THE \mathcal{U}-LAGRANGIAN OF A CONVEX FUNCTION

CLAUDE LEMARÉCHAL, FRANÇOIS OUSTRY, AND CLAUDIA SAGASTIZÁBAL

Abstract

At a given point \bar{p}, a convex function f is differentiable in a certain subspace \mathcal{U} (the subspace along which $\partial f(\bar{p})$ has 0 -breadth). This property opens the way to defining a suitably restricted second derivative of f at \bar{p}. We do this via an intermediate function, convex on \mathcal{U}. We call this function the \mathcal{U}-Lagrangian; it coincides with the ordinary Lagrangian in composite cases: exact penalty, semidefinite programming. Also, we use this new theory to design a conceptual pattern for superlinearly convergent minimization algorithms. Finally, we establish a connection with the Moreau-Yosida regularization.

1. Introduction

This paper deals with higher-order expansions of a nonsmooth function, a problem addressed in [4], [5], [7], [9], [13], [25], and [31] among others.

The initial motivation for our present work lies in the following facts. When trying to generalize the classical second-order Taylor expansion of a function f at a nondifferentiability point \bar{p}, the major difficulty is by far the nonlinearity of the first-order approximation. Said otherwise, the gradient vector $\nabla f(\bar{p})$ is now a set $\partial f(\bar{p})$ and we have to consider difference quotients between sets, say

$$
\begin{equation*}
\frac{\partial f(\bar{p}+h)-\partial f(\bar{p})}{\|h\|} . \tag{1.1}
\end{equation*}
$$

Giving a sensible meaning to the minus-sign in this expression is a difficult problem, to say the least; it has received only abstract answers so far; see [1], [3], [10], [12], [16], [18], [23], [24], [30]. However, here are two crucial observations (already mentioned in [22]):

- There is a subspace \mathcal{U} (the "ridge") in which the first-order approximation $f^{\prime}(\bar{p} ; \cdot)$ (the directional derivative) is linear.
- Defining a second-order expansion of f is unnecessary along directions not in \mathcal{U}. Consider for example the case where $f=\max _{i} f_{i}$ with smooth f_{i} 's; then a minimization algorithm of the SQP-type will converge superlinearly, even if the second-order behaviour of f is identified in the ridge only ([26], [6]).
Here, starting from results presented in [14] and [15], we take advantage of these observations. After some preliminary theory in $\S 2$, we define our key-objects in $\S 3$: the \mathcal{U}-Lagrangian and its derivatives. In $\S 4$ we give some specific examples (further studied in [17], [20]): how the \mathcal{U}-Lagrangian specializes in an NLP and an SDP

[^0]framework, and how it could help designing superlinearly convergent algorithms for general convex functions. Finally, we show in $\S 5$ a connection between our objects thus defined and the Moreau-Yosida regularization. Indeed, the present paper clarifies and formalizes the theory sketched in $\S 3.2$ of [15]; for a related subject see also [29], [25].

Our notation follows closely that of [28] and [11]. The space \mathbb{R}^{n} is equipped with a scalar product $\langle\cdot, \cdot\rangle$, and $\|\cdot\|$ is the associated norm; in a subspace \mathcal{S}, we will write $\langle\cdot, \cdot\rangle_{\mathcal{S}}$ and $\|\cdot\|_{\mathcal{S}}$ for the induced scalar product and norm. The open ball of \mathbb{R}^{n} centered at x with radius r is $B(x, r)$; and once again, we use the notation $B_{\mathcal{S}}(x, r)$ in a subspace \mathcal{S}. We denote by $x_{\mathcal{S}}$ the projection of a vector $x \in \mathbb{R}^{n}$ onto the subspace \mathcal{S}. Throughout this paper, we consider the following situation:
(1.2) $\quad f$ is a finite-valued convex function, \bar{p} and $\bar{g} \in \partial f(\bar{p})$ are fixed.

We will also often assume that \bar{g} lies in the relative interior of $\partial f(\bar{p})$.

2. The $\mathcal{V U}$ Decomposition

We start by defining a decomposition of the space $\mathbb{R}^{n}=\mathcal{U} \oplus \mathcal{V}$, associated with a given $\bar{p} \in \mathbb{R}^{n}$. We give three equivalent definitions for the subspaces \mathcal{U} and \mathcal{V}; each has its own merit to help the intuition.

Definition 2.1. (i) Define \mathcal{U}_{1} as the subspace where $f^{\prime}(\bar{p} ; \cdot)$ is linear and take $\mathcal{V}_{1}:=\mathcal{U}_{1}^{\perp}$. Because $f^{\prime}(\bar{p} ; \cdot)$ is sublinear, we have

$$
\mathcal{U}_{1}:=\left\{d \in \mathbb{R}^{n}: f^{\prime}(\bar{p} ; d)=-f^{\prime}(\bar{p} ;-d)\right\} ;
$$

if necessary, see for instance Proposition V.1.1.6 in [11]. In other words, \mathcal{U}_{1} is the subspace where $f(\bar{p}+\cdot)$ appears to be "differentiable" at 0 . Note that this definition of \mathcal{U}_{1} does not rely on a particular scalar product.
(ii) Define \mathcal{V}_{2} as the subspace parallel to the affine hull of $\partial f(\bar{p})$ and take \mathcal{U}_{2} := \mathcal{V}_{2}^{\perp}. In other words, $\mathcal{V}_{2}:=\operatorname{lin}(\partial f(\bar{p})-\bar{g})$ for an arbitrary $\bar{g} \in \partial f(\bar{p})$, and $d \in \mathcal{U}_{2}$ means $\langle\bar{g}+v, d\rangle=\langle\bar{g}, d\rangle$ for all $v \in \mathcal{V}_{2}$.
(iii) Define \mathcal{U}_{3} and \mathcal{V}_{3} respectively as the normal and tangent cones to $\partial f(\bar{p})$ at an arbitrary g° in the relative interior of $\partial f(\bar{p})$. It is known (see, for example, Proposition 2.2 in [14]) that the property $g^{\circ} \in \operatorname{ri} \partial f(\bar{p})$ is equivalent to these cones being subspaces.

To visualize these definitions, the reader may look at Figure 1 in $\S 3.2$ (where $\left.\bar{g}=g^{\circ} \in \operatorname{ri} \partial f(\bar{p})\right)$. We recall the definition of the relative interior: $g^{\circ} \in \operatorname{ri} \partial f(\bar{p})$ means

$$
\begin{equation*}
g^{\circ}+\left(B(0, \eta) \cap \mathcal{V}_{2}\right) \subset \partial f(\bar{p}) \quad \text { for some } \eta>0 \tag{2.1}
\end{equation*}
$$

We start with a preliminary result, showing in particular that Definition 2.1 does define the same pair $\mathcal{V U}$ three times.

Proposition 2.2. In Definition 2.1,
(i) the subspace \mathcal{U}_{3} is actually given by

$$
\begin{equation*}
\left\{d \in \mathbb{R}^{n}:\left\langle g-g^{\circ}, d\right\rangle=0 \text { for all } g \in \partial f(\bar{p})\right\}=\mathrm{N}_{\partial f(\bar{p})}\left(g^{\circ}\right) \tag{2.2}
\end{equation*}
$$

and is independent of the particular $g^{\circ} \in \operatorname{ri} \partial f(\bar{p})$;
(ii) $\mathcal{U}_{1}=\mathcal{U}_{2}=\mathcal{U}_{3}=: \mathcal{U}$;
(iii) $\mathcal{U} \subset \mathrm{N}_{\partial f(\bar{p})}(\bar{g})$ for all $\bar{g} \in \partial f(\bar{p})$.

Proof. (i) To prove (2.2), take $g^{\circ} \in \operatorname{ri} \partial f(\bar{p})$ and set $N:=\mathrm{N}_{\partial f(\bar{p})}\left(g^{\circ}\right)$. By definition of a normal cone, N contains the left-hand side in (2.2); we only need to establish the converse inclusion. Let $d \in N$ and $g \in \partial f(\bar{p})$; it suffices to prove $\left\langle g-g^{\circ}, d\right\rangle \geq 0$. Indeed, (assuming $g-g^{\circ} \neq 0$), $v:=-\frac{g-g^{\circ}}{\left\|g-g^{\circ}\right\|} \in \mathcal{V}_{2}$, hence (2.1) and $d \in N$ imply that

$$
0 \geq\left\langle g^{\circ}+\eta v-g^{\circ}, d\right\rangle=-\frac{\eta}{\left\|g-g^{\circ}\right\|}\left\langle g-g^{\circ}, d\right\rangle \quad \text { for some } \eta>0
$$

and we are done.
To see the independence on the particular g°, replace g° in (2.2) by some other $\gamma^{\circ} \in \operatorname{ri} \partial f(\bar{p})$:

$$
\mathrm{N}_{\partial f(\bar{p})}\left(\gamma^{\circ}\right)=\left\{d \in \mathbb{R}^{n}:\langle g, d\rangle=\left\langle\gamma^{\circ}, d\right\rangle=\left\langle g^{\circ}, d\right\rangle, \text { for all } g \in \partial f(\bar{p})\right\}=\mathcal{U}_{3}
$$

(ii) Write

$$
\begin{equation*}
\mathcal{U}_{1}=\left\{d \in \mathbb{R}^{n}: \max _{g \in \partial f(\bar{p})}\langle g, d\rangle=\min _{g \in \partial f(\bar{p})}\langle g, d\rangle\right\} \tag{2.3}
\end{equation*}
$$

to see from (i) that $\mathcal{U}_{1}=\mathcal{U}_{3}$. Then we only need to prove $\mathcal{U}_{1} \subset \mathcal{U}_{2} \subset \mathcal{U}_{3}$.
Let $d \in \mathcal{U}_{1}$. For an arbitrary $v=\sum_{j} \lambda_{j}\left(g_{j}-\bar{g}\right) \in \mathcal{V}_{2}$ with $g_{j} \in \partial f(\bar{p})$, we have from (2.3)

$$
\langle v, d\rangle=\sum_{j} \lambda_{j}\left(\left\langle g_{j}, d\right\rangle-\langle\bar{g}, d\rangle\right)=0 ;
$$

hence $d \in \mathcal{V}_{2}^{\perp}=\mathcal{U}_{2}$.
Let $d \in \mathcal{U}_{2}$. We have $\langle g, d\rangle=\langle\bar{g}, d\rangle$ for all $g \in \partial f(\bar{p})$. It follows that $\langle g, d\rangle=$ $\left\langle g^{\circ}, d\right\rangle$ and this, together with (i), implies $d \in \mathcal{U}_{3}$.
(iii) Let $d \in \mathcal{U}=\mathcal{U}_{3}$. Given $\bar{g} \in \partial f(\bar{p})$, we have $\left\langle g^{\circ}, d\right\rangle=\langle g, d\rangle=\langle\bar{g}, d\rangle$ for all $g \in \partial f(\bar{p})$; hence $d \in \mathrm{~N}_{\partial f(\bar{p})}(\bar{g})$.

