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THE U-LAGRANGIAN OF A CONVEX FUNCTION

CLAUDE LEMARÉCHAL, FRANÇOIS OUSTRY, AND CLAUDIA SAGASTIZÁBAL

Abstract. At a given point p, a convex function f is differentiable in a certain
subspace U (the subspace along which ∂f(p) has 0-breadth). This property
opens the way to defining a suitably restricted second derivative of f at p.
We do this via an intermediate function, convex on U . We call this func-
tion the U-Lagrangian; it coincides with the ordinary Lagrangian in composite
cases: exact penalty, semidefinite programming. Also, we use this new the-
ory to design a conceptual pattern for superlinearly convergent minimization
algorithms. Finally, we establish a connection with the Moreau-Yosida regu-
larization.

1. Introduction

This paper deals with higher-order expansions of a nonsmooth function, a prob-
lem addressed in [4], [5], [7], [9], [13], [25], and [31] among others.

The initial motivation for our present work lies in the following facts. When
trying to generalize the classical second-order Taylor expansion of a function f at
a nondifferentiability point p, the major difficulty is by far the nonlinearity of the
first-order approximation. Said otherwise, the gradient vector ∇f(p) is now a set
∂f(p) and we have to consider difference quotients between sets, say

∂f(p+ h)− ∂f(p)
‖h‖ .(1.1)

Giving a sensible meaning to the minus-sign in this expression is a difficult problem,
to say the least; it has received only abstract answers so far; see [1], [3], [10],
[12], [16], [18], [23], [24], [30]. However, here are two crucial observations (already
mentioned in [22]):

– There is a subspace U (the “ridge”) in which the first-order approximation
f ′(p; ·) (the directional derivative) is linear.

– Defining a second-order expansion of f is unnecessary along directions not in
U . Consider for example the case where f = maxi fi with smooth fi’s; then
a minimization algorithm of the SQP-type will converge superlinearly, even if
the second-order behaviour of f is identified in the ridge only ([26], [6]).

Here, starting from results presented in [14] and [15], we take advantage of these
observations. After some preliminary theory in §2, we define our key-objects in §3:
the U-Lagrangian and its derivatives. In §4 we give some specific examples (further
studied in [17], [20]): how the U-Lagrangian specializes in an NLP and an SDP
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framework, and how it could help designing superlinearly convergent algorithms
for general convex functions. Finally, we show in §5 a connection between our
objects thus defined and the Moreau-Yosida regularization. Indeed, the present
paper clarifies and formalizes the theory sketched in §3.2 of [15]; for a related
subject see also [29], [25].

Our notation follows closely that of [28] and [11]. The space Rn is equipped
with a scalar product 〈·, ·〉, and ‖ · ‖ is the associated norm; in a subspace S, we
will write 〈·, ·〉S and ‖ · ‖S for the induced scalar product and norm. The open ball
of Rn centered at x with radius r is B(x, r); and once again, we use the notation
BS(x, r) in a subspace S. We denote by xS the projection of a vector x ∈ Rn onto
the subspace S. Throughout this paper, we consider the following situation:

f is a finite-valued convex function, p and g ∈ ∂f(p) are fixed.(1.2)

We will also often assume that g lies in the relative interior of ∂f(p).

2. The VU decomposition

We start by defining a decomposition of the space Rn = U ⊕ V , associated with
a given p ∈ Rn. We give three equivalent definitions for the subspaces U and V ;
each has its own merit to help the intuition.

Definition 2.1. (i) Define U1 as the subspace where f ′(p; ·) is linear and take
V1 := U⊥1 . Because f ′(p; ·) is sublinear, we have

U1 := {d ∈ Rn : f ′(p; d) = −f ′(p;−d)} ;

if necessary, see for instance Proposition V.1.1.6 in [11]. In other words, U1

is the subspace where f(p+ ·) appears to be “differentiable” at 0. Note that
this definition of U1 does not rely on a particular scalar product.

(ii) Define V2 as the subspace parallel to the affine hull of ∂f(p) and take U2 :=
V⊥2 . In other words, V2 := lin(∂f(p) − g) for an arbitrary g ∈ ∂f(p), and
d ∈ U2 means 〈g + v, d〉 = 〈g, d〉 for all v ∈ V2.

(iii) Define U3 and V3 respectively as the normal and tangent cones to ∂f(p) at an
arbitrary g◦ in the relative interior of ∂f(p). It is known (see, for example,
Proposition 2.2 in [14]) that the property g◦ ∈ ri∂f(p) is equivalent to these
cones being subspaces.

To visualize these definitions, the reader may look at Figure 1 in §3.2 (where
g = g◦ ∈ ri∂f(p)). We recall the definition of the relative interior: g◦ ∈ ri ∂f(p)
means

g◦ + (B(0, η) ∩ V2) ⊂ ∂f(p) for some η > 0.(2.1)

We start with a preliminary result, showing in particular that Definition 2.1 does
define the same pair VU three times.

Proposition 2.2. In Definition 2.1,
(i) the subspace U3 is actually given by

{d ∈ Rn : 〈g − g◦, d〉 = 0 for all g ∈ ∂f(p)} = N∂f(p)(g◦)(2.2)

and is independent of the particular g◦ ∈ ri∂f(p);
(ii) U1 = U2 = U3 =: U ;
(iii) U ⊂ N∂f(p)(g) for all g ∈ ∂f(p).
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Proof. (i) To prove (2.2), take g◦ ∈ ri∂f(p) and set N := N∂f(p)(g◦). By definition
of a normal cone, N contains the left-hand side in (2.2); we only need to establish
the converse inclusion. Let d ∈ N and g ∈ ∂f(p); it suffices to prove 〈g−g◦, d〉 ≥ 0.
Indeed, (assuming g − g◦ 6= 0), v := − g−g◦

‖g−g◦‖ ∈ V2, hence (2.1) and d ∈ N imply
that

0 ≥ 〈g◦ + ηv − g◦, d〉 = − η

‖g − g◦‖〈g − g◦, d〉 for some η > 0

and we are done.
To see the independence on the particular g◦, replace g◦ in (2.2) by some other

γ◦ ∈ ri∂f(p):

N∂f(p)(γ◦) =
{
d ∈ Rn : 〈g, d〉 = 〈γ◦, d〉 = 〈g◦, d〉, for all g ∈ ∂f(p)

}
= U3.

