗ 1∨)
❴

��
(∂v ∧ ou) ⊗ ∂r

✤ //
❴

��

∂v❴

��
ow ⊗ ∂r

✤ // inwardδ

Recall that we have the canonical orientations ou ∈ d(Du) and ∂v ∈ d(Dv). Let us denote by ow the
image of ∂v ⊗ ou by the isomorphism (10). The diagram on the left maps orientations as shown in the
diagram on the right, where the top horizontal arrow comes from the definition of ou, see §3.7.3.3, and
the vertical arrows all come from the definitions. The goal of this computation is the bottom arrow,
which as we can see maps ow ⊗ ∂r 7→ inwardδ.

Now the operator Dv⊕Du⊕
⊕

iDŷi
glues into Dw⊕⊕

iDŷi
, Dv⊕Dŷ′ , and Dŷ. Therefore, using a

combination of direct sum, gluing, and deformation isomorphisms, we have the commutative diagram

d(Dv) ⊗ d(Du) ⊗⊗
i d(Dỹi

)

dg⊗id

��

// d(Dỹ)

d(Dw) ⊗⊗
i d(Dỹi

)

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

Pick generators oi ∈ C(ỹi) and let o = C(v)(C(u)(
⊗

i oi)) ∈ C(ỹ). This diagram maps

∂v ⊗ ou ⊗⊗
i oi❴

dg⊗id

��

✤ // o

ow ⊗⊗
i oi

✷

99rrrrrrrrrrrr

Thus we see that the isomorphism C(v) ◦C(u), which maps
⊗

i oi 7→ o, corresponds to the orientation
ow of Dw, which in turn corresponds to the orientation inwardδ induced on ∆.
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Assume now that the Floer breaking occurs at the j-th incoming end, and we have

δ = ([u], (r, v)) ∈ M(Hj , Jj ; ỹj , ỹ
′
j) ×MS(K, I; {ỹi}i6=j, ỹ

′
j , ỹ) .

Let ∆ be the connected component of MS(K, I; {ỹi}i, ỹ) with δ ∈ ∆. Let (s, w) be obtained by
gluing u, (r, v) for some large gluing length. The canonical orientations ∂u ∈ d(Du) and ov ∈ d(Dv)
correspond to isomorphisms

C(u): C(ỹj) ≃ C(ỹ′j) and C(v):
⊗

i<j

C(ỹi) ⊗ C(ỹ′j) ⊗
⊗

i>j

C(ỹi) ≃ C(ỹ) .

The composition

C(v) ◦ (id⊗ · · · ⊗ C(u) ⊗ · · · ⊗ id):
⊗

i

C(ỹi) ≃ C(ỹ)

corresponds to an orientation of Dw, and via (6), to an orientation of MS(K, I; {ỹi}i, ỹ). Let us
compute these orientations. The differential of the gluing map is an isomorphism

dg: TuM̃(Hj , Jj ; ỹj, ỹ
′
j) ⊕ T(r,v)MS(K, I; {ỹi}i6=j , ỹ

′
j, ỹ) → T(s,w)MS(K, I; {ỹi}i, ỹ)

mapping the spanning vector ∂u to −inwardδ. Similarly to the breaking at the outgoing end described
above, we use the exact square of Fredholm operators

Dv
//

��

Dv ⊕Du
//

��

Du

Dr,v
//

��

Dr,v ⊕Du
//

��

Du

��
0TrR 0TrR

// 0

and the isomorphism
d(Dv ⊕Du) ≃ d(Dw) (11)

obtained as a combination of linear gluing and deformation isomorphisms, to obtain the commutative
diagram on the left:

d(Dv) ⊗ d(Du) ⊗ d(TrR) //

��

d(Dr,v) ⊗ d(Du)

��
d(Dv ⊕Du) ⊗ d(TrR) //

��

d(Dr,v ⊕Du)

��
d(Dw) ⊗ d(TsR) // d(Ds,w)

ov ⊗ ∂u ⊗ ∂r
✤ //

❴

��

−(1 ⊗ 1∨) ⊗ ∂u❴

��
(ov ∧ ∂u) ⊗ ∂r

✤ //
❴

��

−∂u❴

��
ow ⊗ ∂r

✤ // inwardδ

where the top square is induced by the exact Fredholm square while the bottom square comes from the
compatibility of the gluing map with linear gluing. The top arrow is the composition of the interchange
of factors, which includes the Koszul sign (−1)indDu·dimR = −1, and the isomorphism coming from
the exact triple. Recall that we have canonical orientations ov, ∂u and let ow be the image of ov ⊗ ∂u
by the isomorphism (11). Then the diagram on the left maps as shown on the right.
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The rest of the computation is almost identical to the case of Floer breaking at an incoming end
for the case of a single surface: the isomorphism C(v) ◦ (id⊗ · · · ⊗C(u) ⊗ · · · ⊗ id) corresponds to the

orientation of Dw given by (−1)
∑

i<j |ỹi|
′

ow (that is, the Koszul sign is the same as in (9)). As we
have just computed, the orientation ow corresponds to the orientation inwardδ of ∆, therefore the total

induced orientation on ∆ is (−1)
∑

i<j |ỹi|
′

inwardδ.
Lastly, when R = [0,∞), we also have breaking at the noncompact end of R. We retain the

notation of §3.6.3.3 treating compactness and gluing in this case. Consider the 1-dimensional moduli
space MS(K, I; {ỹ1,i}i, {ỹ2,i}i6=j , ỹ2) and let

δ = (u, v) ∈ MΣ1(K1, I1; {ỹ1,i}i, ỹ2,j) ×MΣ2(K2, I2; {ỹ2,i}i, ỹ2) .

Let ∆ be the connected component of MS(K, I; {ỹ1,i}i, {ỹ2,i}i6=j , ỹ2) such that δ ∈ ∆. Let (r, w) ∈ ∆
be obtained by gluing u, v for some large gluing length. The canonical orientations ofDu, Dv correspond
to isomorphisms

C(u):
⊗

i

C(ỹ1,i) ≃ C(ỹ2,j) and C(v):
⊗

i

C(ỹ2,i) ≃ C(ỹ2) .

The composition

C(v) ◦ (id⊗ · · · ⊗ C(u) ⊗ · · · ⊗ id):
⊗

i<j

C(ỹ2,i) ⊗
⊗

i

C(ỹ1,i) ⊗
⊗

i>j

C(ỹ2,i) ≃ C(ỹ2)

corresponds to an orientation of Dw, and therefore to an orientation of ∆, which we will now compute.
The gluing map is the trivial (zero) isomorphism

dg: TuMΣ1(K1, I1; {ỹ1,i}i, ỹ2,j) ⊕ TvMΣ2(K2, I2; {ỹ2,i}i, ỹ2) → TwMΣr(Kr, Ir; {ỹ1,i}i, {ỹ2,i}i6=j , ỹ2) ,

therefore the induced isomorphism

d(Dv) ⊗ d(Du) ≃ d(Dw) ,

which is the composition of the direct sum, linear gluing, and deformation isomorphisms, maps ov⊗ou =
(1 ⊗ 1∨) ⊗ (1 ⊗ 1∨) to ow := 1 ⊗ 1∨, that is the positive orientation of Dw.

On the other hand, the operator

Dv ⊕Du ⊕
⊕

i

Dŷ1,i
⊕
⊕

i6=j

Dŷ2,i

glues into Dw ⊕⊕
iDŷ1,i

⊕⊕
i6=j Dŷ2,i

, Dv ⊕
⊕

iDŷ2,i
, and Dŷ2

. Using a combination of direct sum,
linear gluing, and deformation isomorphisms, we get the following commutative diagram:

d(Dv) ⊗⊗
i<j d(Dỹ2,i

) ⊗ d(Du) ⊗⊗
i d(Dỹ1,i

) ⊗⊗
i>j d(Dỹ2,i

)

R

�� ++❳❳❳❳
❳❳❳❳❳

❳❳❳❳❳
❳❳❳❳❳

❳❳❳❳❳
❳

d(Dv) ⊗ d(Du) ⊗⊗
i<j d(Dỹ2,i

) ⊗⊗
i d(Dỹ1,i

) ⊗⊗
i>j d(Dỹ2,i

)

d(dg)⊗id

��

// d(Dỹ2
)

d(Dw) ⊗
⊗

i<j d(Dỹ2,i
) ⊗

⊗
i d(Dỹ1,i

) ⊗
⊗

i>j d(Dỹ2,i
)

33❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢

40



where R is the interchange of factors, including the Koszul sign, which is trivial since indDu = 0. Pick
generators o1,i ∈ C(ỹ1,i) for all i, o2,i ∈ C(ỹ2,i) for i 6= j, and let

o2 = C(v)
(⊗

i<j o2,i ⊗ C(u)
(⊗

i o1,i

)
⊗⊗

i>j o2,i) ∈ C(ỹ2
)
.

The diagram maps

ov ⊗
⊗

i<j o2,i ⊗ ou ⊗⊗
i o1,i ⊗

⊗
i>j o2,j❴

R

��

✔

**❚❚❚
❚❚❚❚

❚❚❚❚
❚❚❚❚

❚❚❚❚

ov ⊗ ou ⊗⊗
i<j o2,i ⊗

⊗
i o1,i ⊗

⊗
i>j o2,j❴

d(dg)⊗id

��

✤ // o2

ow ⊗
⊗

i<j o2,i ⊗
⊗

i o1,i ⊗
⊗

i>j o2,j

✯

44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

Therefore the isomorphism C(v) ◦ (id⊗ · · · ⊗ C(u) ⊗ · · · ⊗ id) which maps

⊗
i<j o2,i ⊗

⊗
i o1,i ⊗

⊗
i>j o2,i 7→ o2 ,

corresponds to the orientation ow = 1 ⊗ 1∨ of Dw. Using the argument on page 36 we see that the
induced orientation on ∆ is ∂r, which evidently equals − inwardδ.

3.8 Operations

Here we define the matrix elements of operations on Floer homology, which itself will be defined
in the next subsection. The pattern is the same for all operations: given a collection of critical points
ỹi ∈ CritAHi , ỹ ∈ CritAH the matrix element of an operation is a finite sum of the form

∑

u∈M({ỹi}i,ỹ)

C(u):
⊗

i

C(ỹi) → C(ỹ)

where M({ỹi}i, ỹ) is a 0-dimensional moduli space of solutions of the Floer PDE and C(u) is the
isomorphism corresponding to the canonical orientation of the linearized operator Du. Identities are
proved by considering the compactified 1-dimensional moduli spaces, whose boundary points are in
bijection with summands of a desired identity. The main technical points here are the compactness
and gluing results of §3.6.3, the canonical orientations defined in §3.7.3, and the computation of induced
orientations in §3.7.4.

3.8.1 Definition of operations

There are three types of operations: boundary operators, multiplicative operators, and homotopy
operators.

3.8.1.1 Boundary operators First we deal with the boundary operator in Lagrangian Floer ho-
mology. Let (H, J) be a regular Floer datum for the strip S = R × [0, 1]. Fix ỹ± ∈ CritAH with

|ỹ−| − |ỹ+| = 1. For every u ∈ M̃(H, J ; ỹ−, ỹ+) the canonical orientation ∂u ∈ d(Du) corresponds to
an isomorphism

C(u): C(ỹ−) ≃ C(ỹ+) .
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Clearly this only depends on [u] ∈ M(H, J ; ỹ−, ỹ+). The matrix element of the boundary operator
∂H,J is the homomorphism

∑

[u]∈M(H,J;ỹ−,ỹ+)

C(u): C(ỹ−) → C(ỹ+) .

This sum is finite since so is M(H, J ; ỹ−, ỹ+).
The matrix element of the boundary operator in Hamiltonian Floer homology is defined in an

entirely analogous fashion, but the Floer datum is required to be 1-periodic in time.

3.8.1.2 Multiplicative operators There is a multiplicative operator corresponding to every punc-
tured Riemann surface Σ with exactly one positive puncture θ and negative punctures θi, where Σ̂ is
the sphere or the closed disk. Fix a choice of ends for Σ, regular Floer data (H, J), (Hi, J i) associated
to θ, θi, and a regular compatible perturbation datum (K, I). For ỹ ∈ CritAHi , ỹ ∈ CritAH with
|ỹ|′ =

∑
i |ỹi|′ pick u ∈ MΣ(K, I; {ỹi}i, ỹ). The canonical orientation ou ∈ d(Du) corresponds to an

isomorphism

C(u):
⊗

i

C(ỹi) ≃ C(ỹ) .

The matrix element of the operation ΦΣ;K,I is the homomorphism

∑

u∈MΣ(K,I;{ỹi}i,ỹ)

C(u):
⊗

i

C(ỹi) → C(ỹ) .

3.8.1.3 Homotopy operators Let R = [0, 1] or [0,∞) and let S → R be a family of punctured
Riemann surfaces with one positive puncture θ and negative punctures θi. Pick a choice of ends for
S, regular Floer data (H, J), (Hi, J i) associated to θ, θi, and a regular compatible perturbation datum
(K, I) on S. Recall that in case R = [0,∞), the choice of ends and perturbation data has the special
form described in §3.6.3.3. We keep a simpler numbering of Floer data and punctures, since the more
specialized numbering described there is not needed for the purposes of the current definition.

Fix ỹi ∈ CritAHi , ỹ ∈ CritAH such that 1 + |ỹ|′ −∑
i |ỹi|′ = 0. For (r, u) ∈ MS(K, I; {ỹi}i, ỹ) the

canonical orientation ou ∈ d(Du) determines an isomorphism

C(u):
⊗

i

C(ỹi) ≃ C(ỹ) .

The matrix element of the homotopy operator ΨS;K,I is the homomorphism

∑

(r,u)∈MS(K,I;{ỹi}i,ỹ)

C(u):
⊗

i

C(ỹi) → C(ỹ) .

3.8.2 Identities

Here we prove that various operations satisfy identities. There are three types of identities, express-
ing the fact that boundary operators square to zero, that multiplicative operators are chain maps, and
that they satisfy algebraic identities, which in turn is proved using homotopy operators. Since every
operation is defined in terms of matrix elements, in order to prove an identity, it suffices to prove that
the corresponding combination of matrix elements of the operations involved equals zero. This is what
we do here.
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3.8.2.1 Boundary operators square to zero Here we only prove this in the absence of bubbling.
The remaining case is treated in §6.1. It is enough to show that the matrix element of ∂2H,J relative to
ỹ± is zero, that is that ∑

ỹ∈CritAH

[u]∈M(H,J;ỹ−,ỹ)
[v]∈M(H,J;ỹ,ỹ+)

C(v) ◦ C(u) = 0 .

Consider the compactified moduli space M(H, J ; ỹ−, ỹ+); the summands in the above sum are in bijec-
tion with its boundary points. For a boundary point δ let C(δ): C(ỹ−) ≃ C(ỹ+) be the corresponding
summand. It is enough to show that for each connected component ∆ ⊂ M(H, J ; ỹ−, ỹ+) having δ, δ′

as its boundary points, we have
C(δ) + C(δ′) = 0 .

Let ∆̃ ⊂ M̃(H, J ; ỹ−, ỹ+) be the component covering ∆ under the quotient map M̃(H, J ; ỹ−, ỹ+) →
M(H, J ; ỹ−, ỹ+). By §3.7.2, we know that isomorphisms C(ỹ−) ≃ C(ỹ+) are in bijection with orienta-

tions of ∆̃. We computed the orientation induced on ∆̃ from a boundary point in §3.7.4.1. For w ∈ ∆̃
it is given by −∂w ∧ inwardδ. Since clearly

inwardδ = −inwardδ′ ,

we see that C(δ) = −C(δ′).

3.8.2.2 Operations ΦΣ are chain maps We want to prove the vanishing of the matrix element

∑

ỹ′∈CritAH′

u∈MΣ(K,I;{ỹi}i,ỹ
′)

[v]∈M(H,J;ỹ′,ỹ)

C(v) ◦C(u)−
∑

j

(−1)
∑

i<j |ỹi|
′ ∑

ỹ′
j∈CritA

Hj

[u]∈M(Hj ,Jj ;ỹj ,ỹ
′
j)

v∈MΣ(K,I;{ỹi}i6=j ,ỹ
′
j ,ỹ)

C(v) ◦ (id⊗ · · ·⊗C(u)⊗ · · ·⊗ id)

as a homomorphism ⊗

j

C(ỹj) → C(ỹ) .

There is a bijection between the boundary points of the compactified 1-dimensional moduli space
MΣ(K, I; {ỹi}i, ỹ) and the summands of the above matrix element. For a boundary point δ ∈
∂MΣ(K, I; {ỹi}i, ỹ) we let C(δ) be the summand corresponding under this bijection to δ, including
the sign in front of it. It is enough to show that for each connected component ∆ ⊂ MΣ(K, I; {ỹi}i, ỹ)
with ∂∆ = {δ, δ′} we have

C(δ) + C(δ′) = 0 .

Isomorphisms
⊗

j C(ỹj) → C(ỹ) are in bijection with orientations of ∆. In §3.7.4.2 we computed the
orientations induced on ∆ by the isomorphisms C(δ), C(δ′). The computations show precisely that
these orientations are always opposite, whence the vanishing of the matrix element.

3.8.2.3 Chain homotopies for a single surface Consider the trivial family 7) S = R × Σ,
R = [0, 1], where the ends and the perturbation datum are constant near ∂R = {0, 1}. We want to

7)Note however that the fiberwise conformal structure on S is allowed to vary along [0, 1].
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prove the vanishing of the matrix element

∑

u∈MΣ1(K1,I1;{ỹi}i,ỹ)

C(u) −
∑

u∈MΣ0(K0,I0;{ỹi}i,ỹ)

C(u)−

−
∑

ỹ′∈CritAH

(r,u)∈MS(K,I;{ỹi}i,ỹ
′)

[v]∈M(H,J;ỹ′,ỹ)

C(v) ◦ C(u) −
∑

j

(−1)
∑

i<j |ỹi|
′ ∑

ỹ′
j∈CritA

Hj

[u]∈M(Hj ,Jj ;ỹj,ỹ
′
j)

(r,v)∈MS(K,I;{ỹi}i6=j ,ỹ
′
j,ỹ)

C(v) ◦ C(u)

as a homomorphism ⊗

j

C(ỹj) → C(ỹ) .

Again, the boundary points of the compactified 1-dimensional moduli space MS(K, I; {ỹi}i, ỹ) are in
bijection with the summands of the matrix element. If C(δ) denotes the summand corresponding to the
boundary point δ, including the sign in front of it, then it is enough to show that for every connected
component ∆ ⊂ MS(K, I; {ỹi}i, ỹ) with ∂∆ = {δ, δ′} we have C(δ) + C(δ′) = 0. Isomorphisms⊗

j C(ỹj) → C(ỹ) correspond to orientations of ∆. In §3.7.4.3 we computed the orientations induced
on ∆ by the isomorphisms C(δ), C(δ′). Examining these orientations we dedude C(δ) +C(δ′) = 0 and
therefore the vanishing of the matrix element.

3.8.2.4 Chain homotopies for a family of surfaces over [0,∞) Keep the notations of §3.6.3.3.
We wish to prove the vanishing of the matrix element

∑

ỹ2,j∈CritAH1

u∈MΣ1(K
1,J1;{ỹ1,i}i,ỹ2,j)

v∈MΣ2(K
2,I2;{ỹ2,i}i,ỹ2)

C(v) ◦ C(u)−

−
∑

u∈MΣ0(K0,I0;{ỹ1,i}i,{ỹ2,i}i6=j ,ỹ2)

C(u) −
∑

ỹ′
2∈CritAH2

(r,u)∈MS(K,I;{ỹ1,i}i,{ỹ2,i}i6=j,ỹ
′
2)

[v]∈M(H2,J2;ỹ′
2,ỹ2)

C(v) ◦C(u)+

−
∑

l

∑

ỹ′
1,l∈CritA

H1,l

[u]∈M(H1,l,J1,l;ỹ1,l,ỹ
′
1,l)

(r,v)∈MS(K,I;{ỹ1,i}i6=l,ỹ
′
1,l,{ỹ2,i}i6=j ,ỹ2)

(−1)
∑

i<j |ỹ2,i|
′+

∑
i<l |ỹ1,i|

′

C(v) ◦ C(u)

−
∑

l 6=j

∑

ỹ′
2,l∈CritA

H2,l

[u]∈M(H2,l,J2,l;ỹ2,l,ỹ
′
2,l)

(r,v)∈MS(K,I;{ỹ1,i}i,{ỹ2,i}i6=j,l,ỹ
′
2,l,ỹ2)

(−1)sign(l)C(v) ◦ C(u)

as a homomorphism ⊗

i<j

C(ỹ2,i) ⊗
⊗

i

C(ỹ1,i) ⊗
⊗

i>j

C(ỹ2,i) ≃ C(ỹ2) .

Here

sign(l) =

{ ∑
i<l |ỹ2,i|′ if l < j∑
i<l,i6=j |ỹ2,i|′ +

∑m
i=1 |ỹ1,i|′ if l > j

44



where m is the number of negative ends of Σ1.
The argument is identical to the above: the summands of the matrix element are in bijection with

boundary points of the compactification MS(K, I; {ỹ1,i}i, {ỹ2,i}i6=j, ỹ2); let C(δ) be the summand
corresponding to the boundary point δ, including any signs in front of it. It suffices to show that for
any connected component ∆ of the compactified space with ∂∆ = {δ, δ′} we have C(δ)+C(δ′) = 0. The
bijection between isomorphisms

⊗
i<j C(ỹ2,i)⊗

⊗
iC(ỹ1,i)⊗

⊗
i>j C(ỹ2,i) ≃ C(ỹ2) and orientations of

∆, plus the computation of induced orientations done in §3.7.4.3 imply C(δ) + C(δ′) = 0 and hence
the vanishing of the desired matrix element.

3.9 Floer homology

Here we define Lagrangian and Hamiltonian Floer homology, and the various algebraic operations
thereupon.

3.9.1 Lagrangian Floer homology

Choose a regular Floer datum (H, J) for the strip S, which is sufficiently generic so that the
compactness results of §3.6.3 hold. Define the Z-module

CF∗(H : L) =
⊕

ỹ∈CritAH:L

C(ỹ) .

This is graded by mH:L.

3.9.1.1 The boundary operator The boundary operator

∂H,J : CFj(H : L) → CFj−1(H : L)

is defined via its matrix elements, see §3.8.1.1. The vanishing of the matrix elements of ∂2H,J , §3.8.2.1

together with the results of §6.1 show that ∂2H,J = 0 and therefore we can define the Lagrangian
Floer homology

HF∗(H, J : L)

as the homology of the Lagrangian Floer complex (CF∗(H : L), ∂H,J).

3.9.1.2 Continuation maps Let (Hi, J i) be regular Floer data, i = 0, 1, associated to the ends
of S, (H0, J0) to the negative end, and (H1, J1) to the positive end, and choose a regular perturbation
datum (K, I) on S which is of the form

K(s, t) = Hs
t dt , I(s, t) = Js

t (12)

where (Hs, Js)s∈R is a smooth homotopy of Floer data, which is independent of s for s /∈ (0, 1). The
corresponding continuation map

ΦS;K,I : CFj(H
0 : L) → CFj(H

1 : L)

is determined by its matrix elements, see §3.8.1.2. According to §3.8.2.2, it is a chain map:

ΦS;K,I ◦ ∂H0,J0 = ∂H1,J1 ◦ ΦS;K,I
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and therefore it induces a map on homology

ΦS;K,I : HFj(H
0, J0 : L) → HFj(H

1, J1 : L) .

If (K ′, I ′) is another regular perturbation datum on S as above, that is it corresponds to a different
homotopy of Floer data, then the maps ΦS;K,I and ΦS;K′,I′ are chain homotopic. Indeed, consider the
trivial family S = S× [0, 1], where we associate the data (Hi, J i) to the ends of S as above, and choose
a regular compatible perturbation datum (K, I) on S which near r = 0 equals (K, I) and near r = 1
equals (K ′, I ′). It follows from §3.8.2.3 that the operator

ΨS;K,I : CFj(H
0 : L) → CFj+1(H1 : L)

determined by its matrix elements §3.8.1.3, is a chain homotopy between ΦS;K,I and ΦS;K′,I′ . Therefore
the induced map on homology is independent of the choice of homotopy of Floer data; we denote it

ΦH1,J1

H0,J0 : HF∗(H0, J0 : L) → HF∗(H1, J1 : L) .

Consider now the trivial family S = S × [0,∞), where for some R0 > 0 the ends and a regular
perturbation datum (K, I) on S come from gluing Σ1 = Σ2 = S as described in §3.6.3.3, where the
positive end of Σ1 is glued to the negative end of Σ2, the Floer data associated to the ends of Σ1

are (H0, J0), (H1, J1), the data associated to the ends of Σ2 are (H1, J1), (H2, J2), and there are
perturbation data (Ki, J i) on Σi of the form (12). Using the matrix elements defined in §3.8.1.3 we
can define a homotopy operator

ΨS;K,I : HFj(H
0, J0 : L) → HFj+1(H2, J2 : L)

between
ΦH2,J2

H0,J0 and ΦH2,J2

H1,J1 ◦ ΦH1,J1

H0,J0 .

This follows from the vanishing of the matrix elements, §3.8.2.3. This means that on homology we
have

ΦH2,J2

H0,J0 = ΦH2,J2

H1,J1 ◦ ΦH1,J1

H0,J0 . (13)

Let now (H, J) be a regular Floer datum on S and let (K, I) be the corresponding translation-
invariant perturbation datum. It can be seen that the continuation map ΦS;K,I is the identity on chain
level. This means that

ΦH,J
H,J = idHF∗(H,J:L) .

Combining with (13), we obtain

ΦH1,J1

H0,J0 = (ΦH0,J0

H1,J1)−1 ,

and in particular continuation maps are isomorphisms.
We can now define the abstract Floer homology HF∗(L) as the limit of the system of Floer

homologies connected by the continuation isomorphisms.

3.9.1.3 The product Let Σ be the disk with three boundary punctures θi, i = 0, 1, 2, arranged in
positive cyclic order on ∂D2; here θ2 is positive and the other punctures are negative. Endow Σ with
a choice of ends. Let (Hi, J i) be regular Floer data associated to the θi and let (K, I) be a regular
compatible perturbation datum on Σ. The matrix elements §3.8.1.2 determine an operation

ΦΣ;K,I : CFj(H
0 : L) ⊗ CFk(H1 : L) → CFj+k−n(H2 : L) .
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The vanishing of the matrix elements §3.8.2.3 shows that ΦΣ;K,I is a chain map, therefore we have a
bilinear operation on homology

ΦΣ;K,I : HFj(H
0, J0 : L) ⊗HFk(H1, J1 : L) → HFj+k−n(H2, J2 : L) ,

which is the product. A change of auxiliary data, that is the choice of a conformal structure on Σ,
the position of the punctures, the ends or perturbation datum, can be encoded in a family over [0, 1],
which then produces a homotopy operator between the corresponding chain maps. This means that
we have a well-defined operation

⋆: HFj(H
0, J0 : L) ⊗HFk(H1, J1 : L) → HFj+k−n(H2, J2 : L) ,

which only depends on the Floer data.
Gluing Σ to a strip with perturbation data corresponding to a change of the Floer datum leads

to a family S → [0,∞), which can be used to produce a homotopy operator, which implies that on
homology we have

⋆ ◦ (Φ ⊗ Φ) = Φ ◦ ⋆ ,
where Φ is shorthand notation for a continuation map, that is the product is compatible with the
continuation maps. This in particular means that we have a well-defined product on the abstract Floer
homology HF∗(L).

3.9.1.4 Associativity of the product Let Σ be the disk with four boundary punctures θi, i =
0, 1, 2, 3, arranged in positive cyclic order, where θ3 is the only positive puncture. Fix a choice of ends
for Σ, and let (Hi, J i) be regular Floer data associated to the θi, and (K, I) a regular compatible
perturbation datum on Σ. The corresponding operation

ΦΣ;K,I : CFj(H
0 : L) ⊗ CFk(H1 : L) ⊗ CFl(H

2 : L) → CFj+k+l−2n(H3 : L)

can be proved to be a chain map, using the same arguments as above, which means it descends
to homology. It is then shown to be independent of the auxiliary data. Next one shows that it is
compatible with the continuation morphisms, therefore it defines a ternary operation on HF∗(L).

Note now that Σ can glued from two surfaces Σ1 = Σ2 which are disks with three boundary
punctures of which only one is positive. This gluing can be done in two different ways: one can feed
the positive puncture of Σ1 into either one of the negative punctures of Σ2. The resulting families
S → [0,∞) can be used to show that both compositions

⋆ ◦ (id⊗⋆) and ⋆ ◦(⋆⊗ id)

are equal, on the level of homology, to the ternary operation we have just defined. In particular it
means that the product ⋆ on HF∗(L) is associative.

3.9.1.5 The unit Take now Σ to be the disk with one positive puncture, endow it with an end, and
fix a regular nondegenerate Floer datum (H, J) and a compatible perturbation datum (K, I). There
is the corresponding nullary operation ΦΣ;K,I , which plays the role of the unit in Floer homology.
Let us give a more detailed description of it. Fix ỹ ∈ CritAH:L. The moduli space MΣ(K, I; ỹ) has
dimension |ỹ|′ = n − |ỹ|, therefore it is zero-dimensional whenever |ỹ| = n. Assume this. For any
u ∈ MΣ(K, I; ỹ) the operator Du is an isomorphism therefore it is canonically oriented by the positive
orientation ou = 1 ⊗ 1∨. Orientations of Du are in bijection with isomorphisms

⊗
∅

≃ C(ỹ). The
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empty tensor product 8) by definition is just the Z-module Z, therefore the canonical orientation of Du

gives rise to an isomorphism C(u): Z ≃ C(ỹ). Taking the sum:

∑

u∈MΣ(K,I;ỹ)

C(u): Z → C(ỹ)

gives the matrix element of the operation ΦΣ;K,I . Passing to the whole complex, we see that this
amounts to a graded linear map

Z[n] → CF∗(H : L) ,

where Z[n] denotes the graded abelian group which has Z in degree n and 0 everywhere else. This is
the unit. Using the same methods as above it is shown to be a chain map, to be independent of the
auxiliary data, and to be compatible with continuation morphisms. Therefore we have the canonical
nullary operation

1: Z[n] → HF∗(L) .

Let Σ⋆ be the disk with three boundary punctures, two negative and one positive puncture. We
can glue Σ to either one of the negative punctures of Σ⋆, and the resulting surface is isomorphic to the
strip S with one positive and one negative puncture. Using the same arguments as above, we see that
this leads to the following identities:

⋆ ◦ (1 ⊗ id) = ⋆ ◦ (id⊗1) = id

on HF∗(L). This means precisely that the operation 1 we have just defined is the unit for the product
⋆.

3.9.2 Hamiltonian Floer homology

The treatment here is entirely parallel to the Lagrangian case, so we just outline the main arguments
and results and establish notation.

Fix a regular nondegenerate Floer datum (H, J) for the cylinder C, which is sufficiently generic so
that the compactness results of §3.6.3 hold. Define the Z-module

CF∗(H) =
⊕

ỹ∈CritAH

C(ỹ) .

This is graded by mH .

3.9.2.1 The boundary operator The matrix elements of §3.8.1.1 assemble into the boundary
operator

∂H,J : CFj(H) → CFj−1(H) .

That ∂2H,J = 0 follows from the vanishing of the corresponding matrix elements, see §3.8.2.1. We let
the Hamiltonian Floer homology

HF∗(H, J)

be the homology of (CF∗(H), ∂H,J ).

8)If the reader does not like abstract nonsense, here is another way to do this: the linearized operator Du by definition
belongs to the family Dỹ , and since it is oriented, there is the corresponding generator of C(ỹ); in our notation this is
just C(u)(1).
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3.9.2.2 Continuation maps These are defined in the exact same manner as in the Lagrangian
case, and we leave the details to the reader. The upshot is that for any regular nondegenerate Floer
data (Hi, J i), i = 0, 1, there is a well-defined morphism

ΦH1,J1

H0,J0 : HF∗(H0, J0) → HF∗(H1, J1)

which satisfies the cocycle identity and such that

ΦH,J
H,J = idHF∗(H,J) .

It follows that the continuation maps are isomorphisms. Therefore the abstract Floer homology
HF∗(M) can be defined as the limit of the system of Floer homologies for different Floer data, con-
nected by the continuation isomorphisms.

3.9.2.3 The product This is defined analogously to the Lagrangian case, but there are some
minor differences. The product here is defined using the surface Σ which is the sphere S2 with three
punctures, two negative and one positive. It therefore gives rise to an operation on homology

∗: HFj(H
0, J0) ⊗HFk(H1, J1) → HFj+k−2n(H2, J2)

for any regular Floer data (Hi, J i) associated to the punctures of Σ. One shows that this is independent
of the auxiliary data such as the choice of ends (since the space of ends around an interior puncture is
connected), and the perturbation datum, and therefore the operation ∗ is well-defined on homology. It
can also be shown to respect continuation maps, which means that there is a well-defined product on
the abstract Floer homology HF∗(M). Associativity is proved in the same way as in the Lagrangian
case, by gluing two copies of Σ.

The difference from the Lagrangian case is the fact that the product ∗ is supercommutative. This
can be seen as follows. Let (K, I) be a regular compatible perturbation datum on Σ. There is an
orientation-preserving diffeomorphism of Σ which preserves the positive puncture and exchanges the
negative ones. Let (K ′, I ′) be the perturbation datum obtained by pushing forward the datum (K, I)
by this diffeomorphism. For every critical points ỹi ∈ CritAHi we have a canonical identification of
moduli spaces

MΣ(K, I; ỹ0, ỹ1, ỹ2) ≃ MΣ(K ′, I ′; ỹ1, ỹ0, ỹ2) ,

where on the left we have the original conformal structure and ends while on the right we use the con-
formal structure and ends pushed forward by the diffeomorphism. This means that the corresponding
matrix elements

∑

u∈MΣ(K,I;ỹ0,ỹ1,ỹ2)

C(u): C(ỹ0) ⊗ C(ỹ1) → C(ỹ2) and
∑

u∈MΣ(K′,I′;ỹ1,ỹ0,ỹ2)

C(u): C(ỹ1) ⊗ C(ỹ0) → C(ỹ2)

only differ by the Koszul sign (−1)|ỹ0|
′|ỹ1|

′

which arises when we compose the direct sum isomorphisms

d(Dỹ0
) ⊗ d(Dỹ1

) ≃ d(Dỹ0
⊕Dỹ1

) ≃ d(Dỹ1
) ⊗ d(Dỹ0

) ,

see §2.1.0.5. Therefore we can see the supercommutativity already on the chain level.

3.9.2.4 The unit This again is defined analogously to the Lagrangian case, the difference being
that the unit is now a graded linear map

1 : Z[2n] → HF∗(M) .
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3.9.3 Quantum module action

This is defined as follows. Let Σ• be the disk with two boundary punctures, one of which is positive,
and one interior puncture which is negative. Endow Σ• with a choice of ends, and let (Hi, J i) be regular
Floer data associated to the punctures, the one with i = 1 to the negative boundary puncture, i = 0
to the interior puncture, and i = 2 to the positive boundary puncture. Assume (H0, J0) is 1-periodic
in time. Pick a regular compatible perturbation datum (K, I). The matrix elements §3.8.1.2 define an
operation

ΦΣ•;K,I : CFj(H
0) ⊗ CFk(H1 : L) → CFj+k−2n(H2 : L) .

As usual, one shows that this is a chain map, that the resulting map on homology is independent
of the auxiliary choices, that it then respects the continuation maps, and therefore defines a bilinear
operation on abstact homologies:

•: HF∗(M) ⊗HF∗(L) → HF∗−2n(L) .

Gluing Σ• to different surfaces, we can prove the following identities:

• ◦ (1 ⊗ id) = id ,

that is the unit 1 ∈ HF2n(M) acts as a unit;

• ◦ (∗ ⊗ id) = • ◦ (id⊗•) ,

which means • defines a module action; finally, we have

• ◦ (id⊗⋆) = ⋆ ◦ (• ⊗ id) = ⋆ ◦ (id⊗•) ◦ (R⊗ id) ,

where
R: HF∗(M) ⊗HF∗(L) → HF∗(L) ⊗HF∗(M)

is the interchange of factors multiplied with the corresponding Koszul signs. This means that HF∗(L)
becomes a superalgebra over HF∗(M) by means of •.

One can also substitute the Lagrangian unit into • and get the so-called closed-open map, which is
a degree −n operation

• ◦ (id⊗1): HF∗(M) → HFn−∗(L) ,

which can be shown to be an algebra morphism.