Using projections, every $x \in \mathbb{R}^{n}$ can be decomposed as $x=\left(x_{\mathcal{U}}, x_{\mathcal{V}}\right)^{T}$. Throughout this paper we use the notation $x_{\mathcal{U}} \oplus x_{\mathcal{V}}$ for the vector with components $x_{\mathcal{U}}$ and $x_{\mathcal{V}}$. In other words, \oplus stands for the linear mapping from $\mathcal{U} \times \mathcal{V}$ onto \mathbb{R}^{n} defined by

$$
\begin{equation*}
\mathcal{U} \times \mathcal{V} \ni(u, v) \mapsto u \oplus v:=\binom{u}{v} \in \mathbb{R}^{n} \tag{2.4}
\end{equation*}
$$

With this convention, \mathcal{U} and \mathcal{V} are themselves considered as vector spaces. We equip them with the scalar product induced by \mathbb{R}^{n}, so that

$$
\langle g, x\rangle=\left\langle g_{\mathcal{U}} \oplus g_{\mathcal{V}}, x_{\mathcal{U}} \oplus x_{\mathcal{V}}\right\rangle=\left\langle g_{\mathcal{U}}, x_{\mathcal{U}}\right\rangle_{\mathcal{U}}+\left\langle g_{\mathcal{V}}, x_{\mathcal{V}}\right\rangle_{\mathcal{V}}
$$

with similar expressions for norms.
Remark 2.3. The projection $x \mapsto x_{\mathcal{U}}$, as well as the operation $(u, v) \mapsto \bar{p}+u \oplus v$, will appear recurrently in all our development. Consider the three convex functions h_{1}, h_{2} and h defined by

$$
\begin{array}{rlll}
\mathcal{U} \ni u & \mapsto & h_{1}(u):=f(\bar{p}+u \oplus v), & \text { with } v \in \mathcal{V} \text { arbitrary; } \\
\mathcal{V} \ni v & \mapsto & h_{2}(v):=f(\bar{p}+u \oplus v), & \text { with } u \in \mathcal{U} \text { arbitrary; } \\
\mathcal{U} \times \mathcal{V} \ni(u, v) & \mapsto h(u, v):=f(\bar{p}+u \oplus v) . &
\end{array}
$$

Their subdifferentials have the expressions

$$
\begin{aligned}
\partial h_{1}(u) & =\left\{g_{\mathcal{U}}: g \in \partial f(\bar{p}+u \oplus v)\right\} \\
\partial h_{2}(v) & =\left\{g_{\mathcal{V}}: g \in \partial f(\bar{p}+u \oplus v)\right\} \\
\partial h\left(x_{\mathcal{U}}, x_{\mathcal{V}}\right) & =\left\{g_{\mathcal{U}} \oplus g_{\mathcal{V}}: g \in \partial f(\bar{p}+x)\right\} .
\end{aligned}
$$

Proving these formulae is a good exercise to become familiar with the operation \oplus of (2.4) and with our $\mathcal{V U}$ notation. Just consider the adjoint of \oplus and of the projections onto the various subspaces involved.

In the $\mathcal{V U}$ language, (2.1) gives the following elementary result.
Proposition 2.4. Suppose in (1.2) that $\bar{g} \in \operatorname{ri} \partial f(\bar{p})$. Then there exists $\eta>0$ small enough such that

$$
\bar{g}+0 \oplus \frac{\eta v}{\|v\|_{\mathcal{V}}} \in \partial f(\bar{p})
$$

for any $0 \neq v \in \mathcal{V}$. In particular,

$$
\begin{equation*}
f(\bar{p}+u \oplus v) \geq f(\bar{p})+\left\langle\bar{g}_{\mathcal{U}}, u\right\rangle_{\mathcal{U}}+\left\langle\bar{g}_{\mathcal{V}}, v\right\rangle_{\mathcal{V}}+\eta\|v\|_{\mathcal{V}} \tag{2.5}
\end{equation*}
$$

for any $(u, v) \in \mathcal{U} \times \mathcal{V}$.
Proof. Just translate (2.1): with v as stated, $u \oplus v \bar{g}_{\mathcal{U}}\left(\bar{g}_{\mathcal{V}}+\frac{\eta v}{\|v\|_{\nu}}\right) \in \partial f(\bar{p})$ and the rest follows easily.

3. The \mathcal{U}-Lagrangian

In this section we formalize the theory outlined in $\S 3.2$ of [15]. Along with the $\mathcal{V} \mathcal{U}$ decomposition, we introduced there the "tangential" regularization $\phi_{\mathcal{V}}$. Here, we find it convenient to consider $\phi_{\mathcal{V}}$ as a function defined on \mathcal{U} only; in addition, we drop the quadratic term appearing in (13) of [15]. As will be seen in $\S 4$, these modifications result in some sort of Lagrangian, which we denote by $L_{\mathcal{U}}$ instead of $\phi \nu$.
3.1. Definition and basic properties. Following the above introduction, we define the function $L_{\mathcal{U}}$ as follows:

$$
\begin{equation*}
\mathcal{U} \ni u \mapsto L_{\mathcal{U}}(u):=\inf _{v \in \mathcal{V}}\left\{f(\bar{p}+u \oplus v)-\left\langle\bar{g}_{\mathcal{V}}, v\right\rangle_{\mathcal{V}}\right\} . \tag{3.1}
\end{equation*}
$$

Associated with (3.1) we have the set of minimizers

$$
\begin{equation*}
W(u):=\underset{v \in \mathcal{V}}{\operatorname{Argmin}}\left\{f(\bar{p}+u \oplus v)-\left\langle\bar{g}_{\mathcal{V}}, v\right\rangle_{\mathcal{V}}\right\} \tag{3.2}
\end{equation*}
$$

It will be seen below that an important question is whether $W(u)$ is nonempty.
Remark 3.1. The function $L_{\mathcal{U}}$ of (3.1) will be called the \mathcal{U}-Lagrangian. Note that it depends on the particular \bar{g}, a notation $L_{\mathcal{U}}(u, \bar{g})$ is also possible. In fact, since \bar{g} lies in the dual of \mathbb{R}^{n}, it connotes a dual variable; this will become even more visible in $\S 4.1$ (just observe here that $\bar{g} \mapsto-L_{\mathcal{U}}$ is a conjugate function).

At this point, the idea behind (3.1) can be roughly explained. As is commonly known, smoothness of a convex function is related to strong convexity of its conjugate. In our context, a useful property is the "radial" strong convexity of f^{*} at \bar{g}, say,

$$
f^{*}(\bar{g}+s) \geq f^{*}(\bar{g})+\langle s, \bar{p}\rangle+\frac{1}{2} c\|s\|^{2}+o\left(\|s\|^{2}\right)
$$

for some $c>0$. However, the above inequality is hopeless for an s of the form $s=0 \oplus v$ (see §4 in [14]; see also [2] for related developments). To obtain radial strong convexity on \mathcal{V}, we introduce the function

$$
\begin{equation*}
f^{*}(\bar{g}+s)+\frac{1}{2} c\|s \mathcal{V}\|_{\mathcal{V}}^{2} \tag{3.3}
\end{equation*}
$$

Its conjugate (restricted to \mathcal{U}) is precisely $L_{\mathcal{U}}$ when $c=+\infty$ (a value which yields the "strongest" possible convexity); Theorem 3.3 will confirm the smoothness of $L_{\mathcal{U}}$.

The value $c=1$ in (3.3) may be deemed more natural - and indeed, it will be useful in $\S 5$; in fact, Lemma 5.1 will show that the choice of c has minor importance for second order.

Theorem 3.2. Assume (1.2).
(i) The function $L_{\mathcal{U}}$ defined in (3.1) is convex and finite everywhere.
(ii) A minimum point $w \in W(u)$ in (3.2) is characterized by the existence of some $g \in \partial f(\bar{p}+u \oplus w)$ such that $g_{\mathcal{V}}=\bar{g}_{\mathcal{V}}$.
(iii) In particular, $0 \in W(0)$ and $L_{\mathcal{U}}(0)=f(\bar{p})$.
(iv) If $\bar{g} \in \operatorname{ri} \partial f(\bar{p})$, then $W(u)$ is nonempty for each $u \in \mathcal{U}$ and $W(0)=\{0\}$.

Proof. (i) The infimand in (3.1) is $h(u, v)-\left\langle\bar{g}_{\mathcal{V}}, v\right\rangle_{\mathcal{V}}$, where the function h was defined in Remark 2.3. It is clearly finite-valued and convex on $\mathcal{U} \times \mathcal{V}$, and the subgradient inequality at $(u, v)=(0,0)$ gives

$$
h(u, v)-\left\langle\bar{g}_{\mathcal{V}}, v\right\rangle_{\mathcal{V}} \geq f(\bar{p})+\left\langle\bar{g}_{\mathcal{U}}, u\right\rangle_{\mathcal{U}} \quad \text { for any } v \in \mathcal{V}
$$

It follows that $L_{\mathcal{U}}$ is nowhere $-\infty$ and, being a partial infimum of a jointly convex function, it is convex as well, see for example §IV.2.4 in [11].
(ii) The optimality condition for $w \in W(u)$ is $0 \in \partial h_{2}(w)-\bar{g}_{\mathcal{V}}$, with h_{2} as in Remark 2.3. Knowing the expression of ∂h_{2}, we obtain $0=g_{\mathcal{V}}-\bar{g}_{\mathcal{V}}$, for some $g \in \partial f(\bar{p}+u \oplus w)$.
(iii) In particular, for $u=0$, we can take $w=0$ and $g=\bar{g} \in \partial f(\bar{p}+0 \oplus 0)$ in (ii). This proves that $v=0$ satisfies the optimality condition for (3.1); then $L_{\mathcal{U}}(0)=f(\bar{p})$.
(iv) Apply (2.5): there exists $\eta>0$ such that, for any $v \neq 0$,

$$
h(u, v)-\left\langle\bar{g}_{\mathcal{V}}, v\right\rangle_{\mathcal{V}} \geq f(\bar{p})+\left\langle\bar{g}_{\mathcal{U}}, u\right\rangle_{\mathcal{U}}+\eta\|v\|_{\mathcal{V}} .
$$

Thus, the infimand in (3.1) is inf-compact on \mathcal{V} and the set $W(u)$ is nonempty. At $u=0$, we have

$$
h(0, v)-\left\langle\bar{g}_{\mathcal{V}}, v\right\rangle_{\mathcal{V}} \geq f(\bar{p})+\eta\|v\|_{\mathcal{V}},
$$

which shows that $v=0$ is the unique minimizer.
3.2. First-order behaviour. The primary interest of the \mathcal{U}-Lagrangian is that it has a gradient at 0 . Besides, its subdifferential is obtained from the optimality condition in Theorem 3.2(ii).