(ii) Write

U1 =
{
d ∈ Rn : max

g∈∂f(p)
〈g, d〉 = min

g∈∂f(p)
〈g, d〉

}
(2.3)

to see from (i) that U1 = U3. Then we only need to prove U1 ⊂ U2 ⊂ U3.
Let d ∈ U1. For an arbitrary v =

∑
j λj(gj − g) ∈ V2 with gj ∈ ∂f(p), we have

from (2.3)
〈v, d〉 =

∑
j

λj(〈gj , d〉 − 〈g, d〉) = 0 ;

hence d ∈ V⊥2 = U2.
Let d ∈ U2. We have 〈g, d〉 = 〈g, d〉 for all g ∈ ∂f(p). It follows that 〈g, d〉 =

〈g◦, d〉 and this, together with (i), implies d ∈ U3.
(iii) Let d ∈ U = U3. Given g ∈ ∂f(p), we have 〈g◦, d〉 = 〈g, d〉 = 〈g, d〉 for all

g ∈ ∂f(p); hence d ∈ N∂f(p)(g).

Using projections, every x ∈ Rn can be decomposed as x = (xU , xV)T . Through-
out this paper we use the notation xU ⊕xV for the vector with components xU and
xV . In other words, ⊕ stands for the linear mapping from U × V onto Rn defined
by

U × V 3 (u, v) 7→ u⊕ v :=
( u
v

)
∈ Rn.(2.4)

With this convention, U and V are themselves considered as vector spaces. We
equip them with the scalar product induced by Rn, so that

〈g, x〉 = 〈gU ⊕ gV , xU ⊕ xV 〉 = 〈gU , xU 〉U + 〈gV , xV〉V ,
with similar expressions for norms.

Remark 2.3. The projection x 7→ xU , as well as the operation (u, v) 7→ p+ u ⊕ v,
will appear recurrently in all our development. Consider the three convex functions
h1, h2 and h defined by

U 3 u 7→ h1(u) := f(p+ u⊕ v), with v ∈ V arbitrary;
V 3 v 7→ h2(v) := f(p+ u⊕ v), with u ∈ U arbitrary;

U × V 3 (u, v) 7→ h(u, v) := f(p+ u⊕ v).

Their subdifferentials have the expressions

∂h1(u) = {gU : g ∈ ∂f(p+ u⊕ v)},
∂h2(v) = {gV : g ∈ ∂f(p+ u⊕ v)},

∂h(xU , xV) = {gU ⊕ gV : g ∈ ∂f(p+ x)}.
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Proving these formulae is a good exercise to become familiar with the operation
⊕ of (2.4) and with our VU notation. Just consider the adjoint of ⊕ and of the
projections onto the various subspaces involved.

In the VU language, (2.1) gives the following elementary result.

Proposition 2.4. Suppose in (1.2) that g ∈ ri∂f(p). Then there exists η > 0
small enough such that

g + 0⊕ ηv

‖v‖V ∈ ∂f(p)

for any 0 6= v ∈ V. In particular,

f(p+ u⊕ v) ≥ f(p) + 〈gU , u〉U + 〈gV , v〉V + η‖v‖V ,(2.5)

for any (u, v) ∈ U × V.

Proof. Just translate (2.1): with v as stated, u⊕ vgU
(
gV + ηv

‖v‖V
) ∈ ∂f(p) and the

rest follows easily.

3. The U-Lagrangian

In this section we formalize the theory outlined in §3.2 of [15]. Along with the
VU decomposition, we introduced there the “tangential” regularization φV . Here,
we find it convenient to consider φV as a function defined on U only; in addition,
we drop the quadratic term appearing in (13) of [15]. As will be seen in §4, these
modifications result in some sort of Lagrangian, which we denote by LU instead of
φV .

3.1. Definition and basic properties. Following the above introduction, we de-
fine the function LU as follows:

U 3 u 7→ LU(u) := inf
v∈V

{f(p+ u⊕ v)− 〈gV , v〉V}.(3.1)

Associated with (3.1) we have the set of minimizers

W (u) := Argmin
v∈V

{f(p+ u⊕ v)− 〈gV , v〉V}.(3.2)

It will be seen below that an important question is whether W (u) is nonempty.

Remark 3.1. The function LU of (3.1) will be called the U-Lagrangian. Note that
it depends on the particular g, a notation LU(u, g) is also possible. In fact, since
g lies in the dual of Rn, it connotes a dual variable; this will become even more
visible in §4.1 (just observe here that g 7→ −LU is a conjugate function).

At this point, the idea behind (3.1) can be roughly explained. As is commonly
known, smoothness of a convex function is related to strong convexity of its conju-
gate. In our context, a useful property is the “radial” strong convexity of f∗ at g,
say,

f∗(g + s) ≥ f∗(g) + 〈s, p〉+
1
2
c‖s‖2 + o(‖s‖2)

for some c > 0. However, the above inequality is hopeless for an s of the form
s = 0 ⊕ v (see §4 in [14]; see also [2] for related developments). To obtain radial
strong convexity on V , we introduce the function

f∗(g + s) +
1
2
c‖sV‖2

V .(3.3)
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Its conjugate (restricted to U) is precisely LU when c = +∞ (a value which yields
the “strongest” possible convexity); Theorem 3.3 will confirm the smoothness of
LU .

The value c = 1 in (3.3) may be deemed more natural – and indeed, it will be
useful in §5; in fact, Lemma 5.1 will show that the choice of c has minor importance
for second order.

Theorem 3.2. Assume (1.2).