3.10 Arbitrary rings and local coefficients

The above definitions are made over the ground ring Z. Given an arbitrary commutative ring R,
we can form Floer complexes over R by tensoring, − ⊗Z R. Thus we obtain the Floer homology over
R, and all the above algebraic operations become R-linear.

In case 2 = 0 in R, we can form the Floer complex without making assumption (O), as follows.
For a nondegenerate Floer datum (H, J) we define

CF∗(H : L) =
⊕

γ̃∈CritAH:L

R · γ̃ .

The boundary operator is given by counting the moduli spaces M(H, J ; γ̃−, γ̃+) modulo 2. The alge-
braic structures are defined similarly.
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Recall that a local system on a topological space X is a functor from the fundamental groupoid
Π1(X) to the category of groups. In more elementary terms, it is given by assigning a group Gx to
every point x ∈ X and an isomorphism Gx ≃ Gy for every homotopy class of paths from x, where
the isomorphisms behave coherently with respect to concatenation of paths. Similarly we can define a
local system of R-modules.

Given a ground ring R, a flat R-bundle over Ω̃L is by definition just a local system of R-modules
over Ω̃L. Let E be such a bundle and for a path u in Ω̃L running from γ̃− to γ̃+ let

Pu: Eγ̃− → Eγ̃+

be the corresponding parallel transport isomorphism. We can then form the Floer complex of (H, J)
twisted by E , as follows. As an R-module, we have

CF∗(H : L; E) =
⊕

γ̃∈CritAH:L

C(γ̃) ⊗R Eγ̃ .

The boundary operator has matrix elements

∑

[u]∈M(H,J;γ̃−,γ̃+)

C(u) ⊗R Pu ,

where we lift u to a path in Ω̃L. The corresponding Floer homology is denoted

HF∗(H, J : L; E) .

The continuation maps are similarly defined and we obtain the abstract Floer homology

HF∗(L; E) .

We will employ the following useful piece of notation. For V a real 1-dimensional vector space
we let |V | be its normalization, which is the rank 1 free Z-module generated by its two possible
orientations. If L → B is a real line bundle, we let |L| be the flat Z-bundle with fibers |Lb| for b ∈ B.
For a ring R, the R-normalization of L is the flat locally free R-bundle of rank 1 with fibers |Lb| ⊗ZR.

3.11 Duality

3.11.1 Dual complexes and dual Hamiltonians

We only treat the Lagrangian case in detail, the Hamiltonian case being entirely analogous. Fix a
regular Floer datum (H, J) on the strip S. We define

CF ∗(H : L) =
⊕

ỹ∈CritAH:L

C(ỹ)∨

where
C(ỹ)∨ = HomZ(C(ỹ),Z) .

We grade this by mH:L. Note for future use that there is a canonical isomorphism

C(ỹ)∨ ≡ C(ỹ) , c∨ 7→ c ,
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where c ∈ C(ỹ) is a generator and 〈c∨, c〉 = 1. The differential ∂∨H,J on CF ∗(H : L) is defined to be
the dual of ∂H,J : its matrix element

C(ỹ+)∨ → C(ỹ−)∨

is the dual of the matrix element of ∂H,J as a map C(ỹ−) → C(ỹ+) for ỹ± ∈ CritAH:L of index
difference 1. We define another differential

δH,J : CF k(H, J : L) → CF k+1(H, J : L) by δH,J = (−1)k−1∂∨H,J .

We refer to the cochain complex
(CF ∗(H, J : L), δH,J)

as the dual complex and we let
HF ∗(H, J : L)

be its cohomology, called the Floer cohomology of (H, J).
In an analogous fashion we can define the twisted dual complex

CF ∗(H : L; E)

for a flat Z-bundle E over Ω̃L and the corresponding cohomology

HF ∗(H, J : L; E) .

Let us define the dual Hamiltonian of H to be

H(t, x) = −H(1 − t, x) .

This generates the flow obtained from the flow of H by retracing it backward, that is φt
H

= φ1−t
H φ−1

H .

There is a bijection between orbits of H and H given by

y 7→ y , y(t) = y(1 − t) .

If ŷ is a capping of y, then

ŷ: Ḋ2 →M defined by ŷ(σ, τ) = ŷ(σ,−τ)

is a capping of y (using the same end for both maps). This establishes a bijection

CritAH:L ≃ CritAH:L , ỹ = [y, ŷ] 7→ ỹ := [y, ŷ] .

We have
mH:L(ỹ) = n−mH:L(ỹ) and AH :L(ỹ) = −AH:L(ỹ) .

This first relation is shown below (15).
We have the regular Floer datum (H, J) where J t(x) = J1−t(x). Therefore the Floer complex

(CF∗(H : L), ∂H,J)

is well-defined. For ỹ± ∈ CritAH:L of index difference 1 we have a canonical diffeomorphism between
moduli spaces

M̃(H, J ; ỹ−, ỹ+) ≃ M̃(H, J ; ỹ+, ỹ−) , u 7→ u , where u(s, t) = u(−s, 1 − t) .
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For a capping ŷ of an orbit y of H let us define the map

−ŷ: Ḋ2
− →M , −ŷ(σ, τ) = ŷ(−σ, τ) .

Here Ḋ2
− = D2−{−1} has −1 as a negative puncture; we endow it with the standard negative end given

by precomposing the standard end (4) with (s, t) 7→ (−s,−t). The map φ: Ḋ2 → Ḋ2
−, φ(z) = −z is a

conformal isomorphism which also intertwines the standard ends. Therefore the linearized operators
Dŷ and D−ŷ are isomorphic in the sense of §2. It follows that their determinant lines are isomorphic
as well, and in fact extend to a canonical isomorphism of determinant bundles

d(Dỹ) ≃ d(D−ỹ) . (14)

Next, the maps ŷ,−ŷ have matching asymptotics and therefore can be preglued. It is not hard to see
that the resulting map is homotopic through maps (D2, ∂D2) → (M,L) to the constant map at y(0).
Using the direct sum, linear gluing, and deformation isomorphisms, we obtain

d(Dŷ) ⊗ d(D−ŷ) ≃ d(Dŷ ⊕D−ŷ) ≃ d(Ty(0)L) .

In particular n = ind 0Ty(0)L = indDŷ + indD−ŷ and thus

indDỹ = indD−ŷ = n− indDŷ ,

which implies
mH:L(ỹ) = n− indDỹ = indDŷ = n−mH:L(ỹ) . (15)

We thus have a canonical isomorphism

d(Dŷ) ⊗ d(Dŷ) ≃ d(Ty(0)L) .

Tensoring with d(Ty(0)L) and noting that the square of a real line bundle is canonically oriented, we
obtain

C(ỹ) ⊗ |Lỹ| ⊗ C(ỹ) ≃ Z ,

where L is the flat Z-bundle bundle on Ω̃L obtained by pulling back the bundle | d(TL)| on L via the

evaluation map Ω̃L → L, ỹ 7→ y(0).
Therefore we have the isomorphism

CFn−∗(H : L;L) ≃ CF∗(H : L)

of graded Z-modules. In fact this can be extended to a chain isomorphism, as follows. We have the
following commutative diagram for ỹ± ∈ CritAH:L of index difference 1 and u ∈ M̃(H, J ; ỹ−, ỹ+),
obtained by employing the direct sum, linear gluing, and deformation isomorphisms:

d(TL) d(Dŷ− ⊕Du ⊕D−ŷ+
) d(Dŷ+

) ⊗ d(D−ŷ+
)oo

d(Dŷ−) ⊗ d(D−ŷ−)

OO

d(Dŷ−) ⊗ d(Du) ⊗ d(D−ŷ+
)

(C(u)⊗id)◦(R⊗id)

OO

oo

Where R is the interchange of factors together with the Koszul sign (−1)indDu·|ỹ−|′ = (−1)|ỹ|
′

. Fix
oy− ∈ C(ỹ−) and o ∈ d(TL) and let oy+ = C(u)(oy−), and o−y± ∈ d(D−ỹ±) be such that the
isomorphisms

d(TL) ≃ d(Dỹ±) ⊗ d(D−ỹ±)
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map o 7→ oy± ⊗ o−y± . Then the above diagram maps

o oy+ ⊗ o−y+

✤oo

oy− ⊗ o−y−

❴

OO

(−1)|ỹ−|′
oy− ⊗ ∂u ⊗ o−y+

❴

OO

✤oo

The dual diagram, obtained by replacing all the operators with their “minus-bar” version, reads:

d(TL) d(D−ŷ−
⊕Du ⊕Dŷ+

) d(D−ŷ+
) ⊗ d(Dŷ+

)oo

d(D−ŷ−
) ⊗ d(Dŷ−

)

OO

d(D−ŷ−
) ⊗ d(Du) ⊗ d(Dŷ+

)

OO

id⊗C(u)oo

Let now oy±
∈ d(Dỹ±

) correspond to o−y± ∈ d(D−ỹ±) under the isomorphism (14) and let o
′
y−

=

C(u)(oy+
). The dual diagram maps

o o−y+
⊗ oy+

✤oo

o−y−
⊗ oy−

❴

OO

(−1)|ỹ−|′
o−y−

⊗ ∂u ⊗ oy+

❴

OO

✤oo

whence it follows that C(u) maps oy+
to (−1)|ỹ−|′

oy−
. Thus the following diagram commutes:

C(ỹ+)

C(u)

��

// [C(ỹ+) ⊗ Lỹ+
]∨

(−1)|ỹ−|′ [C(u)⊗Pu]
∨

��
C(ỹ−) // [C(ỹ−) ⊗ Lỹ− ]∨

This means that we have obtained a canonical isomorphism of chain complexes

(CFn−∗(H : L;L), δH,J ⊗ P) = (CF∗(H : L), ∂H,J) , (16)

where P is the parallel transport operator of L. In particular we obtain a canonical isomorphism of
homologies

HFn−∗(H, J : L;L) ≃ HF∗(H, J : L) .

This is the duality isomorphism.

3.11.2 Augmentation

As we saw above in §4.2.4, the unit in Floer homology can be viewed as a chain map

Z[n] → CF∗(H : L) .

Therefore we have the dual map
CF ∗(H : L) → Z[n] ,
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which is also a chain map. Since the former cochain complex is canonically isomorphic to CFn−∗(H :
L;L) by the duality isomorphism (16), we get the chain map

CF∗(H : L;L) → Z (in degree zero) .

This is the augmentation map. Since it is a chain morphism, we get the induced map on Floer
homology

HF∗(H, J : L;L) → Z .

Since the unit commutes with continuation maps, the same is true of the augmentation and therefore
we obtain the canonical augmentation map on the abstact Floer homology

ǫ: HF∗(L;L) → Z .

4 Quantum homology

In this section we define Lagrangian quantum homology as well as the quantum homology of our
symplectic manifold M , and various algebraic operations on them. Lagrangian quantum homology
was constructed by Biran–Cornea, see [BC07, BC09] and references therein. The present section uses
the analytical results of these papers. Our contribution here is the precise construction of relevant
Cauchy–Riemann operators, their determinant lines and the relation between these, and the ensuing
construction of the canonical quantum complex over an arbitrary ground ring, without using relative
Pin-structures, including the minimal condition for which such a construction is possible (assumption
(O)), and also a proof of the fact that the quantum boundary operator squares to zero in the case
NL = 2, see §6.

§4.1 is concerned with gluing of Riemann surfaces and Cauchy–Riemann operators on them at a
boundary or an interior point; the material presented here also appears in condensed form in [Sei08]. In
§4.2 we define the quantum complex of a quantum datum, the corresponding boundary operator, and
prove it squares to zero. We also define the quantum product and the corresponding unit. §4.3, §4.4
are concerned with arbitrary coefficients and duality in quantum homology. §4.5 defines the quantum
homology of M as well as its module action on the Lagrangian quantum homology. In §4.6 we describe
the natural spectral sequence which starts with the (twisted) Morse complex and converges to the
quantum homology.

4.1 Gluing at a boundary or an interior point

There is one technical aspect of Cauchy–Riemann operators not covered in §3, namely gluing of
Riemann surfaces, Cauchy–Riemann operators on them, and pregluing smooth maps, at a boundary
or at an interior point rather than at a puncture. This subsection collects the necessary definitions
and facts regarding these operations.

4.1.0.1 Riemann surfaces and smooth maps Given two Riemann surfaces Σi, i = 1, 2 and
points zi ∈ Σi, both either boundary or interior, we can form the glued surface Σ1♯Σ2 by choosing collars
around the points zi, a gluing length, and identifying punctured neighborhoods of the zi according to
the collars and the gluing length. If ui: (Σi, ∂Σi) → (M,L) are smooth maps, zi ∈ Σ are both either
boundary or interior, and u1(z1) = u2(z2), we can use the expression of the ui near zi via exponential
maps, similarly to what we described in §3.3, to preglue u1 and u2 to a smooth map u1♯u2: Σ1♯Σ2 →M .
Of course, if the Σi have punctures and the ui are b-smooth, the resulting surface Σ1♯Σ2 will inherit
the punctures, and the preglued map u1♯u2 will be b-smooth as well.
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4.1.0.2 Cauchy–Riemann operators Gluing Cauchy–Riemann operators at a boundary or inte-
rior point consists of two stages. At the first stage we assume given two Riemann surfaces Σi, i = 1, 2,
two points zi ∈ Σi, both boundary or both interior, and Hermitian bundle pairs (Ei, Fi) → (Σi, ∂Σi)
endowed with connections ∇i. These give rise to the associated Cauchy–Riemann operators

Di := ∂∇i = ∇0,1
i : W 1,p(Σi, ∂Σi;Ei, Fi) → Lp(Σi,Ω

0,1
Σi

⊗ Ei) .

These are Fredholm.9) Assume we are given a unitary isomorphism (E1)z1 ≃ (E2)z2 , which in case
the zi are boundary also identifies (F1)z1 with (F2)z2 . Assume that the zi are boundary. Using the
identification, we can produce the following exact Fredholm triple:

0 // W 1,p
1 ♯W 1,p

2
//

D1♯D2

��

W 1,p
1 ⊕W 1,p

2

evz1 − evz2 //

D1⊕D2

��

(F1)z1 //

��

0

0 // Lp
1 ⊕ Lp

2 Lp
1 ⊕ Lp

2
// 0

where
W 1,p

i = W 1,p(Σi, ∂Σi;Ei, Fi) , Lp
i = Lp(Σi,Ω

0,1
Σi

⊗ Ei) ,

W 1,p
1 ♯W 1,p

2 = {(ξ1, ξ2) ∈W 1,p
1 ⊕W 1,p

2 | ξ1(z1) = ξ2(z2)} , and D1♯D2 = (D1 ⊕D2)|W 1,p
1 ♯W 1,p

2
.

This exact triple gives rise to the isomorphism

d(D1♯D2) ⊗ d((F1)z1) → d(D1 ⊕D2) , (17)

which we refer to as the boundary gluing isomorphism. Note that it depends on the ordering of
the operators. It can be checked that if we exchange the operators D1, D2, which amounts to replacing
the map evz1 − evz2 with evz2 − evz1 , then the above isomorphism is multiplied by (−1)dim(F1)z1 .

If the zi are interior, a similar argument yields the isomorphism

d(D1♯D2) ⊗ d((E1)z1) → d(D1 ⊕D2) ,

and if we use the canonical orientation of E1, then we simply get

d(D1♯D2) → d(D1 ⊕D2) .

This isomorphism is independent of the ordering of D1, D2.
At the second stage we produce an operator on the glued surface Σ1♯Σ2. First we need to glue

the Hermitian bundle pairs by identifying them over the collars; this can be done using the given
identification (E1)z1 ≃ (E2)z2 . Then we can deform the operator D1♯D2, for example by deforming
the connections, so that the resulting operators over the collars coincide relative to the identification
of the bundles. This then defines an operator on the glued bundle pair. The resulting deformation of
Cauchy–Riemann operators produces an isomorphism between d(D1♯D2) and the determinant line of
the glued operator. By slightly abusing notation, we denote the glued operator by the same symbol
D1♯D2. We refer to either one of these operators as being boundary glued from D1, D2.

9)In case the Σi have punctures, we need to assume in addition that the Di are admissible and nondegenerate, however
we suppress these details for the sake of clarity.
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4.1.0.3 Smooth maps and their linearizations Finally, assume we have two smooth maps
ui: (Σi, ∂Σi) → (M,L) with u1(z1) = u2(z2), and consider the preglued map u1♯u2. The linearizations
Du1 and Du2 can be glued according to the previous paragraph, since we of course have an identification
(Eu1)z1 = (Eu2)z2 = Tu1(z1)M and similarly for (Fi)zi = Tu1(z1)L. The glued operator Du1♯Du2 can
then be deformed into the linearization Du1♯u2 . In particular we have the canonical deformation
isomorphism

d(Du1♯Du2) ≃ d(Du1♯u2) .

4.2 Lagrangian quantum homology

Given a Morse function f on L we let Crit f be the set of its critical points. For q ∈ Crit f we denote
its Morse index by |q|f , or usually just by |q|. If ρ is a Riemannian metric on L, we let Sf (q),Uf (q) be
the stable and unstable manifolds of f with respect to ρ at a critical point q. Usually we will drop the
subscript f if the function is clear from the context. We call (f, ρ) a Morse-Smale pair if every stable
manifold of f intersects every unstable manifold of f transversely. In this case the set

M̃(q, q′) = U(q) ∩ S(q′) ⊂ L

is naturally a smooth manifold of dimension |q| − |q′| for any q, q′ ∈ Crit f .
A quantum homology datum for L is a triple D = (f, ρ, J), where f ∈ C∞(L) is a Morse

function, ρ a Riemannian metric on L, such that (f, ρ) is a Morse-Smale pair, and J is an ω-compatible
almost complex structure. We call D regular if J is chosen generically, in the sense that the various
pearly moduli spaces defined below are transversely cut out, in the sense of Biran–Cornea [BC07, BC09].

4.2.1 Generators and the complex as a Z-module

Fix a quantum homology datum D = (f, ρ, J) for L. The Z-module underlying the quantum
complex of L is defined as

QC∗(D : L) =
⊕

q∈Crit f
A∈π2(M,L,q)

C(q, A)

where C(q, A) is a certain rank 1 free Z-module associated to the pair (q, A), which will be defined
below. The grading is determined by requiring the elements of C(q, A) to be homogeneous of degree
|q| − µ(A).

In order to define the module C(q, A) for q ∈ Crit f and A ∈ π2(M,L, q), we need a preliminary
construction. First let us fix once and for all an arbitrary background connection ∇ on M . Set

C∞
A = {u ∈ C∞(D2, S1, 1;M,L, q) | [u] = A} .

For u ∈ C∞
A we have the bundle pair (Eu, Fu) → (D2, S1) given by Eu = u∗TM , Fu = (u|S1)∗TL. This

carries the Hermitian structure ωu = u∗ω, Ju = u∗J . We let ∇u = u∗∇ be the induced connection on
Eu. We then have the associated Cauchy–Riemann operator

Du = ∇0,1
u : W 1,p(D2, S1;Eu, Fu) → Lp(D2; Ω0,1

D2 ⊗ Eu)

where we have extended it to the Sobolev completions. This operator is Fredholm with

indDu = n+ µ(A) .
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Thus we have the family of Fredholm operators

DA = (Du)u∈C∞
A
,

and the corresponding determinant line bundle 10) detDA over C∞
A . If we let CA be the space of

continuous disks in class A, the inclusion C∞
A → CA is a homotopy equivalence. The latter space can

be identified with the space of continuous maps ([0, 1]2, ∂[0, 1]2, {0, 1}×[0, 1]∪[0, 1]×{0}) → (M,L, q) in
class A. Such continuous maps can be concatenated using the first coordinate of [0, 1]2 (this corresponds
to the product in π2(M,L, q)). For a map u: [0, 1]2 → M we let −u: [0, 1]2 → M be defined via
−u(s, t) = u(1 − s, t). We have the following foundational lemma.

Lemma 4.1. Fix u0 ∈ C∞
A and view it as a map of the square to M as just described. The concate-

nation map CA → C0, u 7→ u♯ − u0, is a homotopy equivalence, where C0 is the space of contractible
disks at q. In particular the fundamental group of C∞

A is isomorphic to π1(C0, q), which in turn is
canonically isomorphic to π3(M,L, q) = π1(C0, q), since π3(M,L, q) is abelian. Moreover, relative to
this identification, the first Stiefel–Whitney class of the line bundle detDA satisfies

w1(detDA) = w2(TL) ◦ ∂: π3(M,L, q) → Z2

where ∂: π3(M,L, q) → π2(L, q) is the boundary map.

The proof of the homotopy part of the statement is left to the reader as an exercise. The second part
is proved very similarly to the proof of Lemma 3.6 concerning the case of Floer homology.

This lemma shows that detDA is orientable if and only if w2(TL)◦∂ vanishes, that is if assumption
(O) holds. We assume this vanishing from this point on.

There is an evaluation map 11)

ev1 : W 1,p(D2, S1;Eu, Fu) → TqL , ξ 7→ ξ(1) ,

and we let Du♯TS(q) be the restriction of Du to ev−1
1 (TqS(q)). Sometimes we will employ the full

notation Du♯TqSf (q). We have

Lemma 4.2. The family of operators DA♯TS(q) := (Du♯TS(q))u∈C∞
A

is orientable.

Proof. We have the natural exact Fredholm triple

0 → Du♯TS(q) → Du ⊕ 0TqS(q)
ev1 − inclusion−−−−−−−−−→ 0TqL → 0 ,

Together with the direct sum isomorphism, it yields the isomorphisms

d(Du) ⊗ d(TS(q)) ≃ d(Du ⊕ TS(q)) ≃ d(Du♯TS(q)) ⊗ d(TqL)

which are continuous with respect to u. We see that we have obtained an isomorphism of line bundles

d(DA) ≃ d(DA♯TS(q)) ,

whence the bundle d(DA♯TS(q)) is orientable.

We can now define C(q, A): it is the rank 1 free Z-module generated by the two possible orientations
of the line bundle d(DA♯TS(q)). Note that this makes sense because C∞

A is connected. The definition
of the graded Z-module QC∗(D : L) is thereby completed.

10)In contrast to the situation in §3.4 where we had to include the auxiliary choices of an almost complex structure and
a connection into the parameter space, here there is no need to do that.
11)This is well-defined because p > 2 implies the elements of W 1,p are continuous.
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4.2.2 Boundary operator

To define the boundary operator, we need first to define the spaces of pearls. We follow [BC07,

BC09]. Fix q, q′ ∈ Crit f . We will define the space of parametrized pearls P̃k(q, q′) for k ≥ 0. We
define

P̃0(q, q′)

to be the space of parametrized negative gradient lines of f from q to q′. It is naturally identified with
M̃(q, q′) via u 7→ u(0). This is a smooth manifold of dimension |q| − |q′|. It admits a natural R-action
and we let

P0(q, q′) = P̃0(q, q′)/R

be the quotient space if this action is free. When it is not free, which is the case if and only if q = q′,
we let P0(q, q′) = ∅. Note that dimP0(q, q′) = |q| − |q′| − 1.

Assume now k > 0. We have the evaluation map

ev : (C∞(D2, S1;M,L))k → L2k , u = (u1, . . . , uk) 7→ (u1(−1), u1(1), . . . , uk(−1), uk(1)) .

We denote by φtf : L→ L the time-t flow map of the negative gradient −∇ρf . We let

Qf,ρ = {(x, φtf (x)) |x /∈ Crit f , t > 0} ⊂ L2

be the flow manifold. We usually abbreviate this to Q. Note for further use that this has dimension
n+ 1. We will also need the extended flow manifold

Q = {(x, φtf (x)) |x /∈ Crit f , t ≥ 0} ,

which is a manifold with boundary. This Q carries a natural hyperplane distribution, which we denote
Γ ⊂ TQ; this is just the collection of graphs of the differentials of the flow maps:

Γ(x,φt
f(x))

= {(X,φtf∗(X)) |X ∈ TxL} ⊂ T(x,φt
f(x))

Q .

For future use note that if (x, y) ∈ Q, then we have a natural basis of T(x,y)Q/Γ(x,y), given by the coset
of the vector (−∇ρf(x), 0):

ex,y := (−∇ρf(x), 0) + Γ(x,y) ∈ T(x,y)Q/Γ(x,y) . (18)

Let M̃(L; J) be the space of parametrized nonconstant J-holomorphic disks with boundary on L.
The pearly spaces are then defined to be

P̃k(q, q′) = ev−1(U(q) ×Qk−1 × S(q′)) ∩ (M̃(L; J))k ⊂ (M̃(L; J))k , and P̃(q, q′) =
⋃

k≥0

P̃k(q, q′) .

We identify the group of conformal automorphisms of (D2, ∂D2,±1) with R, as follows. The formula
(4) defines a biholomorphism between R × [0, 1] and D2 − {±1}. The group R acts on R × [0, 1] by
translations to the right. The biholomorphism thus induces an isomorphism R → Aut(D2, S1,±1), the
latter being the group of conformal automorphisms of D2 preserving ±1. We make R act on the set of
smooth maps (D2, S1) → (M,L) via

τ · u = u(· + τ, ·)
relative to the coordinates (s, t) on D2 − {±1} ≃ R× [0, 1].
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This gives rise to an action of Rk on P̃k(q, q′) by reparametrizations on each disk. We let Pk(q, q′)
and P(q, q′) be the corresponding quotient spaces.

For u ∈ (C∞(D2, S1;M,L))k let

µ(u) :=
∑

i

µ(ui) .

Biran–Cornea proved [BC07, BC09]:

Proposition 4.3. There is a subset of J (M,ω) of the second category such that for every J in the
subset, for each k ≥ 0 and for each pair q, q′ ∈ Crit f the space Pk(q, q′) is a smooth manifold of local
dimension at [u] ∈ Pk(q, q′)

dim[u] Pk(q, q′) = |q| − |q′| + µ(u) − 1

whenever this number does not exceed 1.

For the rest of §4.2.2 we assume that J is chosen so that the proposition holds. We define for future
use the elements

∂ui ∈ TuP̃k(q, q′) (19)

given by the infinitesimal action of R on ui.
The boundary operator

∂D: QC∗(D : L) → QC∗−1(D : L)

will be defined in terms of its matrix elements, which are homomorphisms

C(q, A) → C(q′, A′)

for |q| − µ(A) = |q′| − µ(A′) + 1. We now proceed to define these matrix elements.
Fix q, q′ ∈ Crit f and A ∈ π2(M,L, q). For any u ∈ ev−1(U(q) × Qk−1 × S(q′)) there is a natural

way of constructing a homotopy class A♯u ∈ π2(M,L, q′). Indeed, each disk uj can be viewed as
a continuous map ([0, 1]2, ∂[0, 1]2) → (M,L) which maps {0} × [0, 1] to uj(−1) and {1} × [0, 1] to
uj(1). Every piece of gradient trajectory connecting either a critical point q or q′ with u1(−1) or with
uk(1), or uj(1) with uj+1(−1), can be viewed as a continuous map ([0, 1]2, ∂[0, 1]2) → (M,L) which
is independent of the second variable. Now take all these maps defined on [0, 1]2 and concatenate
them using the first coordinate, with each other, and with a representative of A, also viewed as such
a continuous map, where the concatenation order is dictated by the linear structure of the string u.
This works in case k = 0 as well.

For u ∈ P̃k(q, q′) which satisfies |q| − |q′| + µ(u) − 1 = 0, we will construct an isomorphism

C(u): C(q, A) → C(q′, A♯u) .

Fix now A′ ∈ π2(M,L, q′) such that |q| − µ(A) = |q′| − µ(A′) + 1. Then the corresponding matrix
element of the boundary operator is the sum

∑

[u]∈P(q,q′):
A♯u=A′

C(u): C(q, A) → C(q′, A′) .

A compactness argument shows that this sum is finite.
It therefore remains to define the isomorphism C(u). We describe this is detail. The same basic

construction will be used again below to define the algebraic structures.
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Before we describe the isomorphism C(u) for u ∈ P̃0(q, q′), we establish a general correspondence

between orientations of the connected component of M̃(q, q′) containing a gradient trajectory u and
isomorphisms d(DA♯TS(q)) ≃ d(DA′♯TS(q′)), where q, q′ ∈ Crit f are two arbitrary critical points,
and A′ is obtained from A by transferring it along u.

First note that we have the following natural exact sequence

0 → Tu(0)M̃(q, q′) → Tu(0)S(q′) → Tu(0)L/Tu(0)U(q) → 0 , (20)

where the penultimate arrow is the composition of the inclusion followed by the quotient map. The
exactness follows from the fact that its kernel is precisely

Tu(0)M̃(q, q′) = Tu(0)S(q′) ∩ Tu(0)U(q) ,

because M̃(q, q′) = S(q′)∩U(q). Note that the bundle TL/TU(q) is trivial over U(q) (the latter being
contractible), and we have naturally TqL/TqU(q) = TqS(q). Combining this fact with the natural
isomorphism of determinant lines (1) we obtain the isomorphism

d(TS(q′)) ≃ d(Tu(0)M̃(q, q′)) ⊗ d(TS(q)) (21)

This means that there is a natural bijection between orientations of the connected component of
M̃(q, q′) containing u and isomorphisms d(TS(q)) ≃ d(TS(q′)).

Using exact triples as in the proof of Lemma 4.2, we obtain canonical isomorphisms

d(DA) ⊗ d(TS(q)) ≃ d(DA♯TS(q)) ⊗ d(TqL) ,

d(DA′) ⊗ d(TS(q′)) ≃ d(DA′♯TS(q′)) ⊗ d(Tq′L) .

Using the natural isomorphisms d(DA) ≃ d(DA′) and d(TqL) ≃ d(Tq′L) obtained by transferring orien-
tations along u, we see that there is a natural bijection between the set of isomorphisms d(DA♯TS(q)) ≃
d(DA′♯TS(q′)) and the set of isomorphisms d(TS(q)) ≃ d(TS(q′)), which in turn is in bijection with

orientations of the connected component of M̃(q, q′) containing u. This is the general correspondence
we wanted to construct.

Now if u ∈ P̃0(q, q′) and |q| = |q′| + 1, Tu(0)M̃(q, q′) = TuP̃0(q, q′) is canonically oriented by the
translation vector u̇(0) = ∂u. We have the corresponding isomorphism d(DA♯TS(q)) ≃ d(DA′♯TS(q′)),
or equivalently the isomorphism C(q, A) ≃ C(q′, A′). This isomorphism is C(u).

We now pass to the definition of C(u) for u ∈ P̃k(q, q′) with k ≥ 1. We need to define some
additional Banach spaces. For a smooth map v: (D2, S1) → (M,L) we use the abbreviations

W 1,p(v) = W 1,p(D2, S1; v∗TM, (v|S1)∗TL) and Lp(v) = Lp(D2; Ω0,1
D2 ⊗ v∗TM) .

For a string of maps v = (v1, . . . , vk) ∈ (C∞(D2, S1;M,L))k we let

W 1,p(v) =
⊕

i

W 1,p(vi) and Lp(v) =
⊕

i

Lp(vi) .

We define for v ∈ (C∞(D2, S1;M,L))k with ev(v) ∈ U(q) ×Qk−1 × S(q′) the spaces

Zv
Γ = {ξ = (ξ1, . . . , ξk) ∈ W 1,p(v) | (ξi(1), ξi+1(−1)) ∈ Γ(vi(1),vi+1(−1)) for i < k} ,

Xv
Γ = {ξ ∈ Zv

Γ | ξk(1) ∈ Tvk(1)S(q′)} ,
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Y v
Γ = {ξ ∈ Xv

Γ | ξ1(−1) ∈ Tv1(−1)U(q)} ,
and if ev(v) ∈ U(q) ×Qk−1 × S(q′), we define in addition

Y v
Q = {ξ ∈ W 1,p(v) | ξ1(−1) ∈ Tv1(−1)U(q) , (ξi(1), ξi+1(−1)) ∈ T(vi(1),vi+1(−1))Q for i < k ,

ξk(1) ∈ Tvk(1)S(q′)} .

For such v we will also employ the notation

TvQ :=
⊕

i<k

T(vi(1),vi+1(−1))Q

and
TvQ/Γ :=

⊕

i<k

T(vi(1),vi+1(−1))Q/Γ(vi(1),vi+1(−1)) . (22)

The latter space has a natural basis

evi := evi(1),vi+1(−1) ∈ T(vi(1),vi+1(−1))Q/Γ(vi(1),vi+1(−1)) (23)

for i = 1, . . . , k − 1, where we use the notation (18). The natural evaluation map ev : Y v
Q → TvQ/Γ

induces a short exact sequence of Banach spaces:

0 → Y v
Γ → Y v

Q
ev−→ TvQ→ 0 .

The isomorphism C(u) is constructed in two stages. First, we establish a canonical bijection between

the orientations of d(Du|Y u
Γ

) and orientations of d(TuP̃k(q, q′))⊗d(TuQ/Γ). Then we establish a canon-
ical bijection between the orientations of d(Du|Y u

Γ
) and isomorphisms d(DA♯TS(q)) ≃ d(DA′♯TS(q′))

where A′ = A♯u, or equivalently isomorphisms C(q, A) ≃ C(q′, A′). Selecting the orientation

(−1)k+1
∧

i ∂ui ⊗
∧

i e
u
i ∈ d(TuP̃k(q, q′)) ⊗ d(TuQ/Γ) ,

we get, using these bijections, the desired isomorphism C(u): C(q, A) ≃ C(q′, A′).
To establish the first bijection consider the exact Fredholm triple

0 // Y u
Γ

//

Du|Y u
Γ

��

Y u
Q

ev //

Du|Y u
Q

��

TuQ/Γ //

��

0

0 // Lp(u) Lp(u) // 0

where Du is the linearization of u. Note that TuP̃k(q, q′) = kerDu|Y u
Q

, and that Du|Y u
Q

is surjective.
Then the exact triple yields the isomorphism

d(TuP̃k(q, q′)) = d(Du|Y u
Q

) ≃ d(Du|Y u
Γ

) ⊗ d(TuQ/Γ) (24)

and by tensoring with d(TuQ/Γ) we see that there is indeed a canonical bijection between orientations

of d(Du|Y u
Γ

) and orientations of d(TuP̃k(q, q′)) ⊗ d(TuQ/Γ).
We now construct the second bijection. We need some preliminary constructions and lemmata.

Let Xi, Yi, i = 1, 2, be Banach spaces, Di ∈ F(Xi, Yi), and let V be a finite-dimensional vector space.
Assume θi: Xi → V are surjective linear continuous maps. Let W ⊂ V ⊕V be a subspace of dimension
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dimW = dim V . Then we can define the space X1♯WX2 = (θ1 ⊕ θ2)−1(W ) ⊂ X1 ⊕ X2, and the
operator

D1♯WD2 = (D1 ⊕D2)|X1♯WX2 .

We have the following exact triple

0 // X1♯WX2
//

D1♯WD2

��

X1 ⊕X2 ⊕W
θ1⊕θ2− inclusion//

D1⊕D2⊕0W

��

V ⊕ V //

��

0

0 // Y1 ⊕ Y2 // Y1 ⊕ Y2 // 0

which together with the direct sum isomorphism yields the isomorphism

d(D1 ⊕D2) ⊗ d(W ) ≃ d(D1♯WD2) ⊗ d(V ⊕ V ) .

This shows that (d(W ))W and (d(D1♯WD2))W are isomorphic as line bundles over the Grassmannian
GdimV (V ⊕ V ). In particular a path in this Grassmannian between two subspaces W,W ′ induces an
isomorphism d(D1♯WD2) ≃ d(D1♯W ′D2).

Assume now that V splits as the direct sum W1 ⊕W2 and let W = (W1 ⊕ 0) ⊕ (0 ⊕W2) ⊂ V ⊕ V .
There is a path of subspaces between W and the diagonal ∆V , given by the images of the embeddings

V = W1 ⊕W2 → V ⊕ V , (w1, w2) 7→ (w1 + tw2, tw1 + w2)

for t ∈ [0, 1]. We have the induced isomorphism d(W ) ≃ d(∆V ) and therefore the isomorphism

d(D1♯WD2) ≃ d(D1♯∆V D2) , (25)

which will be frequently used in the sequel. We say that this isomorphism is obtained by deforming
the incidence condition.

Now we turn to a special case. Assume w ∈ C∞
A with A ∈ π2(M,L, q), in particular w(1) = q.