Theorem 3.3. Assume (1.2).
(i) Let u be such that $W(u) \neq \emptyset$. Then the subdifferential of $L_{\mathcal{U}}$ at this u has the expression

$$
\begin{equation*}
\partial L_{\mathcal{U}}(u)=\left\{g_{\mathcal{U}}: g_{\mathcal{U}} \oplus \bar{g}_{\mathcal{V}} \in \partial f(\bar{p}+u \oplus w)\right\} \tag{3.4}
\end{equation*}
$$

where w is an arbitrary point in $W(u)$.
(ii) In particular, $L_{\mathcal{U}}$ is differentiable at 0 , with $\nabla L_{\mathcal{U}}(0)=\bar{g}_{\mathcal{U}}$.

Proof. (i) Using again the notation of Remark 2.3, write the infimand in (3.1) as $h(u, v)-\left\langle 0 \oplus \bar{g}_{\mathcal{V}}, u \oplus v\right\rangle$. For the subdifferential of the marginal function $L_{\mathcal{U}}$,

Figure 1. Subdifferential of $L_{\mathcal{U}}$

Corollary VI.4.5.3 in [11] gives the calculus rule

$$
\begin{aligned}
s \in \partial_{u} L_{\mathcal{U}}(u) & \Longleftrightarrow s \oplus 0 \in \partial_{u, v}\left(h-\left\langle 0 \oplus \bar{g}_{\mathcal{V}}, \cdot\right\rangle\right)(u, w) \\
& \Longleftrightarrow s \oplus 0 \in \partial_{u, v} h(u, w)-0 \bar{g}_{\mathcal{V}} \\
& \Longleftrightarrow s \oplus \bar{g}_{\mathcal{V}} \in \partial_{u, v} h(u, w),
\end{aligned}
$$

where $w \in W(u)$ is arbitrary. From the expression of $\partial_{u, v} h=\partial h$ in Remark 2.3, this is (3.4).
(ii) Because of Theorem $3.2($ iii $),(3.4)$ holds at $u=0$ and becomes $\partial L_{\mathcal{U}}(0)=$ $\left\{g_{\mathcal{U}}: g_{\mathcal{U}} \oplus \bar{g}_{\mathcal{V}} \in \partial f(\bar{p})\right\}$. This latter set clearly contains $\bar{g}_{\mathcal{U}}$. Actually, it does not contain any other point, due to Definition $2.1(i i): \partial f(\bar{p}) \subset \bar{g}+\mathcal{V}$, i.e., all subgradients at \bar{p} have the same \mathcal{U}-component, namely $\bar{g}_{\mathcal{U}}$.

This result is illustrated in Figure 1. We stress the fact that the set in the right-hand-side of (3.4) does not depend on the particular $w \in W(u)$. In other words, (3.4) expresses the following: to obtain the subgradients of $L_{\mathcal{U}}$ at u, take those subgradients g of f at $\bar{p}+u \oplus W(u)$ that have the same \mathcal{V}-component as \bar{g} (namely $\left.\bar{g}_{\mathcal{V}}\right)$; then take their \mathcal{U}-component. Remembering that \mathcal{U} is in effect a subset of \mathbb{R}^{n}, we can also write more informally

$$
\partial L_{\mathcal{U}}(u)=[\partial f(\bar{p}+u \oplus W(u)) \cap(\bar{g}+\mathcal{U})]_{\mathcal{U}}
$$

This operation somewhat simplifies when $\bar{g}_{\mathcal{V}}=0$:

$$
\begin{equation*}
\text { if } \bar{g}_{\mathcal{V}}=0 \text {, then } \partial L_{\mathcal{U}}(u)=\partial f(\bar{p}+u \oplus W(u)) \cap \mathcal{U} \tag{3.5}
\end{equation*}
$$

See the end of $\S 3.2$ below for additional comments on the "trajectories" $\bar{p}+u \oplus W(u)$. Another observation is that, for all $u \in \mathcal{U}$,

$$
f^{\prime}(\bar{p} ; u \oplus 0)=\langle\bar{g}, u \oplus 0\rangle=\left\langle\bar{g}_{\mathcal{U}}, u\right\rangle_{\mathcal{U}}=\left\langle\nabla L_{\mathcal{U}}(0), u\right\rangle_{\mathcal{U}} .
$$

In other words, $L_{\mathcal{U}}$ agrees, up to first order, with the restriction of f to $\bar{p}+\mathcal{U}$. Continuing with our \mathcal{U}-terminology, we will say that $\bar{g}_{\mathcal{U}}$ is the \mathcal{U}-gradient of f at \bar{p}, and note that $\bar{g}_{\mathcal{U}}$ is actually independent of the particular $\bar{g} \in \partial f(\bar{p})$ (recall Proposition 2.2(i)).

Remark 3.4. We add that, because f is locally Lipschitzian, this \mathcal{U}-differentiability property holds also tangentially to \mathcal{U} :

$$
\begin{equation*}
f(\bar{p}+h)=f(\bar{p})+\langle\bar{g}, h\rangle+o(\|h\|) \text { whenever }\left\|h_{\mathcal{V}}\right\|_{\mathcal{V}}=o\left(\left\|h_{\mathcal{U}}\right\|_{\mathcal{U}}\right) \tag{3.6}
\end{equation*}
$$

This remark will be instrumental when coming to higher order; then we will have to select h appropriately, to allow a specification of the remainder term in (3.6); see Theorem 3.9.

As already mentioned, the existence of $\nabla L_{\mathcal{U}}(0)$ is of paramount importance, since it suppresses the difficulty pointed out in the introduction of this paper; now the difference quotient in (1.1) takes the form

$$
\frac{\partial L_{\mathcal{U}}(u)-\bar{g}_{\mathcal{U}}}{\|u\|_{\mathcal{U}}}
$$

which does make sense. Here is a useful first consequence: $W(u)=o\left(\|u\|_{\mathcal{U}}\right)$.
Corollary 3.5. Assume (1.2). If $\bar{g} \in \operatorname{ri} \partial f(\bar{p})$, then

$$
\forall \varepsilon>0 \exists \delta>0:\|u\|_{\mathcal{U}} \leq \delta \Rightarrow\|w\|_{\mathcal{V}} \leq \varepsilon\|u\|_{\mathcal{U}} \text { for any } w \in W(u)
$$

Proof. Use Theorem 3.3(ii) to write the first-order expansion of $L_{\mathcal{U}}$:

$$
L_{\mathcal{U}}(u)=L_{\mathcal{U}}(0)+\left\langle\nabla L_{\mathcal{U}}(0), u\right\rangle_{\mathcal{U}}+o\left(\|u\|_{\mathcal{U}}\right)=f(\bar{p})+\left\langle\bar{g}_{\mathcal{U}}, u\right\rangle_{\mathcal{U}}+o\left(\|u\|_{\mathcal{U}}\right) .
$$

For any $w \in W(u)$ we have $L_{\mathcal{U}}(u)=f(\bar{p}+u \oplus w)-\left\langle\bar{g}_{\mathcal{V}}, w\right\rangle_{\mathcal{V}}$; therefore, (2.5) written for $v=w$, gives $L_{\mathcal{U}}(u) \geq f(\bar{p})+\left\langle\bar{g}_{\mathcal{U}}, u\right\rangle_{\mathcal{U}}+\eta\|w\|_{\mathcal{V}}$. Altogether, we obtain

$$
o\left(\|u\|_{\mathcal{U}}\right)=L_{\mathcal{U}}(u)-f(\bar{p})-\left\langle\bar{g}_{\mathcal{U}}, u\right\rangle_{\mathcal{U}} \geq \eta\|w\|_{\mathcal{V}}
$$

Let us sum up our results so far.

- Given $\bar{g} \in \partial f(\bar{p})$, we define via (3.1) a convex function $L_{\mathcal{U}}$ (Theorem 3.2(i)), which is differentiable at 0 and coincides up to first order with the restriction of f to $\bar{p}+\mathcal{U}$ (Theorem 3.3(ii)).
- When $W(\cdot) \neq \emptyset$, this \mathcal{U}-Lagrangian is indeed the restriction of f to a "thick surface" $\{\bar{p}+\cdot \oplus W(\cdot)\}$, parametrized by $u \in \mathcal{U}$.
- We also define, via Theorem 3.2(ii), a "thick selection" of ∂f on this thick surface, made up of those subgradients that have the same \mathcal{V}-component as \bar{g}.
- As a function of the parameter u, this thick selection behaves like a subdifferential, namely $\partial L_{\mathcal{U}}$ (Theorem 3.3(i)).
- When $\bar{g} \in \operatorname{ri} \partial f(\bar{p})$, our thick surface has \mathcal{U} as "tangent space" at \bar{p} (Corollary 3.5 ; we use quotation marks because W is multivalued).