(i) The function LU defined in (3.1) is convex and finite everywhere.
(ii) A minimum point w ∈ W (u) in (3.2) is characterized by the existence of some

g ∈ ∂f(p+ u⊕ w) such that gV = gV .
(iii) In particular, 0 ∈W (0) and LU(0) = f(p).
(iv) If g ∈ ri∂f(p), then W (u) is nonempty for each u ∈ U and W (0) = {0}.

Proof. (i) The infimand in (3.1) is h(u, v) − 〈gV , v〉V , where the function h was
defined in Remark 2.3. It is clearly finite-valued and convex on U × V , and the
subgradient inequality at (u, v) = (0, 0) gives

h(u, v)− 〈gV , v〉V ≥ f(p) + 〈gU , u〉U for any v ∈ V .
It follows that LU is nowhere −∞ and, being a partial infimum of a jointly convex
function, it is convex as well, see for example §IV.2.4 in [11].

(ii) The optimality condition for w ∈ W (u) is 0 ∈ ∂h2(w) − gV , with h2 as in
Remark 2.3. Knowing the expression of ∂h2, we obtain 0 = gV − gV , for some
g ∈ ∂f(p+ u⊕ w).

(iii) In particular, for u = 0, we can take w = 0 and g = g ∈ ∂f(p + 0 ⊕ 0)
in (ii). This proves that v = 0 satisfies the optimality condition for (3.1); then
LU(0) = f(p).

(iv) Apply (2.5): there exists η > 0 such that, for any v 6= 0,

h(u, v)− 〈gV , v〉V ≥ f(p) + 〈gU , u〉U + η‖v‖V .
Thus, the infimand in (3.1) is inf-compact on V and the set W (u) is nonempty. At
u = 0, we have

h(0, v)− 〈gV , v〉V ≥ f(p) + η‖v‖V ,
which shows that v = 0 is the unique minimizer.

3.2. First-order behaviour. The primary interest of the U-Lagrangian is that
it has a gradient at 0. Besides, its subdifferential is obtained from the optimality
condition in Theorem 3.2(ii).

Theorem 3.3. Assume (1.2).

(i) Let u be such that W (u) 6= ∅. Then the subdifferential of LU at this u has the
expression

∂LU(u) = {gU : gU ⊕ gV ∈ ∂f(p+ u⊕ w)},(3.4)

where w is an arbitrary point in W (u).
(ii) In particular, LU is differentiable at 0, with ∇LU (0) = gU .

Proof. (i) Using again the notation of Remark 2.3, write the infimand in (3.1)
as h(u, v) − 〈0 ⊕ gV , u ⊕ v〉. For the subdifferential of the marginal function LU ,
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g−

−

−
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V

∂f(p)

∂f(p+u⊕W(u))

∂LU(u)

0

Figure 1. Subdifferential of LU

Corollary VI.4.5.3 in [11] gives the calculus rule

s ∈ ∂uLU(u) ⇐⇒ s⊕ 0 ∈ ∂u,v(h− 〈0⊕ gV , ·〉)(u,w)
⇐⇒ s⊕ 0 ∈ ∂u,vh(u,w)− 0gV
⇐⇒ s⊕ gV ∈ ∂u,vh(u,w),

where w ∈ W (u) is arbitrary. From the expression of ∂u,vh = ∂h in Remark 2.3,
this is (3.4).

(ii) Because of Theorem 3.2(iii), (3.4) holds at u = 0 and becomes ∂LU(0) =
{gU : gU ⊕ gV ∈ ∂f(p)}. This latter set clearly contains gU . Actually, it does
not contain any other point, due to Definition 2.1(ii): ∂f(p) ⊂ g + V , i.e., all
subgradients at p have the same U-component, namely gU .

This result is illustrated in Figure 1. We stress the fact that the set in the right-
hand-side of (3.4) does not depend on the particular w ∈ W (u). In other words,
(3.4) expresses the following: to obtain the subgradients of LU at u, take those
subgradients g of f at p+u⊕W (u) that have the same V-component as g (namely
gV); then take their U-component. Remembering that U is in effect a subset of Rn,
we can also write more informally

∂LU(u) = [∂f(p+ u⊕W (u)) ∩ (g + U)]U .

This operation somewhat simplifies when gV = 0:

if gV = 0, then ∂LU(u) = ∂f(p+ u⊕W (u)) ∩ U .(3.5)

See the end of §3.2 below for additional comments on the “trajectories” p+u⊕W (u).
Another observation is that, for all u ∈ U ,

f ′(p;u⊕ 0) = 〈g, u⊕ 0〉 = 〈gU , u〉U = 〈∇LU(0), u〉U .
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In other words, LU agrees, up to first order, with the restriction of f to p + U .
Continuing with our U-terminology, we will say that gU is the U-gradient of f at
p, and note that gU is actually independent of the particular g ∈ ∂f(p) (recall
Proposition 2.2(i)).

Remark 3.4. We add that, because f is locally Lipschitzian, this U-differentiability
property holds also tangentially to U :

f(p+ h) = f(p) + 〈g, h〉+ o(‖h‖) whenever ‖hV‖V = o(‖hU‖U ).(3.6)

This remark will be instrumental when coming to higher order; then we will have
to select h appropriately, to allow a specification of the remainder term in (3.6); see
Theorem 3.9.

As already mentioned, the existence of ∇LU (0) is of paramount importance,
since it suppresses the difficulty pointed out in the introduction of this paper; now
the difference quotient in (1.1) takes the form

∂LU(u)− gU
‖u‖U ,

which does make sense. Here is a useful first consequence: W (u) = o(‖u‖U).

Corollary 3.5. Assume (1.2). If g ∈ ri ∂f(p), then

∀ε > 0 ∃δ > 0 : ‖u‖U ≤ δ ⇒ ‖w‖V ≤ ε‖u‖U for any w ∈W (u).

Proof. Use Theorem 3.3(ii) to write the first-order expansion of LU :

LU(u) = LU(0) + 〈∇LU(0), u〉U + o(‖u‖U) = f(p) + 〈gU , u〉U + o(‖u‖U).