Assume further that u′ ∈ (C∞(D2, S1;M,L))k, k ≥ 1, satisfies ev(u′) ∈ {q} × ∆k−1
L × {q′}. We have

the operators
Dw: W 1,p(w) → Lp(w) and Du′ |Xu′

Γ
: Xu′

Γ → Lp(u′) ,

and the surjective continuous homomorphisms

θ1: W 1,p(w) → TqL , ξ 7→ ξ(1) ; θ2: Xu′

Γ → TqL , (ξ1, . . . , ξk) 7→ ξ1(−1) .

Note that
Dw|θ−1

1 (TqS(q)) = Dw♯TS(q) ,

that
θ−1
2 (TqU(q)) = Y u′

Γ ,

and that
(Du′ |Xu′

Γ
)|θ−1

2 (TqU(q)) = Du′ |Y u′
Γ
.

Therefore if we let W = (TqS(q) ⊕ 0) ⊕ (0 ⊕ TqU(q)) ⊂ TqL⊕ TqL, then

Dw♯WDu′ |Xu′
Γ

= Dw♯TS(q) ⊕Du′ |Y u′
Γ
.
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On the other hand, the operator Dw♯∆TqLDu′ |Xu′
Γ

is precisely what we denoted by Dw♯Du′ |Xu′
Γ

in

4.1, and which is the precursor to boundary gluing of the operators Dw, Du′ |Xu′
Γ

. Combining these

considerations with the above isomorphism (25), and with the direct sum isomorphism, we obtain the
isomorphism

d(Du′ |Y u′
Γ

) ⊗ d(Dw♯TS(q)) ≃ d(Dw♯Du′ |Xu′
Γ

) . (26)

We have the following lemma.

Lemma 4.4. The isomorphism (26) induces a bijection between orientations of d(Du′ |Y u′
Γ

) and iso-

morphisms C(q, A) → C(q′, A′) where A′ = A♯u′. It is continuous in u′.

Proof. The continuity follows from the corresponding property of direct sum and deformation isomor-
phisms.

We know that concatenating w with the constituent disks of u′ gives us a representative of A′.
Moreover, the operator Dw♯Du′ |Xu′

Γ
, after performing boundary gluing and deformation as described

in §4.1, yields a representative of the family DA′♯TS(q′). This can be seen as follows. The operator
Dw♯Du′ |Zu′

Γ
satisfies the necessary incidence conditions and therefore can be glued to an operator in

the family DA′ since the surface on which it is defined is precisely the concatenation of the disks
w, u′1, . . . , u

′
k, that is w♯u1♯ . . . ♯uk, which is a disk in class A′. The operator Dw♯Du′ |Xu′

Γ
is the restric-

tion of Dw♯Du′ |Zu′
Γ

to the subspace where ξk ∈W 1,p(uk) satisfies ξk(1) ∈ Tq′S(q′). Therefore the glued

operator obtained from Dw♯Du′ |Zu′
Γ

, when restricted to the same subspace, yields an operator in the

family DA′♯TS(q′). This restricted operator is also be obtained by gluing the operator Dw♯Du′ |Xu′
Γ

.

Passing to the families, we see that the isomorphism (26) yields an isomorphism of line bundles

d(Du′ |Y u′
Γ

) ⊗ d(DA♯TS(q)) ≃ d(DA′♯TS(q′)) .

This shows that there is a canonical bijection between orientations of d(Du′ |Y u′
Γ

) and isomorphisms

d(DA♯TS(q)) ≃ d(DA′♯TS(q′)), or equivalently, isomorphisms C(q, A) ≃ C(q′, A′), as claimed.

In order to obtain a bijection between orientations of Du|Y u
Γ

and isomorphisms C(q, A) ≃ C(q′, A′),

we deform u into u′ ∈ (C∞(D2, S1;M,L))k with ev(u′) ∈ {q}×∆k−1
L ×{q′}. The isomorphism induced

by the deformation
d(Du|Y u

Γ
) ≃ d(Du′ |Y u′

Γ
) (27)

and the bijection between the orientations of d(Du′ |Y u′
Γ

) and isomorphisms C(q, A) ≃ C(q′, A′) from

Lemma 4.4 yields the desired bijection. Therefore we have to find a way to deform u into u′ with the
desired properties. This can be done as follows. Consider the disk u1 and deform it slightly so that a
neighborhood of −1 maps to u1(−1). Then deform the constant map on this neighborhood to a map
covering the piece of gradient trajectory going from q to u1(−1). Perform a similar deformation of
every uj, j > 1 so that the resulting deformation maps a neighborhood of −1 to the piece of gradient
trajectory from uj−1(1) to uj(−1). Finally, deform uk additionally so that a neighborhood of 1 covers
the piece of gradient trajectory from uk(1) to q′. All this can be done so that the deformation and the
maps involved are smooth.

We have therefore completed the definition of the boundary operator.

Theorem 4.5. ∂2D = 0.

The proof of this theorem is quite involved and will occupy the rest of §4.2.2.
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Proof. Fix two critical points q, q′′ ∈ Crit f and classes A ∈ π2(M,L, q), A′′ ∈ π2(M,L, q′′) such that
|q| − µ(A) = |q′′| − µ(A′′) + 2. We need to prove the vanishing of the corresponding matrix element of
∂2D, which equals

∑

q′∈Crit f

∑

A′∈π2(M,L,q′):
|q|−µ(A)=|q′|−µ(A′)+1

∑

([u],[v])∈P(q,q′)×P(q′,q′′):
A♯u=A′,A′♯v=A′′

C(v) ◦ C(u): C(q, A) → C(q′′, A′′) . (28)

Let us denote by P1(q, q′′) the 1-dimensional part of P(q, q′′). Biran–Cornea [BC07, BC09] gave a
description of the compactification P1(q, q′′) for P1(q, q′′). The compactness of P1(q, q′′) fails in one of
the following ways: one of the gradient trajectories undergoes Morse breaking; two holomorphic disks
collide, that is one of the gradient lines connecting the disks shrinks to a point; a holomorphic disk
breaks into two; or a Maslov 2 holomorphic disk bubbles off at a point. The case involving bubbling,
which only happens when NL = 2, will be handled in §6.2; here we only consider the case in which
bubbling does not occur.

Let us call u ∈ M̃(L, J)m, m > 0 a degenerate pearly trajectory between q, q′′ if there is j < m
such that ev(u) ∈ U(q) × Qj−1 × ∆L × Qm−j−1 × S(q′′), that is it is an ordinary pearly trajectory,
except that two of the holomorphic disks touch.

A degenerate pearly trajectory appears as a boundary point in the compactification of exactly two
components of P1(q, q′′): one in which the two disks are separated by a positive-time gradient trajectory,
and the other one where one of the holomorphic disks breaks into the two touching disks in u. We
redefine P1(q, q′′) to be the disjoint union of all the compactified components of P1(q, q′′), and where
we identify two boundary points if they correspond to the same degenerate pearly trajectory. This
endows P1(q, q′′) with the structure of a compact 1-dimensional topological manifold with boundary
whose points are pairs of pearly trajectories ([u], [v]) ∈ P(q, q′) × P(q′, q′′) with dim[u] P(q, q′) =
dim[v] P(q′, q′′) = 0, therefore we see that the summands of (28) are in bijection with the boundary

∂P1(q, q′′).
For δ = ([u], [v]) ∈ ∂P1(q, q′′) let C(δ) = C(v) ◦ C(u) be the summand corresponding to δ. It is

enough to show that for every connected component ∆ ⊂ P1(q, q′′) with boundary ∂∆ = {δ, δ′} we
have C(δ) + C(δ′) = 0. The component ∆ either has holomorphic disks or it doesn’t. If it has no

holomorphic disks, by the discussion on page 61 we know that for w ∈ P̃0(q, q′′) with [w] ∈ ∆ there is

a bijection between isomorphisms C(q, A) ≃ C(q′′, A′′) and orientations of TwP̃(q, q′′).
If ∆ does contain holomorphic disks, we have the following situation. Let {wt}t∈[0,1] be a continuous

parametrization of ∆ with w0 = δ, w1 = δ′. There are finitely many instances

t0 = 0 < t1 < · · · < tm = 1

such that wt /∈ P1(q, q′′) if and only if t = ti for some i, that is wti is a denerate trajectory. By abuse

of notation, for t 6= ti let wt ∈ P̃(q, q′′) be a continuous family of representatives of wt ∈ P1(q, q′′).
Lemma 4.4 together with the isomorphism (24) show that there is a bijection between isomorphisms

C(q, A) ≃ C(q′′, A′′), orientations of Dwt |Y wt

Γ
, and orientations of d(TwtP̃(q, q′′)) ⊗ d(TwtQ/Γ), which

is continuous in t within each interval (ti, ti+1). The theorem then follows from the next lemma.

Lemma 4.6. Assume δ = ([u], [v]) ∈ Pk(q, q′) × Pl(q
′, q′′). Then under the above bijection, the

isomorphism C(δ) corresponds to:

• If k = l = 0, the orientation −∂w ∧ inwardδ ∈ d(TwP̃(q, q′′));
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• Otherwise, the orientation

−∧
i ∂wt

i
∧ inwardδ ⊗

∧
i e

wt

i ∈ d(TwtP̃(q, q′′)) ⊗ d(TwtQ/Γ) (29)

whenever t is not one of the degenerate values tj. Here inwardδ ∈ TwtP̃(q, q′′) denotes a vector
which is transverse to the infinitesimal action of the automorphism group, and which points away
from the boundary point δ.

Indeed, assume the lemma. Let δ′ = ([u′], [v′]) ∈ Pk′(q, q1) × Pl′(q1, q
′′). According to the lemma, if

k = l = 0, then, of course k′ = l′ = 0, and the isomorphism C(δ′) corresponds to the orientation

−∂w ∧ inwardδ′ ∈ TwP̃(q, q′′) .

Since inwardδ = −inwardδ′ , we see that in this case C(δ) + C(δ′) = 0.
Otherwise the lemma says that C(δ′) corresponds to

−∧
i ∂wt

i
∧ inwardδ′ ⊗

∧
i e

wt

i ∈ d(TwtP̃(q, q′′)) ⊗ d(TwtQ/Γ)

for t ∈ (tm−1, tm). On the other hand, C(δ) corresponds to the orientation

−∧
i ∂wt

i
∧ inwardδ ⊗

∧
i e

wt

i ∈ d(TwtP̃(q, q′′)) ⊗ d(TwtQ/Γ)

for the same range of t. Noting that inwardδ = −inwardδ′ , we see that these two orientations are
opposite, which proves that C(δ) + C(δ′) = 0 and therefore that ∂2D = 0.

This proves Theorem 4.5, modulo Lemma 4.6.

Proof (of Lemma 4.6). In case k = l = 0, this is a standard computation in Morse theory, see for
instance Schwarz’s book [Sch93]. In order to put that computation in the context of the present paper,
we note that we have the following commutative diagram:

d(TvP̃(q′, q′′)) ⊗ d(TuP̃(q, q′)) ⊗ d(TS(q)) //

��

d(TvP̃(q′, q′′)) ⊗ d(TS(q′))

��
d(TwP̃(q, q′′)) ⊗ d(TS(q)) // d(TS(q′′))

where all the arrows except the left one come from the isomorphism (21), whereas the left arrow comes
from the direct sum isomorphism and the differential of the gluing map, which is an isomorphism

TuP̃(q, q′) × TvP̃(q′, q′′) ≃ TwP̃(q, q′′) mapping ∂v + ∂u 7→ ∂w and ∂u − ∂v 7→ − inwardδ .

We can now tensor this diagram with the identity on d(DA), then replace d(DA) with d(DA′) and
d(DA′′) where needed, and replace the identity isomorphisms with the corresponding deformation
isomorphisms. The exact triple isomorphisms as in the proof of Lemma 4.2 then will yield the following
diagram:

d(TvP̃(q′, q′′)) ⊗ d(TuP̃(q, q′)) ⊗ d(DA♯TS(q)) ⊗ d(TqL) //

��

d(TvP̃(q′, q′′)) ⊗ d(DA′♯TS(q′)) ⊗ d(Tq′L)

��
d(TwP̃(q, q′′)) ⊗ d(DA♯TS(q)) ⊗ d(TqL) // d(DA′′♯TS(q′′)) ⊗ d(Tq′′L)
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Here we can now erase the terms d(T·L) and obtain the diagram

d(TvP̃(q′, q′′)) ⊗ d(TuP̃(q, q′)) ⊗ d(DA♯TS(q)) //

��

d(TvP̃(q′, q′′)) ⊗ d(DA′♯TS(q′))

��
d(TwP̃(q, q′′)) ⊗ d(DA♯TS(q)) // d(DA′′♯TS(q′′))

which tells us that the isomorphism C(δ) = C(v) ◦ C(u), which is obtained by chasing the diagram

along through the top right corner, corresponds to the orientation of TwP̃(q, q′′) obtained from the
differential of the gluing map, that is the orientation −∂w ∧ inwardδ.

Assume now that at least one of the numbers k, l is nonzero. The claim then will be proved by
induction on j. The base of the induction consists of showing that the isomorphism C(δ) corresponds
to the orientation

−
∧

i ∂wt
i
∧ inwardδ ⊗

∧
i e

wt

i ∈ d(TwtP̃(q, q′′)) ⊗ d(TwtQ/Γ)

for t ∈ (0, t1). It suffices to show this for some t small enough due to continuity. Let therefore w = wt

for some small t > 0. There is a canonical bijection between isomorphisms C(q, A) ≃ C(q′′, A′′),

orientations of d(Dw|Y w
Γ

), and orientations of TwP̃(q, q′′) ⊗ d(TwQ/Γ), see Lemma 4.4 and equation
(24). Therefore the isomorphism C(δ) = C(v)◦C(u) corresponds to a certain orientation of d(Dw|Y w

Γ
).

Let us find this orientation.
We will separate the proof into two cases. The first case is when both k, l > 0. The second case is

treated below.
Consider the family of operators

Dwt |Y wt
Γ

: Y wt

Γ → Lp(wt) ;

these form a Fredholm morphism between the Banach bundles (Y wt

Γ )t∈(0,t1) and (Lp(wt))t∈(0,t1). Note

that since wt is obtained by Morse gluing at q′ from u, v, it follows that the Banach bundle Y wt

Γ over
(0, t1) can be extended to a bundle over [0, t1) by adding the fiber over 0 which is precisely Y u

Γ ⊕ Y v
Γ .

This follows from the following lemma in Morse theory, left to the reader as an exercise:

Lemma 4.7. Consider the exterior sum TL ⊞ TL as a rank 2n vector bundle over L × L and con-
sider the associated Grassmann bundle of n-dimensional subspaces Gn(TL⊞ TL). Then in this space
Γ(wt

k(1),w
t
k+1(−1)), that is the graph of the differential of the flow map of −∇ρf connecting wt

k(1) with

wt
k+1(−1), converges to Tuk(1)S(q′) ⊕ Tv1(−1)U(q′) as t→ 0.

The bundle Lp(wt) extends to t = 0 by Lp(u)⊕Lp(v). The Fredholm morphism Dwt |Y wt

Γ
also extends

over 0, where it coincides with Du|Y u
Γ
⊕Dv|Y v

Γ
.

We can deform wt into (wt)′ ∈ (C∞(D2, S1;M,L))k+l with ev((wt)′) ∈ {q} × ∆k+l−1
L × {q′′}.

Similarly, we can deform u and v into u′, v′ with ev(u′) ∈ {q} × ∆k−1
L × {q′} and ev(v′) ∈ {q′} ×

∆l−1
L × {q′′}, according to the prescription after equation (27). Note that these deformations can be

done so that (wt)′ tends to w′ := (u′1, . . . , u
′
k, v

′
1, . . . , v

′
l) as t→ 0. These considerations show that the

operator Dwt |Y wt

Γ
deforms into the operators Du|Y u

Γ
⊕Dv|Y v

Γ
, D(wt)′ |Y (wt)′

Γ

, and Dw′ |Y w′
Γ

. Note as well

that there is a deformation between Du|Y u
Γ
⊕Dv|Y v

Γ
and Du′ |Y u′

Γ
⊕Dv′ |Y v′

Γ
, while the latter operator

can be deformed as described above into Dw′ |Y w′
Γ

by deforming the incidence condition at q′.
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This implies that the families DA♯TS(q) ⊕ Dwt |Y wt

Γ
, DA♯TS(q) ⊕ Du|Y u

Γ
⊕ Dv|Y v

Γ
, DA♯TS(q) ⊕

D(wt)′ |Y (wt)′

Γ

, DA♯TS(q) ⊕ Dw′ |Y w′
Γ

, and DA♯TS(q) ⊕ Du′ |Y u′
Γ

⊕ Dv′ |Y v′
Γ

are all deformations of one

another. Moreover, the space of parameters of these deformations, which consists of the interval [0, t1)
multiplied by the parameter used to deform u into u′ and so on, is contractible, being a product of
intervals. Therefore all these operators have mutually canonically isomorphic determinant lines, the
isomorphisms being deformation isomorphisms. Furthermore, by deforming the incidence conditions at
q and q′, we see thatDA♯TS(q)⊕Du′ |Y u′

Γ
⊕Dv′ |Y v′

Γ
deforms into DA♯Du′ |Zu′

Γ
♯Dv′ |Xv′

Γ
, whileDA♯TS(q)⊕

Dw′ |Y w′
Γ

deforms into DA♯Dw′ |Xw′
Γ

. Both the operators DA♯Du′ |Zu′
Γ
♯Dv′ |Xv′

Γ
and DA♯Dw′ |Xw′

Γ
can be

glued to yield representatives of the family DA′′♯TS(q′′). These considerations, together with the direct
sum isomorphisms, yield the commutative diagram

d(Dv|Y v
Γ

) ⊗ d(Du|Y u
Γ

) ⊗ d(DA♯TS(q)) //

��

d(Dv′ |Y v′
Γ

) ⊗ d(Du′ |Y u′
Γ

) ⊗ d(DA♯TS(q)) //

��

d(DA′′♯TS(q′′))

d(Dw|Y w
Γ

) ⊗ d(DA♯TS(q)) // d(Dw′ |Y w′
Γ

) ⊗ d(DA♯TS(q))

44❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

Let o ∈ d(DA♯TS(q)), o′′ = C(δ)(o). The isomorphisms C(u), C(v) correspond to orientations ou ∈
d(Du|Y u

Γ
), ov ∈ d(Dv|Y v

Γ
). Consider the isomorphism

d(Dv|Y v
Γ

) ⊗ d(Du|Y u
Γ

) → d(Dw|Y w
Γ

)

obtained by composing the direct sum isomorphism with the deformation isomorphism described above,
and let ow ∈ d(Dw|Y w

Γ
) be the image of ov⊗ou under this isomorphism. Letting ou′ ∈ d(Du′ |Y u′

Γ
), ov′ ∈

d(Dv′ |Y v′
Γ

), ow′ ∈ d(Dw′ |Y w′
Γ

) be the orientations corresponding to ou, ov, ow under the deformation

isomorphisms (27), we see that the diagram maps

ov ⊗ ou ⊗ o
✤ //

❴

��

ov′ ⊗ ou′ ⊗ o
✤ //

❴

��

o
′′

ow ⊗ o
✤ // ow′ ⊗ o

✸

99sssssssssss

Since the composition of the two bottom arrows maps ow⊗ o 7→ o
′′, we see that the isomorphism C(δ),

which maps o 7→ o
′′, corresponds to the orientation ow.

The next step is showing that this orientation ow corresponds to the orientation (29).
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We have the following commutative diagram

d(Dv|Y v
Γ

) ⊗ d(TvQ/Γ) ⊗ d(Du|Y u
Γ

) ⊗ d(TuQ/Γ) ⊗ d(T k
wQ/Γ)

��

// d(Dv|Y v
Q

) ⊗ d(Du|Y u
Q

) ⊗ d(T k
wQ/Γ)

��
d(Dv|Y v

Γ
⊕Du|Y u

Γ
) ⊗ d(TvQ/Γ ⊕ TuQ/Γ) ⊗ d(T k

wQ/Γ)

��

// d(Dv|Y v
Q
⊕Du|Y u

Q
) ⊗ d(T k

wQ/Γ)

��
d(Dw|Y w

Γ
) ⊗ d(T¬k

w Q/Γ) ⊗ d(T k
wQ/Γ)

��

// d(Dw|Y w,¬k
Q

) ⊗ d(T k
wQ/Γ)

��
d(Dw|Y w

Γ
) ⊗ d(TwQ/Γ) // d(Dw|Y w

Q
)

(30)
where we use the following notations:

T k
wQ/Γ = T(wk(1),wk+1(−1))Q/Γ(wk(1),wk+1(−1)) ,

T¬k
w Q/Γ =

⊕

j 6=k

T(wj(1),wj+1(−1))Q/Γ(wj(1),wj+1(−1)) ,

Y w,¬k
Q = {ξ ∈ Y w

Q | (ξk(1), ξk+1(−1)) ∈ Γwk(1),wk+1(−1)} .
The top square is obtained as follows. We have the exact Fredholm square

Dv|Y v
Γ

//

��

Dv|Y v
Q

//

��

0TvQ/Γ

��
Dv|Y v

Γ
⊕Du|Y u

Γ

//

��

Dv|Y v
Q
⊕Du|Y u

Q

//

��

0TvQ/Γ ⊕ 0TuQ/Γ

��
Du|Y u

Γ

// Du|Y u
Q

// 0TuQ/Γ

The top square is then the commutative square corresponding to this exact Fredholm square, see
§2.1.0.4, tensored with the identity on d(T k

wQ/Γ).
The bottom square is the commutative square corresponding to the exact Fredholm square

Dw|Y w
Γ

��

Dw|Y w
Γ

//

��

0

��
Dw|Y w,¬k

Q

//

��

Dw|Y w
Q

//

��

0Tk
wQ/Γ

0T¬k
w Q/Γ

// 0TwQ/Γ
// 0Tk

wQ/Γ
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It remains to describe the middle square. For every t > 0 we have the exact Fredholm triple

0 → Dwt |Y wt
Γ

→ Dwt |
Y wt,¬k
Q

→ 0T¬k
wt Q/Γ → 0

yielding the isomorphism

d(Dwt |
Y wt,¬k
Q

) ≃ d(Dwt |Y wt

Γ
) ⊗ d(T¬k

wt Q/Γ) (31)

which is continuous in t. As t → 0, the space T¬k
wt Q/Γ naturally converges to TuQ/Γ ⊕ TvQ/Γ.

Moreover, a Banach bundle argument similar to the one just before Lemma 4.7 shows that Dwt |
Y wt,¬k
Q

deforms into Du|Y u
Q
⊕Dv|Y v

Q
as t→ 0. Therefore we have natural isomorphisms

d(Dwt |Y wt

Γ
) ≃ d(Du|Y u

Γ
⊕Dv|Y v

Γ
) and d(Dwt |

Y wt,¬k
Q

) ≃ d(Du|Y u
Q
⊕Dv|Y v

Q
) .

The middle square is obtained by substituting these isomorphisms into (31), and tensoring with the
identity on d(T k

wQ/Γ).
We will see shortly that the diagram (30) maps

ov ⊗
∧

i e
v
i ⊗ ou ⊗∧

i e
u
i ⊗ ewk

✤ //
❴

��

(−1)k+l
∧

i ∂vi ⊗
∧

i ∂ui ⊗ ewk❴

��
(−1)l−1(ov ∧ ou) ⊗ (

∧
i e

v
i ∧

∧
i e

u
i ) ⊗ ewk

✤ //
❴

��

(−1)k+l(
∧

i ∂vi ∧
∧

i ∂ui) ⊗ ewk❴

��
(−1)k(l−1)

ow ⊗∧
i6=k e

w
i ⊗ ewk

✤ //
❴

��

(−1)kl+k+l
∧

i ∂wi ⊗ ewk❴

��
(−1)(k+1)(l−1)

ow ⊗∧
i e

w
i
✤ // (−1)kl+k+l

∧
i ∂wi ∧ inwardδ

(32)

but first let us deduce the desired result for k, l 6= 0. We see that the bottom arrow maps

ow ⊗∧
i e

w
i 7→ −∧

i ∂wi ∧ inwardδ ,

which means that ow corresponds to the orientation

−
∧

i ∂wi ∧ inwardδ ⊗
∧

i e
w
i ∈ d(TwP̃(q, q′′)) ⊗ d(TwQ/Γ) .

On the other hand, we saw above that C(δ) corresponds to ow. Therefore C(δ) corresponds to the
orientation (29), as claimed.

Let us explain the diagram (32). Here we can compute the top horizontal arrow, as well as all the
vertical arrows using definitions and the normalization property, see §2.1.0.3. Our goal is the bottom
horizontal arrow. Since the diagram commutes, we can compute the remaining three horizontal arrows,
including the bottom one.

In the top square the left arrow consists of direct sum isomorphisms, together with the interchange
isomorphism, which is responsible for the sign (−1)l−1, since indDu|Y u

Γ
= 1, dimTvQ/Γ = l − 1. The

right arrow can be computed using the normalization property, since Du|Y u
Q
, Dv|Y v

Q
are surjective. Its

top horizontal arrow is obtained as the tensor product of isomorphisms (24) for u, v.
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In the middle square, the right arrow comes from the fact that under deformation, ∂ui 7→ ∂wi

while ∂vi 7→ ∂wk+i
, and also because

∧
i ∂vi ∧

∧
i ∂ui = (−1)kl

∧
i ∂ui ∧

∧
i ∂vi . The left arrow is a

combination of the deformation isomorphism sending ov ∧ ou 7→ ow (this is how we defined ow), and
the fact that the deformation isomorphism sends eui 7→ ewi , evi 7→ ewk+i, and that

∧
i e

v
i ∧ ∧

i e
u
i =

(−1)(k−1)(l−1)
∧

i e
u
i ∧∧

i e
v
i .

In the bottom square, the left arrow comes from the normalization property together with the
equality

∧
i6=k e

w
i ∧ ewk = (−1)l−1

∧
i e

w
i . The right arrow comes from the normalization property

together with the fact that the map kerDw|Y w
Q

→ T k
wQ/Γ maps inwardδ 7→ ewk , because the vector

ewk corresponds to shrinking the segment of gradient line between the points wk(1), wk+1(−1), which
evidently corresponds to moving the pearly trajectory away from the boundary point δ.

Now we treat the case when precisely one of the numbers k, l vanishes. Assume first k = 0. Using a
combination of the techniques for the Morse case and the above treatment, we can obtain the following
commutative diagram:

d(Dv|Y v
Γ

) ⊗ d(TuP̃(q, q′)) ⊗ d(DA♯TS(q)) //

��

d(Dv|Y v
Γ

) ⊗ d(DA′♯TS(q′))

��
d(Dw|Y w

Γ
) ⊗ d(DA♯TS(q)) // d(DA′′♯TS(q′′))

in which the top arrow is obtained from the correspondence described on page 61, the right and
the bottom arrows come from direct sum, deformation, and gluing isomorphisms, and the left arrow
comes from the differential of the gluing map on pearly spaces. Recall that C(v) corresponds to
the orientation ov, C(u) to the orientation ∂u, and let ow ∈ d(Dw|Y w

Γ
) be the orientation which is

the image of ov ⊗ ∂u by the isomorphism defining the left arrow. It follows that the isomorphism
C(v) ◦C(u): C(q, A) ≃ C(q′′, A′′) corresponds to ow, and our task now is to compute this orientation.
We have the following commutative diagram

d(Dv|Y v
Γ

) ⊗ d(TvQ/Γ) ⊗ d(TuP̃(q, q′)) //

��

d(Dv|Y v
Q

) ⊗ d(TuP̃(q, q′))

��
d(Dw|Y w

Γ
) ⊗ d(TwQ/Γ) // d(Dw|Y w

Q
)

(33)

which maps

ov ⊗
∧

i e
v
i ⊗ ∂u

✤ //
❴

��

(−1)l+1
∧

i ∂vi ⊗ ∂u❴

��
(−1)l−1

ow ⊗
∧

i e
w
i
✤ // (−1)l

∧
i ∂wi ∧ inwardδ

We see that ow corresponds to the orientation −∧
i ∂wi ∧ inwardδ ⊗ ∧

i e
w
i , as claimed. To explain

the diagram (33), note that the top arrow comes from the definition of the boundary operator, the
left arrow acquires the Koszul sign, while the right arrow comes from the fact that the deformation
isomorphism maps ∂vi 7→ ∂wi and ∂u 7→ − inwardδ. The proof for the case k > 0, l = 0, follows the
same scheme.

Now we prove the induction step. This consists of showing the following: assume that the isomor-
phism C(δ) corresponds to the orientation

−∧
i ∂wt

i
∧ inwardδ ⊗

∧
i e

wt

i ∈ d(TwtP̃(q, q′′)) ⊗ d(TwtQ/Γ)
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for t ∈ (tj , tj+1); then for t ∈ (tj+1, tj+2) it corresponds to the orientation

−∧
i ∂wt

i
∧ inwardδ ⊗

∧
i e

wt

i ∈ d(TwtP̃(q, q′′)) ⊗ d(TwtQ/Γ) .

Without loss of generality we may assume that the degeneration of the pearly trajectory as t ր tj+1

consists of the shrinking of one of the gradient trajectories to a point. We will use wt for t close to
tj+1 but smaller than or equal to it, and denote w′ = wt for t close to tj+1 but strictly larger than it.
Assume that the disks in wt which collide as tր tj+1 carry numbers r, r+ 1. In this case the r-th disk

of w′ is obtained by gluing the two colliding disks w
tj+1
r , w

tj+1

r+1 .
We have the following commutative diagram for t ≤ tj+1 close to tj+1.

d(Dwt |Y wt

Γ
) ⊗ d(TwtQ/Γ) // d(Dwt |Y wt

Q
)

d(Dwt |
Y wt
Γ

) ⊗ d(T¬r
wt Q/Γ) ⊗ d(T r

wtQ/Γ) //

OO

��

d(Dwt |
Y wt,¬r
Q

) ⊗ d(T r
wtQ/Γ)

OO

��
d(Dw′ |Y w′

Γ
) ⊗ d(Tw′Q/Γ) ⊗ d(T r

wtQ/Γ) // d(Dw′ |Y w′
Q

) ⊗ d(T r
wtQ/Γ)

(34)

The top square is the commutative square corresponding to the following exact Fredholm square:

Dwt |Y wt

Γ

��

Dwt |Y wt

Γ

//

��

0

��
Dwt |

Y wt,¬r
Q

//

��

Dwt |
Y wt
Q

//

��

0T r
wtQ/Γ

0T¬r
wt Q/Γ

// 0TwtQ/Γ
// 0T r

wtQ/Γ

The bottom square is obtained as follows. Since the pearly trajectory w′ is obtained from w := wtj+1

by gluing, see [BC07, BC09], we have a natural isomorphism

d(Dw|Y w,¬r
Q

) ≃ d(Dw′ |Y w′
Q

)

expressing the fact that the tangent space to the space of degenerate pearls at w, which is precisely
the kernel of Dw|Y w,¬r

Q
, maps isomorphically onto Tw′P̃(q, q′′) = kerDw′ |Y w′

Q
by the differential of the

gluing map. The operators Dw|Y w,¬r
Q

, Dw′ |Y w′
Q

also appear in the following exact Fredholm triples:

0 → Dw|Y w
Γ

→ Dw|Y w,¬r
Q

→ 0T¬r
w Q/Γ → 0 . (35)

0 → Dw′ |Y w′
Γ

→ Dw′ |Y w′
Q

→ 0Tw′Q/Γ → 0 . (36)

We note that the operator Dw|Y w
Γ

can be boundary glued at the point where the disks wr, wr+1 touch,
and the result can be deformed into Dw′|Y w′

Γ
. Also, as tց tj+1, the space T(w′)tQ/Γ tends to T¬r

w Q/Γ.
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It is then the feature of the gluing map that the following diagram commutes:

d(Dw|Y w
Γ

) ⊗ d(T¬r
w Q/Γ) //

��

d(Dw|Y w,¬r
Q

)

��
d(Dw′ |Y w′

Γ
) ⊗ d(Tw′Q/Γ) // d(Dw′ |Y w′

Q
)

where the horizontal arrows come from the exact triples (35), (36), while the vertical arrows come
from gluing and deformation. The bottom square of the diagram (34) is obtained by taking the middle
horizontal arrow, letting t ր tj+1, except in the term d(T r

wtQ/Γ), where t is kept fixed, applying the
square to the resulting isomorphism, and finally tensoring with d(T r

wtQ/Γ).
Now the isomorphism C(δ) corresponds to an orientation owt ∈ d(Dwt |Y wt

Γ
), an orientation ow ∈

d(Dw|Y w
Γ

), and an orientation ow′ ∈ d(Dw′ |Y w′
Γ

). It is not difficult to see that the deformation isomor-

phism d(Dwt |Y wt

Γ
) ≃ d(Dw|Y w

Γ
) maps owt 7→ ow, and the above isomorphism d(Dw|Y w

Γ
) ≃ d(Dw′ |Y w′

Γ
)

maps ow 7→ ow′. Assume w has s disks. Then the diagram (34) maps

(−1)s−r−1
owt ⊗∧

i e
wt

i
✤ // (−1)s−r

∧
i ∂wt

i
∧ inwardδ

owt ⊗∧
i6=r e

wt

i ⊗ ew
t

r❴

��

✤ //
❴

OO

(−1)s−r
∧

i ∂wt
i
⊗ ew

t

r

❴

OO

❴

��
ow′ ⊗

∧
i e

w′

i ⊗ ew
t

r
✤ // −

∧
i ∂w′

i
∧ inwardδ ⊗ ew

t

r

We will derive this shortly, but now let us see how it implies the claim. We see that the assumption
that the orientation owt corresponds to the orientation

−
∧

i ∂wt
i
∧ inwardδ ⊗

∧
i e

wt

i

implies that the orientation ow′ corresponds to the orientation

−∧
i ∂w′

i
∧ inwardδ ⊗

∧
i e

w′

i ,

which is what the bottom arrow tells us. This means that the sign stays the same, which was precisely
what we wanted to prove.

Let us now explain the diagram. Here we can compute the top arrow and all the vertical arrows,
while the remaining two horizontal arrows are obtained by commutativity. The goal of the computation
is the bottom horizontal arrow. In the top square, the left arrow comes from the normalization property
§2.1.0.3, together with the fact that we have to interchange some factors in the wedge product, which
gives the sign. The top arrow comes from the assumption on the orientation ow. The right arrow
comes from the exact triple

0 → Dwt |
Y wt,¬r
Q

→ Dwt |Y wt

Q
→ 0T r

wtQ/Γ → 0 ,

where we note that inwardδ ∈ kerDwt |Y wt

Q
maps to ew

t

r ∈ T r
wtQ/Γ, because both correspond to

shrinking the piece of gradient trajectory separating the disks wt
r, wt

r+1.
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In the bottom square the left arrow comes from the deformation isomorphisms, which map owt 7→
ow′ and ew

t

i 7→ ew
′

i for i < r, ew
t

i 7→ ew
′

i−1 for i > r. The right arrow comes from the deformation
isomorphism, together with the following computation. It is straightforward to check that the differ-
ential of the gluing map, which is an isomorphism ker(Dwt |

Y wt,¬r
Q

) ≃ ker(Dw′ |Y w′
Q

), maps ∂wt
i
7→ ∂w′

i

for i < r, ∂wt
r

+ ∂wt
r+1

7→ ∂w′
r
, −∂wt

r
+ ∂wt

r+1
7→ inwardδ, and ∂wt

i
7→ ∂w′

i−1
for i > r + 1. Therefore the

induced isomorphism d(Dwt |
Y wt,¬r
Q

) ≃ d(Dw′ |Y w′
Q

) maps

∧
i ∂wt

i
7→ ∧

i≤r ∂w′
i
∧ inwardδ ∧

∧
i>r+1 ∂w′

i−1
= (−1)s−r−1

∧
i ∂w′

i
∧ inwardδ .

The proof of the lemma, and therefore of Theorem 4.5, is now complete.

This theorem allows us to define the quantum homology

QH∗(D : L)

as the homology of the complex (QC∗(D : L), ∂D).