Remark 3.6. We note in passing two extreme cases in which our theory becomes trivial:

- when f is differentiable at \bar{p}, then $\mathcal{U}=\mathbb{R}^{n}, \mathcal{V}=\{0\}$ and $L_{\mathcal{U}} \equiv f$;
- when $\partial f(\bar{p})$ has full dimension, then $\mathcal{U}=\{0\}$ and there is no \mathcal{U}-Lagrangian.
3.3. Higher-order behaviour. Proceeding further in our differential analysis of $L_{\mathcal{U}}$, we now study the behaviour of $\partial L_{\mathcal{U}}$ near 0 . A very basic property of this set is its radial Lipschitz continuity. We say that f has a radially Lipschitz subdifferential at \bar{p} when there is a $D>0$ and a $\delta>0$ such that

$$
\begin{equation*}
\partial f(\bar{p}+d) \subset \partial f(\bar{p})+B(0, D\|d\|), \quad \text { for all } d \in B(0, \delta) \tag{3.7}
\end{equation*}
$$

This is equivalent to an upper quadratic growth condition on the function itself (recall Corollary 3.5 in [14]): there is a $C>0$ and an $\varepsilon>0$ such that

$$
\begin{equation*}
f(\bar{p}+d) \leq f(\bar{p})+f^{\prime}(\bar{p} ; d)+\frac{1}{2} C\|d\|^{2}, \quad \text { for all } d \in B(0, \varepsilon) \tag{3.8}
\end{equation*}
$$

This property is transmitted from f to $L_{\mathcal{U}}$:
Proposition 3.7. Assume (1.2). Assume also that $W(u)$ is nonempty for u small enough, and that $(3.7) \equiv(3.8)$ is satisfied. Then
(i) $\partial L_{\mathcal{U}}(u) \subset \bar{g}_{\mathcal{U}}+B_{\mathcal{U}}\left(0,2 C\|u\|_{\mathcal{U}}\right)$, for some $\delta>0$ and all $u \in B_{\mathcal{U}}(0, \delta)$;
(ii) $L_{\mathcal{U}}(u) \leq L_{\mathcal{U}}(0)+\left\langle\bar{g}_{\mathcal{U}}, u\right\rangle_{\mathcal{U}}+\frac{1}{2} R\|u\|_{\mathcal{U}}^{2}$, for some $\rho>0, R>0$ and all $u \in$ $B_{\mathcal{U}}(0, \rho)$.

Proof. Remember that $\nabla L_{\mathcal{U}}(0)=\bar{g}_{\mathcal{U}}$. Because the subdifferential is an outersemicontinuous mapping, we can choose $\delta>0$ such that for all $u \in B_{\mathcal{U}}(0, \delta)$ and $g_{\mathcal{U}} \in \partial L_{\mathcal{U}}(u),\left\|g_{\mathcal{U}}-\bar{g}_{\mathcal{U}}\right\|_{\mathcal{U}} \leq \frac{\varepsilon C}{2}$ (see \S VI.6.2 of [11] for example). On the other hand, assume δ so small that $W(u)$ contains some w; from Theorem 3.2(ii), $g_{\mathcal{U}} \oplus \bar{g}_{\mathcal{V}} \in \partial f(\bar{p}+u \oplus w)$.

Now $\mathcal{U} \subset \mathrm{N}_{\partial f(\bar{p})}(\bar{g})\left(\right.$ Proposition 2.2(iii)). Using the notation $s:=\left(g_{\mathcal{U}}-\bar{g}_{\mathcal{U}}\right) \oplus 0$, so that $g_{\mathcal{U}} \oplus \bar{g}_{\mathcal{V}}=\bar{g}+s \in \partial f(\bar{p}+u \oplus w)$, we are in the conditions of Corollary 3.3 in [14] written with $\varphi=f, z_{0}=\bar{p}, g_{0}=\bar{g}, x=\bar{p}+u \oplus w$. Inequality (14) therein becomes

$$
\left\|g_{\mathcal{U}}-\bar{g}_{\mathcal{U}}\right\|_{\mathcal{U}}^{2}=\|s\|^{2} \leq 2 C\langle s, u \oplus w\rangle=2 C\left\langle g_{\mathcal{U}}-\bar{g}_{\mathcal{U}}, u\right\rangle_{\mathcal{U}} \leq 2 C\left\|g_{\mathcal{U}}-\bar{g}_{\mathcal{U}}\right\|_{\mathcal{U}}\|u\|_{\mathcal{U}},
$$

which is (i). As for $(i i)$, it is equivalent to (i) (Corollary 3.5 in [14]).
Back to the f-context, Proposition 3.7 says: for small $u \in \mathcal{U}$ and all $w \in W(u)$, there holds

$$
\left\{g_{\mathcal{U}}: g_{\mathcal{U}} \oplus \bar{g}_{\mathcal{V}} \in \partial f(\bar{p}+u \oplus w)\right\} \subset \bar{g}_{\mathcal{U}}+B_{\mathcal{U}}\left(0,2 C\|u\|_{\mathcal{U}}\right)
$$

as well as

$$
f(\bar{p}+u \oplus w) \leq f(\bar{p})+\langle\bar{g}, u \oplus w\rangle+\frac{1}{2} R\|u\|_{\mathcal{U}}^{2}
$$

Now, we have a function $L_{\mathcal{U}}$, which is differentiable at 0 , and whose second-order difference quotients inherit the qualitative properties of those of f. The stage is therefore set to consider the case where $L_{\mathcal{U}}$ has a generalized Hessian at 0 , in the sense of [9] (see also [15], §3). Generally speaking, we say that a convex function φ has at z_{0} a generalized Hessian $\mathrm{H} \varphi\left(z_{0}\right)$ when
(i) the gradient $\nabla \varphi\left(z_{0}\right)$ exists;
(ii) there exists a symmetric positive semidefinite operator $\mathrm{H} \varphi\left(z_{0}\right)$ such that

$$
\varphi\left(z_{0}+d\right)=\varphi\left(z_{0}\right)+\left\langle\nabla \varphi\left(z_{0}\right), d\right\rangle+\frac{1}{2}\left\langle\mathrm{H} \varphi\left(z_{0}\right) d, d\right\rangle+o\left(\|d\|^{2}\right)
$$

(iii) or equivalently,

$$
\begin{equation*}
\partial \varphi\left(z_{0}+d\right) \subset \nabla \varphi\left(z_{0}\right)+\mathrm{H} \varphi\left(z_{0}\right) d+B(0, o(\|d\|)) \tag{3.9}
\end{equation*}
$$

Definition 3.8. Assume (1.2). We say that f has at \bar{p} a \mathcal{U}-Hessian $\mathrm{H}_{\mathcal{U}} f(\bar{p})$ (associated with \bar{g}) if $L_{\mathcal{U}}$ has a generalized Hessian at 0 ; then we set

$$
\mathrm{H}_{\mathcal{U}} f(\bar{p}):=\mathrm{H} L_{\mathcal{U}}(0)
$$

When it exists, the \mathcal{U}-Hessian $\mathrm{H}_{\mathcal{U}} f(\bar{p})$ is therefore a symmetric positive semidefinite operator from \mathcal{U} to \mathcal{U}. Its existence means the possibility of expanding f along the thick surface $\bar{p}+\cdot \oplus W(\cdot)$ introduced at the end of $\S 3.2$.

Theorem 3.9. Take $\bar{g} \in \operatorname{ri} \partial f(\bar{p})$ and let the \mathcal{U}-Hessian $\mathrm{H}_{\mathcal{U}} f(\bar{p})$ exist. For $u \in \mathcal{U}$ and $h \in u \oplus W(u)$, there holds

$$
\begin{equation*}
f(\bar{p}+h)=f(\bar{p})+\langle\bar{g}, h\rangle+\frac{1}{2}\left\langle\mathrm{H}_{\mathcal{U}} f(\bar{p}) u, u\right\rangle_{\mathcal{U}}+o\left(\|h\|^{2}\right) . \tag{3.10}
\end{equation*}
$$

Proof. We know from Theorem 3.2 (iv) that $W(u) \neq \emptyset$. Then apply the definition of $L_{\mathcal{U}}$ and expand $L_{\mathcal{U}}$ to obtain for all u and $w \in W(u)$:

$$
\begin{aligned}
L_{\mathcal{U}}(u) & =f(\bar{p}+u \oplus w)-\left\langle\bar{g}_{\mathcal{V}}, w\right\rangle_{\mathcal{V}} \\
& =L_{\mathcal{U}}(0)+\left\langle\nabla L_{\mathcal{U}}(0), u\right\rangle_{\mathcal{U}}+\frac{1}{2}\left\langle\mathrm{H}_{\mathcal{U}} f(\bar{p}) u, u\right\rangle_{\mathcal{U}}+o\left(\|u\|_{\mathcal{U}}^{2}\right) \\
& =f(\bar{p})+\left\langle\bar{g}_{\mathcal{U}}, u\right\rangle_{\mathcal{U}}+\frac{1}{2}\left\langle\mathrm{H}_{\mathcal{U}} f(\bar{p}) u, u\right\rangle_{\mathcal{U}}+o\left(\|u\|_{\mathcal{U}}^{2}\right) .
\end{aligned}
$$

In view of Corollary 3.5, $o\left(\|u\|_{\mathcal{U}}^{2}\right)=o\left(\|h\|^{2}\right)$; (3.10) follows, adding $\left\langle\bar{g}_{\mathcal{V}}, w\right\rangle_{\mathcal{V}}$ to both sides.

To the second-order expansion (3.10), there corresponds a first-order expansion of selected subgradients along the thick surface $\bar{p}+\cdot \oplus W(\cdot)$: with the notation and assumptions of Theorem 3.9,

$$
\left\{g_{\mathcal{U}}: g_{\mathcal{U}} \oplus \bar{g}_{\mathcal{V}} \in \partial f(\bar{p}+h)\right\} \subset \bar{g}_{\mathcal{U}}+\mathrm{H}_{\mathcal{U}} f(\bar{p}) u+B_{\mathcal{U}}(0, o(\|h\|))
$$

With reference to Remark 3.4, the expansion (3.10) makes (3.6) more explicit, for increments $h=h_{\mathcal{U}} \oplus h_{\mathcal{V}}$ such that $h_{\mathcal{V}} \in W\left(h_{\mathcal{U}}\right)$. The aim of the next section is to disclose some intrinsic interest of these particular h 's.