For any w ∈ W (u) we have LU(u) = f(p+u⊕w)−〈gV , w〉V ; therefore, (2.5) written
for v = w, gives LU (u) ≥ f(p) + 〈gU , u〉U + η‖w‖V . Altogether, we obtain

o(‖u‖U) = LU(u)− f(p)− 〈gU , u〉U ≥ η‖w‖V .

Let us sum up our results so far.

– Given g ∈ ∂f(p), we define via (3.1) a convex function LU (Theorem 3.2(i)),
which is differentiable at 0 and coincides up to first order with the restriction
of f to p+ U (Theorem 3.3(ii)).

– When W (·) 6= ∅, this U-Lagrangian is indeed the restriction of f to a “thick
surface” {p+ · ⊕W (·)}, parametrized by u ∈ U .

– We also define, via Theorem 3.2(ii), a “thick selection” of ∂f on this thick
surface, made up of those subgradients that have the same V-component as
g.

– As a function of the parameter u, this thick selection behaves like a subdif-
ferential, namely ∂LU (Theorem 3.3(i)).

– When g ∈ ri∂f(p), our thick surface has U as “tangent space” at p (Corol-
lary 3.5; we use quotation marks because W is multivalued).

Remark 3.6. We note in passing two extreme cases in which our theory becomes
trivial:
– when f is differentiable at p, then U = Rn, V = {0} and LU ≡ f ;
– when ∂f(p) has full dimension, then U = {0} and there is no U-Lagrangian.
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3.3. Higher-order behaviour. Proceeding further in our differential analysis of
LU , we now study the behaviour of ∂LU near 0. A very basic property of this set is
its radial Lipschitz continuity. We say that f has a radially Lipschitz subdifferential
at p when there is a D > 0 and a δ > 0 such that

∂f(p+ d) ⊂ ∂f(p) +B(0, D‖d‖), for all d ∈ B(0, δ).(3.7)

This is equivalent to an upper quadratic growth condition on the function itself
(recall Corollary 3.5 in [14]): there is a C > 0 and an ε > 0 such that

f(p+ d) ≤ f(p) + f ′(p; d) +
1
2
C‖d‖2, for all d ∈ B(0, ε).(3.8)

This property is transmitted from f to LU :

Proposition 3.7. Assume (1.2). Assume also that W (u) is nonempty for u small
enough, and that (3.7) ≡ (3.8) is satisfied. Then

(i) ∂LU(u) ⊂ gU +BU(0, 2C‖u‖U), for some δ > 0 and all u ∈ BU (0, δ);
(ii) LU (u) ≤ LU(0) + 〈gU , u〉U + 1

2R‖u‖2
U , for some ρ > 0, R > 0 and all u ∈

BU (0, ρ).

Proof. Remember that ∇LU(0) = gU . Because the subdifferential is an outer-
semicontinuous mapping, we can choose δ > 0 such that for all u ∈ BU(0, δ)
and gU ∈ ∂LU(u), ‖gU − gU‖U ≤ εC

2 (see §VI.6.2 of [11] for example). On the
other hand, assume δ so small that W (u) contains some w; from Theorem 3.2(ii),
gU ⊕ gV ∈ ∂f(p+ u⊕ w).

Now U ⊂ N∂f(p)(g) (Proposition 2.2(iii)). Using the notation s := (gU − gU)⊕0,
so that gU ⊕ gV = g + s ∈ ∂f(p+ u⊕w), we are in the conditions of Corollary 3.3
in [14] written with ϕ = f , z0 = p, g0 = g, x = p+ u ⊕ w. Inequality (14) therein
becomes

‖gU − gU‖2
U = ‖s‖2 ≤ 2C〈s, u⊕ w〉 = 2C〈gU − gU , u〉U ≤ 2C‖gU − gU‖U‖u‖U ,

which is (i). As for (ii), it is equivalent to (i) (Corollary 3.5 in [14]).

Back to the f -context, Proposition 3.7 says: for small u ∈ U and all w ∈ W (u),
there holds

{gU : gU ⊕ gV ∈ ∂f(p+ u⊕ w)} ⊂ gU +BU (0, 2C‖u‖U)

as well as
f(p+ u⊕ w) ≤ f(p) + 〈g, u⊕ w〉+

1
2
R‖u‖2

U .

Now, we have a function LU , which is differentiable at 0, and whose second-order
difference quotients inherit the qualitative properties of those of f . The stage is
therefore set to consider the case where LU has a generalized Hessian at 0, in the
sense of [9] (see also [15], §3). Generally speaking, we say that a convex function ϕ
has at z0 a generalized Hessian Hϕ(z0) when

(i) the gradient ∇ϕ(z0) exists;
(ii) there exists a symmetric positive semidefinite operator Hϕ(z0) such that

ϕ(z0 + d) = ϕ(z0) + 〈∇ϕ(z0), d〉 +
1
2
〈Hϕ(z0)d, d〉+ o(‖d‖2);

(iii) or equivalently,

∂ϕ(z0 + d) ⊂ ∇ϕ(z0) + Hϕ(z0)d+B(0, o(‖d‖)).(3.9)
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Definition 3.8. Assume (1.2). We say that f has at p a U-Hessian HUf(p) (as-
sociated with g) if LU has a generalized Hessian at 0; then we set

HUf(p) := HLU (0).

When it exists, the U-Hessian HUf(p) is therefore a symmetric positive semi-
definite operator from U to U . Its existence means the possibility of expanding f
along the thick surface p+ · ⊕W (·) introduced at the end of §3.2.

Theorem 3.9. Take g ∈ ri∂f(p) and let the U-Hessian HUf(p) exist. For u ∈ U
and h ∈ u⊕W (u), there holds

f(p+ h) = f(p) + 〈g, h〉+
1
2
〈HUf(p)u, u〉U + o(‖h‖2).(3.10)

Proof. We know from Theorem 3.2(iv) that W (u) 6= ∅. Then apply the definition
of LU and expand LU to obtain for all u and w ∈ W (u):

LU(u) = f(p+ u⊕ w)− 〈gV , w〉V
= LU(0) + 〈∇LU(0), u〉U + 1

2 〈HUf(p)u, u〉U + o(‖u‖2
U)

= f(p) + 〈gU , u〉U + 1
2 〈HUf(p)u, u〉U + o(‖u‖2

U).