4.2.3 Product

Fix quantum data Di = (fi, ρ, J) for L for i = 0, 1, 2, where we assume that the pairs (fi, ρ) are
Morse–Smale and J is chosen so that the Di are regular. The quantum product is a bilinear map

⋆ : QCk(D0 : L) ⊗QCl(D1 : L) → QCk+l−n(D2 : L) . (37)

As with the boundary operator, this is defined by its matrix elements which are homomorphisms

C(q0, A0) ⊗ C(q1, A1) → C(q2, A2)

for qi ∈ Crit fi, Ai ∈ π2(M,L, qi) such that |q0|+ |q1| − |q2| −µ(A0)−µ(A1) +µ(A2)−n = 0. In order
to define these matrix elements, we need first to describe the spaces of pearly triangles. Therefore fix
qi ∈ Crit fi. Recall that M̃(L, J) denotes the space of parametrized nonconstant J-holomorphic disks

with boundary on L. We denote by M̃◦(L, J) the space of all parametrized J-holomorphic disks with
boundary on L, including constant ones. Fix ki ≥ 0 for i = 0, 1, 2. We have the evaluation map

ev : (C∞(D2, S1;M,L))k0+k1+k2+1 → L2(k0+k1+k2)+3

given by

ev(U = (u0, u1, u2, u)) = (u01(−1), u01(1), . . . , u0k0
(−1), u0k0

(1), u(1);

u11(−1), . . . , u1k1
(1), u(e2πi/3);u(e4πi/3), u21(−1), . . . , u2k2

(1)) ,

where ui ∈ (C∞(D2, S1;M,L))ki and u ∈ C∞(D2, S1;M,L). We let

P̃k0,k1,k2(q0, q1; q2) = ev−1(Uf0 (q0) ×Qk0

f0,ρ
× Uf1(q1) ×Qk1

f1,ρ
×Qk2

f2,ρ
× Sf2(q2))∩

(M̃(L, J))k0 × (M̃(L, J))k1 × (M̃(L, J))k2 × M̃◦(L, J) .

This is the space of parametrized pearly triangles. We have a natural action of Rk0+k1+k1 on this
space and we let Pk0,k1,k2(q0, q1; q2) be the quotient. We also define

P̃(q0, q1; q2) =
⋃

k0,k1,k2≥0

P̃k0,k1,k2(q0, q1; q2) and P(q0, q1; q2) =
⋃

k0,k1,k2≥0

Pk0,k1,k2(q0, q1; q2) .
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For U ∈ (C∞(D2, S1;M,L))k0+k1+k2+1 we let µ(U) be the sum of the Maslov numbers of the con-
stituent disks of U . We have the following result by Biran–Cornea [BC07, BC09]:

Proposition 4.8. For Morse-Smale pairs (fi, ρ)i=0,1,2 there is a subset of J (M,ω) of the second
category such that for each J in the subset, each triple of critical points qi ∈ Crit fi and each triple of
nonnegative integers ki the space Pk0,k1,k2(q0, q1; q2) is a smooth manifold of local dimension at [U ]

|q0| + |q1| − |q2| + µ(U) − n

whenever this number is at most 1.

We proceed to the definition of the matrix element. Fix Ai ∈ π2(M,L, qi) for i = 0, 1. For
U ∈ (C∞(D2, S1;M,L))k0+k1+k2+1 with

ev(U) ∈ Uf0(q0) ×Qk0

f0,ρ0
× Uf1(q1) ×Qk1

f1,ρ1
×Qk2

f2,ρ2
× Sf2(q2)

there is an obvious way to construct a class A0♯A1♯U ∈ π2(M,L, q2) by concatenating representatives of
A0, A1 with the constituent disks of U according to the gradient trajectories connecting the evaluation
points of the disks. For U ∈ P̃(q0, q1; q2) satisfying |q0| + |q1| − |q2| + µ(U) − n = 0 we will construct
an isomorphism

C(U): C(q0, A0) ⊗ C(q1, A1) ≃ C(q2, A0♯A1♯U) .

For a class A2 ∈ π2(M,L, q2) with |q0|+ |q1|− |q2|−µ(A0)−µ(A1)+µ(A2)−n = 0, the matrix element
is defined to be ∑

[U ]∈P(q0,q1;q2):
A0♯A1♯U=A2

C(U): C(q0, A0) ⊗ C(q1, A1) ≃ C(q2, A2) . (38)

It remains to define the isomorphism C(U). To this end we define additional Banach spaces. For
V = (v0, v1, v2, v) ∈ (C∞(D2, S1;M,L))k0+k1+k2+1 with

ev(V ) ∈ Uf0(q0) ×Qk0

f0,ρ
× Uf1(q1) ×Qk1

f1,ρ
×Qk2

f2,ρ
× Sf2(q2)

we define

XV
Γ = {Ξ = (ξ0, ξ1, ξ2, ξ) ∈W 1,p(v0) ⊕W 1,p(v1) ⊕W 1,p(v2) ⊕W 1,p(v) |

ξ2k2
(1) ∈ Tv2

k2
(1)Sf2(q2) ; (ξmj (1), ξmj+1(−1)) ∈ Γ(vm

j (1),vm
j+1(−1)),

(ξmkm
(1), ξ(e2πim/3)) ∈ Γ(vm

km
(1),v(e2πim/3)) for m = 0, 1 and j < km;

(ξ2j (1), ξ2j+1(−1)) ∈ Γ(v2
j (1),v

2
j+1(−1)) for j = 1, . . . , k2; (ξ(e4πi/3), ξ21(−1)) ∈ Γ(v(e4πi/3),v2

1(−1))}

Y V
Γ = {Ξ ∈ XV

Γ | ξm1 (−1) ∈ Tvm
1 (−1)Ufm(qm) for m = 0, 1}

If V satisfies
ev(V ) ∈ Uf0(q0) ×Qk0

f0,ρ
× Uf1(q1) ×Qk1

f1,ρ
×Qk2

f2,ρ
× Sf2 (q2) ,

we define in addition

Y V
Q = {Ξ = (ξ0, ξ1, ξ2, ξ) ∈ W 1,p(v0) ⊕W 1,p(v1) ⊕W 1,p(v2) ⊕W 1,p(v) |

ξ2k2
(1) ∈ Tv2

k2
(1)Sf2(q2) ; (ξmj (1), ξmj+1(−1)) ∈ T(vm

j (1),vm
j+1(−1))Qfm,ρ,

(ξmkm
(1), ξ(e2πim/3) ∈ T(vm

km
(1),v(e2πim/3))Qfm,ρ for m = 0, 1 and j < km;

(ξ2j (1), ξ2j+1(−1)) ∈ T(v2
j (1),v

2
j+1(−1))Q for j = 1, . . . , k2; (ξ(e4πi/3), ξ21(−1)) ∈ T(v(e4πi/3),v2

1(−1))Qf2,ρ}
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and

TVQ =

k0−1⊕

j=1

T(v0
j (1),v

0
j+1(−1))Qf0,ρ ⊕ T(v0

k0
(1),v(1))Qf0,ρ⊕

k1−1⊕

j=1

T(v1
j (1),v

1
j+1(−1))Qf1,ρ ⊕ T(v1

k1
(1),v(e2πi/3))Qf1,ρ⊕

T(v(e4πi/3),v2
1(−1))Qf2,ρ ⊕

k2−1⊕

j=1

T(v2
j (1),v

2
j+1(−1))Qf2,ρ .

Also we define the space TVQ/Γ in a manner similar to the definition (22); its dimension equals
k0 + k1 + k2. Note that this space has a basis defined similarly to (23), and whose elements we denote

by ev
j

i for i = 0, 1, 2 and j = 1, . . . , ki.
Similarly to the case of the boundary operator above, the isomorphism C(U) is defined in two

stages. At the first stage we construct a bijection between orientations of DU |Y U
Γ

and orientations of

the line d(TU P̃(q0, q1; q2)) ⊗ d(TUQ/Γ). Then we construct a bijection between orientations of DU |Y U
Γ

and isomorphisms C(q0, A0) ⊗ C(q1, A1) ≃ C(q2, A2). Once we have these bijections, the desired
isomorphism C(U) is the one corresponding to the following orientation:

(−1)k2
∧

i ∂u0
i
∧
∧

i ∂u1
i
∧
∧

i ∂u2
i
⊗
∧

i e
u0

i ∧
∧

i e
u1

i ∧
∧

i e
u2

i ∈ d(TU P̃k0+k1+k2(q0, q1; q2)) ⊗ d(TUQ/Γ) .

The first bijection is constructed as follows. The exact Fredholm triple

0 → DU |Y U
Γ

→ DU |Y U
Q

→ 0TUQ/Γ → 0

induces an isomorphism

d(TU P̃(q0, q1; q2)) = d(DU |Y U
Q

) ≃ d(DU |Y U
Γ

) ⊗ d(TUQ/Γ) ,

where the first equality is due to the fact that TU P̃(q0, q1; q2) = kerDU |Y U
Q

, which follows from the

definition of the pearly triangles. Tensoring with d(TUQ/Γ), we see that indeed there is a bijection

between orientations of d(DU |Y U
Γ

) and orientations of d(TU P̃(q0, q1; q2)) ⊗ d(TUQ/Γ).
The second bijection is constructed as follows. Consider the family of operators

DA0♯TSf0(q0) ⊕DA1♯TSf1(q1) ⊕DU |Y U
Γ
.

We first deform U into U ′ ∈ (C∞(D2, S1;M,L))k0+k1+k2+1 with

ev(U ′) ∈ {q0} × ∆k0

L × {q1} × ∆k1

L × ∆k2

L × {q2}

just like we did in §4.2.2 when defining the boundary operator. Our operator therefore deforms into

DA0♯TSf0(q0) ⊕DA1♯TSf1(q1) ⊕DU ′ |Y U′
Γ
.

Next, we can deform the incidence conditions at q0, q1 in the sense of the isomorphism (25), to arrive
at the boundary glued operator DA0♯DA1♯DU ′ |XU′

Γ
, which after deformation yields a representative
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of the family DA2♯TSf2(q2). These deformations, together with the direct sum isomorphism, yield a
string of isomorphisms

d(DU |Y U
Γ

) ⊗ d(DA0♯TSf0(q0)) ⊗ d(DA1♯TSf1(q1)) ≃ d(DA0♯TSf0(q0) ⊕DA1♯TSf1(q1) ⊕DU |Y U
Γ

)

≃ d(DA0♯TSf0(q0) ⊕DA1♯TSf1(q1) ⊕DU ′ |Y U′
Γ

)

≃ d(DA0♯DA1♯DU ′ |XU′
Γ

)

≃ d(DA2♯TSf2(q2))

whose composition indeed shows that there is a bijection between isomorphisms C(q0, A0)⊗C(q1, A1) ≃
C(q2, A2) and orientations of DU |Y U

Γ
.

We have therefore completed the definition of the matrix elements of the product (38) and hence
we have defined the product as a bilinear operation (37).

We now prove

Theorem 4.9. The operation ⋆ is a chain map. More precisely, we have

∂D2 ◦ ⋆ = ⋆ ◦ (∂D0 ⊗ id +(−1)n−k id⊗∂D1): QCk(D0 : L) ⊗QCl(D1 : L) → QCk+l−n−1(D2 : L) .

Proof. It suffices to prove the vanishing of the matrix element

∑

q′2∈Crit f2

∑

A′
2∈π2(M,L,q′2):

|q′2|−µ(A′
2)=|q2|−µ(A2)+1

∑

([U ],[w])∈P(q0,q1;q
′
2)×P(q′2,q2):

A0♯A1♯U=A′
2,A

′
2♯w=A2

C(w) ◦ C(U)−

−
∑

q′0∈Crit f0

∑

A′
0∈π2(M,L,q′0):

|q0|−µ(A0)=|q′0|−µ(A′
0)+1

∑

([w],[U ])∈P(q0,q
′
0)×P(q′0,q1;q2):

A0♯w=A′
0,A

′
0♯A1♯U=A2

C(U) ◦ (C(w) ⊗ id)

− (−1)n−k
∑

q′1∈Crit f1

∑

A′
1∈π2(M,L,q′1):

|q1|−µ(A1)=|q′1|−µ(A′
1)+1

∑

([w],[U ])∈P(q1,q
′
1)×P(q0,q

′
1;q2):

A1♯w=A′
1,A0♯A

′
1♯U=A2

C(U) ◦ (id⊗C(w)) (39)

as a homomorphism
C(q0, A0) ⊗ C(q1, A1) → C(q2, A2) .

Let us denote by P1(q0, q1; q2) the 1-dimensional part of the space of pearly triangles. Biran–Cornea
[BC07, BC09] described the structure of the compactification P1(q0, q1; q2). The space P1(q0, q1; q2)
fails to be compact in one of three ways: either one of the gradient trajectories undergoes Morse
breaking, or one of the gradient trajectories shrinks to a point, or a holomorphic disk breaks into
two. Note that the breaking can happen at the core and in the resulting degenerate triangle one of
the disks (the one carrying three marked points) may be constant. We redefine P1(q0, q1; q2) to be
the union of the compactified connected components of P1(q0, q1; q2) where two boundary points of
different components are identified if they represent the same degenerate pearly triangle, where by a
degenerate pearly triangle we mean a pearly triangle where precisely one of the gradient trajectories
connecting two holomorphic disks has length zero. Thus P1(q0, q1; q2) has the structure of a compact
1-dimensional topological manifold with boundary. Its boundary points represent Morse breaking and
are in an obvious bijection with the summands of the matrix element (39). For δ ∈ ∂P1(q0, q1; q2) let
C(δ) denote the summand of (39) corresponding to δ (together with the sign). It therefore suffices
to prove the following: for any connected component ∆ ⊂ P1(q0, q1; q2) with ∂∆ = {δ, δ′} we have
C(δ) + C(δ′) = 0.
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We now proceed to the computation of the various summands. Fix a point δ ∈ P1(q0, q1; q2) and let
[X ] ∈ P1(q0, q1; q2) lie close to δ. As we saw, the isomorphism C(δ): C(q0, A0)⊗C(q1, A1) ≃ C(q2, A2)

determines an orientation of DX |Y X
Γ

, which in turn corresponds to an orientation of d(TXP̃(q0, q1; q2))⊗
d(TXQ/Γ). For V = (v0, v1, v2; v) ∈ P̃(q0, q1; q2) we abbreviate

∧
i ∂v0

i
∧∧

i ∂v1
i
∧∧

i ∂v2
i
∧ inwardδ ⊗

∧
i e

v0

i ∧∧
i e

v1

i ∧∧
i e

v2

i ∈ d(TV P̃(q0, q1; q2)) ⊗ d(TVQ/Γ)

to ∧
i ∂Vi ∧ inwardδ ⊗

∧
i e

V
i ,

where inwardδ ∈ TV P̃(q0, q1; q2) is a tangent vector directed away from the boundary point δ. This
should cause no confusion. We also refer to this particular orientation as the standard orientation
of the line d(TV P̃(q0, q1; q2)) ⊗ d(TVQ/Γ).

We have the following lemma.

Lemma 4.10. We have the following cases:

• If δ = ([U ], [w]) ∈ Pk0,k1,k2(q0, q1; q′2) × Pr(q
′
2, q2), the isomorphism C(δ) = C(w) ◦ C(U) corre-

sponds to (−1)k0+k1 times the standard orientation of d(TXP̃(q0, q1; q2)) ⊗ d(TXQ/Γ).

• If δ = ([w], [U ]) ∈ Pr(q0, q
′
0) ×Pk0,k1,k2(q′0, q1; q2), the isomorphism C(δ) = −C(U) ◦ (C(w) ⊗ id)

corresponds to (−1)k0+k1+r times the standard orientation of d(TXP̃(q0, q1; q2)) ⊗ d(TXQ/Γ).

• If δ = ([w], [U ]) ∈ Pr(q1, q
′
1)×Pk0,k1,k2(q0, q

′
1; q2), then the isomorphism C(δ) = −(−1)n−kC(U)◦

(id⊗C(w)) corresponds to (−1)k0+k1+r times the standard orientation of d(TXP̃(q0, q1; q2)) ⊗
d(TXQ/Γ).

Lemma 4.10 is proved below. In order to complete the proof of the vanishing of the matrix element
(39), we also need to keep track of the change of orientations when crossing disk collision/breaking
points in P1(q0, q1; q2). This is described in the following lemma:

Lemma 4.11. Let an isomorphism C: C(q0, A0) ⊗ C(q1, A1) ≃ C(q2, A2) be given and let [V ], [W ] ∈
P1(q0, q1; q2) be two points lying on two different sides of a degenerate pearly triangle in the space
P1(q0, q1; q2), and close to it. Suppose that the isomorphism C corresponds to the orientation

∧
i ∂Vi ∧ ηV ⊗∧

i e
V
i ∈ d(TV P̃(q0, q1; q2)) ⊗ d(TVQ/Γ)

where ηV ∈ TV P̃(q0, q1; q2) is an arbitrary vector transverse to the infinitesimal action of the automor-
phism group at V . Then C corresponds to the orientation

ǫ
∧

i ∂Wi ∧ ηW ⊗∧
i e

W
i ∈ d(TW P̃(q0, q1; q2)) ⊗ d(TWQ/Γ) ,

where ηW ∈ TW P̃(q0, q1; q2) points in the same direction 12) as ηV and ǫ ∈ {±1} is a sign which equals
−1 if the passage from V to W happens through disk breaking/collision in one of legs 0, 1 of the triange,
and it equals 1 if the breaking/collision happens in leg 2 of the triangle.

This lemma is proved below. Let us see how Lemmas 4.10, 4.11 allow us to complete the proof of
Theorem 4.9. There are various combinatorial types of possible components ∆ ⊂ P1(q0, q1; q2). If ∂∆ =
{δ, δ′}, the proof that C(δ) + C(δ′) = 0 follows an identical argument for all of these types, therefore

12)Note that this is well-defined!
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we will only give a full proof for one of them: suppose δ = ([U ], [w]) ∈ Pk0,k1,k2(q0, q1; q′2) × Pr(q′2, q2)

and δ′ = ([w′], [U ′]) ∈ Pr′(q1, q
′
1) × Pk′

0,k
′
1,k

′
2
(q0, q

′
1; q2). Let Xt ∈ P̃(q0, q1; q2) be a continuous family

of pearly triangles such that [Xt] gives a continuous parametrization of ∆ ∩ P1(q0, q1; q2), that is Xt

is defined for all but a finite number of values of t ∈ [0, 1]. According to Lemma 4.10, the isomorphism
C(δ) corresponds to

(−1)k0+k1
∧

i ∂Xt
i
∧ inwardδ ⊗

∧
i e

Xt

i ∈ d(TXtP̃(q0, q1; q2)) ⊗ d(TXtQ/Γ)

for small positive t. As t grows from 0 to 1, Xt undergoes a number of jumps which correspond to
instances of disk collision/breaking. Let us denote by ni the number of disk collision/breaking instances
which take place in leg i of the triangle. Then clearly we have

n0 ≡ k0 + k′0 mod 2 , n1 ≡ k1 + r′ + k′1 mod 2 , n2 ≡ k2 + r + k′2 mod 2 .

Therefore for t close to 1 the isomorphism C(δ) corresponds to the orientation

(−1)k0+k1+n0+n1
∧

i ∂Xt
i
∧ inwardδ ⊗

∧
i e

Xt

i = (−1)k
′
0+k′

1+r′
∧

i ∂Xt
i
∧ inwardδ ⊗

∧
i e

Xt

i ,

as follows from Lemma 4.11. On the other hand, Lemma 4.10 implies that the isomorphism C(δ′)
corresponds to the orientation

(−1)k
′
0+k′

1+r′
∧

i ∂Xt
i
∧ inwardδ′ ⊗

∧
i e

Xt

i ∈ d(TXtP̃(q0, q1; q2)) ⊗ d(TXtQ/Γ)

for t close to 1. Since clearly inwardδ = −inwardδ′ , we see that the orientations are opposite and
therefore C(δ) +C(δ′) = 0. Similar arguments prove the vanishing of this sum for other combinatorial
types of the components ∆. This finishes the proof of the theorem.

This means that, modulo Lemmas 4.10, 4.11, we have defined a bilinear operation on homology:

⋆: QHk(D0 : L) ⊗QHl(D1 : L) → QHk+l−n(D2 : L) .

We now prove Lemma 4.10.

Proof (of Lemma 4.10). We only prove the lemma assuming r > 0. The remaining case can be handled
using arguments similar to those of the proof of Lemma 4.6.

Consider the first case. Using arguments similar to those appearing in the proof of Lemma 4.6, we
obtain the following commutative diagram:

d(Dw|Y w
Γ

) ⊗ d(TwQ/Γ) ⊗ d(DU |Y U
Γ

) ⊗ d(TUQ/Γ) ⊗ d(T k2+1
x2 Q/Γ) //

��

d(Dw|Y w
Q

) ⊗ d(DU |Y U
Q

) ⊗ d(T k2+1
x2 Q/Γ)

��
d(Dw|Y w

Γ
⊕DU |Y U

Γ
) ⊗ d(TwQ/Γ ⊕ TUQ/Γ) ⊗ d(T k2+1

x2 Q/Γ) //

��

d(Dw|Y w
Q

⊕DU |Y U
Q

) ⊗ d(T k2+1
x2 Q/Γ)

��
d(DX |Y X

Γ
) ⊗ d(T x2:¬k2+1

X Q/Γ) ⊗ d(T k2+1
x2 Q/Γ) //

��

d(DX |
Y

X,x2:¬k2+1

Q

) ⊗ d(T k2+1
x2 Q/Γ)

��
d(DX |Y X

Γ
) ⊗ d(TXQ/Γ) // d(DX |Y X

Q
)

(40)
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where
T k2+1
x2 Q/Γ = T(x2

k2
(1),x2

k2+1(−1))Q/Γ(x2
k2

(1),x2
k2+1(−1)) ,

T x2:¬k2+1
X Q/Γ = ker

(
TXQ/Γ → T k2+1

x2 Q/Γ
)
,

Y X,x2:¬k2+1
Q = {Ξ = (ξ0, ξ1, ξ2, ξ) ∈ Y X

Q | (ξ2k2
(1), ξ2k2+1(−1)) ∈ Γ(x2

k2
(1),x2

k2+1(−1))} .

The top and bottom squares of the diagram are obtained from suitable exact Fredholm squares while
the middle square is obtained from gluing. Now, by definition, the isomorphism C(w) corresponds to
the orientation ow ∈ d(Dw|Y w

Γ
) which in turns corresponds to the orientation (−1)r+1

∧
i ∂wi ⊗

∧
i e

w
i ∈

d(Dw|Y w
Q

) ⊗ d(TwQ/Γ); the isomorphism C(U) corresponds to the orientation oU ∈ d(DU |Y U
Γ

) which

in turn corresponds to the orientation (−1)k2
∧

i ∂Ui ⊗
∧

i e
U
i ∈ d(DU |Y U

Q
)⊗d(TUQ/Γ). The direct sum

isomorphism, composed with the gluing isomorphism, gives the isomorphism

d(Dw|Y w
Γ

) ⊗ d(DU |Y U
Γ

) ≃ d(DX |Y X
Γ

) ; (41)

let us denote by oX the image of ow ⊗ oU under this isomorphism. Lemma 4.4 together with the
deformation isomorphism says that the isomorphism C(w) ◦ C(U) corresponds to an orientation of
d(DX |Y X

Γ
); it is not hard to see that this orientation is precisely oX — indeed, it follows from as-

sociativity of gluing and arguments involving deformation of incidence consditions that the following
diagram commutes:

d(Dw|Y w
Γ

) ⊗ d(DU |Y U
Γ

) ⊗ d(DA0♯TS(q0)) ⊗ d(DA1♯TS(q1)) //

��

d(DA2♯TS(q2))

d(DX |Y X
Γ

) ⊗ d(DA0♯TS(q0)) ⊗ d(DA1♯TS(q1))

33❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢

where the arrows pointing to the right come from deforming the trajectories so that their disks touch,
and then applying Lemma 4.4, therefore they correspond to the isomorphism C(w) ◦ C(U), while the
vertical arrow is the isomorphism (41) tensored with identity.

Now diagram (40) maps

ow ⊗∧
i e

w
i ⊗ oU ⊗∧

i e
U
i ⊗ ex

2

k2+1
✤ //

❴

��

(−1)r+1
∧

i ∂wi ⊗ (−1)k2
∧

i ∂Ui ⊗ ex
2

k2+1❴

��
(ow ∧ oU ) ⊗ (

∧
i e

w
i ∧∧

i e
U
i ) ⊗ ex

2

k2+1
✤ //

❴

��

(−1)k2+r+1(
∧

i ∂wi ∧
∧

i ∂Ui) ⊗ ex
2

k2+1❴

��
(−1)(r−1)(k0+k1+k2)oX ⊗ (

∧
i e

x0

i ∧∧
i e

x1

i ∧∧
i6=k2+1 e

x2

i ) ⊗ ex
2

k2+1
✤ //

❴

��

(−1)k2+r+1+r(k0+k1+k2)
∧

i ∂Xi ⊗ ex
2

k2+1❴

��
(−1)(r−1)(k0+k1+k2+1)

oX ⊗∧
i e

X
i

✤ // (−1)k2+r+1+r(k0+k1+k2)
∧

i ∂Xi ∧ inwardδ

We will explain in a moment why it is so. Assuming this, we see from the bottom arrow, which is the
goal of this computation, that the orientation oX , and therefore the isomorphism C(δ) = C(w)◦C(U),
corresponds to the orientation

(−1)k0+k1
∧

i ∂Xi ∧ inwardδ ⊗
∧

i e
X
i ,
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as claimed.
Let us briefly explain the diagram. In the top square the top arrow comes from the definition of the

orientations ow, oU , the left arrow is just the direct sum isomorphism composed with the interchange
isomorphism, which does not produce a sign since indDU |Y U

Γ
= 0. The right arrow comes from the

normalization property §2.1.0.3. In the middle square we use the fact that ∂ui
j
7→ ∂xi

j
for all relevant

i, j, while ∂wi 7→ ∂x2
k2+i

, and the additional sign comes from the interchange of factors in the wedge

product. In the left arrow we similarly have eu
i

j 7→ ex
i

j and ewi 7→ ex
2

k2+i+1, and the additional sign
comes from interchange of factors in the wedge product. In the bottom square, in the right arrow we
use the fact that ex

2

k2+1 lifts to inwardδ ∈ kerDX |Y X
Q

, while in the left arrow the additional sign again

comes from interchange of factors in the wedge product.
Consider now the second case. We have the following commutative diagram, obtained by methods

similar to those above.

d(DU |Y U
Γ

) ⊗ d(TUQ/Γ) ⊗ d(Dw|Y w
Γ

) ⊗ d(TwQ/Γ) ⊗ d(T r
x0Q/Γ) //

��

d(DU |Y U
Q

) ⊗ d(Dw|Y w
Q

) ⊗ d(T r
x0Q/Γ)

��
d(DU |Y U

Γ
⊕Dw|Y w

Γ
) ⊗ d(TUQ/Γ ⊕ TwQ/Γ) ⊗ d(T r

x0Q/Γ) //

��

d(DU |Y U
Q

⊕Dw|Y w
Q

) ⊗ d(T r
x0Q/Γ)

��
d(DX |Y X

Γ
) ⊗ d(T x0:¬r

X Q/Γ) ⊗ d(T r
x0Q/Γ) //

��

d(DX |
Y X,x0:¬r
Q

) ⊗ d(T r
x0Q/Γ)

��
d(DX |Y X

Γ
) ⊗ d(TXQ/Γ) // d(DX |Y X

Q
)

(42)
By definition, the isomorphism C(w) corresponds to orientations

(−1)r+1
∧

i ∂wi ⊗
∧

i e
w
i ∈ d(Dw|Y w

Q
) ⊗ d(TwQ/Γ)

and ow ∈ d(Dw|Y w
Γ

), while C(U) corresponds to orientations

(−1)k2
∧

i ∂Ui ⊗
∧

i e
U
i ∈ d(DU |Y U

Q
) ⊗ d(TUQ/Γ)

and oU ∈ d(DU |Y U
Γ

). We have the isomorphism

d(DU |Y U
Γ

) ⊗ d(Dw|Y w
Γ

) ≃ d(DX |Y X
Γ

)

obtained by composing the direct sum isomorphism with deformation and gluing; let oX be the image
of oU ⊗ ow under this isomorphism. This isomorphism enters in the vertical arrow of the following
commutative diagram:

d(DU |Y U
Γ

) ⊗ d(Dw|Y w
Γ

) ⊗ d(DA0♯TS(q0)) ⊗ d(DA1♯TS(q1)) //

��

d(DA2♯TS(q2))

d(DX |Y X
Γ

) ⊗ d(DA0♯TS(q0)) ⊗ d(DA1♯TS(q1))

33❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢
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where the horizontal arrows correspond to the isomorphism C(U) ◦ (C(w) ⊗ id). It follows that oX is
precisely the orientation corresponding to this isomorphism by an obvious modification of Lemma 4.4
applied to a deformed triangle where the disks touch. Therefore the diagram (42) maps

oU ⊗∧
i e

U
i ⊗ ow ⊗∧

i e
w
i ⊗ ex

0

r
✤ //

❴

��

(−1)k2
∧

i ∂Ui ⊗ (−1)r+1
∧

i ∂wi ⊗ ex
0

r❴

��
(−1)k0+k1+k2(oU ∧ ow) ⊗ (

∧
i e

U
i ∧∧

i e
w
i ) ⊗ ex

0

r
✤ //

❴

��

(−1)k2+r+1(
∧

i ∂Ui ∧
∧

i ∂wi) ⊗ ex
0

r❴

��
(−1)r(k0+k1+k2)oX ⊗ (

∧
i6=r e

x0

i ∧∧
i e

x1

i ∧∧
i e

x2

i ) ⊗ ex
0

r
✤ //

❴

��

(−1)k2+r+1+r(k0+k1+k2)
∧

i ∂Xi ⊗ ex
0

r❴

��
(−1)(r+1)(k0+k1+k2)oX ⊗∧

i e
X
i

✤ // (−1)k2+r+1+r(k0+k1+k2)
∧

i ∂Xi ∧ inwardδ

whence it follows that oX corresponds to the isomorphism C(U) ◦ (C(w) ⊗ id) and to the orientation

(−1)k0+k1+r+1
∧

i ∂Xi ∧ inwardδ ⊗
∧

i e
X
i ,

as claimed. Note that C(δ) = −C(U) ◦ (C(w) ⊗ id) by definition.
We now turn the the third case. We similary have the following commutative diagram:

d(DU |Y U
Γ

) ⊗ d(TUQ/Γ) ⊗ d(Dw|Y w
Γ

) ⊗ d(TwQ/Γ) ⊗ d(T r
x1Q/Γ)

��

// d(DU |Y U
Q

) ⊗ d(Dw|Y w
Q

) ⊗ d(T r
x1Q/Γ)

��
d(DU |Y U

Γ
⊕Dw|Y w

Γ
) ⊗ d(TUQ/Γ ⊕ TwQ/Γ) ⊗ d(T r

x1Q/Γ)

��

// d(DU |Y U
Q

⊕Dw|Y w
Q

) ⊗ d(T r
x1Q/Γ)

��
d(DX |Y X

Γ
) ⊗ d(T x1:¬r

X Q/Γ) ⊗ d(T r
x1Q/Γ)

��

// d(DX |
Y X,x1:¬r
Q

) ⊗ d(T r
x1Q/Γ)

��
d(DX |Y X

Γ
) ⊗ d(TXQ/Γ) // d(DX |Y X

Q
)

(43)
We have: the isomorphism C(w) corresponds to orientations

(−1)r+1
∧

i ∂wi ⊗
∧

i e
w
i ∈ d(Dw|Y w

Q
) ⊗ d(TwQ/Γ)

and ow ∈ d(Dw|Y w
Γ

), while C(U) corresponds to orientations

(−1)k2
∧

i ∂Ui ⊗
∧

i e
U
i ∈ d(DU |Y U

Q
) ⊗ d(TUQ/Γ)

and oU ∈ d(DU |Y U
Γ

). We have the isomorphism

d(DU |Y U
Γ

) ⊗ d(Dw|Y w
Γ

) ≃ d(DX |Y X
Γ

)
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obtained by composing the direct sum isomorphism with deformation and gluing; let oX be the image
of oU ⊗ ow under this isomorphism. This isomorphism enters in the bottom vertical arrow of the
following commutative diagram:

d(DU |Y U
Γ

) ⊗ d(DA0♯TS(q0)) ⊗ d(Dw|Y w
Γ

) ⊗ d(DA1♯TS(q1))

++❳❳❳❳❳
❳❳❳❳❳

❳❳❳❳❳
❳❳❳❳❳

❳❳❳

R

��
d(DU |Y U

Γ
) ⊗ d(Dw|Y w

Γ
) ⊗ d(DA0♯TS(q0)) ⊗ d(DA1♯TS(q1)) //

��

d(DA2♯TS(q2))

d(DX |Y X
Γ

) ⊗ d(DA0♯TS(q0)) ⊗ d(DA1♯TS(q1))

33❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢

where the top and bottom right arrows correspond to the isomorphism C(U) ◦ (id⊗C(w)), the top
vertical arrow is the interchange of factors times the Koszul sign

(−1)
indDA0 ♯TS(q0)·indDw|Y w

Γ = (−1)n−k .

It follows that the isomorphism C(U) ◦ (id⊗C(w)) corresponds to the orientation (−1)n−k
oX . The

diagram (43) maps

oU ⊗
∧

i e
U
i ⊗ ow ⊗

∧
i e

w
i ⊗ ex

1

r
✤ //

❴

��

(−1)k2
∧

i ∂Ui ⊗ (−1)r+1
∧

i ∂wi ⊗ ex
1

r❴

��
(−1)k0+k1+k2(oU ∧ ow) ⊗ (

∧
i e

U
i ∧

∧
i e

w
i ) ⊗ ex

1

r
✤ //

❴

��

(−1)k2+r+1(
∧

i ∂Ui ∧
∧

i ∂wi) ⊗ ex
1

r❴

��
(−1)r(k1+k2)+k0oX ⊗ (

∧
i e

x0

i ∧∧
i6=r e

x1

i ∧∧
i e

x2

i ) ⊗ ex
1

r
✤ //

❴

��

(−1)k2+r+1+r(k1+k2)
∧

i ∂Xi ⊗ ex
1

r❴

��
(−1)(r+1)(k1+k2)+k0oX ⊗

∧
i e

X
i

✤ // (−1)k2+r+1+r(k1+k2)
∧

i ∂Xi ∧ inwardδ

whence it follows that oX , which corresponds to the isomorphism (−1)n−kC(U) ◦ (id⊗C(w)), corre-
sponds to the orientation

(−1)k0+k1+r+1
∧

i ∂Xi ∧ inwardδ ⊗
∧

i e
X
i .

It follows that the isomorphism C(U) ◦ (id⊗C(w)) corresponds to the orientation

(−1)n−k+k0+k1+r+1
∧

i ∂Xi ∧ inwardδ ⊗
∧

i e
X
i ,

as claimed. Note that by definition C(δ) = −(−1)n−kC(U) ◦ (id⊗C(w)). This finishes the proof of
Lemma 4.10.

It remains to prove Lemma 4.11.

Proof. We can assume without loss of generality that the two disks which touch in the degenerate
triangle are separated by a positive length gradient trajectory in V , and therefore in W the two disks
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are glued together into a single one. Assume first that at least one of the disks lies in leg 0 of the
triangle, while the other disk may either belong to the same leg or be the core. Therefore in V the two
disks are separated by a piece of gradient trajectory, and let us assume its number is j. Then we have
the following commutative diagram:

d(DV |Y V
Γ

) ⊗ d(TVQ/Γ) // d(DV |Y V
Q

)

d(DV |Y V
Γ

) ⊗ d(T v0:¬j
V Q/Γ) ⊗ d(T j

v0Q/Γ) //

OO

��

d(DV |Y V,v0:¬j
Q

) ⊗ d(T j
v0Q/Γ)

OO

��
d(DW |Y W

Γ
) ⊗ d(TWQ/Γ) ⊗ d(T j

v0Q/Γ) // d(DW |Y W
Q

) ⊗ d(T j
v0Q/Γ)

(44)

where the top square corresponds to the exact Fredholm square

DV |Y V
Γ

��

DV |Y V
Γ

//

��

0

��
DV |Y V,v0:¬j

Q

//

��

DV |Y V
Q

//

��

T j
v0Q/Γ

T v0:¬j
V Q/Γ // TVQ/Γ // T j

v0Q/Γ

To obtain the bottom square, we note that, similarly to what we had during the proof of Lemma 4.6,
we have the exact triples

0 → DV |Y V
Γ

→ DV |Y V,v0:¬j
Q

→ T v0:¬j
V Q/Γ → 0 .

0 → DW |Y W
Γ

→ DW |Y W
Q

→ TWQ/Γ → 0 .