4. Examples of application

This section shows how the \mathcal{U}-concepts developed in $\S 3$ generalize well-known objects. We will first consider special situations: max-functions (§4.1) and semidefinite programming (§4.2). Then in $\S 4.3$ we outline a conceptual minimization algorithm.
4.1. Exact penalty. Consider an ordinary nonlinear programming problem

$$
\left\{\begin{array}{l}
\min \psi(p) \tag{4.1}\\
f_{i}(p) \leq 0, \quad i=1, \ldots, m
\end{array}\right.
$$

with convex C^{2} data ψ and f_{i}. Take an optimal \bar{p} and suppose that the KKT conditions hold: with $L(p, \lambda):=\psi(p)+\sum_{i} \lambda_{i} f_{i}(p)$, defined for $(p, \lambda) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$, there exist Lagrange multipliers $\bar{\lambda}_{i}$ such that

$$
\left\{\begin{array}{l}
{\left[\nabla_{p} L(\bar{p}, \bar{\lambda})=\right] \nabla \psi(\bar{p})+\sum_{i=1}^{m} \bar{\lambda}_{i} \nabla f_{i}(\bar{p})=0} \tag{4.2}\\
\bar{\lambda}_{i} \geq 0 \quad \bar{\lambda}_{i} f_{i}(\bar{p})=0, \quad \text { for } i=1, \ldots, m
\end{array}\right.
$$

We will use the notation $\gamma:=\nabla \psi, g_{i}:=\nabla f_{i}, \bar{\gamma}:=\nabla \psi(\bar{p}), \bar{g}_{i}:=\nabla f_{i}(\bar{p})$.

Consider now an exact penalty function associated with (4.1): with $f_{0}(p) \equiv 0$ (and $\left.g_{0}(p):=\nabla f_{0}(p) \equiv 0\right)$, set

$$
\begin{equation*}
f(p):=\psi(p)+\pi \max \left\{f_{0}(p), \ldots, f_{m}(p)\right\} \tag{4.3}
\end{equation*}
$$

where $\pi>0$ is a penalty parameter. Call

$$
J(p):=\left\{j \in\{0, \ldots, m\}: \psi(p)+\pi f_{j}(p)=f(p)\right\}
$$

the set of indices realizing the max at p. Standard subdifferential calculus gives

$$
\partial f(p)=\gamma(p)+\pi \operatorname{conv}\left\{g_{j}(p): j \in J(p)\right\}
$$

In NLP language, instead of maximal functions, one speaks of active constraints. We therefore set

$$
\bar{I}:=\left\{i \in\{1, \ldots, m\}: f_{i}(\bar{p})=0\right\}
$$

(naturally, we assume $\bar{I} \neq \emptyset$; otherwise, the problem lacks interest). It is easy to see that $J(\bar{p})=\bar{I} \cup\{0\}$; correspondingly, we associate with $J(\bar{p})$ the "multipliers"

$$
\begin{equation*}
\bar{\mu}_{i}:=\bar{\lambda}_{i} \text { for } i \in \bar{I} \quad \text { and } \quad \bar{\mu}_{0}:=\pi-\sum_{i \in \bar{I}} \bar{\lambda}_{i} \tag{4.4}
\end{equation*}
$$

For π large enough, it is well known that \bar{p} solving (4.1) also minimizes f of (4.3). We proceed to apply the theory of $\S 3$ to the present situation: f is the exact penalty function of (4.3), \bar{p} is optimal and $\bar{g}=0$. We will show that the \mathcal{U}-Lagrangian $L_{\mathcal{U}}$ coincides up to second order with the restriction to \mathcal{U} of the ordinary Lagrangian $L(\bar{p}+\cdot, \bar{\lambda})$. All along this subsection, we make the following assumptions:

- the active gradients $\left\{\bar{g}_{i}\right\}_{i \in \bar{I}}$ are linearly independent (hence $\bar{\lambda}$ is unique in the KKT conditions (4.2)),
$-\bar{\lambda}_{i}>0$ for $i \in \bar{I}$ (strict complementarity),
- and $\pi>\sum_{i \in \bar{I}} \bar{\lambda}_{i}$, i.e., $\bar{\mu}_{0}>0$ in (4.4).

The following development should be considered as a mere illustration of the \mathcal{U} theory. This is why we content ourselves with the above simplifying assumptions, which are relaxed in the more complete work of [17].

We start with a basic result, stating in particular that \mathcal{U} is the space tangent to the surface defined by the active constraints (well-defined thanks to our simplifying assumptions).

Proposition 4.1. With the above notation and assumptions, we have the following relations for $p=\bar{p}$:
(i) $\partial f(\bar{p})=\bar{\gamma}+\left\{\sum_{i \in \bar{I}} \mu_{i} \bar{g}_{i}: \mu_{i} \geq 0, \sum_{i \in \bar{I}} \mu_{i} \leq \pi\right\}$;
(ii) the subspaces \mathcal{U} and \mathcal{V} of Definition 2.1 are

$$
\mathcal{V}=\operatorname{lin}\left\{\bar{g}_{i}\right\}_{i \in \bar{I}}, \quad \mathcal{U}=\left\{d \in \mathbb{R}^{n}:\left\langle\bar{g}_{i}, d\right\rangle=0, i \in \bar{I}\right\} ;
$$

(iii) $\bar{g}:=0 \in \operatorname{ri} \partial f(\bar{p})$.

Proof. (i) We have

$$
\begin{aligned}
\partial f(\bar{p}) & =\bar{\gamma}+\pi \operatorname{conv}\left\{\bar{g}_{i}: i \in \bar{I} \cup\{0\}\right\} \\
& =\bar{\gamma}+\left\{\pi \alpha_{0} 0+\sum_{i \in \bar{I}} \pi \alpha_{i} \bar{g}_{i}: \alpha_{i} \geq 0, \alpha_{0}+\sum_{i \in \bar{I}} \alpha_{i}=1\right\} .
\end{aligned}
$$

The formula is then straightforward, setting $\mu_{i}:=\pi \alpha_{i}$ and eliminating the unnecessary vector 0 .
(ii) Apply Definition 2.1(ii): $\mathcal{V}=\operatorname{lin}\{\partial f(\bar{p})-\bar{\gamma}\}$ because $\bar{\gamma} \in \partial f(\bar{p})$. Together with (i), the results clearly follow.
(iii) Consider the set $\mathcal{B}:=\left\{\sum_{\bar{I}} \mu_{i} \bar{g}_{i}: \mu_{i} \geq-\bar{\mu}_{i}, \sum_{\bar{I}} \mu_{i} \leq \bar{\mu}_{0}\right\}$, where $\bar{\mu}$ was defined in (4.4). Because of $(i i), \mathcal{B} \subset \mathcal{V}$. Because of strict complementarity and $\bar{\mu}_{0}>0, \mathcal{B}$ is a relative neighborhood of $0=\bar{g} \in \mathcal{V}$. Finally, because of (4.2) and (4.4),

$$
\begin{aligned}
\mathcal{B} & =\bar{\gamma}+\mathcal{B}+\sum_{\bar{I}} \bar{\lambda}_{i} \bar{g}_{i} \\
& =\bar{\gamma}+\left\{\sum_{\bar{I}}\left(\mu_{i}+\bar{\mu}_{i}\right) \bar{g}_{i}: \mu_{i}+\bar{\mu}_{i} \geq 0, \sum_{\bar{I}}\left(\mu_{i}+\bar{\mu}_{i}\right) \leq \pi\right\}
\end{aligned}
$$

In view of $(i), \mathcal{B} \subset \partial f(\bar{p})$ and we are done.
Lemma 4.2. With the notation and assumptions of this subsection, let p be close to \bar{p}. Then $J(p) \subset J(\bar{p})=\bar{I} \cup\{0\}$ and the system in $\left\{\mu_{j}\right\}_{J(p)}$

$$
\left\{\begin{array}{l}
\left\langle\bar{g}_{i}, \gamma(p)\right\rangle+\sum_{j \in J(p)} \mu_{j}\left\langle\bar{g}_{i}, g_{j}(p)\right\rangle=0 \quad \text { for all } i \in \bar{I}, \tag{4.5}\\
\sum_{j \in J(p)} \mu_{j}=\pi
\end{array}\right.
$$

has a solution, which is unique, if and only if $J(p)=J(\bar{p})=\bar{I} \cup\{0\}$. The solution $\mu(p)$ satisfies $\mu_{j}(p)>0$ for all $j \in J(p)=J(\bar{p})$. Moreover, $\mu(\bar{p})=\bar{\mu}$ of (4.4) and $p \mapsto \mu(p)$ is differentiable at $p=\bar{p}$.

Proof. Let $j \notin J(\bar{p})$. By continuity, $f_{j}(p)<f_{i}(p)$ for all $i \in J(\bar{p})$, hence $J(p) \subset$ $J(\bar{p})$.

Now consider (4.5). First, observe that, because of (4.2), $\bar{\mu}$ of (4.4) is a solution at $p=\bar{p}$.
(a) Assume first that $J(p)=J(\bar{p})=\bar{I} \cup\{0\}$. Since $g_{0}(p) \equiv 0$, the variable μ_{0} is again directly given by $\mu_{0}(p)=\pi-\sum_{\bar{I}} \mu_{j}(p)$. As for the μ_{j} 's, $j \in \bar{I}$, they are given by an $\bar{I} \times \bar{I}$ linear system, whose matrix is $\left(\left\langle\bar{g}_{i}, g_{j}(p)\right\rangle\right)_{i j}$. Because the \bar{g}_{i} 's are linearly independent, this matrix is positive definite. The solution $\mu(p)$ is unique; it is also close to $\bar{\mu}$, is therefore positive and sums up to less than π : $\mu_{0}(p)>0$. In particular, $\mu(\bar{p})=\bar{\mu}$ is the unique solution at $p=\bar{p}$. The differentiability property then comes from the Implicit Function Theorem.
(b) On the other hand, assume the set $I_{0}:=J(\bar{p}) \backslash J(p)$ is nonempty and suppose (4.5) has a solution $\left\{\mu_{j}^{*}\right\}_{j \in J(p)}$. Set $\mu_{j}^{*}:=0$ for $j \in I_{0}$; then μ^{*} also solves (4.5) with $J(p)$ replaced by $J(\bar{p})$. This contradicts part (a) of the proof.

The next result reveals a nice interpretation of $W(\cdot)$ in (3.2): it makes a local description of the surface defined by the active constraints.