In view of Corollary 3.5, o(‖u‖2
U) = o(‖h‖2); (3.10) follows, adding 〈gV , w〉V to both

sides.

To the second-order expansion (3.10), there corresponds a first-order expansion
of selected subgradients along the thick surface p+ · ⊕W (·): with the notation and
assumptions of Theorem 3.9,

{gU : gU ⊕ gV ∈ ∂f(p+ h)} ⊂ gU + HUf(p)u+BU (0, o(‖h‖)).
With reference to Remark 3.4, the expansion (3.10) makes (3.6) more explicit,

for increments h = hU ⊕ hV such that hV ∈W (hU ). The aim of the next section is
to disclose some intrinsic interest of these particular h’s.

4. Examples of application

This section shows how the U-concepts developed in §3 generalize well-known
objects. We will first consider special situations: max-functions (§4.1) and semi-
definite programming (§4.2). Then in §4.3 we outline a conceptual minimization
algorithm.

4.1. Exact penalty. Consider an ordinary nonlinear programming problem{
minψ(p),
fi(p) ≤ 0, i = 1, . . . ,m,(4.1)

with convex C2 data ψ and fi. Take an optimal p and suppose that the KKT
conditions hold: with L(p, λ) := ψ(p) +

∑
i λifi(p), defined for (p, λ) ∈ Rn × Rm,

there exist Lagrange multipliers λi such that [∇pL(p, λ) =] ∇ψ(p) +
m∑

i=1

λi∇fi(p) = 0,

λi ≥ 0 λifi(p) = 0, for i = 1, . . . ,m.
(4.2)

We will use the notation γ := ∇ψ, gi := ∇fi, γ := ∇ψ(p), gi := ∇fi(p).
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Consider now an exact penalty function associated with (4.1): with f0(p) ≡ 0
(and g0(p) := ∇f0(p) ≡ 0), set

f(p) := ψ(p) + πmax{f0(p), . . . , fm(p)},(4.3)

where π > 0 is a penalty parameter. Call

J(p) :=
{
j ∈ {0, . . . ,m} : ψ(p) + πfj(p) = f(p)

}
the set of indices realizing the max at p. Standard subdifferential calculus gives

∂f(p) = γ(p) + πconv{gj(p) : j ∈ J(p)}.
In NLP language, instead of maximal functions, one speaks of active constraints.
We therefore set

I :=
{
i ∈ {1, . . . ,m} : fi(p) = 0

}
(naturally, we assume I 6= ∅; otherwise, the problem lacks interest). It is easy to
see that J(p) = I ∪ {0}; correspondingly, we associate with J(p) the “multipliers”

µi := λi for i ∈ I and µ0 := π −
∑
i∈I

λi.(4.4)

For π large enough, it is well known that p solving (4.1) also minimizes f of (4.3).
We proceed to apply the theory of §3 to the present situation: f is the exact penalty
function of (4.3), p is optimal and g = 0. We will show that the U-Lagrangian LU
coincides up to second order with the restriction to U of the ordinary Lagrangian
L(p+ ·, λ). All along this subsection, we make the following assumptions:

– the active gradients {gi}i∈I are linearly independent (hence λ is unique in the
KKT conditions (4.2)),

– λi > 0 for i ∈ I (strict complementarity),
– and π >

∑
i∈I λi, i.e., µ0 > 0 in (4.4).

The following development should be considered as a mere illustration of the U-
theory. This is why we content ourselves with the above simplifying assumptions,
which are relaxed in the more complete work of [17].

We start with a basic result, stating in particular that U is the space tangent to
the surface defined by the active constraints (well-defined thanks to our simplifying
assumptions).

Proposition 4.1. With the above notation and assumptions, we have the following
relations for p = p:

(i) ∂f(p) = γ +
{∑

i∈I µigi : µi ≥ 0,
∑

i∈I µi ≤ π
}
;

(ii) the subspaces U and V of Definition 2.1 are

V = lin{gi}i∈I , U = {d ∈ Rn : 〈gi, d〉 = 0, i ∈ I} ;

(iii) g := 0 ∈ ri∂f(p).

Proof. (i) We have

∂f(p) = γ + πconv{gi : i ∈ I ∪ {0}}
= γ +

{
πα00 +

∑
i∈I

παigi : αi ≥ 0, α0 +
∑
i∈I

αi = 1
}
.

The formula is then straightforward, setting µi := παi and eliminating the unnec-
essary vector 0.
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(ii) Apply Definition 2.1(ii): V = lin{∂f(p) − γ} because γ ∈ ∂f(p). Together
with (i), the results clearly follow.

(iii) Consider the set B := {∑I µigi : µi ≥ −µi,
∑

I µi ≤ µ0}, where µ was
defined in (4.4). Because of (ii), B ⊂ V . Because of strict complementarity and
µ0 > 0, B is a relative neighborhood of 0 = g ∈ V . Finally, because of (4.2) and
(4.4),

B = γ + B +
∑

I

λigi

= γ + {
∑

I

(µi + µi)gi : µi + µi ≥ 0,
∑

I

(µi + µi) ≤ π}.

In view of (i), B ⊂ ∂f(p) and we are done.

Lemma 4.2. With the notation and assumptions of this subsection, let p be close
to p. Then J(p) ⊂ J(p) = I ∪ {0} and the system in {µj}J(p)

〈gi, γ(p)〉+
∑

j∈J(p)

µj〈gi, gj(p)〉 = 0 for all i ∈ I,∑
j∈J(p)

µj = π
(4.5)

has a solution, which is unique, if and only if J(p) = J(p) = I ∪ {0}. The solution
µ(p) satisfies µj(p) > 0 for all j ∈ J(p) = J(p). Moreover, µ(p) = µ of (4.4) and
p 7→ µ(p) is differentiable at p = p.