We have canonical isomorphisms

d(DV |Y V
Γ

) ≃ d(DW |Y W
Γ

) , d(DV |Y V,v0:¬j
Q

) ≃ d(DW |Y W
Q

) , and d(T v0:¬j
V Q/Γ) ≃ d(TWQ/Γ) ,

obtained as follows. The pearly triangle V can be deformed into the degenerate triangle, in which two
disks are then glued to obtain W . During this process the operator DV |Y V

Γ
undergoes deformation

and linear gluing, with DW |Y W
Γ

as the result; similarly, the space T v0:¬j
V Q/Γ deforms into TWQ/Γ. If

we let V ′ be the degenerate pearly triangle, we have the corresponding linearized operator DV ′ |Y V ′
Q

,

which is surjective, and moreover the deformation of V into V ′ yields an isomorphism

ker(DV |Y V,v0:¬j
Q

) ≃ ker(DV ′ |Y V ′
Q

) .

In addition, the differential of the gluing map yields an isomorphism

ker(DV ′ |Y V ′
Q

) ≃ ker(DW |Y W
Q

) .
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In total we obtain an isomorphism

d(DV |Y V,v0:¬j
Q

) ≃ d(DW |Y W
Q

) .

It is then the feature of the gluing map that the following diagram commutes:

d(DV |Y V
Γ

) ⊗ d(T v0:¬j
V Q/Γ) //

��

d(DV |Y V,v0:¬j
Q

)

��
d(DW |Y W

Γ
) ⊗ d(TWQ/Γ) // d(DW |Y W

Q
)

with the horizontal arrows coming from the above exact triples and the vertical arrows being the above
canonical isomorphisms.

Assume now that the isomorphism C corresponds to orientations

oV ∈ d(DV |Y V
Γ

) ,
∧

i ∂Vi ∧ ηV ⊗∧
i e

V
i ∈ d(TV P̃(q0, q1; q2)) ⊗ TVQ/Γ ,

and to orientations

oW ∈ d(DW |Y W
Γ

) , ǫ
∧

i ∂Wi ∧ ηW ⊗∧
i e

W
i ∈ d(TW P̃(q0, q1; q2)) ⊗ TWQ/Γ ,

and let us compute the sign ǫ. For the convenience of the computation, and without loss of generality,
we assume that ηV is directed from V toward the degenerate triangle V ′. Note that the isomorphism
d(DV |Y V

Γ
) ≃ d(DW |Y W

Γ
) maps oV 7→ oW . Then the diagram (44) maps:

(−1)k0+k1+k2−j
oV ⊗

∧
i e

V
i
✤ // (−1)k0+k1+k2−j

∧
i ∂Vi ∧ ηV

oV ⊗∧
i6=j e

v0

i ∧∧
i e

v1

i ∧∧
i e

v2
i ⊗ ev

0

j
✤ //

❴

OO

❴

��

(−1)k0+k1+k2−j
∧

i ∂Vi ⊗ ev
0

j

❴

OO

❴

��
oW ⊗∧

i e
W
i ⊗ ev

0

j
✤ // −∧

i ∂Wi ∧ ηW ⊗ ev
0

j

The bottom arrow tells us that the orientation oW corresponding to the isomorphism C also corresponds
to the orientation −

∧
i ∂Wi ∧ ηW ⊗

∧
i e

W
i , therefore ǫ = −1 as claimed.

The only computation that needs explanation is the right bottom arrow. The differential of the
gluing map sends: ∂v1,2

i
7→ ∂w1,2

i
for all i, ∂v0

i
7→ ∂w0

i
for i < j. If j < k0, it sends ∂v0

j
+ ∂v0

j+1
7→ ∂w0

j

and −∂v0
j

+ ∂v0
j+1

7→ ηW , and ∂v0
i
7→ ∂w0

i−1
for i > j + 1, therefore

∧
i ∂Vi 7→ −(−1)k0+k1+k2−j

∧
i ∂Wi ∧ ηW .

In case j = k0, the gluing map sends ∂v0
k0

7→ −ηW , and therefore we have

∧
i ∂Vi 7→ −(−1)k0+k1+k2−j

∧
i ∂Wi ∧ ηW .

The computation of ǫ in the case when the breaking/collision happens in leg 1 of the triangle is
entirely analogous. Let us therefore compute ǫ in case the breaking happens in leg 2. Using identical
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arguments, we obtain the following commutative diagram, where we assume that the piece of gradient
trajectory of V which shrinks to 0 at the collision point bears number j:

d(DV |Y V
Γ

) ⊗ d(TVQ/Γ) // d(DV |Y V
Q

)

d(DV |Y V
Γ

) ⊗ d(T v2:¬j
V Q/Γ) ⊗ d(T j

v2Q/Γ) //

OO

��

d(DV |Y V,v2:¬j
Q

) ⊗ d(T j
v2Q/Γ)

OO

��
d(DW |Y W

Γ
) ⊗ d(TWQ/Γ) ⊗ d(T j

v2Q/Γ) // d(DW |Y W
Q

) ⊗ d(T j
v2Q/Γ)

It maps

(−1)k2−j
oV ⊗∧

i e
V
i
✤ // (−1)k2−j

∧
i ∂Vi ∧ ηV

oV ⊗∧
i e

v0

i ∧∧
i e

v1

i ∧∧
i6=j e

v2
i ⊗ ev

2

j
✤ //

❴

��

❴

OO

(−1)k2−j
∧

i ∂Vi ⊗ ev
2

j❴

��

❴

OO

oW ⊗
∧

i e
W
i ⊗ ev

2

j
✤ // ∧

i ∂Wi ∧ ηW ⊗ ev
0

j

We see from the bottom arrow that the orientation oW corresponding to the isomorphism C also
corresponds to the orientation

∧
i ∂Wi ∧ ηW ⊗∧

i e
W
i , therefore ǫ = 1 as claimed.

Again, the bottom right arrow is obtained as follows. The differential of the gluing map sends:
∂v0,1

i
7→ ∂w0,1

i
for all i, ∂v2

i
7→ ∂w2

i−1
for i > j. If j > 1, it sends ∂v2

j−1
+∂v2

j
7→ ∂w2

j−1
and −∂v2

j−1
+∂v2

j
7→

ηW , and ∂v2
i
7→ ∂w2

i
for i < j − 1, therefore

∧
i ∂Vi 7→ (−1)k2−j

∧
i ∂Wi ∧ ηW .

In case j = 1, the gluing map sends ∂v2
1
7→ ηW , and therefore we have

∧
i ∂Vi 7→ (−1)k2−j

∧
i ∂Wi ∧ ηW .

The proof of the lemma is now complete.

We have thus completed the definition of the product on quantum homology.

4.2.4 Unit

Assume we have a regular quantum datum D = (f, ρ, J). We will now construct an element in
QHn(D : L) which serves as a unit for the quantum product. This is defined as follows. Let q be a
maximum of f . Then the stable manifold S(q) is just the singleton {q}. Let 0 ∈ π2(M,L, q) be the
zero class and consider the operator D0♯TS(q). We can canonically orient this operator, as follows.
Let w be the constant disk at q; it clearly represents the class 0. The corresponding Cauchy–Riemann
operator Dw is just the standard Doulbeault operator on the trivial bundle pair (TqM,TqL) → (D2, S1)
with the Hermitian structure (ωq, Jq). This operator is surjective and its kernel consists of constant
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sections with values in TqL. Now the operator Dw♯TS(q) is its restriction to the subspace of sections
of this bundle pair vanishing at 1 ∈ D2. Clearly this restricted operator has trivial kernel, and since it
has index 0, it must be an isomorphism. Therefore we have the canonical positive orientation of this
operator by 1⊗ 1∨, which induces an orientation on the family D0♯TS(q), and therefore an element of
C(q, 0), which we denote 1q. The unit is now the element

1D =
∑

q∈Crit f :
|q|=n

1q ∈ QCn(D : L) .

We claim that this element is a cycle. Indeed, the Morse boundary operator vanishes on it, and from
index considerations in ∂D(1D) there are no terms involving nonconstant holomorphic disks.

To see that the class 1D ∈ QHn(D : L) is the unit with respect to the quantum product, we choose
f1 = f2 = f ′ (this is possible [BC07, BC09]), that is the same function for the first and second slots,
and show that the map

1D ⋆−: QCk(f ′, ρ, J : L) → QCk(f ′, ρ, J : L)

is the identity, so that in fact we have identity already on chain level. First we claim that any pearly
triangle belonging to the zero-dimensional part of P(q, q′; q′′) where q ∈ Crit f , q′, q′′ ∈ Crit f ′ must be
constant, meaning that the only holomorphic disk is the core, that it is the constant disk, and that the
lengths of all the gradient trajectories are zero. Indeed, let U be such a triangle. First we will show
that the zeroth leg contains no disks. If there were a disk, it would be nonconstant, and since lying in
the unstable manifold of q is an open condition, after quotienting out the action of the automorphism
group of the triange, we would obtain a positive-dimensional space, which is a contradiction. The same
argument shows that the core must be constant, which means that we can obtain a pearly trajectory
from q′ to q′′, and that it has index zero. This is only possible if there are no nonconstant disks and
that the resulting gradient trajectory from q′ to q′′ is constant, which is what we claimed.

Next, for a generically chosen f ′, all of its critical points lie in the union of the unstable manifolds
of the maxima of f , which means that all the constant pearly triangles indeed appear and that we
obtain the identity map on QCk(f ′, ρ, J : L) as a result of multiplying by 1D, proving that it indeed
acts as the unit.

4.3 Arbitrary rings and twisted coefficients

Analogously to the case of Floer homology, we can use an arbitrary ground ring R if L satisfies
assumption (O), or otherwise use a ring in which 2 = 0. Also, given a flat R-bundle E over Ω̃L we
can define quantum homology of L twisted by E , which we denote QH∗(D : L; E). We only need to

note that the pairs (q, A) with q ∈ L and A ∈ π2(M,L, q) naturally give rise to points of the space Ω̃L.
Details are left to the reader.

4.4 Duality

The treatment of duality in quantum homology is very similar to the case of Floer homology, and
we follow it closely. The goal here is to establish a canonical chain isomorphism

QC∗(D : L) ≡ QCn−∗(D : L;L) ,

where D is the dual quantum datum, L → Ω̃L is the flat Z-bundle obtained as the normalization of
the pullback of d(TL) to Ω̃L via the evaluation map γ̃ 7→ γ(0). First we define quantum cohomology.
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Fix a regular quantum homology datum D = (f, ρ, J) and define

C(q, A)∨ = HomZ(C(q, A),Z) .

Put
QC∗(D : L) =

⊕

q∈Crit f
A∈π2(M,L,q)

C(q, A)∨ .

This is graded by assigning the elements of C(q, A)∨ the degree |q| − µ(A). The matrix coefficients of
the dual differential ∂∨D are dual to the matrix elements of ∂D as maps C(q′, A′)∨ → C(q, A)∨. We
define another differential

δD: QHk(D : L) → QHk+1(D : L) via δD = (−1)k−1∂∨D .

The cochain complex
(QC∗(D : L), δD)

is the quantum cochain complex and its cohomology is the quantum cohomology

QH∗(D : L) .

The dual quantum datum is defined by D = (−f, ρ, J). The functions f,−f have the same critical
points. For w ∈ C∞(D2, S1, 1;M,L, q) we let w be defined as w(σ, τ) = w(σ,−τ). Then w represents
the class [w]−1 ∈ π2(M,L, q). We also define −w ∈ C∞(D2, S1,−1;M,L, q) via −w(σ, τ) = w(−σ, τ).
Clearly −w = w ◦ φ where φ: D2 → D2 is defined by φ(z) = −z. This map is a conformal isomor-
phism therefore it induces an isomorphism of determinant lines d(Dw) = d(D−w). We also have the
isomorphisms

d(Dw♯TSf(q)) ⊗ d(D−w♯TUf(q)) ≃ d(Dw♯TSf (q) ⊕D−w♯TUf(q)) ≃ d(Dw♯D−w) ≃ d(TqL) , (45)

where the second isomorphism comes from deforming the incidence condition at q from

(TSf (q) ⊕ 0) ⊕ (0 ⊕ TUf (q)) ⊂ TqL⊕ TqL to ∆TqL ,

and the third isomorphism comes from deforming the operator Dw♯D−w into the operator D0 and
using the canonical isomorphism d(D0) = d(TqL).

Since we have Uf (q) = S−f (q), this yields, combined with the isomorphism (45), the following:

d(Dw♯TSf(q)) ⊗ d(Dw♯TS−f(q)) ≃ d(TqL) .

This means that we have a canonical isomorphism

Cf (q, A) ⊗ C−f (q, A−1) ⊗ Lq = Z .

This implies that we have canonically

QC∗(D : L) = QCn−∗(D : L;L)

as modules, where we observe that the elements of C−f (q, A−1) have degree

|q|−f − µ(A−1) = n− |q|f + µ(A) ,
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which is n minus the degree of Cf (q, A). We will now obtain an identification of the differentials.

Fix pairs (q±, A±) so that |q−| − µ(A−) = |q+| − µ(A+) + 1, and let u ∈ P̃(q−, q+) be such that
A−♯u = A+. Represent the classes A± by maps w±. We have the following commutative diagram,
obtained by employing the direct sum, gluing, and deformation isomorphisms:

d(Dw−♯TSf (q−)) ⊗ d(Du|Y u
Γ

) ⊗ d(D−w+♯TS−f (q+)) //

(C(u)⊗id)◦(R⊗id)

��

d(Dw−♯TSf (q−)) ⊗ d(D−w−♯TS−f(q−))

��
d(Dw+♯TSf (q+)) ⊗ d(D−w+♯TS−f(q+)) // d(TL)

where R is the interchange of factors including the Koszul sign

(−1)
indDu|Y u

Γ
·indDw−♯TSf (q−)

= (−1)n−|q−|f+µ(A−) .

Fix o ∈ d(TL) where we trivialize d(TL) along the lower boundary of u, viewed as a degenerate strip
with boundary on L. Fix oq− ∈ Cf (q−, A−), let oq+ = C(u)(oq−) ∈ Cf (q+, A+) and let o−q± ∈
d(D−w±♯TS−f (q±)) be such that oq± ⊗ o−q± 7→ o via the isomorphism (45). The diagram then maps

(−1)n−|q−|+µ(A−)
oq− ⊗ ou ⊗ o−q+

✤ //
❴

��

oq− ⊗ o−q−❴

��
oq+ ⊗ o−q+

✤ // o

Dualizing in a manner similar to the treatment of duality in Floer homology, see §3.11, we obtain the
diagram

d(D−w−♯TSf (q−)) ⊗ d(Du|Y u
Γ

) ⊗ d(Dw+
♯TS−f (q+))

id⊗C(u)//

��

d(D−w−♯TSf (q−)) ⊗ d(Dw−♯TS−f (q−))

��
d(D−w+♯TSf(q+)) ⊗ d(Dw+

♯TS−f(q+)) // d(TL)

Let oq± ∈ d(Dw±♯TS−f (q±)), o−q± ∈ d(D−w±♯TSf(q±)) be obtained from o−q± , oq± , respectively, by
dualization. The latter diagram then maps

(−1)n−|q−|+µ(A−)
o−q− ⊗ ou ⊗ oq+

✤ //
❴

��

o−q− ⊗ oq−❴

��
o−q+ ⊗ oq+

✤ // o

Thus we see that C(u)(oq+) = (−1)n−|q−|+µ(A−)
oq− . This means that the following diagram commutes:

C−f (q+, A
−1
+ ) //

C(u)

��

Cf (q+, A+)∨ ⊗ Lq+

(−1)n−|q−|+µ(A−)C(u)∨⊗P

��
C−f (q−, A

−1
− ) // Cf (q−, A−)∨ ⊗ Lq−
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where P is the parallel transport isomorphism on the line bundle L, see §3.11. This means that we
have established a canonical isomorphism of chain complexes:

(QC∗(D : L), ∂D) = (QCn−∗(D : L;L), δD ⊗ P) .

It therefore induces the duality isomorphism on homology:

QH∗(D : L) = QHn−∗(D : L;L) . (46)

4.4.1 Augmentation

Similarly to the case of Floer homology, we can view the unit as a graded map

1: Z[n] → QH∗(D : L) .

The duality isomorphism (46) means that we obtain a graded map

Z[n] → QHn−∗(D : L;L) ,

and by dualizing we obtain
QH∗(D : L;L) → Z ,

which is the augmentation map.

4.5 Quantum homology of M

We call a triple D = (f, ρ, J) a quantum datum for M if (f, ρ) is a Morse–Smale pair on M and
J is an ω-compatible almost complex structure on M . We call it regular if the various moduli spaces
below are transversely cut out. This is the case for a generic J .

4.5.1 Generators, the complex as a module, and the boundary operator

Fix a regular quantum datum D = (f, ρ, J) for M . For a critical point q ∈ Crit f and a homotopy
class A ∈ π2(M, q) we can construct the family of operators DA, just like in the Lagrangian case.
Members of DA are formal linearized operators Du of smooth maps u: (S2, 1) → (M, q) in class A with
respect to some auxiliary connection ∇ on M . We have the following foundational lemma.

Lemma 4.12. The family DA possesses a canonical orientation.

Proof. This is a family of real Cauchy–Riemann operators on a closed Riemann surface. The set
of real Cauchy–Riemann operators retracts onto the subset of complex linear operators, which have
canonically oriented determinant lines. It follows that the determinant line bundle of the set of real
Cauchy–Riemann operators, and therefore the determinant line of DA, is canonically oriented.

We also have the family DA♯TS(q), defined analogously to the Lagrangian case. Using an exact
Fredholm triple analogous to the ones appearing in the proof of Lemma 4.2, we see that this family is
orientable as well, and thus we can define

C(q, A)

to be the rank 1 free abelian group whose two generators are its two possible orientations. We let

QC∗(D) =
⊕

q∈Crit f
A∈π2(A,q)

C(q, A) .
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This is graded by assigning the elements of C(q, A) the degree |q| − 2c1(A). The boundary operator
∂D: QC∗(D) → QC∗−1(D) is just the ordinary Morse boundary operator, enhanced by the homotopy
classes. More precisely, it is defined as follows. We first define the Morse boundary operator. When
A = 0 ∈ π2(M, q), we have canonically d(DA) = d(TqM), and therefore canonically d(DA♯TS(q)) =

d(TS(q)). For a Morse trajectory u ∈ M̃(q, q′) of index 1 we have a natural exact sequence, see (20):

0 → R∂u → TS(q′) → TS(q) → 0

whence
d(TS(q′)) ≃ d(R∂u) ⊗ d(TS(q)) .

Substituting the positive orientation of R we get the isomorphism

C(u): C(q, 0) ≃ C(q′, 0) .

For general A, this isomorphism induces an isomorphism

C(u): C(q, A) ≃ C(q′, A′)

where A′ ∈ π2(M, q′) is obtained by transferring the class A to q′ along u. Indeed, from the relations

d(DA) ⊗ d(TS(q)) ≃ d(DA♯TS(q)) ⊗ d(TqM)

d(DA′) ⊗ d(TS(q′)) ≃ d(DA′♯TS(q′)) ⊗ d(Tq′M)

we see that to induce such an isomorphism, it suffices to produce isomorphisms d(DA) ≃ d(DA′) and
d(TqM) ≃ d(Tq′M). The former is obtained by deformation induced by moving the base point along
u, while the latter comes from the fact that M is oriented. The boundary operator is then given by its
matrix elements. The matrix element between (q, A) and (q′, A′) where |q| = |q′|+1 and c1(A′) = c1(A)
is given by the sum ∑

[u]∈M(q,q′):A♯u=A′

C(u): C(q, A) → C(q′, A′) .

Theorem 4.13. The boundary operator satisfies ∂2D = 0.

We can therefore define the quantum homology of M , QH∗(D), as the homology of (QC∗(D), ∂D).

Proof (of Theorem 4.13). This immediately follows from the parallel proof in Morse theory, coupled
with the observation that transferring a class A ∈ π2(M, q) along paths ending at q′′, which are
homotopic with fixed endpoints, yields the same class A′′ ∈ π2(M, q′′). In the Morse-theoretic proof
one uses the compactified 1-dimensional moduli space of gradient trajectories, and transferring a class
along the trajectories comprising the two boundary points of a connected component of it yields the
same class at the other critical point, therefore the proof goes through, even though the quantum
boundary operator distinguishes homotopy classes of spheres.

4.5.2 Product

To define the product we need to define moduli spaces of spiked spheres. Fix data quantum data
Di = (fi, ρ, J), i = 0, 1, 2. Let M̃◦(J) be the space of parametrized J-holomorphic spheres in M ,
including constant ones. We have the evaluation map

ev : C∞(S2,M) →M3 , u 7→ (u(0), u(1), u(∞)) ,
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where we view S2 = CP 1. The space of spiked spheres is

P(q0, q1; q2) = ev−1(U(q0) × U(q1) × S(q2)) ∩ M̃◦(J) .

For generic J it is a smooth manifold of local dimension at u

|q0| + |q1| − |q2| + 2c1(u) − 2n

provided this number is ≤ 1. For u with ev(u) ∈ U(q0) × U(q1) × S(q2) define the space

Y u = {ξ ∈ W 1,p(u) | ξ(0) ∈ Tu(0)U(q0), ξ(1) ∈ Tu(1)U(q1), ξ(∞) ∈ Tu(∞)S(q2)} .

Assume dimu P(q0, q1; q2) = 0. Then the linearized operator Du|Y u has index zero and is surjective,
therefore it possesses the canonical positive orientation ou = 1 ⊗ 1∨. Deform u into u′ ∈ C∞(S2,M)
satisfying ev(u′) = (q0, q1, q2). Then we have a canonical isomorphism

d(Du|Y u) ≃ d(Du′ |Y u′ ) .

Using direct sum, deformation, and linear gluing isomorphisms, combined with arguments involving
deformation of incidence conditions at q0, q1 (see the proof of Lemma 4.10 of the Lagrangian case), we
get an isomorphism

d(Du′ |Y u′ ) ⊗ d(DA0♯TS(q0)) ⊗ d(DA1♯TS(q1)) ≃ d(DA2♯TS(q2)) ,

where A2 = A0♯A1♯u, and composing this with the deformation isomorphism d(Du|Y u) ≃ d(Du′ |Y u′ ),
we get a bijection between orientations of Du|Y u and isomorphisms C(q0, A0)⊗C(q1, A1) ≃ C(q2, A2).
Thus the standard orientation ou ∈ d(Du|Y u) gives rise to the isomorphism

C(u): C(q0, A0) ⊗ C(q1, A1) ≃ C(q2, A2) .

The matrix element of the product is then

∑

u∈P(q0,q1;q2):
A0♯A1♯u=A2

C(u): C(q0, A0) ⊗ C(q1, A1) ≃ C(q2, A2) .

We have thus defined a bilinear operation

∗: QCk(D0) ⊗QCl(D1) → QCk+l−2n(D2) .

Theorem 4.14. The operation ∗ is a chain map. More precisely

∂D2 ◦ ∗ = ∗ ◦ (∂D0 ⊗ id +(−1)2n−k id⊗∂D1): QCk(D0) ⊗QCl(D1) → QCk+l−2n−1(D2) .

Proof. This is proved in complete analogy with the Lagrangian case, except that there is no holomor-
phic curve breaking or collision to take into account. The 1-dimensional moduli space P(q0, q1; q2) can
be compactified by adding Morse breaking. One then computes the induced orientations on P coming
from isomorphisms corresponding to the constituent trajectories of boundary points to conclude.
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4.5.3 Unit

This is defined analogously to the Lagrangian case. Let D = (f, ρ, J) be a regular quantum datum.
Like in the Lagrangian case, we have the elements 1q ∈ C(q, 0) for every maximum q ∈ Crit f where
0 ∈ π2(M, q) is the zero class. Their sum

1D =
∑

q∈Crit f :
|q|=2n

1q ∈ QC2n(D)

is the unit. Again, like in the Lagrangian case, one checks that 1D actually is a unit on chain level,
and therefore in homology.

4.5.4 Quantum module action

Fix a compatible almost complex structure J and quantum data Di = (fi, ρ, J), i = 0, 1 for L, and
a quantum datum D = (f, ρ′, J) for M , such that all of them are regular. The quantum module
action is a bilinear operation

•: QCk(D) ⊗QCl(D0 : L) → QCk+l−2n(D1 : L) .

This is defined via its matrix elements which are homomorphisms

C(q, A) ⊗ C(q0, A0) → C(q1, A1)

for q ∈ Crit f, qi ∈ Crit fi, A ∈ π2(M, q), Ai ∈ π2(M,L, qi), such that |q| + |q0| − |q1| − 2c1(A) −
µ(A0) +µ(A1)− 2n = 0. In order to define these, we need to describe additional pearly moduli spaces.

Fix qi ∈ Crit fi and q ∈ Crit f . Recall the spaces M̃◦(L, J), M̃(L, J) of J-holomorphic disks with
boundary on L, respectively nonconstant J-holomorphic disks. For k0, k1 ≥ 0 we have the evaluation
map

ev : (C∞(D2, S1;M,L))k0+k1+1 → L2(k0+k1)+3

defined by

ev(U = (u0, u1, u)) = (u(0);u01(−1), u01(1), . . . , u0k0
(−1), u0k0

(1), u(−1);

u(1), u11(−1), u11(1), . . . , u1k1
(−1), u1k1

(1)) ,

where ui ∈ (C∞(D2, S1;M,L))ki . We let

P̃k0,k1(q, q0; q1) = ev−1(Uf (q) × Uf0(q0) ×Qk0

f0,ρ
×Qk1

f1,ρ
× Sf1(q1))∩
(M̃(L, J))k0 × (M̃(L, J))k1 × M̃◦(L, J) .

For the sake of convention we call this space the space of spiked pearls. There is a natural Rk0+k1 -action
on this space and we let Pk0+k1(q, q0; q1) be the quotient. We also define

P̃(q, q0; q1) =
⋃

k0,k1≥1

P̃k0,k1(q, q0; q1) and P(q, q0; q1) =
⋃

k0,k1≥1

Pk0,k1(q, q0; q1) .

We have [BC07, BC09]:
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Proposition 4.15. Fix Morse-Smale pairs (fi, ρ)i=0,1 and (f, ρ′). Then there is a subset of J (M,ω) of
the second category so that for each J in this subset, for all qi ∈ Crit fi, q ∈ Crit f the space P(q, q0; q1)
is a smooth manifold of local dimension at [U ] equal to

|q| + |q0| − |q1| + µ(U) − 2n

provided this number is at most zero.

We proceed with the definition of the matrix element. Fix A ∈ π2(M, q) and A0 ∈ π2(M,L, q0).
There is an obvious way to produce a class A♯A0♯U ∈ π2(M,L, q1) for U ∈ (C∞(D2, S1;M,L))k0+k1+1

with ev(U) ∈ Uf (q)×Uf0(q0)×Qk0

f0,ρ0
×Qk1

f1,ρ1
×Sf1(q1) by concatenating representatives of A,A0 with

the constituent disks of U along the pieces of gradient trajectories connecting the evaluation points
of the disks. For U ∈ P̃(q, q0; q1) satisfying |q| + |q0| − |q1| + µ(U) − 2n = 0 we will construct an
isomorphism

C(U): C(q, A) ⊗ C(q0, A0) ≃ C(q1, A♯A0♯U) .

For A1 ∈ π2(M,L, q1) with |q| + |q0| − |q1| − 2c1(A) − µ(A0) + µ(A1) − 2n = 0, the matrix element of
• is then the sum ∑

[U ]∈P(q,q0;q1):
A♯A0♯U=A1

C(U): C(q, A) ⊗ C(q0, A0) ≃ C(q1, A1) .

We therefore have to define the isomorphism C(U). We need some additional spaces. For U with
ev(U) ∈ Uf (q) × Uf0(q0) ×Qk0

f0,ρ
×Qk1

f1,ρ
× Sf1(q1) let us define

Y U
Γ = {Ξ = (ξ0, ξ1, ξ) ∈W 1,p(u0) ⊕W 1,p(u1) ⊕W 1,p(u) |

ξ(0) ∈ Tu(0)Uf (q); (ξ0j (1), ξ0j+1(−1)) ∈ Γ(u0
j(1),u

0
j+1(−1)) for j < k0;

(ξ1j (1), ξ1j+1(−1)) ∈ Γ(u1
j(1),u

1
j+1(−1)) for j ≥ 1;

ξ0(−1) ∈ Tu0(−1)Uf0(q0), (ξ0k0
, ξ(−1)) ∈ Γ(u0

k0
(1),u(−1));

ξ1k1
(1) ∈ Tu1

k1
(1)Sf1 (q1), (ξ(1), ξ11(−1)) ∈ Γ(u(1),u1

k1
(−1))}

and for U with ev(U) ∈ Uf (q) × Uf0(q0) ×Qk0

f0,ρ
×Qk1

f1,ρ
× Sf1 (q1) let us define

Y U
Q = {Ξ = (ξ0, ξ1, ξ) ∈W 1,p(u0) ⊕W 1,p(u1) ⊕W 1,p(u) |

ξ(0) ∈ Tu(0)Uf (q); (ξ0j (1), ξ0j+1(−1)) ∈ T(u0
j(1),u

0
j+1(−1))Qf0,ρ for j < k0;

(ξ1j (1), ξ1j+1(−1)) ∈ T(u1
j(1),u

1
j+1(−1))Qf1,ρ for j ≥ 1;

ξ0(−1) ∈ Tu0(−1)Uf0(q0), (ξ0k0
, ξ(−1)) ∈ T(u0

k0
(1),u(−1))Qf0,ρ;

ξ1k1
(1) ∈ Tu1

k1
(1)Sf1(q1), (ξ(1), ξ11(−1)) ∈ T(u(1),u1

k1
(−1))Qf1,ρ}

The isomorphism C(U) is defined in an entirely similar fashion to the isomorphism entering the defini-
tion of the Lagrangian quantum product. Namely, we construct two canonical bijections: the first one
is between orientations of DU |Y U

Γ
and orientations of d(TU P̃(q, q0; q1)) ⊗ d(TUQ/Γ), while the second

one is between orientations of DU |Y U
Γ

and isomorphisms C(q, A) ⊗ C(q0, A0) ≃ C(q1, A1).
The first bijection comes from the exact triple

0 → DU |Y U
Γ

→ DU |Y U
Q

→ 0TUQ/Γ → 0
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which yields the isomorphism

d(DU |Y U
Q

) ≃ d(DU |Y U
Γ

) ⊗ d(TUQ/Γ) ,

whence the desired bijection.
The construction of the second bijection follows the same lines as for the Lagrangian product.

Namely, we can deform U into U ′ ∈ (C∞(D2, S1;M,L))k0+k1+1 with ev(U ′) ∈ {q} × {q0} × ∆k0+k1

L ×
{q1}, which induces an isomorphism d(DU |Y U

Γ
) ≃ d(DU ′ |Y U′

Γ
). Then we can deform the operator

family DA♯TSf(q) ⊕DA0♯TSf0 ⊕DU ′ |Y U′
Γ

by changing the incidence conditions at q, q0 into an oper-

ator 13) DA♯DA0♯DU ′ |XU′
Γ

, which upon gluing and deformation yields a representative of the family

DA1♯TSf1(q1). Together with the direct sum isomorphisms, we obtain the isomorphism

d(DU |Y U
Γ

) ⊗ d(DA♯TSf (q)) ⊗ d(DA0♯TSf0) ≃ d(DA1♯TSf1(q1)) ,

which shows that indeed there is a bijection between orientations of DU |Y U
Γ

and isomorphisms C(q, A)⊗
C(q0, A0) ≃ C(q1, A1).

The isomorphism C(U) now corresponds to the orientation

(−1)k1
∧

i ∂Ui ⊗
∧

i e
U
i ∈ d(TU P̃(q, q0; q1)) ⊗ d(TUQ/Γ)

where we abbreviated
∧

i ∂Ui =
∧

i ∂u0
i
∧∧

i ∂u1
i

and
∧

i e
U
i =

∧
i e

u0

i ∧∧
i e

u1

i .
We have

Theorem 4.16. The operation • is a chain map. More precisely:

∂D1 ◦ • = • ◦ (∂D ⊗ id +(−1)2n−k id⊗∂D0): QCk(D) ⊗QCl(D0 : L) → QCk+l−2n−1(D1 : L)

Proof. Unlike the proof in the case of Lagrangian quantum product, due to transversality issues in
case NL = 2 (see [BC07, BC09] and reference therein), one needs to use more general objects in
order to prove the asserted relation, namely one needs to use moduli spaces of spiked pearls where the
center is allowed to carry a Hamiltonian perturbation. The proof in [BC07, BC09] then proceeds as
follows: first one defines a perturbed variant of the operation • using the perturbed moduli spaces; it
is then straightforward to show that this perturbed operation is indeed a chain map. Next, one proves
that for all sufficiently small perturbations, there is a canonical bijection between the 0-dimensional
components of perturbed and unperturbed moduli spaces of spiked pearls, and therefore that the two
operations are identical.

Of course, in the original proof of Biran–Cornea orientations are not taken into account, as all the
counts are modulo 2. In [BC12] the authors bring orientations into play, but we will not follow that
argument, since our methods do not presuppose additional choices such as an orientation of L and
(relative S)Pin structures, and since the proof can be carried through without such choices.

The method used in the present paper to show, for example, that the Lagrangian quantum product
defines a chain map, can be used with obvious minimal changes to accomodate the situation where the
core carries a Hamiltonian perturbation. The same exact strategy can be used to show that if we define •
using moduli spaces of spiked pearls in which the center carries a Hamiltonian perturbation, then it is a
chain map, and this is based on transversality and gluing results of Biran–Cornea [BC07, BC09]. What
remains to be shown is that the perturbed operation and the unperturbed one coincide in case the per-
turbation is small enough. Let P0(q, q0; q1) and P0(q, q0; q1;H) denote the 0-dimensional components of

13)The space XU
Γ is defined just like Y U

Γ but with no condition on ξ(0) and ξ11(−1).
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the moduli spaces of spiked pearls and perturbed spiked pearls, respectively. Biran–Cornea prove that
for allH sufficiently small there is a canonical bijection P0(q, q0; q1;H) ≃ P0(q, q0; q1). We have to show
that if UH ∈ P0(q, q0; q1;H) and U ∈ P0(q, q0; q1) correspond under this bijection, then the isomor-
phisms C(UH), C(U) are equal. This is however obvious, since the maps UH , U are close, therefore can
be deformed into each other, which means there is a canonical isomorphism d(DU |Y U

Γ
) = d(DUH |

Y
UH
Γ

).

We have a similar isomorphism d(TU P̃(q, q0; q1)) ⊗ d(TUQ/Γ) ≃ d(TUH P̃(q, q0; q1;H)) ⊗ d(TUHQ/Γ),
which means that the isomorphisms C(UH), C(U), which correspond to specific orientations of these
spaces, coincide.

Thus we have a well-defined bilinear operation on homology

•: QHk(D) ⊗QHl(D0 : L) → QHk+l−2n(D1 : L) .

This is called the quantum module action.

4.6 Spectral sequences

The quantum complexes admit natural filtrations by the Maslov or Chern numbers, and these give
rise to spectral sequences.

We only consider the Lagrangian case. The Lagrangian quantum complex corresponding to a
quantum datum D = (f, ρ, J) is

QC∗(D : L) =
⊕

x∈Crit f
A∈π2(M,L,x)

C(x,A) .

Let us define the increasing filtration

FpQC∗(D : L) =
⊕

x∈Crit f

⊕

A∈π2(M,L,x)
µ(A)≥−pNL

C(x,A) .

It follows from the definition of ∂D that it preserves this filtration. Therefore we have the associated
spectral sequence whose zeroth page is

E0
p,q = FpQCp+q(D : L)/Fp−1QCp+q(D : L)

and so
E0

p,∗ = FpQC∗(D : L)/Fp−1QC∗(D : L) ≃
⊕

x∈Crit f

⊕

A∈π2(M,L,x)
µ(A)=−pNL

C(x,A) .

The boundary operator ∂0 on E0
p,∗ comes from the Morse boundary operator of f , twisted by the local

system ξp, where
ξp(x) = {A ∈ π2(M,L, x) |µ(A) = −pNL} ,

that is (E0
p,∗, ∂

0) ≃ (CM∗(f ; ξp), ∂fξp), where CM∗ means the Morse complex, and ∂fξp is the Morse
boundary operator of f twisted by ξp. Therefore the first page is the twisted homology:

E1
p,q ≃ Hp+q−pNL(L; ξp) .