Theorem 4.3. Use the notation and assumptions of this subsection. For $u \in \mathcal{U}$ small enough, $W(u)$ defined in (3.2) is a singleton $w(u)$, which is the unique solution of the system with unknown $v \in \mathcal{V}$

$$
\begin{equation*}
f_{i}(\bar{p}+u \oplus v)=0, \quad \text { for all } i \in \bar{I} \tag{4.6}
\end{equation*}
$$

Proof. According to Theorem $3.2(i i)$ and (3.5), an arbitrary $p \in \bar{p}+u \oplus W(u)$ is characterized by $\partial f(p) \cap \mathcal{U} \neq \emptyset$; there are convex multipliers $\left\{\alpha_{j}\right\}_{j \in J(p)}$ such that $\gamma(p)+\pi \sum_{J(p)} \alpha_{j} g_{j}(p) \in \mathcal{U}$. Setting $\mu_{j}:=\pi \alpha_{j}$, this means that the system (4.5)
has a nonnegative solution. Now, in view of Proposition 4.1 (iii) and Corollary 3.5, $p-\bar{p}$ is small; we can apply Lemma $4.2, J(p)=\bar{I} \cup\{0\}$, and this is just (4.6).

Uniqueness of such a p is then easy to prove. Substituting f_{i} for h_{2} in Remark 2.3, the gradients of the functions $v \mapsto f_{i}(\bar{p}+u \oplus v)$ are $g_{i}(\bar{p}+u \oplus v)_{\mathcal{V}}$, which are linearly independent for $(u, v)=(0,0)$. By the Implicit Function Theorem, (4.6) has a unique solution $w(u)$ for small u.

Now we are in a position to give specific expressions for the derivatives of the \mathcal{U}-Lagrangian.

Theorem 4.4. Use the notation and assumptions of this subsection.
(i) The \mathcal{U}-Lagrangian is differentiable in a neighborhood of 0 . With $\mu(\cdot)$ and $w(\cdot)$ defined in Lemma 4.2 and Theorem 4.3 respectively, and with

$$
p(u):=\bar{p}+u \oplus w(u)
$$

we have for $u \in \mathcal{U}$ small enough

$$
\begin{equation*}
\nabla L_{\mathcal{U}}(u) \oplus 0=\gamma(p(u))+\sum_{j \in \bar{I}} \mu_{j}(p(u)) g_{j}(p(u)) \tag{4.7}
\end{equation*}
$$

(ii) The Hessian $\nabla^{2} L_{\mathcal{U}}(0)$ exists. Using the matrix-like decomposition

$$
\nabla_{p p}^{2} L(\bar{p}, \bar{\lambda})=\left(\begin{array}{cc}
H_{\mathcal{U U}} & H_{\mathcal{U V}} \\
H_{\mathcal{V U}} & H_{\mathcal{V V}}
\end{array}\right)
$$

for the Hessian of the Lagrangian, we have $\nabla^{2} L_{\mathcal{U}}(0)=H_{\mathcal{U u}}$.
Proof. (i) Put together Lemma 4.2 and Theorem 4.3. Observe, in particular, that the right-hand side of (4.7) lies in \mathcal{U}. Then invoke (3.5).
(ii) In view of Lemma 4.1 (iii) and Corollary 3.5, w(u) $=o\left(\|u\|_{\mathcal{U}}\right)$, hence $p(\cdot)$ has a Jacobian at 0 ; in fact, $\operatorname{Jp}(0) u=u \oplus 0$ for all $u \in \mathcal{U}$. Then, using Lemma 4.2, (4.7) clearly shows that $\nabla L_{\mathcal{U}}$ is differentiable at 0 . Compute from (4.7) the differential $\nabla^{2} L_{\mathcal{U}}(0) u$ for $u \in \mathcal{U}$:

$$
\begin{aligned}
\left(\nabla^{2} L_{\mathcal{U}}(0) u\right) \oplus 0= & \nabla^{2} \psi(\bar{p}) \mathrm{J} p(0) u+\sum_{\bar{I}} \bar{\lambda}_{j} \nabla^{2} f_{j}(\bar{p}) \mathrm{J} p(0) u \\
& +\sum_{\bar{I}}\left\langle\nabla \mu_{j}(\bar{p}), \mathrm{J} p(0) u\right\rangle \bar{g}_{j} \\
= & \nabla_{p p}^{2} L(\bar{p}, \bar{\lambda})(u \oplus 0)+\sum_{\bar{I}}\left\langle\nabla \mu_{j}(\bar{p}), \mathrm{J} p(0) u\right\rangle \bar{g}_{j}
\end{aligned}
$$

Thus, $\nabla^{2} L_{\mathcal{U}}(0) u$ is the \mathcal{U}-part of the right-hand side. The second term is a sum of vectors in \mathcal{V}, which does not count; we do obtain (ii).

In Remark 3.1 we have said that \bar{g} in $\S 3$ plays the role of a dual variable. This is suggested by the relation $0=\bar{g}_{0}+\sum_{\bar{I}} \bar{\lambda}_{i} \bar{g}_{i} \in \partial f(\bar{p})$ which, in the present NLP context, establishes a correspondence between $\bar{g}=0$ and the multipliers $\bar{\lambda}_{i}$ or $\bar{\mu}_{i}$. Taking some nonzero $\bar{g}^{\prime} \in \operatorname{ri} \partial f(\bar{p})$ does not change the situation much; this just amounts to applying the theory to $f-\left\langle\bar{g}^{\prime}, \cdot\right\rangle$, which is still minimal at $\bar{p}-$ but of course the multipliers are changed, say, to $\bar{\lambda}_{i}^{\prime}$ or $\bar{\mu}_{i}^{\prime}$. Denoting by $g(p(u))$ the right-hand side in (4.7), the correspondence $\bar{g} \leftrightarrow \bar{\lambda} \leftrightarrow \bar{\mu}$ can even be extended to $g(p(u)) \leftrightarrow \bar{\lambda}(u) \leftrightarrow \mu(u)$.
4.2. Eigenvalue optimization. Consider the problem of minimizing with respect to $x \in \mathbb{R}^{m}$ the largest eigenvalue λ_{1} of a real symmetric $n \times n$ matrix A, depending affinely on x. Most of the relevant information for the function $\lambda_{1} \circ A$ can be obtained by analyzing the maximum eigenvalue function $\lambda_{1}(A)$, which is convex (and finite-valued). We briefly describe here how the \mathcal{U}-theory applies to this context. For a detailed study, we refer to [20] where an interesting connection is established with the geometrical approach of [21].

For the sake of consistency, we keep the notation $\bar{p}:=A(\bar{x})$ for the reference matrix where the analysis is performed. If \bar{r} denotes the multiplicity of $\lambda_{1}(\bar{p})$, then

$$
\mathcal{W}_{\bar{r}}:=\left\{p: p \text { is a symmetric matrix and } \lambda_{1}(p) \text { has multiplicity } \bar{r}\right\}
$$

is the smooth manifold Ω of [21].
First, the subspaces \mathcal{U} and \mathcal{V} in Definition 2.1 are just the tangent and normal spaces to $\mathcal{W}_{\bar{r}}$ at \bar{p} (Corollary 4.8 in [20]). Similarly to Theorem 4.3, Theorem 4.11 in [20] shows that the set $W(u)$ of (3.2) is a singleton $w(u)$, characterized by

$$
\bar{p}+u \oplus w(u) \in \mathcal{W}_{\bar{r}}
$$

As for second order, the \mathcal{U}-Lagrangian (3.1) is twice continuously differentiable in a neighbourhood of $0 \in \mathcal{U}$. Finally, use again the matrix-like decomposition

$$
\left(\begin{array}{ll}
H_{\mathcal{U U}} & H_{\mathcal{U V}} \\
H_{\mathcal{V U}} & H_{\mathcal{V V}}
\end{array}\right)
$$

for the Hessian of the Lagrangian introduced in Theorem 5 of [21]. Then Theorem 4.12 in [20] shows that $\nabla^{2} L_{\mathcal{U}}(0)=H_{\mathcal{U} \mathcal{U}}$ is the reduced Hessian matrix (5.31) in [21].
4.3. A conceptual superlinear scheme. The previous subsections have shown that our \mathcal{U}-objects become classical when f has some special form. It is also demonstrated in [17] and [20] how these \mathcal{U}-objects can provide interpretations of known minimization algorithms. Here we go back to a general f and we design a superlinearly convergent conceptual algorithm for minimizing f. Again, we obtain a general formalization of known techniques from classical optimization.

Given p close to a minimum point \bar{p}, the problem is to compute some p_{+}, superlinearly closer to \bar{p}. We propose a conceptual scheme, in which we compute first the \mathcal{V}-component of the increment $p_{+}-p$, and then its \mathcal{U}-component. This idea of decomposing the move from p to p_{+}in a "vertical" and a "horizontal" step can be traced back to [8].
Algorithm 4.5. \mathcal{V}-Step. Compute a solution $\delta v \in \mathcal{V}$ of

$$
\begin{equation*}
\min \{f(p+0 \oplus \delta v): \delta v \in \mathcal{V}\} \tag{4.8}
\end{equation*}
$$

and set $p^{\prime}:=p+0 \oplus \delta v$.
\mathcal{U}-Step. Make a Newton step in $p^{\prime}+\mathcal{U}$: compute the solution $\delta u \in \mathcal{U}$ of

$$
\begin{equation*}
g_{\mathcal{U}}^{\prime}+\mathrm{H}_{\mathcal{U}} f(\bar{p}) \delta u=0 \tag{4.9}
\end{equation*}
$$

where $g^{\prime} \in \partial f\left(p^{\prime}\right)$ is such that $g_{\mathcal{V}}^{\prime}=0$, so that $g_{\mathcal{U}}^{\prime} \in \partial L_{\mathcal{U}}\left(\left(p^{\prime}-\bar{p}\right)_{\mathcal{U}}\right)$.
Update. Set $p_{+}:=p^{\prime}+\delta u \oplus 0=p+\delta u \oplus \delta v$.
Remark 4.6. This algorithm needs the subspace \mathcal{U} associated with \bar{p}, as well as the \mathcal{U}-Hessian $\mathrm{H}_{\mathcal{U}} f(\bar{p})$, which must exist and be positive definite. The knowledge of \mathcal{U} may be considered as a bold requirement; constructing appropriate approximations of it is for sure a key to obtain implementable forms. As for existence and positive

Figure 2. Conceptual algorithm
definiteness of $\mathrm{H}_{\mathcal{U}} f(\bar{p})$, it is a natural assumption. Quasi-Newton approximations of it might be suitable, as well as other approaches in the lines of [27].