Proof. Let j 6∈ J(p). By continuity, fj(p) < fi(p) for all i ∈ J(p), hence J(p) ⊂
J(p).

Now consider (4.5). First, observe that, because of (4.2), µ of (4.4) is a solution
at p = p.

(a) Assume first that J(p) = J(p) = I ∪ {0}. Since g0(p) ≡ 0, the variable µ0

is again directly given by µ0(p) = π −∑
I µj(p). As for the µj ’s, j ∈ I, they are

given by an I× I linear system, whose matrix is (〈gi, gj(p)〉)ij . Because the gi’s are
linearly independent, this matrix is positive definite. The solution µ(p) is unique;
it is also close to µ, is therefore positive and sums up to less than π: µ0(p) > 0. In
particular, µ(p) = µ is the unique solution at p = p. The differentiability property
then comes from the Implicit Function Theorem.

(b) On the other hand, assume the set I0 := J(p)\J(p) is nonempty and suppose
(4.5) has a solution {µ∗j}j∈J(p). Set µ∗j := 0 for j ∈ I0; then µ∗ also solves (4.5)
with J(p) replaced by J(p). This contradicts part (a) of the proof.

The next result reveals a nice interpretation of W (·) in (3.2): it makes a local
description of the surface defined by the active constraints.

Theorem 4.3. Use the notation and assumptions of this subsection. For u ∈ U
small enough, W (u) defined in (3.2) is a singleton w(u), which is the unique solution
of the system with unknown v ∈ V

fi(p+ u⊕ v) = 0, for all i ∈ I.(4.6)

Proof. According to Theorem 3.2(ii) and (3.5), an arbitrary p ∈ p + u ⊕W (u) is
characterized by ∂f(p) ∩ U 6= ∅; there are convex multipliers {αj}j∈J(p) such that
γ(p) + π

∑
J(p) αjgj(p) ∈ U . Setting µj := παj , this means that the system (4.5)
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has a nonnegative solution. Now, in view of Proposition 4.1(iii) and Corollary 3.5,
p− p is small; we can apply Lemma 4.2, J(p) = I ∪ {0}, and this is just (4.6).

Uniqueness of such a p is then easy to prove. Substituting fi for h2 in Remark 2.3,
the gradients of the functions v 7→ fi(p + u ⊕ v) are gi(p + u ⊕ v)V , which are
linearly independent for (u, v) = (0, 0). By the Implicit Function Theorem, (4.6)
has a unique solution w(u) for small u.

Now we are in a position to give specific expressions for the derivatives of the
U-Lagrangian.

Theorem 4.4. Use the notation and assumptions of this subsection.
(i) The U-Lagrangian is differentiable in a neighborhood of 0. With µ(·) and w(·)

defined in Lemma 4.2 and Theorem 4.3 respectively, and with

p(u) := p+ u⊕ w(u),

we have for u ∈ U small enough

∇LU(u)⊕ 0 = γ(p(u)) +
∑
j∈I

µj(p(u))gj(p(u)).(4.7)

(ii) The Hessian ∇2LU(0) exists. Using the matrix-like decomposition

∇2
ppL(p, λ) =

(
HUU HUV
HVU HVV

)
for the Hessian of the Lagrangian, we have ∇2LU(0) = HUU .

Proof. (i) Put together Lemma 4.2 and Theorem 4.3. Observe, in particular, that
the right-hand side of (4.7) lies in U . Then invoke (3.5).

(ii) In view of Lemma 4.1(iii) and Corollary 3.5, w(u) = o(‖u‖U), hence p(·) has
a Jacobian at 0; in fact, Jp(0)u = u⊕0 for all u ∈ U . Then, using Lemma 4.2, (4.7)
clearly shows that ∇LU is differentiable at 0. Compute from (4.7) the differential
∇2LU(0)u for u ∈ U :

(∇2LU(0)u)⊕ 0 = ∇2ψ(p)Jp(0)u+
∑

I

λj∇2fj(p)Jp(0)u

+
∑

I

〈∇µj(p), Jp(0)u〉gj

= ∇2
ppL(p, λ)(u ⊕ 0) +

∑
I

〈∇µj(p), Jp(0)u〉gj .

Thus, ∇2LU(0)u is the U-part of the right-hand side. The second term is a sum of
vectors in V , which does not count; we do obtain (ii).

In Remark 3.1 we have said that g in §3 plays the role of a dual variable. This
is suggested by the relation 0 = g0 +

∑
I λigi ∈ ∂f(p) which, in the present NLP

context, establishes a correspondence between g = 0 and the multipliers λi or µi.
Taking some nonzero g′ ∈ ri∂f(p) does not change the situation much; this just
amounts to applying the theory to f − 〈g′, ·〉, which is still minimal at p – but
of course the multipliers are changed, say, to λ

′
i or µ′i. Denoting by g(p(u)) the

right-hand side in (4.7), the correspondence g ↔ λ ↔ µ can even be extended to
g(p(u)) ↔ λ(u) ↔ µ(u).
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4.2. Eigenvalue optimization. Consider the problem of minimizing with respect
to x ∈ Rm the largest eigenvalue λ1 of a real symmetric n×n matrix A, depending
affinely on x. Most of the relevant information for the function λ1 ◦ A can be
obtained by analyzing the maximum eigenvalue function λ1(A), which is convex
(and finite-valued). We briefly describe here how the U-theory applies to this
context. For a detailed study, we refer to [20] where an interesting connection is
established with the geometrical approach of [21].

For the sake of consistency, we keep the notation p := A(x) for the reference
matrix where the analysis is performed. If r denotes the multiplicity of λ1(p), then

Wr := {p : p is a symmetric matrix and λ1(p) has multiplicity r}
is the smooth manifold Ω of [21].

First, the subspaces U and V in Definition 2.1 are just the tangent and normal
spaces to Wr at p (Corollary 4.8 in [20]). Similarly to Theorem 4.3, Theorem 4.11
in [20] shows that the set W (u) of (3.2) is a singleton w(u), characterized by

p+ u⊕ w(u) ∈ Wr.