Thus we have
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Theorem 4.17. The filtration by the Maslov index of disks, F∗QC∗(D : L) induces a spectral sequence
whose first page is isomorphic to the singular homology of L twisted by the local systems ξp, and which
converges to QH∗(D : L). Moreover, using different quantum data, this spectral sequence can be seen
to be multiplicative in an obvious sense.

5 PSS isomorphisms

This section is dedicated to the definition and properties of the PSS isomorphisms. The idea of the
construction, at least over Z2, is contained in [BC07, BC09] and the references therein, however to the
best of our knowledge, this is the first time the construction is carried out in detail over an arbitrary
ground ring.

In §5.1 we define the PSS morphisms on chain level via their matrix elements, prove that they are
chain maps and that they are independent of the auxiliary data such as a perturbation datum. §5.2
covers the main properties of the PSS maps, namely the fact that they are indeed isomorphisms and
that they respect the natural algebraic structures on Floer and quantum homology.

5.1 Definition

We start with the Lagrangian Floer and quantum homologies. Let (H, J) be a regular Floer datum
for L and D = (f, ρ, I0) a regular quantum datum for L. The PSS map

PSSD
H,J : CF∗(H : L) → QC∗(D : L)

will be defined through its matrix elements, to define which we need new moduli spaces which combine
solutions of Floer’s PDE and pearly trajectories. Denote D2

− = D2 − {−1} and consider −1 as a
negative puncture. Endow it with the standard negative end, and associate the Floer datum (H, J)
to it. Choose a regular perturbation datum (K, I) on D2

− which is compatible with (H, J) and which
satisfies K = 0, I = I0 near 1. Let

M−(γ̃) = {u ∈ C∞
b (D2

−, ∂D
2
−;M,L; γ) | ∂K,Iu = 0 , [γ̂♯u] = 0 ∈ π2(M,L)} .

Since the perturbation datum is regular, this is a smooth manifold of dimension |γ̃|. We have the
evaluation map

ev : M−(γ̃) × (M̃(L, I0))k → L2k+1

given by
ev(u = (u0, . . . , uk)) = (u0(1), u1(−1), u1(1), . . . , uk(−1), uk(1)) .

Fix q ∈ Crit f and define
P̃k(γ̃, q) = ev−1(Qk × S(q)) .

There is a natural Rk-action on this space and we let Pk(γ̃, q) be the quotient. We also denote

P̃(γ̃, q) =
⋃

k≥0

P̃k(γ̃, q) and P(γ̃, q) =
⋃

k≥0

Pk(γ̃, q) .

As Biran–Cornea indicate [BC07, BC09], it can be shown that for fixed (H, J) and D there is a subset
of J (M,ω) of second category such that for each I0 in it P(γ̃, q) is a smooth manifold of local dimension
at [u] equal to |γ̃| − |q| + µ(u) whenever this number does not exceed 1.
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We now proceed with the definition of the matrix elements. Given

u ∈ C∞
b (D2

−, ∂D
2
−;M,L, γ) × (C∞(D2, S1;M,L))k

with ev(u) ∈ Qk×S(q) there is an obvious way of producing a class γ̃♯u ∈ π2(M,L, q) by concatenating
γ̂ with u0 and the disks in u along pieces of gradient trajectories connecting the evaluation points. For
u ∈ P̃(γ̃, q) with |γ̃|−|q|+µ(u) = 0 and any class of cappings γ̃′ for γ we will construct an isomorphism

C(u): C(γ̃′) → C(q, γ̃′♯u)

For A ∈ π2(M,L, q) the matrix element of the PSS map is then
∑

[u]∈P(γ̃,q):
γ̃′♯u=A

C(u): C(γ̃′) → C(q, A) .

It remains to define the isomorphism C(u). This is entirely analogous to all the cases described
above: there are natural bijections between orientations of 14) Du|Y u

Γ
, isomorphisms C(γ̃′) ≃ C(q, A)

for A = γ̃′♯u, and orientations of d(TuP̃(γ̃, q)) ⊗ d(TuQ/Γ). The isomorphism C(u) is then the one
corresponding to the orientation

(−1)k
∧

i ∂ui ⊗
∧

i e
u
i ∈ d(TuP̃(γ̃, q)) ⊗ d(TuQ/Γ) ,

where k is the number of holomorphic disks in u. The bijections are constructed as follows: the first
one is obtained using deformation and gluing arguments akin to those used in the definition of quantum
homology and various algebraic structures on it. The second one comes from the exact Fredholm triple

0 → Du|Y u
Γ
→ Du|Y u

Q
→ 0TuQ/Γ → 0 .

We have

Theorem 5.1. The operator PSSD
H,J thus defined is a chain map:

∂D ◦ PSSD
H,J = PSSD

H,J ◦∂H,J .

Proof. The argument is almost identical to the above proofs, so we just briefly outline the main steps.
Let P1(γ̃, q) denote the union of 1-dimensional components of P(γ̃, q). This space can be compactified
by adding points of the following types: Floer breaking at the negative end of u0; Morse breaking of
one of the gradient trajectories; splitting of a holomorphic disk ui, i > 0, into two; splitting of u0 into
an element of M−(γ̃) and a holomorphic disk; and collision of ui, ui+1 for some i ≥ 0. Just as in
case of pearly spaces, we can define P1(γ̃, q) to be the union of compactified components of P1(γ̃, q)
where points corresponding to collision/breaking belonging to two different components are identified
if they represent the same degenerate trajectory. Thus P1(γ̃, q) is endowed with the structure of a
1-dimensional compact topological manifold with boundary. The boundary points correspond to Floer
and Morse breaking and are in an obvious bijection with the summands of the matrix element of

∂D ◦ PSSD
H,J −PSSD

H,J ◦∂H,J

going from C(γ̃′) to C(q, A). One needs to show that for every connected component of P1(γ̃, q) the
summands corresponding to its two boundary points cancel out.

This is achieved as follows. Let [w] ∈ P1(γ̃, q). Then isomorphisms C(γ̃′) → C(q, γ̃′♯w) are in

bijection with orientations of Dw|Y w
Γ

and of d(TwP̃(γ̃, q)) ⊗ d(TwQ/Γ). The following can be shown:

14)The spaces Y u
Γ , Y u

Q
, Xu

Γ , TuQ/Γ are defined in an obvious manner.
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• Suppose δ = ([u], [v]) ∈ M(H, J ; γ̃, γ̃′) × Pk(γ̃′, q) is a boundary point of P1(γ̃, q) and [w] lies
close to δ. Then the orientation corresponding to C(v) ◦ C(u) is −

∧
i ∂wi ∧ inwardδ ⊗

∧
i e

w
i ∈

d(TwP̃(γ̃, q)) ⊗ d(TwQ/Γ).

• Suppose δ = ([u], [v]) ∈ Pk(γ̃, q′)×Pl(q
′, q) and [w] is close to δ. Then the isomorphismC(v)◦C(u)

corresponds to the orientation
∧

i ∂wi ∧ inwardδ ⊗
∧

i e
w
i ∈ d(TwP̃(γ̃, q)) ⊗ d(TwQ/Γ).

• If C: C(γ̃′) ≃ C(q, A) is a fixed isomorphism and u, v ∈ P̃1(γ̃, q) are two points lying on different
sides of a degenerate trajectory in P1(γ̃, q) close to it, and C corresponds to the orientation∧

i ∂ui ∧ ηu ⊗ ∧
i e

u
i , where ηu ∈ TuP̃(γ̃, q) is a vector transverse to the infinitesimal action of

the automorphism group at u, then C corresponds to the orientation
∧

i ∂vi ∧ ηv ⊗
∧

i e
v
i , where

ηv ∈ TvP̃(γ̃, q) points in the same direction as ηu. In other words, the sign in front of the standard
orientation is unchanged when crossing a breaking/collision point.

Let us prove, for example, that if there a connected component ∆ with boundary points δ = ([u], [v]) ∈
M(H, J ; γ̃, γ̃′)×Pk(γ̃′, q) and δ′ = ([u′], [v′]) ∈ Pk′(γ̃, q′)×Pl′(q

′, q), then C(v) ◦C(u) = C(v′) ◦C(u′).
Let {[wt]}t∈(0,1) be a parametrization of ∆ at nondegenerate points, such that

[wt] −−−→
t→0

δ .

The isomorphism C(v) ◦ C(u) corresponds to the orientation

−∧
i ∂wt

i
∧ inwardδ ⊗

∧
i e

wt

i

for t close to 0. We see that C(v) ◦ C(u) also corresponds to the orientation

−∧
i ∂wt

i
∧ inwardδ ⊗

∧
i e

wt

i

for t close to 1. On the other hand the isomorphism C(v′) ◦ C(u′) corresponds to the orientation

∧
i ∂wt

i
∧ inwardδ′ ⊗

∧
i e

wt

i

for t close to 1. Since inwardδ = −inwardδ′ , we see that the two orientations are equal, whence the
equality of the isomorphisms C(v) ◦ C(u) = C(v′) ◦ C(u′).

The computation of the above orientations is done in analogy with the proofs appearing in §4: one
uses commutative diagrams of determinant lines coming from exact Fredholm squares and from gluing,
and uses the structure of the respective gluing maps to conclude.

The opposite PSS map
PSSH,J

D : QC∗(D : L) → CF∗(H : L)

is constructed analogously. We will describe its matrix elements. To define them, we need opposite
moduli spaces. Recall that Ḋ2 = D2 − {1} and consider 1 as a positive puncture. Endow it with the
standard end, and associate the Floer datum (H, J) to it. Choose a regular perturbation datum (K, I)
on Ḋ2 which is compatible with (H, J) and which satisfies K = 0, I = I0 near −1. Let

M+(γ̃) = {u ∈ C∞
b (Ḋ2, ∂Ḋ2;M,L; γ) | ∂K,Iu = 0 , γ̂ is equivalent to u as a capping of γ} .

Since the perturbation datum is regular, this is a smooth manifold of dimension |γ̃|′ = n − |γ̃|. We
have the evaluation map

ev : (M̃(L, I0))k ×M+(γ̃) → L2k+1
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given by
ev(u = (u1, . . . , uk;u0)) = (u1(−1), u1(1), . . . , uk(−1), uk(1);u0(−1)) .

Fix q ∈ Crit f and define
P̃k(q, γ̃) = ev−1(U(q) ×Qk) .

There is a natural Rk-action on this space and we let Pk(q, γ̃) be the quotient. We also denote

P̃(q, γ̃) =
⋃

k≥0

P̃k(q, γ̃) and P(q, γ̃) =
⋃

k≥0

Pk(q, γ̃) .

Again, it can be shown that for fixed (H, J) and D there is a subset of J (M,ω) of the second category
such that for each I0 in it P(q, γ̃) is a smooth manifold of local dimension at [u] equal to |q|− |γ̃|+µ(u)
whenever this number does not exceed 1.

We now proceed with the definition of the matrix elements. Given

u ∈ (C∞(D2, S1;M,L))k × C∞
b (Ḋ2, ∂Ḋ2;M,L; γ)

with ev(u) ∈ U(q) × Qk there is an obvious way of producing a class of cappings A♯u of γ for A ∈
π2(M,L, q) by concatenating a representative of A with the disks of u and the capping u0 of γ along

pieces of gradient trajectories connecting the evaluation points. For u ∈ P̃(q, γ̃) with |q|−|γ̃|+µ(u) = 0
we will construct an isomorphism

C(u): C(q, A) → C(A♯u) .

The matrix element is then ∑

[u]∈P(q,γ̃):
A♯u=γ̃′

C(u): C(q, A) → C(γ̃′) .

It remains to define the isomorphism C(u). This is identical to the above construction: there are
natural bijections between orientations of Du|Y u

Γ
, isomorphisms C(q, A) ≃ C(γ̃) for γ̃ = A♯u, and

orientations of d(TuP̃(q, γ̃)) ⊗ d(TuQ/Γ). The isomorphism C(u) is then the one corresponding to the
orientation ∧

i ∂ui ⊗
∧

i e
u
i ∈ d(TuP̃(γ̃, q)) ⊗ d(TuQ/Γ) .

The bijections are constructed as follows: the first one is obtained using deformation and gluing
arguments akin to those used in the definition of quantum homology and various algebraic structures
on it. The second one comes from the exact Fredholm triple 0 → Du|Y u

Γ
→ Du|Y u

Q
→ 0TuQ/Γ → 0.

We have

Theorem 5.2. The operator PSSH,J
D is a chain map:

∂H,J ◦ PSSH,J
D = PSSH,J

D ◦∂D .

Proof. This is proved in the exact same way as Theorem 5.1, the only difference being in the ori-
entations induced by the boundary points and the fact that there is a sign change when crossing a
breaking/collision point. To summarize the argument, P1(q, γ̃) has the structure of a 1-dimensional
compact topological manifold with boundary consisting of points corresponding to Floer or Morse
breaking. If [w] ∈ P1(q, γ̃), then isomorphisms C(q, A) ≃ C(A♯w) are in bijection with orientations of

Dw|Y w
Γ

and of d(TwP̃(q, γ̃)) ⊗ d(TwQ/Γ). The following can be shown:
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• Suppose δ = ([u], [v]) ∈ Pk(q, γ̃′) × M(H, J ; γ̃′, γ̃) is a boundary point of P1(q, γ̃) and [w] lies
close to δ. Then the orientation corresponding to C(v)◦C(u) is (−1)k

∧
i ∂wi ∧ inwardδ⊗

∧
i e

w
i ∈

d(TwP̃(γ̃, q)) ⊗ d(TwQ/Γ).

• Suppose δ = ([u], [v]) ∈ Pk(q, q′)×Pl(q
′, γ̃) and [w] is close to δ. Then the isomorphismC(v)◦C(u)

corresponds to the orientation (−1)k+l+1
∧

i ∂wi ∧ inwardδ ⊗
∧

i e
w
i ∈ d(TwP̃(γ̃, q)) ⊗ d(TwQ/Γ).

• If C: C(q, A) ≃ C(γ̃′) is a fixed isomorphism and u, v ∈ P̃1(γ, q) are two points lying on different
sides of a degenerate trajectory in P1(γ̃, q) close to it, and C corresponds to the orientation∧

i ∂ui ∧ ηu ⊗
∧

i e
u
i , where ηu ∈ TuP̃(γ̃, q) is a vector transverse to the infinitesimal action of the

automorphism group at u, then C corresponds to the orientation −∧
i ∂vi ∧ ηv ⊗ ∧

i e
v
i , where

ηv ∈ TvP̃(γ̃, q) points in the same direction as ηu. In other words, the sign in front of the standard
orientation flips when crossing a breaking/collision point.

From this we can deduce the vanishing of the matrix elements of

∂H,J ◦ PSSH,J
D −PSSH,J

D ◦∂D .

The definition of PSS maps between Hamiltonian Floer homology and the quantum homology of
M proceeds in a similar, though much simpler, manner. We describe it here briefly, mainly to establish
notation for later use.

Fix a regular nondegenerate periodic Floer datum (H, J) and a regular quantum datum D =
(f, ρ, I0) for M . We start with the definition of

PSSD
H,J : CF∗(H) → QC∗(D) .

Let S2
− = S2 − {−1}, where we view S2 = CP 1, with −1 being a negative puncture. Endow it with

the standard negative end and associate (H, J) to it. Pick a regular perturbation datum (K, I) on S2
−

which is compatible with (H, J) and which satisfies K = 0, I = I0 near 1. For x̃ ∈ CritAH define

M−(x̃) = {u ∈ C∞
b (S2

−,M ;x) | ∂K,Iu = 0 , [x̂♯u] = 0 ∈ π2(M)} .

This is a smooth manifold of dimension |x̃|. We have the evaluation map

ev : M−(x̃) →M , ev(u) = u(1) .

For q ∈ Crit f let
P(x̃, q) = ev−1(S(q)) .

This is a smooth manifold of dimension |x̃| − |q|.
We now define the matrix elements of the PSS map. Given u ∈ C∞

b (S2
−,M ;x) with ev(u) ∈ S(q)

we can produce a class x̃♯u ∈ π2(M, q) by concatenating a representative of x̃ with u and transferring
it to q using the piece of gradient trajectory connecting u(1) with q. For u ∈ P(x̃, q) and any class of
cappings x̃′ of x we will define an isomorphism

C(u): C(x̃′) → C(q, x̃′♯u)

The matrix element of the PSS map is then

∑

u∈P(x̃,q):
x̃′♯u=A

C(u): C(x̃′) → C(q, A) .
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To define the isomorphism C(u) we note that, as usual, there is a bijection between orientations 15)

of Du|Y u and isomorphisms C(x̃′) ≃ C(q, x̃′♯u). On the other hand, Du|Y u is an index zero surjective
operator, therefore an isomorphism. The isomorphism C(u) is the one corresponding to the positive
canonical orientation 1⊗1∨ ∈ d(Du|Y u). The bijection is constructed using the gluing and deformation
isomorphisms.

This defines the PSS map, and we have

Theorem 5.3. The PSS map is a chain map:

∂D ◦ PSSD
H,J = PSSD

H,J ◦∂H,J .

Proof. The 1-dimensional part P1(x̃, q) can be compactified by adding Floer and Morse breaking. It
suffices to note that a boundary point corresponding to Floer breaking induces the outward orientation
on P1(x̃, q) while if it corresponds to Morse breaking, the induced orientation is inward. Since there is no
breaking/collision, the fact that for an element w ∈ P1(x̃, q) there is a bijection between isomorphisms
C(x̃′) ≃ C(q, x̃′♯w) and orientations of d(Dw|Y w) = d(TwP(x̃, q)), suffices to establish the vanishing of
the matrix elements of the difference ∂D ◦ PSSD

H,J = PSSD
H,J ◦∂H,J .

Similarly, we have the opposite PSS map

PSSH,J
D : QC∗(D) → CF∗(H) .

Let S2
+ = S2−{1} with the puncture {1} being positive. Endow it with the standard end and associate

(H, J) to it. Pick a regular perturbation datum (K, I) on S2
+ which is compatible with (H, J) and

which satisfies K = 0, I = I0 near −1. For x̃ ∈ CritAH define

M+(x̃) = {u ∈ C∞
b (S2

+,M ;x) | ∂K,Iu = 0 , u ∈ x̃ as a capping} .
This is a smooth manifold of dimension |x̃|′ = 2n− |x̃|. We have the evaluation map

ev : M+(x̃) →M , ev(u) = u(−1) .

For q ∈ Crit f let
P(q, x̃) = ev−1(U(q)) .

This is a smooth manifold of dimension |q| − |x̃|.
We now define the matrix elements of the PSS map. Given u ∈ C∞

b (S2
+,M ;x) with ev(u) ∈ U(q),

and A ∈ π2(M, q) we can produce a class of cappings A♯u of x by concatenating a representative
of A with u along the piece of gradient trajectory connecting q with u(−1). For u ∈ P(q, x̃) and
A ∈ π2(M, q) we will define an isomorphism

C(u): C(q, A) ≃ C(A♯u) .

The matrix element of the PSS map is then
∑

u∈P(q,x̃):
A♯u=x̃′

C(u): C(q, A) → C(x̃′) .

To define the isomorphism C(u) note that there is a bijection between orientations of Du|Y u and iso-
morphisms C(q, A) ≃ C(A♯u). On the other hand, Du|Y u is an index zero surjective operator, therefore
an isomorphism. The isomorphism C(u) is the one corresponding to the positive canonical orientation
1 ⊗ 1∨ ∈ d(Du|Y u). The bijection is constructed using the gluing and deformation isomorphisms.

This defines the PSS map, and we can prove

15)The space Y u is defined in an obvious manner.
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Theorem 5.4. The PSS map is a chain map:

∂H,J ◦ PSSH,J
D = PSSH,J

D ◦∂D .

5.1.1 Independence of auxiliary data

The idea is to use moduli spaces of mixed pearls parametrized over [0, 1] and to use a homotopy of
auxiliary data, such as conformal structures and perturbation data over the interval. We then define
a chain homotopy between the PSS maps corresponding to the perturbation data over 0, 1 using the
0-dimensional moduli spaces, and then the 1-dimensional moduli spaces are used in order to show that
this is indeed a chain homotopy. This combines techniques from §4 and the present section.

We will give details only for the Lagrangian case, the other one being entirely similar, albeit much
simpler. More precisely, let (H, J) be a regular Floer datum, D = (f, ρ, I0) a regular quantum homology
datum for L, and let (K, I) = {(Kr, Ir)}r∈[0,1] be a homotopy of perturbation data on D2

− compatible
with (H, J), which is stationary for r close to 0, 1. Assume that both (K0, I0), (K1, I1) are regular and
the homotopy is regular as well. Any two perturbation data can be connected by such a homotopy.
For γ̃ ∈ CritAH:L define

M−(K, I; γ̃) = {(r, u) | r ∈ [0, 1] , u ∈ C∞
b (D2

−, ∂D
2
−;M,L; γ) , ∂Kr ,Iru = 0 , [γ̂♯u] = 0 ∈ π2(M,L)} .

This is a smooth manifold of dimension |γ̃| + 1. We have the evaluation map

ev : M−(K, I; γ̃) × (M̃(L, I0))k → L2k+1

defined via
ev(u = (u0, u1, . . . , uk)) = (u0(1), u1(−1), . . . , uk(1))

and we let
P̃k(K, I; γ̃, q) = ev−1(Qk × S(q)) .

We have a natural Rk-action on this space and we let Pk(K, I; γ̃, q) be the quotient. We let P̃(K, I; γ̃, q)
and P(K, I; γ̃, q) be the respective unions of these spaces over k ≥ 0. For generic I0 the space
P(K, I; γ̃, q) is a smooth manifold of local dimension at u equal to |γ̃| − |q| + µ(u) + 1 if this number
does not exceed 1.

Using the 0-dimensional part of this space one can define a homomorphism

Ψ ≡ ΨK,I : CF∗(H : L) → QC∗+1(D : L) .

This is defined via its matrix elements. To define these it suffices, using the above methods, to orient
the operator Du|Y u

Γ
for (r, u) ∈ P̃(K, I; γ̃, q) such that |γ̃| − |q| + µ(u) + 1 = 0. This orientation then

induces an isomorphism C(γ̃′) ≃ C(q, γ̃′♯u), and summing up over the elements of the 0-dimensional
part of P(K, I; γ̃, q) produces the desired matrix elements. In order to orient Du|Y u

Γ
we note that there

is an exact Fredholm triple

0 → Du|Y u
Γ
→ Dr,u|Y u

Q
→ 0Tr[0,1]⊕TuQ/Γ → 0

which induces a bijection between orientations of Du|Y u
Γ

and orientations of d(T(r,u)P̃(K, I; γ̃, q)) ⊗
d(Tr[0, 1] ⊕ TuQ/Γ). Now pick the orientation

∧
i ∂ui ⊗

∧
i e

u
i ∧ ∂r.

Using the 1-dimensional part of P(K, I; γ̃, q) and chasing suitable commutative diagrams as above,
we can prove
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Theorem 5.5. The map ΨK,I defines a chain homotopy between the PSS maps constructed using the
perturbation data (K0, I0) and (K1, I1).

Analogously one proves that the opposite PSS maps are also independent of the perturbation datum
used. This allows us to see that there are well-defined morphisms

PSSD
H,J : HF∗(H, J : L) → QH∗(D : L) , and PSSH,J

D : QH∗(D : L) → HF∗(H, J : L) .

5.2 Properties

5.2.1 PSS maps and the continuation morphisms

Let (Hi, J i), i = 0, 1 be regular Floer data associated to the puncture of D2
−, and let (Hs, Js)s∈R

be a regular homotopy between these which is stationary outside s ∈ (0, 1). Let D = (f, ρ, I0) be a
regular quantum homology datum. We will prove here that the PSS maps respect Floer continuation
morphisms, more precisely that

PSSD
H1,J1 ◦ΦH1,J1

H0,J0 = PSSD
H0,J0 : HF∗(H0, J0 : L) → QH∗(D : L) .

In order to prove this we will construct a suitable chain homotopy. First we need some additional moduli
spaces. Let (K, I) = {(Kr, Ir)}r≥0 be a regular perturbation datum on the trivial family [0,∞)×D2

−,
which is stationary for r near 0, which is compatible with (H0, J0), which satisfies K = 0, I = I0
near 1 ∈ D2

−, and in addition for r large enough we have the following expression in the coordinates
(s, t) ∈ (−∞, 0] × [0, 1] on the end of D2

−:

Kr(s, t) = Hs+r+1
t dt , Ir(s, t) = Js+r+1

t .

For γ̃ ∈ CritAH0 :L let

M−(K, I; γ̃) = {(r, u) | r ∈ [0,∞) , u ∈ C∞
b (D2

−, ∂D
2
−;M,L; γ) , ∂Kr,Iru = 0 , [γ̂♯u] = 0 ∈ π2(M,L)} .

This is a smooth manifold of dimension |γ̃| + 1. We have the evaluation map

ev : M−(K, I; γ̃) × (M̃(L, I0))k → L2k+1

defined via
ev(u = (u0, u1, . . . , uk)) = (u0(1), u1(−1), . . . , uk(1))

and for q ∈ Crit f we let
P̃k(K, I; γ̃, q) = ev−1(Qk × S(q)) .

We have a natural Rk-action on this space and we let Pk(K, I; γ̃, q) be the quotient. We let P̃(K, I; γ̃, q)
and P(K, I; γ̃, q) be the respective unions of these spaces over k ≥ 0. For generic I0 the space
P(K, I; γ̃, q) is a smooth manifold of local dimension at u equal to |γ̃| − |q| + µ(u) + 1 if this number
does not exceed 1.

Using the 0-dimensional part of this space one can define a homomorphism

Ψ ≡ ΨK,I : CF∗(H0 : L) → QC∗+1(D : L) .

This is defined via its matrix elements. To define these it suffices, using the above methods, to orient
the operator Du|Y u

Γ
for (r, u) ∈ P̃(K, I; γ̃, q) such that |γ̃| − |q| + µ(u) + 1 = 0. This orientation then
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induces an isomorphism C(γ̃′) ≃ C(q, γ̃′♯u), and summing up over the elements of the 0-dimensional
part of P(K, I; γ̃, q) produces the desired matrix elements. In order to orient Du|Y u

Γ
we note that there

is an exact Fredholm triple

0 → Du|Y u
Γ
→ Dr,u|Y u

Q
→ 0Tr[0,∞)⊕TuQ/Γ → 0

which induces a bijection between orientations of Du|Y u
Γ

and orientations of d(T(r,u)P̃(K, I; γ̃, q)) ⊗
d(Tr[0,∞) ⊕ TuQ/Γ). Now pick the orientation

∧
i ∂ui ⊗

∧
i e

u
i ∧ ∂r.

The 1-dimensional part of P(K, I; γ̃, q) compactifies by adding Morse breaking, Floer breaking at
γ̃, which corresponds to the continuation morphism, as well as disk collision and breaking. It is then
possible to show, using the same methods as above, that the following is true:

Theorem 5.6. The map ΨK,I defines a chain homotopy between PSSD
H0,J0 and PSSD

H1,J1 ◦ΦH1,J1

H0,J0 .

The proof that the opposite PSS morphism, as well as the PSS morphisms for quantum homology
of M , respect continuation morphisms, proceeds in the same manner. Therefore the various PSS
morphisms assemble into canonical morphisms

PSSD : HF∗(L) → QH∗(D : L) , PSSD : QH∗(D : L) → HF∗(L) ,

and
PSSD : HF∗(M) → QH∗(D) , PSSD : QH∗(D) → HF∗(M) .

5.2.2 PSS maps are isomorphisms

We show here that the compositions

PSSD
H,J ◦PSSH,J

D and PSSH,J
D ◦PSSD

H,J

are chain homotopic to identity.
Let us start with the second composition. We will in fact produce a chain homotopy between

PSSH,J
D ◦PSSD

H,J and a continuation morphism from (H, J) to itself. For this we need some new
moduli spaces. For k ≥ 1 and γ̃± ∈ CritAH:L we have the evaluation map

ev : M−(γ̃−) × (M̃(L, I0))k−1 ×M+(γ̃+) → L2k ,

ev(u = (u0, u1, . . . , uk−1, uk)) = (u0(1), u1(−1), u1(1), . . . , uk−1(−1), uk−1(1), uk(−1)) ,

and we let
P̃k(γ̃−, γ̃+) = ev−1(Qk) .

There is a natural Rk−1-action on this space and we let Pk(γ̃−, γ̃+) be the quotient.

We define P̃0(γ̃−, γ̃+) ≡ P0(γ̃−, γ̃+) = MS(K, I; γ̃−, γ̃+) where S = [r0,∞) × S is a trivial family
for some r0 > 0, and where (K, I) is a regular perturbation datum which equals (Kr, Ir) = (0, I0) for
s ∈ [−r, r], equals (Ht dt, Jt) for s outside (−r− 1, r+ 1), and interpolates between the two for the rest
of values of s. We let

P̃(γ̃−, γ̃+) =
⋃

k≥0

P̃k(γ̃−, γ̃+) , P(γ̃−, γ̃+) =
⋃

k≥0

Pk(γ̃−, γ̃+) .

The set P(γ̃−, γ̃+) is a smooth manifold of local dimension at u equal to |γ̃−| − |γ̃+| + µ(u) + 1 if this
number does not exceed 1. It is now clear how to proceed with the definition of the chain homotopy.
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For u ∈ P̃k(γ̃−, γ̃+) with |γ̃−| − |γ̃+| + µ(u) + 1 = 0, we need to orient Du|Y u
Γ

in order to obtain an
isomorphism C(u): C(γ̃−) ≃ C(γ̃−♯u). For k = 0 this proceeds as described in §3. For k ≥ 1 we have
the exact triple

0 → Du|Y u
Γ
→ Du|Y u

Q
→ TuQ/Γ → 0 .

The operator Du|Y u
Q

is onto with (k − 1)-dimensional kernel which is nothing but TuP̃k(γ̃−, γ̃+). We

orient Du|Y u
Γ

by the orientation corresponding to

∧
i ∂ui ⊗

∧
i e

u
i ∈ d(TuP̃(γ̃−, γ̃+)) ⊗ d(TuQ/Γ) .

Similarly to the above, one proves

Theorem 5.7. The map Ψ thus defined is a chain homotopy between PSSH,J
D ◦PSSD

H,J and the con-

tinuation map ΦH,J
H,J defined with the help of the perturbation datum (Kr0 , Ir0).

We now will show that the composition PSSD
H,J ◦PSSH,J

D is homotopic to the identity. For this we
need new moduli spaces. Recall that D2 − {±1} is biholomorphic to R × [0, 1]. Denote by (s, t) the
coordinates on D2 − {±1} induced by this biholomorphism. Consider a regular perturbation datum
(K, I) on the trivial family S = [0,∞) ×D2 which satisfies: for r close to 0, K = 0, I = I0, for r large
(Kr(s, t), Ir(s, t)) equals (Ht dt, Jt) for s ∈ [−r, r], equals (0, I0) for s /∈ (−r−1, r+1), and interpolates
between the two for the rest of values of s. Consider the space

MS(K, I) = {(r, u) ∈ [0,∞) × C∞(D2, S1;M,L) | ∂Kr,Iru = 0} .

This is a smooth manifold of local dimension at u equal to n+ µ(u) + 1. We have the evaluation map

ev : (M̃(L, I0))k0 ×MS(K, I) × (M̃(L, I0))k1 → L2(k0+k1+1)

defined by

ev(U = (u01, . . . , u
0
k0

;u;u11, . . . , u
1
k1

)) = (u01(−1), . . . , u0k0
(1);u(−1), u(1);u11(−1), . . . , u1k1

(1)) .

For q, q′ ∈ Crit f define

P̃k0,k1(K, I; q, q′) = ev−1(U(q) ×Qk0+k1 × S(q′)) .

There is a natural Rk0+k1 -action on this space and we let Pk0,k1(K, I; q, q′) be the quotient. We also
define

P̃(K, I; q, q′) =
⋃

k0,k1≥0

P̃k0,k1(K, I; q, q′) and P(K, I; q, q′) =
⋃

k0,k1≥0

Pk0,k1(K, I; q, q′) .

The space P(K, I; q, q′) is a smooth manifold of local dimension at U equal to |q| − |q′| + µ(U) + 1
whenever this number does not exceed 1.

In order to define the desired chain homotopy, we need only orient the operator DU |Y U
Γ

for U ∈
P̃k0,k1(K, I; q, q′) such that |q| − |q′| + µ(U) + 1 = 0. We have the exact Fredholm triple

0 → DU |Y U
Γ

→ Dr,U |Tr [0,∞)×Y U
Q

→ Tr[0,∞) × TUQ/Γ → 0

whence the isomorphism

d(Dr,U |Tr [0,∞)×Y U
Q

) ≃ d(DU |Y U
Γ

) ⊗ d(TUQ/Γ) .
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We orient the operator DU |Y U
Γ

by the orientation corresponding to the orientation

(−1)k0
∧

i ∂Ui ⊗
∧

i e
U
i ∧ ∂r .

Using the 1-dimensional moduli spaces, one proves

Theorem 5.8. The map Ψ thus defined is a chain homotopy between PSSD
H,J ◦PSSH,J

D and the identity.

Proof. We need only show that for r = 0 one gets the identity. This follows from dimension consider-
ations and the fact that the central disk is I0-holomorphic in this case. Unless it is constant, it admits
a 1-parameter family of reparametrizations which contradicts the fact that the corresponding pearly
space is 0-dimensional. Therefore the disk is constant and q = q′.

Therefore we have shown that the compositions

PSSD
H,J ◦PSSH,J

D and PSSH,J
D ◦PSSD

H,J

equal identity maps on homology, and therefore they are inverse isomorphisms.
The proof of analogous facts for the Hamiltonian Floer homology and the quantum homology of

M proceeds in a similar, though much simpler, manner.

5.2.3 Continuation maps for quantum homology

It is possible to define continuation morphisms on quantum homology directly using the approach
of Biran–Cornea [BC07, BC09]. But since we are ultimately interested in spectral invariants [LZ15],
it is less important to have an independent good definition of quantum homology and therefore we
choose another path.

Let D,D′ be two data for Lagrangian quantum homology. We define the continuation morphism

ΦD′

D : QH∗(D : L) → QH∗(D′ : L) by ΦD′

D = PSSD′

H,J ◦PSSH,J
D

for a regular Floer datum (H, J) on L. The previous subsection implies that this definition is indepen-
dent of (H, J) since the PSS maps respect Floer continuation maps. Since PSS maps are isomorphisms,
so are the quantum homology continuation maps. In particular we can now define the abstract quantum
homology QH∗(L) as the limit of the system of homologies QH∗(D : L) connected by the isomorphisms
ΦD′

D .
Also we can define the abstract PSS isomorphisms

PSS : HF∗(L) → QH∗(L) and PSS : QH∗(L) → HF∗(L) .

5.2.4 PSS maps respect the algebraic structures

We start with the product in Lagrangian Floer and quantum homologies. Here we show that for
any regular Floer data (Hi, J i) and regular quantum data Di = (fi, ρ, I0) for L, i = 0, 1, 2 we have

PSSD2

H2,J2 ◦ ⋆ ◦(PSSH0,J0

D0
⊗PSSH1,J1

D1
) = ⋆: QH∗(D0 : L) ⊗QH∗(D1 : L) → QH∗(D2 : L) ,

where ⋆ denotes the product on both the Floer and quantum homology. This implies that the PSS
maps respect the multiplicative structure on both sides.
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We will exhibit a chain homotopy between PSSD2

H2,J2 ◦ ⋆ ◦(PSSH0,J0

D0
⊗PSSH1,J1

D1
) and ⋆. In order

to do so we define new moduli spaces. We choose a regular perturbation datum (K, I) on the trivial
family S = [0,∞) ×D2, as follows. Fix a choice of ends on the punctured surface

D2 − {e2πij/3 | j = 0, 1, 2} ,

such that the puncture e4πi/3 is positive and the other two are negative. We require the perturbation
datum to satisfy the following conditions: for r close to 0, Kr = 0, Ir = I0, for r large, (Kr, Ir) =
(Hj

t dt, J
j
t ) for ǫjs ∈ [0, r], (Kr, Ir) = (0, I0) for ǫjs ∈ [r + 1,∞), and interpolating between the two

for ǫjs ∈ (r, r + 1) on the j-th end; here ǫj is the sign of the j-th end, that is ǫj = −1 for j = 0, 1 and
ǫ2 = 1. We let

MS(K, I) = {(r, u) ∈ [0,∞) × C∞(D2, S1;M,L) | ∂Kr,Iru = 0} .