The next result supports our scheme.
Theorem 4.7. Using the notation of $\S 3$, assume that $\bar{g}:=0 \in \operatorname{ri} \partial f(\bar{p})$, and that f has at \bar{p} a positive definite \mathcal{U}-Hessian. Then the point p_{+}constructed by Algorithm 4.5 satisfies $\left\|p_{+}-\bar{p}\right\|=o(\|p-\bar{p}\|)$.
Proof. We denote by $u:=(p-\bar{p})_{\mathcal{U}}$ the \mathcal{U}-component of $p-\bar{p}$ (see Figure 2). For $\delta v \in \mathcal{V}$, make the change of variables $v:=(p-\bar{p})_{\mathcal{V}}+\delta v$, so that (4.8) can be written $\min _{v \in \mathcal{V}} f(\bar{p}+u \oplus v)$. Denoting by v_{+}a solution, we have

$$
v_{+}=(p-\bar{p})_{\mathcal{V}}+\delta v=\left(p_{+}-\bar{p}\right)_{\mathcal{V}} \in W(u)
$$

and Corollary 3.5 implies that

$$
\begin{equation*}
\left\|\left(p_{+}-\bar{p}\right)_{\mathcal{V}}\right\|_{\mathcal{V}}=o\left(\|u\|_{\mathcal{U}}\right)=o(\|p-\bar{p}\|) \tag{4.10}
\end{equation*}
$$

From the definition (3.9) of $\mathrm{H}_{\mathcal{U}} f(\bar{p})$ and observing that $\nabla L_{\mathcal{U}}(0)=0$, we have

$$
\partial L_{\mathcal{U}}(u) \ni g_{\mathcal{U}}^{\prime}=0+\mathrm{H}_{\mathcal{U}} f(\bar{p}) u+o\left(\|u\|_{\mathcal{U}}\right)
$$

Subtracting from (4.9), $\mathrm{H}_{\mathcal{U}} f(\bar{p})(u+\delta u)=o\left(\|u\|_{\mathcal{U}}\right)$ and, since $\mathrm{H}_{\mathcal{U}} f(\bar{p})$ is invertible, $\|u+\delta u\|_{\mathcal{U}}=o\left(\|u\|_{\mathcal{U}}\right)$. Then, writing

$$
\left(p_{+}-\bar{p}\right)_{\mathcal{U}}=\left(p_{+}-p^{\prime}\right)_{\mathcal{U}}+\left(p^{\prime}-p\right)_{\mathcal{U}}+(p-\bar{p})_{\mathcal{U}}=u+\delta u
$$

we do have $\left\|\left(p_{+}-\bar{p}\right)_{\mathcal{U}}\right\|_{\mathcal{U}}=o\left(\|u\|_{\mathcal{U}}\right)=o(\|p-\bar{p}\|)$. With (4.10), the conclusion follows.

5. \mathcal{U}-Hessian and Moreau-Yosida regularizations

The whole business of $\S 3$ was to develop a theory ending up with the definition of a \mathcal{U}-Hessian (Definition 3.8). Our aim now is to assess this concept: we give a necessary and sufficient condition for the existence of $\mathrm{H}_{\mathcal{U}} f$, in terms of MoreauYosida regularization ([32], [19]).

We denote by F the Moreau-Yosida regularization of f, asssociated with the Euclidean metric,

$$
\begin{equation*}
F(x):=\min _{y \in \mathbb{R}^{n}}\left\{f(y)+\frac{1}{2}\|x-y\|^{2}\right\} . \tag{5.1}
\end{equation*}
$$

The unique minimizer in (5.1), called the proximal point of x, is denoted by

$$
\begin{equation*}
p(x):=\underset{y \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{f(y)+\frac{1}{2}\|x-y\|^{2}\right\} \tag{5.2}
\end{equation*}
$$

It is well known that F has a (globally) Lipschitzian gradient, satisfying

$$
\begin{equation*}
\nabla F(x)=x-p(x) \in \partial f(p(x)) \tag{5.3}
\end{equation*}
$$

Given \bar{p} and \bar{g} satisfying (1.2), we are interested in the behaviour of F near

$$
\begin{equation*}
\bar{x}:=\bar{p}+\bar{g} \tag{5.4}
\end{equation*}
$$

(recall, for example, Theorem 2.8 of [15]: $\bar{g}=\nabla F(\bar{x})$ and \bar{x} is such that $p(\bar{x})=\bar{p}$). More precisely, restricting our attention to $\bar{x}+\mathcal{U}$, we will give an equivalence result and a formula linking the so restricted Hessian of F, with the \mathcal{U}-Hessian of f at \bar{p}. To prove our results, we introduce an intermediate function, similar to $\phi_{\mathcal{V}}$ in $\S 3.2$ of [15], but adapted to our \mathcal{U}-context:

$$
\begin{equation*}
\mathcal{U} \ni u \mapsto \phi_{\mathcal{V}}(u):=\min _{v \in \mathcal{V}}\left\{f(\bar{p}+u \oplus v)-\left\langle\bar{g}_{\mathcal{V}}, v\right\rangle_{\mathcal{V}}+\frac{1}{2}\|v\|_{\mathcal{V}}^{2}\right\} \tag{5.5}
\end{equation*}
$$

We start by showing that this function agrees up to second order with $L_{\mathcal{U}}$.
Lemma 5.1. With the notation above, assume that the conclusion of Corollary 3.5 holds for at least one $w \in W(u)$ - for example, let \bar{g} be in $\operatorname{ri} \partial f(\bar{p})$. Then

$$
\forall \varepsilon>0 \exists \delta>0:\|u\|_{\mathcal{U}} \leq \delta \Rightarrow\left|\phi_{\mathcal{V}}(u)-L_{\mathcal{U}}(u)\right| \leq \varepsilon\|u\|_{\mathcal{U}}^{2}
$$

In particular,

$$
\begin{equation*}
\nabla \phi_{\mathcal{V}}(0)=\bar{g}_{\mathcal{U}} \quad \text { and } \quad \exists \mathrm{H} L_{\mathcal{U}}(0) \Longleftrightarrow \exists \mathrm{H} \phi_{\mathcal{V}}(0)=\mathrm{H} L_{\mathcal{U}}(0) \tag{5.6}
\end{equation*}
$$

Proof. Clearly $\phi_{\mathcal{V}}(u) \geq L_{\mathcal{U}}(u)$. To obtain an opposite inequality, write the minimand in (5.5) for $v=w \in W(u)$:

$$
\begin{aligned}
\phi_{\mathcal{V}}(u) & \leq f(\bar{p}+u \oplus w)-\left\langle\bar{g}_{\mathcal{V}}, w\right\rangle_{\mathcal{V}}+\frac{1}{2}\|w\|_{\mathcal{V}}^{2} \\
& =L_{\mathcal{U}}(u)+\frac{1}{2}\|w\|_{\mathcal{V}}^{2} .
\end{aligned}
$$

Taking, in particular, w such that $\|w\|_{\mathcal{V}}=o\left(\|u\|_{\mathcal{U}}\right)$ (or applying Corollary 3.5), the results follow.

The reason for introducing $\phi_{\mathcal{V}}$ is that its Moreau-Yosida regularization $\Phi_{\mathcal{V}}$ is obtained from the restriction $F_{\mathcal{U}}$ of F to $\bar{x}+\mathcal{U}$ by a mere translation.
Proposition 5.2. Assume (1.2). The two functions

$$
\mathcal{U} \ni d_{\mathcal{U}} \mapsto\left\{\begin{array}{l}
\Phi_{\mathcal{V}}\left(d_{\mathcal{U}}\right):=\min _{u \in \mathcal{U}}\left\{\phi_{\mathcal{V}}(u)+\frac{1}{2}\left\|d_{\mathcal{U}}-u\right\|_{\mathcal{U}}^{2}\right\} \\
F_{\mathcal{U}}\left(d_{\mathcal{U}}\right):=F\left(\bar{x}+d_{\mathcal{U}} \oplus 0\right)
\end{array}\right.
$$

satisfy

$$
F_{\mathcal{U}}\left(d_{\mathcal{U}}\right)=\Phi_{\mathcal{V}}\left(\bar{g}_{\mathcal{U}}+d_{\mathcal{U}}\right)+\frac{1}{2}\left\|\bar{g}_{\mathcal{V}}\right\|_{\mathcal{V}}^{2} \quad \text { for all } d_{\mathcal{U}} \in \mathcal{U}
$$

Proof. Take $d_{\mathcal{U}} \in \mathcal{U}$. Recalling (5.4), compute $F_{\mathcal{U}}\left(d_{\mathcal{U}}\right)=F\left(\bar{p}+\left(\bar{g}_{\mathcal{U}}+d_{\mathcal{U}}\right) \oplus \bar{g}_{\mathcal{V}}\right)$ in the following tricky way:

$$
\begin{aligned}
F_{\mathcal{U}}\left(d_{\mathcal{U}}\right) & =\min _{(u, v) \in \mathcal{U} \times \mathcal{V}}\left\{f(\bar{p}+u \oplus v)+\frac{1}{2}\left\|\left(\bar{g}_{\mathcal{U}}+d_{\mathcal{U}}-u\right) \oplus\left(\bar{g}_{\mathcal{V}}-v\right)\right\|^{2}\right\} \\
& =\min _{u \in \mathcal{U}}\left\{\min _{v \in \mathcal{V}}\left\{f(\bar{p}+u \oplus v)+\frac{1}{2}\left\|\bar{g}_{\mathcal{V}}-v\right\|_{\mathcal{V}}^{2}\right\}+\frac{1}{2}\left\|\bar{g}_{\mathcal{U}}+d_{\mathcal{U}}-u\right\|_{\mathcal{U}}^{2}\right\} \\
& =\min _{u \in \mathcal{U}}\left\{\phi_{\mathcal{V}}(u)+\frac{1}{2}\left\|\bar{g}_{\mathcal{V}}\right\|_{\mathcal{V}}^{2}+\frac{1}{2}\left\|\bar{g}_{\mathcal{U}}+d_{\mathcal{U}}-u\right\|_{\mathcal{U}}^{2}\right\} \\
& =\Phi_{\mathcal{V}}\left(\bar{g}_{\mathcal{U}}+d_{\mathcal{U}}\right)+\frac{1}{2}\left\|\bar{g}_{\mathcal{V}}\right\|_{\mathcal{V}}^{2} .
\end{aligned}
$$

Since $L_{\mathcal{U}}$ is so close to $\phi_{\mathcal{V}}$ (Lemma 5.1), its Moreau-Yosida regularization is close to $\Phi_{\mathcal{V}}$, i.e., to $F_{\mathcal{U}}$, up to a translation. This explains the next result, which is the core of this section.