As for second order, the U-Lagrangian (3.1) is twice continuously differentiable in
a neighbourhood of 0 ∈ U . Finally, use again the matrix-like decomposition(

HUU HUV
HVU HVV

)
for the Hessian of the Lagrangian introduced in Theorem 5 of [21]. Then Theo-
rem 4.12 in [20] shows that ∇2LU(0) = HUU is the reduced Hessian matrix (5.31)
in [21].

4.3. A conceptual superlinear scheme. The previous subsections have shown
that our U-objects become classical when f has some special form. It is also demon-
strated in [17] and [20] how these U-objects can provide interpretations of known
minimization algorithms. Here we go back to a general f and we design a superlin-
early convergent conceptual algorithm for minimizing f . Again, we obtain a general
formalization of known techniques from classical optimization.

Given p close to a minimum point p, the problem is to compute some p+, super-
linearly closer to p. We propose a conceptual scheme, in which we compute first
the V-component of the increment p+− p, and then its U-component. This idea of
decomposing the move from p to p+ in a “vertical” and a “horizontal” step can be
traced back to [8].

Algorithm 4.5. V-Step. Compute a solution δv ∈ V of

min{f(p+ 0⊕ δv) : δv ∈ V}(4.8)

and set p′ := p+ 0⊕ δv.
U-Step. Make a Newton step in p′ + U : compute the solution δu ∈ U of

g′U + HUf(p)δu = 0,(4.9)

where g′ ∈ ∂f(p′) is such that g′V = 0, so that g′U ∈ ∂LU((p′ − p)U ).
Update. Set p+ := p′ + δu⊕ 0 = p+ δu⊕ δv.

Remark 4.6. This algorithm needs the subspace U associated with p, as well as the
U-Hessian HUf(p), which must exist and be positive definite. The knowledge of U
may be considered as a bold requirement; constructing appropriate approximations
of it is for sure a key to obtain implementable forms. As for existence and positive
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Figure 2. Conceptual algorithm

definiteness of HUf(p), it is a natural assumption. Quasi-Newton approximations
of it might be suitable, as well as other approaches in the lines of [27].

The next result supports our scheme.

Theorem 4.7. Using the notation of §3, assume that g := 0 ∈ ri∂f(p), and that
f has at p a positive definite U-Hessian. Then the point p+ constructed by Algo-
rithm 4.5 satisfies ‖p+ − p‖ = o(‖p− p‖).
Proof. We denote by u := (p − p)U the U-component of p − p (see Figure 2). For
δv ∈ V , make the change of variables v := (p−p)V +δv, so that (4.8) can be written
minv∈V f(p+ u⊕ v). Denoting by v+ a solution, we have

v+ = (p− p)V + δv = (p+ − p)V ∈W (u)

and Corollary 3.5 implies that

‖(p+ − p)V‖V = o(‖u‖U) = o(‖p− p‖).(4.10)

From the definition (3.9) of HUf(p) and observing that ∇LU (0) = 0, we have

∂LU(u) 3 g′U = 0 + HUf(p)u+ o(‖u‖U).

Subtracting from (4.9), HUf(p)(u+ δu) = o(‖u‖U) and, since HUf(p) is invertible,
‖u+ δu‖U = o(‖u‖U). Then, writing

(p+ − p)U = (p+ − p′)U + (p′ − p)U + (p− p)U = u+ δu,

we do have ‖(p+ − p)U‖U = o(‖u‖U) = o(‖p − p‖). With (4.10), the conclusion
follows.

5. U-Hessian and Moreau-Yosida regularizations

The whole business of §3 was to develop a theory ending up with the definition
of a U-Hessian (Definition 3.8). Our aim now is to assess this concept: we give a
necessary and sufficient condition for the existence of HUf , in terms of Moreau-
Yosida regularization ([32], [19]).
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We denote by F the Moreau-Yosida regularization of f , asssociated with the
Euclidean metric,

F (x) := min
y∈Rn

{
f(y) + 1

2‖x− y‖2
}
.(5.1)

The unique minimizer in (5.1), called the proximal point of x, is denoted by

p(x) := argmin
y∈Rn

{
f(y) + 1

2‖x− y‖2
}
.(5.2)

It is well known that F has a (globally) Lipschitzian gradient, satisfying

∇F (x) = x− p(x) ∈ ∂f(p(x)).(5.3)

Given p and g satisfying (1.2), we are interested in the behaviour of F near

x := p+ g(5.4)

(recall, for example, Theorem 2.8 of [15]: g = ∇F (x) and x is such that p(x) = p).
More precisely, restricting our attention to x+U , we will give an equivalence result
and a formula linking the so restricted Hessian of F , with the U-Hessian of f at p.
To prove our results, we introduce an intermediate function, similar to φV in §3.2
of [15], but adapted to our U-context:

U 3 u 7→ φV(u) := min
v∈V

{f(p+ u⊕ v)− 〈gV , v〉V +
1
2
‖v‖2

V}.(5.5)

We start by showing that this function agrees up to second order with LU .

Lemma 5.1. With the notation above, assume that the conclusion of Corollary 3.5
holds for at least one w ∈W (u) – for example, let g be in ri ∂f(p). Then

∀ε > 0 ∃δ > 0 : ‖u‖U ≤ δ ⇒ |φV(u)− LU(u)| ≤ ε‖u‖2
U .

In particular,

∇φV(0) = gU and ∃HLU(0) ⇐⇒ ∃HφV (0) = HLU (0).(5.6)

Proof. Clearly φV(u) ≥ LU(u). To obtain an opposite inequality, write the mini-
mand in (5.5) for v = w ∈ W (u):

φV(u) ≤ f(p+ u⊕ w)− 〈gV , w〉V +
1
2
‖w‖2

V

= LU(u) +
1
2
‖w‖2

V .

Taking, in particular, w such that ‖w‖V = o(‖u‖U) (or applying Corollary 3.5), the
results follow.