This is a smooth manifold of local dimension at u equal to n+ µ(u) + 1.
We have the evaluation map

ev : (M̃(L, I0))k0+k1+k2 ×MS(K, I) → L2(k0+k1+k2)+3

defined by

ev(U = (u0, u1, u2;u)) = (u01(−1), . . . , u0k0
(1), u(1);u11(−1), . . . , u1k1

(1), u(e2πi/3);

u(e4πi/3), u21(−1), . . . , u2k2
(1)) .

For qi ∈ Crit fi we let

P̃k0,k1,k2(K, I; q0, q1; q2) = ev−1(Uf0(q0) ×Qk0

f0,ρ
× Uf1(q1) ×Qk1

f1,ρ
×Qk2

f2,ρ
× Sf2(q2)) .

We let Pk0,k1,k2(K, I; q0, q1; q2) be the quotient of this space by the natural Rk0+k1+k2 -action, and put

P̃(K, I; q0, q1; q2) =
⋃

k0,k1,k2≥0

P̃k0,k1,k2(K, I; q0, q1; q2) ,

P(K, I; q0, q1; q2) =
⋃

k0,k1,k2≥0

Pk0,k1,k2(K, I; q0, q1; q2) .

The space P(K, I; q0, q1, q2) is a smooth manifold of local dimension at U equal to |q0| + |q1| − |q2| +
µ(U)+1−n whenever this number does not exceed 1. In order to define the chain homotopy, we need to

orient the operator DU |Y U
Γ

if U ∈ P̃k0,k1,k2(K, I; q0, q1; q2) is such that |q0|+|q1|−|q2|+µ(U)+1−n = 0.

The exact Fredholm triple 0 → DU |Y U
Γ

→ Dr,U |Tr[0,∞)×Y U
Q

→ Tr[0,∞) × TUQ/Γ → 0 gives rise to the

isomorphism
d(Dr,U |Tr [0,∞)×Y U

Q
) ≃ d(DU |Y U

Γ
) ⊗ d(TUQ/Γ) .

We orient DU |Y U
Γ

by the orientation corresponding to the orientation

(−1)k0+k1
∧

i ∂Ui ⊗
∧

i e
U
i ∧ ∂r .

Using the compactified 1-dimensional moduli space, it is possible to show
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Theorem 5.9. The map Ψ thus defined is a chain homotopy between PSSD2

H2,J2 ◦ ⋆ ◦(PSSH0,J0

D0
⊗

PSSH1,J1

D1
) and ⋆.

Proof. Since for r = 0 the perturbation datum coincides with (0, I0), we are counting holomorphic
disks and therefore indeed we obtain the Lagrangian quantum product at the corresponding end.

The proof that the PSS maps intertwine the two other algebraic structures, namely the product on
QH∗(M) and HF∗(M) and the quantum module structure, is entirely analogous. The case of the quan-
tum homology of M is much simpler since there are no signs involved and there is no breaking/collision.
In the case of the quantum module structure one needs to introduce the sign (−1)k0 when defining the
chain homotopy, where k0 is the number of disks in leg 0 of the spiked pearly trajectory.

The upshot is that the PSS maps are isomorphisms between the quantum and Floer homologies,
and they intertwine the algebraic structures on both sides, which include the product structures on the
quantum and Floer homologies and the quantum module action. Note that the PSS maps automatically
respect the unit elements, and that the inverse PSS maps respect the algebraic structures as well.

6 Boundary operators in the presence of bubbling

Here we show that the boundary operators on Lagrangian Floer and quantum homologies square
to zero when there is bubbling present. By index considerations this only happens when NL = 2.

6.1 ∂2
H,J = 0

Let (H, J) be a regular Floer datum for L, where NL = 2. We wish to show that ∂2H,J = 0. Since
the boundary operator is determined by its matrix elements, it suffices to show that all the matrix
elements of its square vanish, that is whenever γ̃± ∈ CritAH:L are such that |γ̃−| = |γ̃+| + 2, then we
have ∑

δ̃∈CritAH:L

|δ̃|=|γ̃−|−1

∑

([u],[v])∈M(H,J;γ̃−,δ̃)×

M(H,J;δ̃,γ̃+)

C(v) ◦ C(u) = 0 .

The Gromov compactification of M(H, J ; γ̃−, γ̃+) is obtained by adding two types of points, the usual
Floer breaking, and bubbling, see §3.6.3. A Maslov 2 disk can bubble off only in the case γ− = γ+ =: γ,
and it is attached to one of the ends points qi := γ(i), i = 0, 1. In fact, such a bubble appears as follows:

a sequence of Floer strips in M̃(H, J ; γ̃−, γ̃+) degenerates into the s-independent strip (s, t) 7→ γ(t)
and a Maslov two disk attached to it at one of its boundary components. The noncompact connected
components of M(H, J ; γ̃−, γ̃+) are thus subdivided into three types according to the number of ends
corresponding to Floer breaking. The arguments used in proving that the boundary operator squares
to zero when no bubbling is present, allow us to see that it is enough to show the vanishing of the sum

∑
C(v) ◦ C(u)

where it is taken over all pairs ([u], [v]) which appear as boundary points in those components of the
compactified space M(H, J ; γ̃−, γ̃+) whose other boundary point is a bubble.

We let M̃(J, q) be the space of J-holomorphic disks with boundary on L passing through q ∈ L,
and denote by M(J, q) the quotient by the conformal automorphism group Aut(D2, ∂D2, 1). Let
∆ ⊂ M(H, J ; γ̃−, γ̃+) be a connected component whose boundary points are a broken Floer trajectory
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([x], [y]) and a holomorphic disk [u] ∈ M(Ji, qi) attached at one of the endpoints of γ. Recall that

there is a bijection between isomorphisms C(γ̃−) ≃ C(γ̃+) and orientations of TzM̃(H, J ; γ̃−, γ̃+),
given by gluing, where [z] ∈ ∆, and that moreover the isomorphism C(y) ◦ C(x) corresponds to the
orientation −∂z ∧ inward. Similarly, using gluing, one can establish a bijection between isomorphisms
C(γ̃−) ≃ C(γ̃+) and orientations of TuM̃(Ji, qi). Namely, one has the following exact triple:

0 // W 1,p(u)♯0 //

Du♯0

��

W 1,p(u)♯W 1,p(γ̃−) //

Du♯Dγ̃−

��

W 1,p(γ̃−) //

Dγ̃−

��

0

0 // Lp(u) // Lp(u) ⊕ Lp(γ̃−) // Lp(γ̃−) // 0

where W 1,p(u)♯0 = {ξ ∈ W 1,p(u) | ξ(1) = 0} and Du♯0 = Du|W 1,p(u)♯0. This triple induces an isomor-
phism

d(Du♯0) ⊗ d(Dγ̃−) ≃ d(Du♯Dγ̃−) .

The latter operator can be identified with Dγ̃+
, therefore using the fact that kerDu♯0 = TuM̃(Ji, qi),

we have obtained the desired bijection. By regularity, the operator Du is onto, and by genericity, so
is Du♯0, and so its kernel is 2-dimensional. The infinitesimal action of the isomorphism group induces
a map C → kerDu♯0, which is an isomorphism. Thus we see that the isomorphism C(y) ◦ C(x)
corresponds to an orientation of C. A computation shows that the isomorphism C → kerDu♯0 induces
the standard orientation on C if the bubble is attached at γ(0), and the negative of the standard
orientation on C if the bubble is attached at γ(1). We see now that the sum

∑
C(y) ◦ C(x)

over the boundary points of connected components of M whose other endpoints are bubbles equals
the sum ∑

C(u)

running over those bubbles appearing as boundary points of these connected components, where C(u)
is the isomorphism C(γ̃−) ≃ C(γ̃+) induced via gluing from the orientation on u which is the standard
orientation on C if u is attached at γ(0) and the negative of the standard orientation otherwise.

Fix a representative γ̂− ∈ γ̃− and let {a(t)}t∈[0,1] be a parametrization of γ̂−|∂Ḋ2 , up to the
endpoints of γ, and define the following space:

M̃(a) = {(t, u) | t ∈ [0, 1], u ∈ M̃(Jt, a(t))} .

This is a smooth 3-dimensional manifold. Let also denote M(a) its quotient by the automorphism group
Aut(D2, 1); M(a) is a smooth 1-dimensional compact manifold with boundary. We claim that whenever
∆ is a connected component of M(a) with boundary points (t, [u]), (t′, [u′]), then C(u)+C(u′) vanishes.
A little combinatorial argument shows that this implies the vanishing of the above sum which only
involves disks bubbling off at the ends of components whose other ends are broken Floer trajectories.
We have therefore reduced the problem to the following claim: for any connected component ∆ ⊂ M(a)
the sum C(u) + C(u′) vanishes, where u, u′ represent the boundary points of ∆.

So let indeed ∆ be such a component and let (t, [u]), (t′, [u′]) be its boundary points (t, t′ = 0, 1). Let
{(t(τ), [u(τ)])}τ∈[0,1] be a parametrization of ∆ with (t(0), [u(0)]) = (t, [u]) and (t(1), [u(1)]) = (t′, [u′]).
Using a gluing argument as above, we get the isomorphism

d(Du(τ)♯0) ⊗ d(Dγ̃−) ≃ d(Dγ̃+
)
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which is continuous in τ . This means that there is a bijection between isomorphisms C(γ̃−) ≃ C(γ̃+)
and orientations of the line bundle {d(Du(τ)♯0)}τ over [0, 1]. Using an obvious exact triple, we obtain
the isomorphism

d(Du(τ)♯0) ⊗ d(R) ≃ d(T(t(τ),u(τ))M̃(a))

which is continuous in τ . Therefore we have a bijection between the above isomorphisms and orienta-
tions of the component of M̃(a) above ∆. We have the following isomorphism of short exact sequences
for every τ for which Du(τ)♯0 is surjective:

0 // C //

��

TM̃(a) // T∆ //

π∗

��

0

0 // kerDu(τ)♯0 // TM̃(a) // R // 0

where the left vertical arrow is the infinitesimal action of the automorphism group while the right
vertical arrow is the differential of the map π: (t, [u]) 7→ t. Orient C, R with their standard orientations,

and pick an orientation of ∆. These induce an orientation on TM̃(a) and an orientation on kerDu(τ)♯0
via the short exact sequences, and it is easy to see that the left vertical arrow and the right vertical
arrow are either both orientation-preserving or orientation-reversing.

Assume now that ∆ connects two disks attached at the same point. Then π∗,(t,[u]) is orientation-
preserving if and only if π∗,(t′,[u′]) is orientation-reversing. This means that the isomorphism C ≃
kerDu♯0, which is the left vertical arrow, is orientation-preserving if and only if the isomorphism
C ≃ kerDu′♯0 is orientation-reversing. This implies the following. Assume u, u′ are attached at γ(0)
and we have oriented both kerDu′♯0 and kerDu♯0 using the standard orientation on C and the above
isomorphisms induced by the infinitesimal action. Then, since both left vertical arrows in the above
diagram are orientation-preserving, we see that the orientations on TM̃(a) coming from the chosen
orientations on kerDu′♯0 and kerDu♯0 and the standard orientation on R are opposite. This means
that the isomorphisms C(u), C(u′) are opposite. A similar argument shows that when ∆ connects two
disks attached at γ(1), or two disks attached at different points, we still have C(u) + C(u′) = 0.

This finishes the proof that ∂2H,J = 0 in the presence of bubbling.

6.2 ∂2
D = 0

The above compactification structure of the 1-dimensional unparametrized pearly spaces can fail
in case q = q′′ and NL = 2, and a bubble at q can form. Here we prove that even if this happens, the
quantum boundary operator still squares to zero.

The point is that the 1-dimensional part P1(q, q) can no longer be compactified by adding Morse
breaking alone (there is no holomorphic disk breaking or collision since we are in the minimal Maslov
case), and has to be supplemented by adding disks of Maslov 2 at q. Let us denote by P1(q, q)
the compact 1-dimensional topological manifold with boundary obtained by adding the bubbles at q
and identifying two boundary components if they correspond to the same bubble. Pick a connected
component ∆ ⊂ P1(q, q) having two boundary points, both of which are pairs of the form ([u], [v]) ∈
P0(q, q′) × P1(q′, q) or ([u], [v]) ∈ P1(q, q′) × P0(q′, q), and such that there is a unique interior point
represented by a bubble at q. Let ∂∆ = {δ, δ′} where δ = ([u], [v]) and δ′ = ([u′], [v′]) with u, v as
described. We have to show that

C(v) ◦C(u) + C(v′) ◦ C(u′) = 0
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as a homomorphism C(q, A) → C(q, AB), where B is the class of the bubble.
This is done as follows. Consider

ev : C∞(D2, S1;M,L) × S1 × S1 → L2 , (w, θ1, θ2) 7→ (w(θ1), w(θ2)) .

For (w, θ1, θ2) ∈ ev−1(U(q) × S(q)) we have the spaces

Y (w,θ1,θ2) = {(ξ,Θ1,Θ2) ∈ W 1,p(w)×Tθ1S1×Tθ2S1 | ξ(θ1)+Θ1 ∈ Tw(θ1)U(q) , ξ(θ2)+Θ2 ∈ Tw(θ2)S(q)}

Y
(w,θ1,θ2)
0 = Y (w,θ1,θ2) ∩ (W 1,p(w) × 0 × 0) .

For (w, θ1, θ2) ∈ ev−1(U(q) × S(q)) we have the natural Fredholm triple

0 // Y (w,θ1,θ2)
0

//

Dw|
Y

(w,θ1,θ2)
0

��

Y (w,θ1,θ2) //

Dw|
Y (w,θ1,θ2)

��

T(θ1,θ2)(S
1 × S1)

��

// 0

0 // Lp(w) Lp(w) // 0

where the operators
Dw|Y (w,θ1,θ2)

0

and Dw|Y (w,θ1,θ2)

are defined by pulling back Dw: W 1,p(w) → Lp(w) via the projections

Y
(w,θ1,θ2)
0 →W 1,p(w) and Y (w,θ1,θ2) →W 1,p(w) .

This triple induces the canonical isomorphism

d(Dw|Y (w,θ1,θ2)) ≃ d(Dw|Y (w,θ1,θ2)
0

) ⊗ d(TS1 × TS1) , (47)

which is continuous in (w, θ1, θ2). Using a generalization of the construction in §4.2.2, we obtain a
canonical bijection between isomorphisms C(q, A) ≃ C(q, AB) and orientations of Dw|Y (w,θ1,θ2)

0

, which

is continuous in (w, θ1, θ2). Let us orient S1 × S1 by the standard positive orientation. Then the
isomorphism (47) yields a bijection between isomorphisms C(q, A) ≃ C(q, AB) and orientations of
Dw|Y (w,θ1,θ2) .

Let M̃(q, q) = ev−1(U(q) × S(q)) ∩ M̃2(J), where M̃2(J) denotes the space of Maslov 2 holomor-
phic disks with boundary on L. This is a smooth 4-dimensional manifold. The group Aut(D2) acts

freely on it and we let M(q, q) be the 1-dimensional quotient. For (w, θ1, θ2) ∈ M̃(q, q) with w in
class B we see that the operator Dw|Y (w,θ1,θ2)

0

is onto and has index 2, the operator Dw|Y (w,θ1,θ2) is

onto, has index 4 and its kernel equals T(w,θ1,θ2)M̃(q, q). By the above, there is a bijection between

isomorphisms C(q, A) ≃ C(q, AB), orientations of Dw|Y (w,θ1,θ2)
0

, and orientations of T(w,θ1,θ2)M̃(q, q),

that is orientations of the connected component of M̃(q, q) containing the bubble z at q in the form of
the element (z, 1, 1).

We therefore need to compute the orientations of M̃(q, q) corresponding to the isomorphisms C(v)◦
C(u) and C(v′) ◦ C(u). Let w ∈ P̃(q, q) and w′ ∈ P̃(q, q) be obtained by gluing u, v and u′, v′,

respectively. The disk w defines an element of M̃(q, q) via (w,−1, 1) and we have an identification

ker(Dw|Y w
Γ

) = ker(Dw|Y (w,−1,1)
0

) .
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We know by §4.2.2 that the isomorphism C(v) ◦ C(u) corresponds to the orientation −∂w ∧ inwardδ

of ker(Dw|Y w
Γ

). Analogously we see that the isomorphism C(v′) ◦C(u′) corresponds to the orientation
−∂w′ ∧ inwardδ′ . These vectors, together with the standard orientation of T(−1,1)(S

1×S1) by ∂θ1 ∧∂θ2 ,

induce the following orientations on M̃(q, q):

−∂w ∧ inwardδ ∧∂θ1 ∧ ∂θ2 and − ∂w′ ∧ inwardδ′ ∧∂θ1 ∧ ∂θ2 ,

and we have to show that these two orientations are opposite. We cannot compare them directly
because the vector ∂w does not extend continuously pass the bubble.

We proceed as follows. We have the following exact sequence:

0 → Lie Aut(D2) → T(w,−1,1)M̃(q, q) → T[w,−1,1]M(q, q) → 0 ,

and similarly for w′. Orient Lie Aut(D2) by ǫ1 ∧ ǫ2 ∧ ǫ3 (see §8.2 for the definition of the vectors
ǫi ∈ Lie Aut(D2)), and T[w,−1,1]M(q, q) by inwardδ. We see that the vector ǫ2 equals ∂w (by the

definition of the latter, see §4.2.2) while the projection TM̃(q, q) → TS1 × TS1 maps ǫ1 to ∂θ1 + ∂θ2
and ǫ3 to ∂θ2 . Therefore we obtain the induced orientation

ǫ1 ∧ ǫ2 ∧ ǫ3 ∧ inwardδ ,

which equals the orientation

∂θ1 ∧ ∂w ∧ ∂θ2 ∧ inwardδ = −∂w ∧ inwardδ ∧∂θ1 ∧ ∂θ2 .

Since this orientation equals ǫ1 ∧ ǫ2 ∧ ǫ3 ∧ inwardδ, it extends continuously past the bubble, and equals

−ǫ1 ∧ ǫ2 ∧ ǫ3 ∧ inwardδ′ = ∂w′ ∧ inwardδ′ ∧∂θ1 ∧ ∂θ2

at (w′,−1, 1), as a similar computation shows. This implies that the orientations of M̃(q, q) induced
by the isomorphisms C(v)◦C(u) and C(v′)◦C(u′) are opposite, which means that these isomorphisms
themselves are opposite and the claim is proved.

7 Quotient complexes

The above Floer and quantum complexes distinguish homotopy classes of cappings, and as such,
at times they are too large. In applications it is often more convenient to work with smaller quotient
complexes. In this section we describe how to construct such quotients in case L is relatively Pin±.
We also describe the familiar algebraic structures such as the module structure over a Novikov ring,
which in this context turns out to be a nontrivial issue, due to the fact that the canonical complexes
take into account the action of the fundamental group on the homotopy groups.

In §7.1 we define relative Pin structures via Čech cochains and show how such a structure allows
one to construct a coherent system of orientations on operators of the form Du♯0 where u: (D2, S1) →
(M,L) is a smooth map with even Maslov index. §7.2 and §7.3 deal with the construction of quotient
complexes in the closed and open (Lagrangian) case, respectively.

7.1 Relative Pin structures and coherent orientations for disks

We say that L is relatively Pin± if w± ≡ w±(L) ∈ im(H2(M ;Z2) → H2(L;Z2)), where w+(L) =
w2(TL) and w−(L) = w2(TL) +w2

1(TL). Not being relatively Pin± is an obstructing for the existence
of a relative Pin±-structure on L.
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Remark 7.1. Assume L is relatively Pin± and let w be such that w|L = w±. Since H1(S2;Z2) = 0,
we see that w2(TL) ◦ ∂ = w± ◦ ∂ as a map π3(M,L) → ∂2(L). It then factors as

π3(M,L) → π2(L) → π2(M)
w−→ Z2 ,

implying that w2(TL) ◦ ∂ = 0, which means that being relatively Pin± implies assumption (O). It is
however a strictly weaker assumption, as the example of RP 5 ⊂ CP 5 shows: the map

H2(CP 5;Z2) → H2(RP 5;Z2)

vanishes, the class w2(RP 5) = w2(RP 5) +w2
1(RP 5) is nonzero, which means that RP 5 is not relatively

Pin±, however π2(RP 5) = 0, which means that assumption (O) is satisfied in this case. 16)

Let us now describe the notion of a relative Pin± structure on L and a how choice of such a structure
yields a system of coherent orientations for Cauchy–Riemann operators coming from disks.

We start with some generalities. This material is essentially contained in [WW15]. Consider Lie
groups G,H and let φ: G → H be a surjective Lie group homomorphism with finite abelian kernel
A = kerφ. It is well-known that principal H-bundles on a smooth manifold X are classified by
the nonabelian cohomology H1(X ;H). Let us recall the definition of H1(X ;H). For an open cover
U = (Ui)i∈I of X we have the Čech cochain groups

Ck(U ;H) =
∏

(i0,...,ik)∈Ik+1

C∞(Ui0...ik , H) ,

where k ≥ 0 and Ui0...ik = Ui0 ∩ · · · ∩ Uik . Define δk: Ck(U ;H) → Ck+1(U ;H) by

(δc)i0...ik+1
=

k+1∏

j=0

(
ci0...îj ...ik+1

|Ui0...ik+1

)(−1)j

.

The set Z1(U ;H) = ker δ1 is the set of 1-cocycles, that is f = (fij) ∈ Z1(U ;H) if and only if for
all i, j, k ∈ I we have fik = fijfjk. The group C0(U ;H) acts on Z1(U ;H) on the left as follows: for
c = (ci) ∈ C0(U ;H) and f = (fij) we have (c · f)ij = cifijc

−1
j . We let

H1(U ;H) = Z1(U ;H)/C0(U ;H) .

Given another cover V = (Vj)j∈J a refinement map τ : V → U by definition is a map τ : J → I such
that Vj ⊂ Uτ(j) for every j ∈ J . A refinement map induces homomorphisms Ck(U ;H) → Ck(V ;H)
commuting with δ and therefore a well-defined map H1(U ;H) → H1(V ;H), which can be shown to
be injective. Taking the direct limit over the set of covers directed by the relation of refinement, we
obtain the first nonabelian cohomology H1(X ;H). It can be shown that if U is a good cover, then the
canonical map H1(U ;H) → H1(X ;H) is a bijection.

There is a map from the set of isomorphism classes of principal H-bundles over X to H1(X ;H),
defined by taking a sufficiently fine cover U , trivializing the bundle and taking the transition maps,
which satisfy the cocycle relation, meaning they define an element in Z1(U ;H). The corresponding
class in H1(X ;H) is well-defined, that is it only depends on the isomorphism class of the bundle. This
map is a bijection. The inverse is obtained by gluing according to a cocycle.

16)We thank J.-Y. Welschinger for this example.
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Assume now that Q is a principal H-bundle over X and let U be a good cover. Let h = (hij) ∈
Z1(U ;H) be the transition cocycle corresponding to a trivialization of Q. Since U is a good cover,
every map hij : Uij → H lifts to a map gij : Uij → G. The homomorphism φ induces in an obvious
way homomorphisms Ck(U ;G) → Ck(U ;H) commuting with the differentials. Since clearly φ(g) = h,
we see that φδg = δφg = δh = 0, meaning δg ∈ C2(U ;A). Since clearly δ(δg) = 0, we see that δg is
in fact a cocycle in Z2(U ;A). The corresponding class [δg] ∈ H2(X ;A) (this is the ordinary second
cohomology with coefficients in A) is well-defined, that is it only depends on the isomorphism class of
Q, and is the characteristic class of Q. It vanishes if and only if g can be corrected to a cocycle in
Z1(U ;G), meaning in this case the bundle Q is in fact covered by a G-bundle P via a φ-equivariant
map. A cocycle g ∈ Z1(U ;G) with φ(g) = h is called a G-trivialization of h. The set of such
trivializations quotiented out by the equivalence relation induced by multiplication by C0(U ;A) is the
set of G-structures on the bundle Q relative to the cover U . Since it is a good cover, we get the same
notion if we allow arbitrary covers and take limits over refinement maps. It can be seen that the set
of G-structures on Q is a torsor over the group H1(X ;A).

Now we consider relative G-structures. Let f : X → Y be a smooth map and let U , V be good
covers of X , Y , respectively, where U is a refinement of f−1V . Let Q → X be an H-bundle and
assume h = (hij) ∈ Z1(U ;H) is a transition cocycle for Q. A G-trivialization on Q relative to
f is a pair (g, b) ∈ C1(U ;G) × Z2(V ;A) such that φ(g) = h and f∗b = δg, that is g is a lift of h
to G and b is a cocycle on Y which pulls back to a cocycle on X which is a boundary and in fact
is the boundary of g. Two relative trivializations (g, b) and (g′, b′) are called equivalent if there is
(a, a′) ∈ C0(U ;A) × C1(V ;A) with

(δa · g, δa′ · b) = (g′, b′) .

An equivalence class of relative G-trivializations is called a relative G-structure on Q (relative to f).
It is a torsor over the group H1(f ;A), defined as follows. Let Z1(f ;A) be the group consisting of pairs
(a, a′) ∈ C1(U ;A) × C2(V ;A) such that δa′ = 0 and f∗a′ = δa. Now quotient it out by the subgroup
of relative coboundaries whose elements are pairs (δc · c′, δc′) for (c, c′) ∈ C0(U ;A) × C1(V ;A).

A relative Pin±-structure on L is a relative Pin±-structure on TL relative to the embedding
L →֒ M . To spell it out, let V be a good cover of M and U a good cover of L which is a refinement of
V|L. Trivialize TL to get transition functions h = (hij) ∈ Z1(U ;O(n)) (here we are using an auxiliary
Riemannian metric on L). A trivialization of h relative to the embedding L → M is a lift of h to
g = (gij) ∈ C1(U ; Pin±(n)) and a cocycle b ∈ Z2(V ;Z2) on M such that δg = b|L. A relative Pin±-
structure is an equivalence class of such trivializations. The set of relative Pin±-structures is a torsor
over the group H1(ι;Z2) = H2(M,L;Z2) where ι: L→M .

Note that if we have a commutative diagram of smooth manifolds and maps

X ′ f ′

//

��

Y ′

��
X

f // Y

then a relative G-structure on an H-bundle Q on X relative to f canonically induces a relative G-
structure on the pullback H-bundle Q′ → X ′ by the map X ′ → X relative to the map f ′.

We note the following obvious fact.

Lemma 7.2. Given a vector bundle V → S1, the canonical map sending Pin±-structures on V to
relative Pin±-structures on V relative to the embedding S1 → D2 is a bijection. This bijection is
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equivariant with respect to the natural actions of H1(S1;Z2) and H2(D2, S1;Z2), connected by the
boundary morphism H1(S1;Z2) → H2(D2, S1;Z2), which is an isomorphism.

Corollary 7.3. Assume a relative Pin±-structure on L is given. Then for any disk u: (D2, S1) →
(M,L) the bundle Fu = (u|S1)∗TL acquires a canonical Pin±-structure.

Proof. The map u induces a relative Pin± structure on Fu, which by the lemma corresponds to a
unique Pin±-structure.

We will now prove the following result.

Proposition 7.4. A relative Pin±-structure on L determines a system of orientations of the operators
Du♯0 over the space of smooth disks u with even Maslov number, which is coherent with respect to
boundary gluing.

Proof. Let (E0, F 0) → (D2, S1) be a Hermitian bundle pair and assume F 0 has even Maslov number.
Let E1 → CP 1 be a Hermitian bundle with Chern number −µ(F 0)/2. Then we can glue E0 and E1

at 0 ∈ D2 (see §4.1) to obtain a Hermitian bundle pair (E,F ) with zero Maslov number. We have

d(DE,F ) ≃ d(DE0,F 0) ⊗ d(DE1) ,

where we omitted the factor d(E0
0 ) since it’s canonically oriented. The operator DE1 , being a Cauchy–

Riemann operator on a closed Riemann surface, is canonically oriented, therefore we get a canonical
isomorphism

d(DE0,F 0) = d(DE,F ) .

Similarly we get a canonical isomorphism

d(DE0,F 0♯0) = d(DE,F ♯0) .

It remains to establish a bijection between Pin±-structures on F and orientations of the latter operator.
Fix a unitary trivialization of E and denote by F the resulting Lagrangian loop in Cn. The set of Pin±-
structures on F has two points, and varying F , we obtain a double cover of the space of contractible
loops in the Lagrangian Grassmannian of Cn. On the other hand, the set of orientations of the operator
DCn,F ♯0 also has two points and thus defines another double cover over the same space. The two covers
have the same w1, therefore they are isomorphic. It remains to choose an isomorphism at a point in this
space. We do this for the constant loop. The constant loop F → S1 produces the operator DCn,F ♯0,
which can easily be seen to be an isomorphism. Since F is the constant loop, of the two Pin±-structures
over it one is the trivial structure (corresponding to transition functions at the identity in Pin±(n)).
We associate the trivial structure to the canonical positive orientation, and the other structure to the
negative orientation. Now note that this is independent of the chosen unitary trivialization of E.

The case of smooth maps is now obtained by noting that (Eu, Fu) is a Hermitian bundle pair with
even Maslov, and applying the above construction.

The coherence follows from the fact that boundary gluing two trivial bundle pairs yields a trivial
bundle pair; the boundary gluing isomorphism maps the orientations of the corresponding isomorphism
operators via multiplication in Z2 = {±1}, and it does the same with the Pin±-structures.

7.2 Hamiltonian Floer homology and quantum homology of M

We first describe the quotient complexes for the periodic orbit Floer homology HF∗(M) and the
corresponding quantum homology QH∗(M) since in this case there is a canonical way of doing it.
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Let us consider the Floer complex corresponding to a regular time-periodic Floer datum (H, J):

CF∗(H) =
⊕

x̃∈CritAH

C(x̃) .

In order to be able to define a quotient complex of CF∗(H), we need to understand the necessary
identifications that go into forming such a quotient. Of course, we wish only to identify the spaces
C(x̃), C(x̃′) where x̃ = [x, x̂], x̃′ = [x, x̂′] share the same orbit and the only difference is in the capping.
Let q = x(0) and let A ∈ π2(M, q) be such that [x̂′♯− x̂] = A. We symbolize this by writing x̃′ = A · x̃.
Let us see what it means to identify C(x̃) and C(x̃′).

Gluing DA and Dx̃ at a point close to q produces an exact triple

0 → DA♯Dx̃ → DA ⊕Dx̃ → 0TqM → 0 ,

where the penultimate arrow is the difference of the evaluation maps to TqM . This, together with the
direct sum isomorphism, yields the isomorphism

d(DA) ⊗ d(Dx̃) ≃ d(DA♯Dx̃) ⊗ d(TqM) .

Recall (Lemma 4.12) that the operators DA have a canonical orientation. This, together with the
canonical orientation of TqM , yields the isomorphism

d(Dx̃) ≃ d(DA♯Dx̃) ≃ d(Dx̃′) ,

where the second isomorphism comes from deformation. This means that for any x̃, x̃′ ∈ p−1(x) we
have an isomorphism

C(x̃) = C(x̃′) (48)

which is independent of any choices.
Next, assume that x± are two periodic orbits of H and x̃±, x̃

′
± ∈ p−1(x±). Assume that |x̃−| =

|x̃+|+ 1, |x̃′−| = |x̃′+|+ 1 and that u: R×S1 →M is a Floer cylinder so that u ∈ M̃(H, J ; x̃−, x̃+) and

also u ∈ M̃(H, J ; x̃′−, x̃
′
+). We have the diagram

C(x̃−)
C(u) // C(x̃+)

C(x̃′−)
C(u) // C(x̃′+)

(49)

where the vertical equality signs denote the above canonical isomorphisms. We claim that this dia-
gram commutes. This follows from the associativity of the direct sum and gluing isomorphisms. The
nontrivial point here is that the gluing of the difference classes A± = [x̂′±♯− x̂±] happens at different
points of M , namely x±(0), and that A+ is the result of transfer of A− to x+(0) along the curve u(·, 0).
The isomorphism d(DA−) ≃ d(DA+) induced by this transfer coincides with the obvious isomorphism
coming from the canonical orientations of d(DA±), and it is what makes the diagram commute.

Now we can describe the construction of a quotient complex. Recall that the second homotopy
groups of M assemble into a local system of abelian groups (see §3.10 for the definition of a local
system) over M with the group π2(M, q) being attached to q ∈M , and with homotopy classes of paths
between q, q′ inducing group isomorphisms π2(M, q) ≃ π2(M, q′) (see [Hat02]). We denote this local
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system by π2(M). The datum that goes into the definition of a quotient complex in this case is a local
subsystem G of π2(M), that is a subgroup Gq < π2(M, q) for each q ∈M such that the isomorphisms
coming from paths in M preserve these subgroups. Fix such a subsystem G. Note that π2(M), being

a local system, is itself a groupoid, and as such it acts on Ω̃ over Ω, in the following sense: for every
q ∈ M let Ω̃q = {x̃ = [x, x̂] ∈ Ω̃ |x(0) = q}; this is a covering space of Ωq = {x ∈ Ω |x(0) = q}, and

π2(M, q) acts on Ω̃q by attaching spheres, and all of these transformations happen over Ωq. Since G is

a local subsystem, it too acts on Ω̃/Ω. The quotient of this action is a covering space of Ω:

Ω̃/G

where two cappings of the same orbit through q are identified if their difference lies in Gq. We have the

quotient map Ω̃ → Ω̃/G and we denote the image of x̃ by this map via [x̃]G. Note that the action of G

on Ω̃ restricts in an obvious manner to an action on CritAH , and we let CritAH/G be the quotient.
For [x̃]G ∈ CritAH/G we let

C([x̃]G)

be the limit of the direct system of modules (C(x̃))x̃∈[x̃]G connected by the isomorphisms (48). The
quotient complex then is

CFG
∗ (H) =

⊕

[x̃]G∈CritAH/G

C([x̃]G)

as a module. The commutativity of the diagram (49) ensures that the boundary operator ∂H,J on
CF∗(H) descends to a boundary operator ∂GH,J so that the quotient map

(CF∗(H, ), ∂H,J ) → (CFG
∗ (H), ∂GH,J )

is a chain map.
The local system π2(M) has a natural subsystem π0

2(M) consisting of spheres of zero area, and
therefore of zero Chern number, by monotonicity. Since we are ultimately interested in spectral invari-
ants, we only use subsystems G contained in π0

2(M). If G is such a subsystem, the action functional

AH : Ω̃ → R descends to a functional
AH : Ω̃/G→ R .

Moreover, the Z-grading of CF∗(H) descends to a Z-grading on CFG
∗ (H) in this case as well.

There are two typical local subsystems of π0
2(M). One is π0

2(M) itself. Note that this subsystem
is the kernel of the local system morphism c1: π2(M) → Z. Therefore in case c1 does not vanish on

π2(M), the quotient space Ω̃/π0
2(M) inherits an action of the trivial system Z. This is the familiar

Novikov action. It also induces an action of Z on the corresponding Floer complex CF
π0
2(M)

∗ (H).

Letting t be the positive generator of Z, we see that the complex CF
π0
2(M)

∗ (H) then becomes a module
over the group ring Z[t, t−1], which is the familiar Novikov module structure.

The other subsystem of π0
2(M) is the kernel of the Hurewicz morphism G := ker(π2(M) →

H2(M ;Z)). In this case the quotient space Ω̃/G inherits an action of HS
2 (M) = im(π2(M) →

H2(M ;Z)), and therefore the quotient Floer complex CFG
∗ (H) becomes a module over the group

ring Z[HS
2 (M)], also familiar in Floer homology.

It is similarly checked that the continuation morphisms respect the identifications by G, which
means that we have well-defined abstract Floer homology

HFG
∗ (M) .
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Next we consider the effect of the quotient construction on products. Let (Hi, Ji), i = 0, 1, 2
be regular time-periodic Floer data, (K, I) a regular compatible perturbation datum on the thrice-
punctured sphere, and consider the resulting product map on chain level:

∗ = ∗K,I : CF∗(H0) ⊗ CF∗(H1) → CF∗(H2) .

We claim that this product descend to a well-defined product on the quotient complexes, to wit:

∗: CFG
∗ (H0) ⊗ CFG

∗ (H1) → CFG
∗ (H2)

is well-defined and intertwines the quotient maps CF∗ → CFG
∗ . To show this, it is enough to show the

following. Let x̃i, x̃
′
i ∈ CritAHi be such that |x̃0| + |x̃1| − |x̃2| = 2n, |x̃′0| + |x̃′1| − |x̃′2| = 2n, and let

u ∈ M(K, I; {x̃i}i) and u ∈ M(K, I; {x̃′i}i). Then the diagram

C(x̃0) ⊗ C(x̃1)
C(u) // C(x̃2)

C(x̃′0) ⊗ C(x̃′1)
C(u) // C(x̃′2)

commutes. The commutativity of this diagram is proved similarly to that of the diagram (49) for the
boundary operator. Its commutativity is ensured by the fact that the operators DA, A ∈ π2(M), are
all canonically oriented, and that the manifold M is oriented. Note as well that it is in defining the
product operation on the quotient complexes that we really use the group structure on G: indeed,
assuming Ai = [x̂′i♯− x̂i], we see that for x̃i to be G-equivalent to x̃′i, for all i, we need the product of
A0 and A1 to lie in G, after transferring both of them to x2(0) along paths dictated by u, and we need
this product to be equal A2.

The reader will have no trouble checking that if G = π0
2(M) and c1|π2(M) 6= 0, then the resulting

homology HFG
∗ (M) becomes an algebra over the Novikov ring Z[t, t−1], and if G = ker(π2(M) →

H2(M ;Z)), then HFG
∗ (M) has the structure of an algebra over the ring Z[HS

2 (M)].
Almost identical arguments apply to quantum homology. Recall that the quantum complex for a

datum D = (f, ρ, J) is

QC∗(D) =
⊕

q∈Crit f

⊕

A∈π2(M,q)

C(q, A) .

We have canonical identifications
C(q, A) = C(q, A′)

for any A,A′ ∈ π2(M, q). In fact, we have a canonical isomorphism

d(DA) ⊗ d(TS(q)) ≃ d(DA♯TS(q)) ⊗ d(TqM) ,

which shows that if we use the canonical orientations ofDA and of TqM , we have in fact an identification

C(q, 0) = C(q, A) .

Thus a quotient complex corresponding to a local subsystem G < π2(M) can be formed, and we
denote it QCG

∗ (D). In case G < π0
2(M), the quotient complex inherits a Z-grading. The quotient map

QC∗(D) → QCG
∗ (D) is a chain map.

The chain-level product operation descends to quotient complexes as well, as do the units.
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We note also that PSS maps CF∗(H) ⇆ QC∗(D) descend to well-defined maps on the quotient
complexes, and they induce isomorphisms on homology. Therefore we have a well-defined abstract
quantum homology QHG

∗ (M), which is canonically isomorphic to HFG
∗ (M) by the abstract PSS map.

This is an isomorphism of supercommutative unital rings. In special cases of subsystems of π0
2(M) we

get algebras over the corresponding Novikov rings.

7.3 Lagrangian Floer and quantum homology

The Lagrangian case is significantly more involved due to the lack of canonical orientations of the
operators d(DA), A ∈ π2(M,L), and of the Lagrangian L itself.

We first cover some preliminaries about the local systems involved. There is a natural local system
of groups on L given by q 7→ π2(M,L, q), with natural isomorphisms π2(M,L, q) ≃ π2(M,L, q′)
corresponding to homotopy classes of paths from q to q′ [Hat02]. We denote this local system by
π2(M,L). In particular, looking at loops at q, we obtain an action of π1(L, q) on π2(M,L, q) by
automorphisms. This action has the property that the boundary operator ∂: π2(M,L, q) → π1(L, q)
intertwines it with the action of π1(M, q) on itself by conjugation. Moreover, if A,B ∈ π2(M,L, q)

then ∂(A) ·B = ABA−1. This local system acts, as a groupoid, on the space Ω̃L, as follows. Let q ∈ L

and let ΩL,q = {γ ∈ ΩL | γ(0) = q} and Ω̃L,q = p−1(ΩL,q) where p: Ω̃L → ΩL is the projection. Then

p: Ω̃L,q → ΩL,q is a trivial covering space on which π2(M,L, q) acts simply transitively by attaching
disks.

Let now G < π2(M,L) be a subsystem, that is Gq is a subgroup of π2(M,L, q) and these subgroups
are preserved by the isomorphisms induced by paths on L. In particular Gq must be preserved by the
action of elements of the form ∂(A) for A ∈ π2(M,L, q), which by the above means that Gq is normal

in π2(M,L, q). This G then acts on Ω̃L and we let

Ω̃L/G

be the quotient. This is a covering space of ΩL and it has an inherited action of the quotient system
π2(M,L)/G. If H is a Hamiltonian on M , the action functional AH:L will descend to Ω̃L/G provided
G consists of disks of zero area, which is equivalent to saying that it is a subsystem of the local system
π0
2(M,L) which is just the kernel of the local system morphism µ: π2(M,L) → Z which is the Maslov

index, or equivalently of the area morphism ω, due to monotonicity. Henceforth we will only consider
subsystems of π0

2(M,L).

Fix therefore a subsystem G < π0
2(M,L) and consider the quotient covering space Ω̃L/G → ΩL.

Fix a regular Floer datum (H, J). The set CritAH:L inherits an action of π2(M,L) in an obvious
way, and therefore we can consider the quotient CritAH:L/G, which naturally maps onto the set of
Hamiltonian orbits of H with boundary on L. We let [γ̃]G be the image in CritAH:L/G of a point
γ̃ ∈ CritAH:L. Recall the Floer complex

CF∗(H : L) =
⊕

γ̃∈CritAH:L

C(γ̃) .

We wish to construct a quotient complex

CFG
∗ (H : L) =

⊕

[γ̃]G∈CritAH:L/G

C([γ̃]G)

similarly to the periodic orbit case. In order to do so we need to construct identifications C(γ̃) = C(γ̃′)
if [γ̃]G = [γ̃′]G. Let us see what goes into such an identification.
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Let A = [γ̂′♯− γ̂] ∈ π2(M,L, q) where q = γ(0). Recall that DA♯0 denotes the restriction of DA to
the subspace {ξ ∈ W 1,p(A) | ξ(1) = 0}. We have the operator DA♯Dγ̃ obtained by boundary gluing.
Recall that this operator is just the restriction of DA ⊕ Dγ̃ to the subspace of W 1,p(D) ⊕W 1,p(γ̃)
consisting of pairs of sections agreeing at the point q. Thus the incidence condition, in the sense of
(25), is given by the diagonal ∆TqL ⊂ TqL ⊕ TqL. On the other hand, the family DA♯0 ⊕ Dγ̃ is the
restriction of DA ⊕ Dγ̃ to the subspace where the incidence condition is 0 ⊕ TqL ⊂ TqL ⊕ TqL. The
isomorphism (25) yields

d(DA♯0 ⊕Dγ̃) ≃ d(DA♯Dγ̃) ,

which combined with the direct sum and deformation isomorphisms, gives us finally

d(DA♯0) ⊗ d(Dγ̃) ≃ d(DA♯Dγ̃) ≃ d(Dγ̃′) .

This means that isomorphisms C(γ̃) ≃ C(γ̃′) are in a natural bijection with orientations of the operator
DA♯0. In order to form a quotient complex as above, we therefore need to choose an orientation of this
operator. Recall Proposition 7.4 which states that a choice of a relative Pin±-structure on L determines
a system of orientations of the families DA♯0 for A varying in π0

2(M,L, q) for all q. Let us therefore
assume that L is relatively Pin+ or relatively Pin− and fix a relative Pin±-structure on it, and endow
all the lines d(DA♯0) with the corresponding orientations.

Remark 7.5. Even though more precise conditions on the existence of such a system of orientations
required for the construction of quotient complexes can be formulated, in applications it is enough to
limit oneself to the relatively Pin case, which is what we do here.

Therefore we have isomorphisms C(γ̃) ≃ C(A · γ̃) for all γ̃ ∈ CritAH:L and so we can define

C([γ̃]G)

as the limit of the direct system of modules (C(δ̃))δ∈[γ̃]G and above isomorphisms. The quotient module
then is

CFG
∗ (H : L) =

⊕

[γ̃]G∈CritAH:L/G

C([γ̃]G) .

For the boundary operator to descend it is enough to require that the diagram

C(γ̃−)
C(u) //

��

C(γ̃+)

��
C(γ̃′−)

C(u) // C(γ̃′+)

commute for all γ̃±, γ̃
′
± ∈ CritAH:L with |γ̃−| = |γ̃+| + 1, |γ̃′−| = |γ̃′+| + 1, and u ∈ M̃(H, J ; γ̃−, γ̃+),

u ∈ M̃(H, J ; γ̃′−, γ̃
′
+). The coherence of the chosen system of orientations with respect to boundary

gluing ensures the commutativity of the diagram.
Therefore the boundary operator ∂H,J descends to a well-defined boundary operator ∂GH,J on

CFG
∗ (H : L) so that the quotient map

(CF∗(H : L), ∂H,J ) → (CFG
∗ (H : L), ∂GH,J)

is a chain map. In any case we have a well-defined Floer homology HFG
∗ (H, J : L).
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Next, the coherence of the system of orientations implies that we have well-defined continuation
maps. Thus we have a well-defined abstract Floer homology HFG

∗ (L).
Lastly, we wish to endow the quotient complexes with a product structure coming from the prod-

uct operation ⋆. Therefore fix regular Floer data (Hi, J i) associated to the punctures of the thrice-
punctured disk used to define ⋆, and a regular compatible perturbation datum (K, I). Again, due to
coherence, diagrams of the following kind:

C(γ̃0) ⊗ C(γ̃1)

��

C(u) // C(γ̃2)

��
C(γ̃′0) ⊗ C(γ̃′1)

C(u) // C(γ̃′2)

commute, where γ̃i, γ̃
′
i ∈ CritAHi:L are such that Ai := [γ̂′i♯ − γ̂i] ∈ Gγi(0), |γ̃0| + γ̃1| − |γ̃2| = n,

|γ̃′0| + γ̃′1| − |γ̃′2| = n, and u ∈ M(K, I; {γ̃i}i), u ∈ M(K, I; {γ̃′i}i).
Transferring A0 and A1 to γ2(0) along the boundary of the disk γ̂0♯γ̂1♯u we see that A2 must be

equal to the product of these, which explains why we required Gq to be a subgroup of π2(M,L, q) for
every q.

We therefore obtain a well-defined product structure

⋆: CFG
∗ (H0 : L) ⊗ CFG

∗ (H1 : L) → CFG
∗ (H2 : L) .

It can be checked that this structure is intertwined by the quotient maps, and that the result is a
well-defined product structure on the abstract Floer homology HFG

∗ (L), which becomes an associative
unital ring.

Lastly we wish to comment on the usual structure of Floer homology as a module over Novikov rings.
Firstly, let us point out that since π2(M,L) is a local system, that is a groupoid rather than a group,
it does not make sense to speak of its group ring. One can define HD

2 := im(π2(M,L) → H2(M,L;Z))
and look at the corresponding group ring Z[HD

2 ], which is the usual one appearing in Floer theory.
We note that if one picks the local system G = ker(π2(M,L) → H2(M,L;Z)), then the quotient space

Ω̃L/G→ ΩL is a normal covering space with deck group canonically isomorphic to HD
2 , so in particular

HD
2 acts on CritAH:L/G. But this is not enough to make HD

2 act on the complex as this involves
orienting operators DA♯0 for A with nonzero Maslov, as explained above. This is possible if and only
if µ(A) is even. This means that if µ(A) is odd, which of course only happens if L is nonorientable, we
simply cannot orient these operators in a coherent manner. Therefore the Floer complex CFG

∗ (H : L)
is not, in general, a module over the Novikov ring Z[HD

2 ]. We illustrate this point in the example of
RPn ⊂ CPn for n even, see §8.1. Note however that since we do have a coherent system of orientations
for classes A with even Maslov, we see that the Floer complex CFG

∗ (H : L) is a module over the

subring Z[HD,even
2 ] where HD,even

2 consists of classes with even Maslov number. We emphasize that
this module structure depends on the chosen relative Pin structure.

We also consider the particular case of a class A ∈ π2(M,L, q) lying in the image of the morphism
π2(M, q) → π2(M,L, q). In this case the operator DA,q is canonically oriented, because it can be
considered as the result of gluing the operator DA where we view A as a sphere attached at q, and
the operator D0♯0 where 0 is the trivial class in π2(M,L). Since d(D0♯0) = d(0) ≡ R, we see that
this operator is canonically oriented. This orientation also agrees with the one induced by any relative
Pin structure, as can be seen from the multiplicative property. The conclusion is that convenient
local systems G < π0

2(M,L) will contain the image of π0
2(M) → π0

2(M,L), because one has these
canonical orientations. For the Novikov module structure, this has the following implication. Since
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DA♯0 is always canonically oriented for spherical classes A ∈ π2(M,L), the quotient Floer complex
CFG

∗ (H : L) with G = ker(π2(M,L) → H2(M,L;Z)) inherits the structure of a module over the group
ring Z[HS

2 ].
All of the above can be carried over to quantum homology verbatim. We consequently have quotient

complexes QCG
∗ (D : L) with homology QHG

∗ (D : L). The PSS morphisms are well-defined isomor-
phisms CFG

∗ ≃ QHG
∗ , which allows us to define the abstract quantum homology QHG

∗ (L), which
inherits the structure of a unital associative ring. In case G is the kernel of the Hurewicz morphism,
QHG

∗ (L) carries the structure of an algebra over the Novikov ring Z[HS
2 ], and over the ring Z[HD,even

2 ],
and the two are compatible.

7.4 Quantum module structure

Finally we wish to combine the two previous constructions and define a quantum module structure
of Lagrangian Floer homology over the quantum homology of M . The necessary ingredients here are
a local subsystem G < π0

2(M,L) containing im(π0
2(M) → π0

2(M,L)), and a relative Pin structure for
L. The read will have no trouble checking that the quantum module operation

•: CF∗(H) ⊗ CF∗(H0 : L) → CF∗(H1 : L)

descends to a well-defined operation

•: CFG′

∗ (H) ⊗ CFG
∗ (H0 : L) → CFG

∗ (H1 : L)

where G′ < π0
2(M) is any local system such that the morphism π2(M, q) → π2(M,L, q) maps G′

q into
Gq for q ∈ L.

8 Examples and computations

Here we compute the canonical quantum complex for a number of Lagrangians.

8.1 RP n in CP n, n ≥ 2

We consider M = CPn with the Fubini-Study form ω and L = RPn, which is monotone with
minimal Maslov number NL = n+ 1. Here we do not need to find the holomorphic disks in order to
compute the homology, as we will see.

Choose a Morse function f on L with a unique critical point qi of index i, where i = 0, . . . , n.
Assume that J is an almost complex structure on M such that D = (f, ρ, J) is a regular quantum
datum, where ρ is a Riemannian metric for which there are precisely two gradient trajectories of f
from qi+1 to qi for every i < n. The complex as a module is

QC∗(D : L) =

n⊕

i=0

⊕

A∈π2(M,L,qi)

C(qi, A) .

A computation shows that π2(M,L) ≃ Z, therefore the complex has rank 1 in every degree. We see that
C(qi, 0) is generated by the orientations of TS(qi). As we know, the module C(qn, 0) has a canonical
generator, which we denote by qn by abuse of notation, corresponding to the positive orientation of
d(TS(qn)) ≡ d(R). We also let qi, i < n, denote a generator of C(qi, 0), by abuse of notation. By degree

123



reasons, the boundary operator ∂: C(qi+1, 0) → C(qi, 0) for i < n coincides with the Morse boundary
operator. We have therefore ∂qn = 0. The Morse homology of RPn in degree n−1 is Z2 if n is even and 0
if n is odd; this forces the boundary operator ∂: C(qn−1, 0) = Z〈qn−1〉 → C(qn−2, 0) = Z〈qn−2〉 to send
qn−1 7→ ±2qn−2, where the sign depends on the choice of generators. Since 0 = ∂2qn−1 = ±2∂qn−2,
we see that ∂qn−2 = 0, that is the complex in degrees n, n− 1, n− 2 has the form

· · · → Z〈qn〉 0−→ Z〈qn−1〉 ±2−−→ Z〈qn−2〉 0−→ . . .

Its homology therefore is QHn−1(D : L) ≃ 0, QHn−2(D : L) ≃ Z2. Since the quantum homology of
CPn is isomorphic to Z in every even degree, and all the homogeneous generators are invertible with
respect to the quantum product, using the quantum module structure of QH∗(D : L) over QH∗(M),
we see that the former is 2-periodic with respect to degree, therefore we obtain finally

QH∗(L) ≃
{

Z2 , n− ∗ even
0 , n− ∗ odd

.

From this we can compute the quantum homology of RPn over an arbitrary ring R. Namely, the
complex in degrees n, n− 1, n− 2 is

· · · → R〈qn〉 0−→ R〈qn−1〉 2−→ R〈qn−2〉 0−→ . . .

from which we see that QHn−1(L) ≃ ker 2 and QHn−2 ≃ R/(2), where we view 2: R → R as the map
corresponding to multiplication by 2 and (2) ⊂ R is the corresponding principal ideal. The rest of
QH∗(L) is obtained from the 2-periodicity with respect to degree.

For instance if 2 is invertible in R, we see that QH∗(L) = 0. In the other extreme where R has
characteristic 2, we see that QH∗(L) ≃ R in every degree.

When n is even, RPn is nonorientable. We see that in this case the quantum homology over Z is
2-periodic in degree. It follows that the usual Novikov ring Z[t, t−1] where t is the Novikov parameter of
degree |t| = −NL = −n−1 does not act on this module, because the degree of t is odd. This illustrates
the point raised at the end of §7.3 that in general the Floer complexes and the Floer homology of
nonorientable Lagrangians are not modules over the full Novikov ring. We see, however, that the
subring generated by the even powers of t does in fact act on the complex and on the homology.

8.2 A general technique for tori

In order to efficiently compute the quantum complex, it makes sense to choose a basis for the
underlying module in a suitable way. Here we present such a way in case L is a Lagrangian torus.

We identify L with the standard Euclidean torus Tn by means of a diffeomorphism. We note that
T
n carries a canonical trivial Pin±-structure, which is determined by requiring the transition maps to

equal the identity element of Pin±(n). Proposition 7.4 yields a coherent system of orientations for the
operator families DA♯0 for A ∈ π2(M,L, q) and any q. Recall that the module C(q, A) is generated by
the orientations of DA♯TS(q). The canonical isomorphism

d(DA♯TS(q)) ≃ d(DA♯0) ⊗ d(TS(q))

together with the orientation of DA♯0 gives us a canonical identification C(q, A) = C(q, 0). In order to
remember A, we write this as

C(q, A) = eA ⊗ C(q, 0) . (50)
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If we now fix an orientation for every S(q), it gives us a generator of C(q, 0), which we denote by q by
abuse of notation. Therefore the complex becomes

QC∗(D : L) =
⊕

q∈Crit f

Z[π2(M,L, q)] ⊗ q ,

where we write elements of the group ring Z[π2(M,L, q)] as sums
∑

i cie
Ai .

Assume now that the local system π2(M,L) is trivial, which means that the natural action of
π1(L, q) on π2(M,L, q) is trivial for every q. The complex therefore can be written as

QC∗(D : L) = Z[π2(M,L)] ⊗
⊕

q∈Crit f

Z · q .

In this case, using the fact that NL is even, it is not hard to show that ∂Q is linear over the group ring

Z[π2(M,L)], in the sense that for any q, q′ ∈ Crit f and any A,B ∈ π2(M,L) and any u ∈ P̃(q, q′) with
u representing the class B ∈ π2(M,L, q), and where |q| − |q′|+µ(u)− 1 = 0, we have the commutative
diagram

C(q, 0)
C(u) //

eA

��

C(q′, B)

eA

��
C(q, A)

C(u) // C(q′, AB)

This means the following in terms of computing the quantum complex: it suffices to compute the
isomorphisms C(u): C(q, 0) → C(q′, B), and then the isomorphisms C(u): C(q, A) → C(q′, AB) are
given by tensoring with eA, that is using the isomorphism (50) above.

Another useful piece of information is as follows. Assume u is a J-holomorphic disk of Maslov
index 2 and assume that the evaluation maps evθ : M̃(J) → L, evθ(v) = v(θ), for θ ∈ S1 have
surjective differentials at u, that is evθ∗,u : kerDu → Tu(θ)L is onto for every θ. The operator Du♯0
is surjective and has index 2, therefore its kernel is 2-dimensional. The infinitesimal action of the
conformal automorphism group of D2 preserving 1 is an isomorphism C = Lie Aut(D2, 1) → kerDu♯0,
therefore using the canonical orientation of C we obtain an orientation of Du♯0. On the other hand
Du♯0 is oriented by the canonical Pin±-structure on L.

Lemma 8.1. The canonical orientation on Du♯0 coming from the Pin-structure coincides with the
orientation of ker(Du♯0) coming from its identification with C.

Proof. We note that the bundle pair (Eu = u∗TM,Fu = (u|S1)∗TL) splits into the direct sum of
bundle pairs (imu∗, im(u|S1)∗) and a complement (E′, F ′). The latter bundle pair can be identified
with (Cn−1,Rn−1) and the corresponding operator on it is surjective with kernel isomorphic to F ′

1. It
follows that the restricted operator DE′,F ′♯0 is an isomorphism and thus it’s oriented by the canonical
positive orientation.

The remaining bundle pair (imu∗, im(u|S1)∗) has Maslov index 2. It can be seen that the corre-
sponding operator can be represented as the gluing of the Dolbeault operator on O(1) → CP 1 and
the Dolbeault operator on the standard pair (C,R). The orientation of Du♯0 corresponding to the
canonical trivial Pin-structure comes from the complex orientation of the kernel of ∂ on O(1) → CP 1

restricted to the subspace of sections vanishing at 0 ∈ CP 1. It can be seen that this complex orientation
coincides with the orientation induced by identifying ker(Du♯0) = C. The lemma is proved.
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This result allows us to compute the isomorphism C(u) coming from such a disk. Let therefore

q, q′ ∈ Crit f with |q| = |q′| − 1 and let u ∈ P̃(q, q′) be a Maslov 2 disk such that (u(−1), u(1)) ∈
U(q)×S(q′) and assume that the evaluation maps from the space of J-disks to L at points of S1 have
surjective differentials at u. The space kerDu|XΓ = {ξ ∈ kerDu | ξ(1) ∈ Tu(1)S(q′)} enters into the
following two exact sequences:

0 → kerDu|YΓ → kerDu|XΓ → Tu(−1)L/Tu(−1)U(q) → 0 .

0 → kerDu♯0 → kerDu|XΓ → Tu(1)S(q′) → 0 .

The first sequence yields

d(Du|XΓ) ≃ d(Du|YΓ) ⊗ d(TL/TU(q)) = d(Du|YΓ) ⊗ d(TS(q))

while the second one gives
d(Du|XΓ) ≃ d(Du♯0) ⊗ d(TS(q′))

From the definitions in §4.2 it follows that the isomorphism C(u): C(q, 0) → C(q′, A), where A = [u], is
obtained as follows: a generator of C(q, 0), that is an orientation of TS(q), together with the canonical
orientation of Du|YΓ by the infinitesimal action of R determine an orientation of Du|XΓ by the first
sequence. The second sequence gives an orientation of d(Du♯0)⊗d(TS(q′)), or equivalently an element
of C(q′, A). Now using the canonical orientation of Du♯0 we obtain an orientation of TS(q′).

We now define a basis of the Lie algebra of the conformal automorphism group Aut(D2): ǫ1 is
the infinitesimal vector of the elliptic counterclockwise rotation about 0 ∈ D2; ǫ2 is the infinitesimal
vector of the hyperbolic translation from −1 to 1; ǫ3 is the infinitesimal vector of the parabolic rotation
around 1 which evaluates to −i at 0 ∈ D2, so that it induces a counterclockwise translation on the
boundary away from 1. Note that ǫ2, ǫ3 form a negative basis of Lie Aut(D2, 1) = C. When we have a
holomorphic disk u with boundary on L, by abuse of notation we will denote the vector fields along u
corresponding to the infinitesimal actions of these vectors by the same letters.

We will apply this in case L is a two-dimensional torus. There are two possibilities. The first one
is when q has index 1 and q′ has index 2, meaning it’s a maximum. Let us choose an orientation of
S(q), which consists of a tangent vector field v along S(q). Assume ǫ3(−1) = ǫv. Then the orientation
of kerDu|XΓ induced by the first sequence is ǫ2 ∧ ǫǫ3. We see that in this case Du|XΓ = Du♯0 and
therefore we just obtain −ǫ times the standard orientation. We see that in this case the isomorphism
C(u): C(q, 0) → C(q′, A), where A = [u], sends v to −ǫeA⊗ q′, where q′ denotes the canonical positive
orientation of TS(q′) = 0.

The other possibility is that q is a minimum and q′ has index 1. In this case we choose an orientation
of TL = TS(q) by a pair of vectors v1, v2, for instance we can take the vectors corresponding to the
chosen coordinates on L. We also choose an orientation of S(q′) by a nonvanishing tangent vector field
v along S(q). In kerDu|XΓ let η be a vector such that ǫ3(−1), η(−1) is a positive basis at q. Therefore
the first sequence gives kerDu|XΓ the orientation

ǫ2 ∧ ǫ3 ∧ η .

Now η evaluates to ǫv at +1. It follows from the second sequence that the induced orientation on
TS(q′) is given by −ǫv. Thus C(u): C(q, 0) → C(q′, A) maps v1 ∧ v2 to −ǫeA ⊗ v.

We obtain from these considerations the following result.

Lemma 8.2. Let L be a Lagrangian two-torus with NL = 2 such that the local system π2(M,L) is
trivial, and such that the evaluation maps from the space of Maslov 2 disks at the points of S1 all
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have surjective differentials. Let f be a Morse function on L with vanishing Morse boundary operator.
Assume the critical points of f are the maximum q2, saddles x, y, and the minimum q0. Orient the
stable manifolds of x, y somehow and orient S(q0) using the orientation coming from the identification
L ≃ T2.

• Every unparametrized holomorphic disk [u] ∈ M1(J ; q2, A) yields contributions to the matrix
elements of ∂D, C(x, 0) → C(q2, A) and C(y, 0) → C(q2, A), as follows. The contribution to the
matrix element C(x, 0) → C(q2, A) = eA ⊗ C(q2, 0) is −1 times the intersection number of U(x)
and the oriented parametrized curve u|S1 , where U(x) is cooriented by the chosen orientation
of S(x) and u|S1 is oriented by the counterclockwise orientation of S1. The contribution to
C(y, 0) → C(q2, A) is calculated similarly.

• every unparametrized holomorphic disk [u] ∈ M1(J ; q0, A) yields the contribution to the matrix
element C(q0, 0) → C(x,A) = eA ⊗ C(x, 0) given by −i times the chosen orientation of S(x),
where i is the intersection number of the oriented curve S(x) and the parametrized curve u|S1 ,
cooriented by a vector η ∈ kerDu|XΓ subject to the condition that ǫ3(−1), η(−1) form an oriented
basis at q0. The same is true verbatim for the contribution to the matrix element C(q0, 0) →
C(y,A) = eA ⊗ C(y, 0).

In case L is a circle, the condition on the differentials of the evaluation maps is automatic, therefore
we obtain

Lemma 8.3. Assume L is a circle with NL = 2, such that π2(M,L) is a trivial local system. Choose
an orientation of L. Let f be a Morse function on L with maximum q1 and minimum q0. The
contribution of [u] ∈ M1(J ; q1, A) to the matrix element C(q0, 0) → C(q1, A) is given by −1 times
the intersection number of the oriented parametrized curve u|S1 and the point q0 cooriented by the
orientation of S(q0).

8.3 RP 1 in CP 1

Let D = (f, ρ, J0) be a quantum datum for L = RP 1 where f is a Morse function with a unique
maximum q1 and a unique minimum q0, and J0 is the standard complex structure on CP 1. The local
system π2(M,L) is trivial and the relative Hurewicz morphism π2(M,L) → H2(M,L;Z) is an isomor-
phism. The latter group is generated by two classes A,B, defined as follows. Fix an orientation on L.
The class A is the class of an embedded disk representing a contraction of an orientation-preserving
diffeomorphism S1 → L, while B is represented by an embedded disk realizing the contraction of an
orientation-reversing diffeomorphism S1 → L. For any q ∈ L the spaces M1(J0; q, A) and M1(J0; q, B)
each contain one point. Choose a basis of TS(q0) giving S(q0) the chosen orientation of L. Then Lemma
8.2 gives us the following formula for the boundary operator:

∂D(q1) = 0 and ∂D(q0) = (−eA + eB)q1 .

The homology of this canonical complex can be computed. To this end we identify the complex in
every degree with a direct sum of a countable number of copies of Z, meaning we can identify each
QCi(D : L) with the space of functions Z → Z having finite support. The boundary operator acting,
for instance, from QC0 to QC−1, can be identified with the following operator on functions. Let δj
denote the function taking the value 1 on j and 0 otherwise. Then ∂(δj) = δj+1 − δj . We see that QH
vanishes in even degrees. To compute QH−1, for example, define the sum function f 7→ ∑

j f(j). We
see that it is onto Z and that the kernel consists of functions having sum 0, which is precisely the set
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of boundaries, as follows from the description of ∂ we just had. Thus the homology is isomorphic to Z

in every odd degree. Thus

QH∗(L) ≃
{

Z , ∗ is odd
0 , ∗ is even

.

There are two Spin structures on L. These allow us to form a quotient of QC∗(D : L) by identifying
all submodules in the same degree. The quotient complex then is isomorphic to Z in each degree. The
induced boundary operator depends on the Spin structure: for one Spin structure it vanishes, meaning
that QH∗(L) ≃ Z in every degree, while for the other Spin structure it is the multiplication by 2 when
going from an even to an odd degree, which means that QH∗(L) ≃ Z2 in odd degrees and QH∗(L) = 0
in even degrees.

8.4 Some Lagrangian tori

We compute the canonical quantum complex of three Lagrangian tori: the Clifford and the Che-
kanov torus in CP 2 and the exotic torus in S2 × S2, based on our general technique of §8.2. The
only thing we need to know is the parametrizations of the boundary circles of J0-holomorphic disks of
Maslov 2. It turns out that the conditions of Lemma 8.2 are satisfied for all the three tori and for J0
being the standard complex structure.

Let us therefore list the disks of Maslov 2 with boundary on the tori. Note that the local systems
π2(M,L) are trivial and the relative Hurewicz morphism π2(M,L) → H2(M,L;Z) is an isomorphism
in all three cases.

8.4.1 The Clifford torus in CP 2

The Clifford torus is the Lagrangian

L = {[z0 : z1 : z2] | |z0| = |z1| = |z2|} ⊂ CP 2 ,

and we can identify
S1 × S1 ≃ L via (eiθ0 , eiθ1) 7→ [eiθ0 : eiθ1 : 1] .

We endow L with the trivial Pin+-structure 17) corresponding to this identification. We have the
J0-holomorphic disks

u0(z) = [z : 1 : 1] , u1(z) = [1 : z : 1] , u2(z) = [1 : 1 : z] for z ∈ D2 ,

and we let A,B,C ∈ π2(M,L) be the corresponding classes; these freely generate π2(M,L) (as an
abelian group). We choose a Morse function f with critical points q2, x, y, q0 such that U(y) and
S(x) are both slight deformations of vertical curves θ0 = const while S(y) and U(y) are both slight
deformations of horizontal curves θ1 = const. The Morse boundary operator of f vanishes. We orient
S(y) by ∂0 ≡ ∂θ0 , S(x) by ∂1 ≡ ∂θ1 , and S(q0) by ∂0 ∧ ∂1.

The zero-dimensional part of the space P(x, q2) has two disks, one in each class B,C. By Lemma
8.2 we have to compute the intersection numbers of the parametrized boundaries of these disks with
U(x), cooriented by ∂1. We can see that for the disk in B this intersection number equals 1 while for
the disk in C it equals −1, therefore by Lemma 8.2 we have

∂x = (−eB + eC)q2 .

17)We can also choose the trivial Pin−-structure; for the present calculation it is immaterial.
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The zero-dimensional part of the space P(y, q2) has one disk in each of the classes A,C. The
intersection number of the parametrized boundary of a disk in class A with U(y) cooriented by ∂0
equals 1 while the corresponding intersection number for a disk in class C is −1, therefore by Lemma
8.2 we have

∂y = (−eA + eC)q2 .

The zero-dimensional part of the space P(q0, x) has a disk in each of the classes A,C. Let us look

at a disk u ∈ P̃(q0, x) in class A. According to Lemma 8.2 we have to coorient its boundary by a vector
η such that ǫ3(−1) = ∂0, η(−1) form a positive basis. Therefore η should be the vector ∂1. It evaluates
to the vector ∂1 at 1, therefore the intersection number of u|S1 cooriented by η with S(x) cooriented
by ∂1 is 1. An analogous computation shows that the intersection number corresponding to a disk in
class C is −1.

The zero-dimensional part of P(q0, y) has a disk in each of the classes B,C, and the respective
intersection numbers equal −1, 1, therefore by Lemma 8.2 we have

∂q0 = (−eA + eC)x+ (eB − eC)y .

8.4.2 The Chekanov torus in CP 2

We can view CP 2 as the symplectic cut of the closed unit disk cotangent bundle D∗RP 2 by the
geodesic flow on the boundary relative to the round metric on RP 2, with the symplectic form scaled
by an appropriate factor. We let C be the image of the unit cotangent bundle of RP 2 by the quotient
map; it is a smooth conic. If we fix a point x ∈ RP 2, take a cotangent circle of radius r at it, and let
it flow with the geodesic flow, the resulting set L ⊂ CP 2 is a monotone Lagrangian torus for a unique
value of r. This is the Chekanov torus. We let α ∈ π2(M,L) be the class of the cotangent disk at x,
β ∈ π2(M,L) be the class of a disk contracting the geodesic circle whose intersection number with C is
1. Finally we let h = [CP 1] ∈ π2(M,L) be the class of the line. The group π2(M,L) is freely generated
by these three classes. It is known [CS10, Aur07] that there are four classes containing Maslov 2 disks:
β and h− 2β + kα for k = −1, 0, 1.

We put coordinates (θ0, θ1) on L, where the boundary of α is given by θ1 = const, while the
boundary of β is given by θ0 = const. We choose a Morse function as in §8.4.1. We orient the stable
manifolds S(x), S(y), S(q0) by ∂1, ∂0, ∂0 ∧ ∂1, respectively.

The zero-dimensional part of P(x, q2) contains seven disks, one in the class β, and two in each
of the classes h − 2β + kα. Performing a calculation of the corresponding intersection numbers as in
§8.4.1, we get

∂x = (−eβ + 2(eh−2β−α + eh−2β + eh−2β+α))q2 .

The zero-dimensional part of P(y, q0) has a disk in each of the classes h − 2β ± α, and the corre-
sponding intersection numbers give us

∂y = (eh−2β−α − eh−2β+α)q2 .

The zero-dimensional part of P(q0, x) has a disk in each of the classes h− 2β ± α, while the zero-
dimensional part of P(q0, y) has one disk in class β and two disks in each of the classes h − 2β + kα.
We have:

∂q0 = (eh−2β−α − eh−2β+α)x+ (eβ − 2(eh−2β−α + eh−2β + eh−2β+α))y .
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8.4.3 The exotic torus in CP 1 × CP 1

We identify CP 1 = S2, and view S2 as the set of unit vectors in R3. The exotic torus is

L = {(x, y) ∈ S2 × S2 |x · y = − 1
2 , x3 + y3 = 0} ,

and put on it the coordinates θ0, θ1 where θ0 corresponds to the rotation around the 3-axis in the
counterclockwise direction while θ1 is the counterclockwise rotation of the pair (x, y) around their sum
x + y. We let the contraction of the curve {x3 = −y3 =

√
3/2} through the respective poles generate

the class α. The curve θ0 = const contracts via a disk whose class we denote by β. There are also the
classes A = [S2 × pt] and B = [pt×S2] in π2(M,L). These four classes freely generate this abelian
group.

It is known [CS10, Aur07] that there are five classes in π2(M,L) containing Maslov 2 disks, namely
β, A− β, B − β, A− β − α, and B − β + α.

We choose a Morse function as above and orient its stable manifolds in the same manner. The zero-
dimensional parts of the spaces P(x, q2), P(q0, y) each contain one disk in each one of the above five
classes, while the spaces P(y, q2), P(q0, x) contain one disk in each of the classes A−β−α, B−β+α.
We then have

∂x = (−eβ + eA−β + eB−β + eA−β−α + eB−β+α)q2 , ∂y = (eA−β−α − eB−β+α)q2 ,

∂q0 = (eA−β−α − eB−β+α)x+ (eβ − (eA−β + eB−β + eA−β−α + eB−β+α))y .
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