The reason for introducing φV is that its Moreau-Yosida regularization ΦV is
obtained from the restriction FU of F to x+ U by a mere translation.

Proposition 5.2. Assume (1.2). The two functions

U 3 dU 7→
{

ΦV(dU ) := min
u∈U

{φV(u) +
1
2
‖dU − u‖2

U},
FU (dU ) := F (x + dU ⊕ 0),

satisfy

FU (dU ) = ΦV(gU + dU ) +
1
2
‖gV‖2

V for all dU ∈ U .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Proof. Take dU ∈ U . Recalling (5.4), compute FU (dU ) = F (p+ (gU + dU )⊕ gV) in
the following tricky way:

FU (dU ) = min
(u,v)∈U×V

{f(p+ u⊕ v) +
1
2
‖(gU + dU − u)⊕ (gV − v)‖2}

= min
u∈U

{
min
v∈V

{
f(p+ u⊕ v) + 1

2‖gV − v‖2
V
}

+ 1
2‖gU + dU − u‖2

U
}

= min
u∈U

{
φV(u) +

1
2
‖gV‖2

V +
1
2
‖gU + dU − u‖2

U
}

= ΦV(gU + dU ) + 1
2‖gV‖2

V .

Since LU is so close to φV (Lemma 5.1), its Moreau-Yosida regularization is close
to ΦV , i.e., to FU , up to a translation. This explains the next result, which is the
core of this section.

Theorem 5.3. Make the assumptions of Lemma 5.1.
(i) If HUf(p) exists, then ∇2FU (0) exists and is given by

∇2FU (0) = IU − (IU + HUf(p))−1 ;(5.7)

here IU denotes the identity in U .
(ii) Conversely, assume that ∇2FU (0) exists. If (3.7) ≡ (3.8) holds, then HUf(p)

exists and is given by

HUf(p) = (IU −∇2FU (0))−1 − IU .(5.8)

If, in addition, HUf(p) is positive definite – for example, if f is strongly
convex–, we also have

HUf(p) = (∇2FU (0)−1 − IU )−1.

Proof. (i) When HUf(p) exists, use (5.6) to see that

HUf(p) = HLU(0) = HφV (0).(5.9)

Then we can apply Theorem 3.1 of [15] to φV . We see from (5.6) that the proximal
point giving ΦV(gU ) is 0 ∈ U , so we have

∇2ΦV(gU) = IU − (IU + HφV (0))−1.

In view of Proposition 5.2 and (5.9), this is just (5.7).
(ii) Combine Proposition 3.7(i) with Lemma 5.1 to see that (3.7) ≡ (3.8) also

holds for φV at 0 ∈ U ; furthermore,∇φV(0) exists. Then we can apply Theorem 3.14
of [15] to φV : when ∇2ΦV(gU ) = ∇2FU (0) exists, then HφV (0) = HUf(p) exists.
We can write (5.7) and invert it to obtain (5.8).

Finally, suppose that f is strongly convex: for some c > 0 and all (u,w) ∈ U ×V ,

f(p+ u⊕ w) ≥ f(p) + 〈g, u⊕ w〉+
c

2
‖u⊕ w‖2

≥ f(p) + 〈gU , u〉U + 〈gV , w〉V +
c

2
‖u‖2

U .

Take w ∈W (u) and subtract 〈gV , w〉V from both sides

LU (u) ≥ LU (0) + 〈∇LU (0), u〉U +
c

2
‖u‖2

U ,

hence HUf(p) = HLU (0) is certainly positive definite. Computing its inverse from
(5.8) and applying (20) from [15], we obtain the last relation.
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A consequence of this result is that, when ∇2F (x) exists, then HUf(p) exists;
∇2FU (0) is just the UU-block of ∇2F (x). Furthermore, x 7→ p(x) has at x a
Jacobian of the form

Jp(x) = I −∇2F (x) =
(
P 0
0 0

)
(recall Corollary 2.6 in [15]). If f satisfies (3.8) at p, then

P = (I −∇2F (x))UU = IU −∇2FU (0) = (HUf(p) + IU )−1

is positive definite.

6. Conclusion

The distinctive difficulty of nonsmooth optimization is that the graph of f near
a minimum point p behaves like an elongated, gully-shaped valley. Such a val-
ley is relatively easy to describe in the composite case (max-functions, maximal
eigenvalues): it consists of those points where the non-differentiability of f stays
qualitatively the same as at p; see the considerations developed in [22]. In the
general case, however, even an appropriate definition of this valley is already not
clear. We believe that the main contribution of this paper lies precisely here: we
have generalized the concept of the gully-shaped valley to arbitrary (finite-valued)
convex functions. To this aim, we have adopted the following process:

– First, we have used the tangent space to the active constraints, familiar in
the NLP world; this was U of Definition 2.1.

– Then we have defined the gully-shaped valley, together with its parametriza-
tion by u ∈ U , namely the mapping W (·) of (3.2).

– At the same time, we have singled out in (3.5) a selection of subgradients of f ,
together with a potential function LU . A nice feature is that our definitions
are constructive via (3.1).

– This has allowed us to reduce the second-order study of f , restricted to the
valley, to that of LU (in U).

– We have shown how our generalizations reduce to known objects in compos-
ite optimization, and how they can be used for the design of superlinearly
convergent algorithms.

– Finally, we have related our new objects with the Moreau-Yosida regulariza-
tion of f .
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31. , Generalized second derivatives of convex function and saddle functions, Transactions
of the American Mathematical Society 322 (1990), no. 1, 51–78. MR 91b:90190

32. K. Yosida, Functional analysis, Springer Verlag, 1965. MR 31:5054

INRIA, 655 avenue de l’Europe, 38330 Montbonnot, France

E-mail address: Claude.Lemarechal@inria.fr

INRIA, 655 avenue de l’Europe, 38330 Montbonnot, France

E-mail address: Francois.Oustry@inria.fr

INRIA, BP 105, 78153 Le Chesnay, France

E-mail address: Claudia.Sagastizabal@inria.fr

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