Theorem 5.3. Make the assumptions of Lemma 5.1.
(i) If $\mathrm{H}_{\mathcal{U}} f(\bar{p})$ exists, then $\nabla^{2} F_{\mathcal{U}}(0)$ exists and is given by

$$
\begin{equation*}
\nabla^{2} F_{\mathcal{U}}(0)=\mathcal{I}_{\mathcal{U}}-\left(\mathcal{I}_{\mathcal{U}}+\mathrm{H}_{\mathcal{U}} f(\bar{p})\right)^{-1} ; \tag{5.7}
\end{equation*}
$$

here $\mathcal{I}_{\mathcal{U}}$ denotes the identity in \mathcal{U}.
(ii) Conversely, assume that $\nabla^{2} F_{\mathcal{U}}(0)$ exists. If $(3.7) \equiv(3.8)$ holds, then $\mathrm{H}_{\mathcal{U}} f(\bar{p})$ exists and is given by

$$
\begin{equation*}
\mathrm{H}_{\mathcal{U}} f(\bar{p})=\left(\mathcal{I}_{\mathcal{U}}-\nabla^{2} F_{\mathcal{U}}(0)\right)^{-1}-\mathcal{I}_{\mathcal{U}} . \tag{5.8}
\end{equation*}
$$

If, in addition, $\mathrm{H}_{\mathcal{U}} f(\bar{p})$ is positive definite - for example, if f is strongly convex-, we also have

$$
\mathrm{H}_{\mathcal{U}} f(\bar{p})=\left(\nabla^{2} F_{\mathcal{U}}(0)^{-1}-\mathcal{I}_{\mathcal{U}}\right)^{-1} .
$$

Proof. (i) When $\mathrm{H}_{\mathcal{U}} f(\bar{p})$ exists, use (5.6) to see that

$$
\begin{equation*}
\mathrm{H}_{\mathcal{U}} f(\bar{p})=\mathrm{H} L_{\mathcal{U}}(0)=\mathrm{H} \phi_{\mathcal{V}}(0) . \tag{5.9}
\end{equation*}
$$

Then we can apply Theorem 3.1 of [15] to $\phi \mathcal{\nu}$. We see from (5.6) that the proximal point giving $\Phi_{\mathcal{V}}\left(\bar{g}_{\mathcal{U}}\right)$ is $0 \in \mathcal{U}$, so we have

$$
\nabla^{2} \Phi_{\mathcal{V}}\left(\bar{g}_{\mathcal{U}}\right)=\mathcal{I}_{\mathcal{U}}-\left(\mathcal{I}_{\mathcal{U}}+\mathrm{H} \phi_{\mathcal{V}}(0)\right)^{-1}
$$

In view of Proposition 5.2 and (5.9), this is just (5.7).
(ii) Combine Proposition 3.7(i) with Lemma 5.1 to see that (3.7) \equiv (3.8) also holds for $\phi_{\mathcal{V}}$ at $0 \in \mathcal{U}$; furthermore, $\nabla \phi_{\mathcal{V}}(0)$ exists. Then we can apply Theorem 3.14 of [15] to $\phi_{\mathcal{V}}$: when $\nabla^{2} \Phi_{\mathcal{V}}\left(\bar{g}_{\mathcal{U}}\right)=\nabla^{2} F_{\mathcal{U}}(0)$ exists, then $\mathrm{H} \phi_{\mathcal{V}}(0)=\mathrm{H}_{\mathcal{U}} f(\bar{p})$ exists. We can write (5.7) and invert it to obtain (5.8).

Finally, suppose that f is strongly convex: for some $c>0$ and all $(u, w) \in \mathcal{U} \times \mathcal{V}$,

$$
\begin{aligned}
f(\bar{p}+u \oplus w) & \geq f(\bar{p})+\langle\bar{g}, u \oplus w\rangle+\frac{c}{2}\|u \oplus w\|^{2} \\
& \geq f(\bar{p})+\left\langle\bar{g}_{\mathcal{U}}, u\right\rangle_{\mathcal{U}}+\left\langle\bar{g}_{\mathcal{V}}, w\right\rangle_{\mathcal{V}}+\frac{c}{2}\|u\|_{\mathcal{U}}^{2}
\end{aligned}
$$

Take $w \in W(u)$ and subtract $\left\langle\bar{g}_{\mathcal{V}}, w\right\rangle_{\mathcal{V}}$ from both sides

$$
L_{\mathcal{U}}(u) \geq L_{\mathcal{U}}(0)+\left\langle\nabla L_{\mathcal{U}}(0), u\right\rangle_{\mathcal{U}}+\frac{c}{2}\|u\|_{\mathcal{U}}^{2}
$$

hence $\mathrm{H}_{\mathcal{U}} f(\bar{p})=\mathrm{H} L_{\mathcal{U}}(0)$ is certainly positive definite. Computing its inverse from (5.8) and applying (20) from [15], we obtain the last relation.

A consequence of this result is that, when $\nabla^{2} F(\bar{x})$ exists, then $\mathrm{H}_{\mathcal{U}} f(\bar{p})$ exists; $\nabla^{2} F_{\mathcal{U}}(0)$ is just the $\mathcal{U} \mathcal{U}$-block of $\nabla^{2} F(\bar{x})$. Furthermore, $x \mapsto p(x)$ has at \bar{x} a Jacobian of the form

$$
\mathrm{J} p(\bar{x})=\mathcal{I}-\nabla^{2} F(\bar{x})=\left(\begin{array}{cc}
P & 0 \\
0 & 0
\end{array}\right)
$$

(recall Corollary 2.6 in [15]). If f satisfies (3.8) at \bar{p}, then

$$
P=\left(\mathcal{I}-\nabla^{2} F(\bar{x})\right)_{\mathcal{U} \mathcal{U}}=\mathcal{I}_{\mathcal{U}}-\nabla^{2} F_{\mathcal{U}}(0)=\left(\mathrm{H}_{\mathcal{U}} f(\bar{p})+\mathcal{I}_{\mathcal{U}}\right)^{-1}
$$

is positive definite.

6. Conclusion

The distinctive difficulty of nonsmooth optimization is that the graph of f near a minimum point \bar{p} behaves like an elongated, gully-shaped valley. Such a valley is relatively easy to describe in the composite case (max-functions, maximal eigenvalues): it consists of those points where the non-differentiability of f stays qualitatively the same as at \bar{p}; see the considerations developed in [22]. In the general case, however, even an appropriate definition of this valley is already not clear. We believe that the main contribution of this paper lies precisely here: we have generalized the concept of the gully-shaped valley to arbitrary (finite-valued) convex functions. To this aim, we have adopted the following process:

- First, we have used the tangent space to the active constraints, familiar in the NLP world; this was \mathcal{U} of Definition 2.1.
- Then we have defined the gully-shaped valley, together with its parametrization by $u \in \mathcal{U}$, namely the mapping $W(\cdot)$ of (3.2).
- At the same time, we have singled out in (3.5) a selection of subgradients of f, together with a potential function $L_{\mathcal{U}}$. A nice feature is that our definitions are constructive via (3.1).
- This has allowed us to reduce the second-order study of f, restricted to the valley, to that of $L_{\mathcal{U}}($ in $\mathcal{U})$.
- We have shown how our generalizations reduce to known objects in composite optimization, and how they can be used for the design of superlinearly convergent algorithms.
- Finally, we have related our new objects with the Moreau-Yosida regularization of f.

Acknowledgment

We are deeply indebted to R. Mifflin, for his careful reading and numerous helpful suggestions. The \mathcal{U}-terminology is due to him.

References

1. J.P. Aubin, Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential equations, Mathematical Analysis and Applications (L. Nachbin, ed.), Academic Press, 1981, pp. 159-229. MR 83m:58014
2. D. Azé, On the remainder of the first order development of convex functions, Ann. Sci. Math. Quebec 23 (1999), 1-13.
3. H.T. Banks and M.Q. Jacobs, A differential calculus for multifunctions, Journal of Mathematical Analysis and Applications 29 (1970), 246-272. MR 42:846
4. A. Ben-Tal and J. Zowe, Necessary and sufficient optimality conditions for a class of nonsmooth minimization problems, Mathematical Programming 24 (1982), no. 1, 70-91. MR 83m:90075
5. R.W. Chaney, On second derivatives for nonsmooth functions, Nonlinear Analysis: Theory, Methods and Applications 9 (1985), no. 11, 1189-1209. MR 87c:49018
6. T.F. Coleman and A.R. Conn, Nonlinear programming via an exact penalty function: asymptotic analysis, Mathematical Programming 24 (1982), 123-136. MR 84e:90087a
7. R. Cominetti and R. Correa, A generalized second-order derivative in nonsmooth optimization, SIAM Journal on Control and Optimization 28 (1990), no. 4, 789-809. MR 91h:49017
8. A.R. Conn, Constrained optimization using a nondifferentiable penalty function, SIAM Journal on Numerical Analysis 10 (1973), no. 4, 760-784. MR 49:12094
9. J.-B. Hiriart-Urruty, The approximate first-order and second-order directional derivatives for a convex function, Mathematical Theories of Optimization (J.-P. Cecconi and T. Zolezzi, eds.), Lecture Notes in Mathematics, no. 979, Springer-Verlag, 1983, pp. 144-177. MR 84i:49029
10. \quad A new set-valued second order derivative for convex functions, Fermat Days 85: Mathematics for Optimization (J.B. Hiriart-Urruty, ed.), Mathematics Studies, no. 129, North-Holland, 1986, pp. 157-182. MR 88d:90092
11. J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms, Grundlehren der mathematischen Wissenschaften, no. 305-306, Springer-Verlag, 1993. MR 95m:90001; MR 95m:90002
12. A.D. Ioffe, Nonsmooth analysis and the theory of fans, Convex Analysis and Optimization (J.P. Aubin and R.B. Vinter, eds.), Pitman, 1982, pp. 93-118. MR 83h:58012
13. M. Kawasaki, An envelope-like effect of infinitely many inequality constraints on second-order conditions for minimization problems, Mathematical Programming 41 (1988), no. 1, 73-96. MR 89d:90191
14. C. Lemaréchal and C. Sagastizábal, More than first-order developments of convex functions: primal-dual relations, Journal of Convex Analysis 3 (1996), 255-268. MR 98k:49048
15. _, Practical aspects of the Moreau-Yosida regularization: theoretical preliminaries, SIAM Journal on Optimization 7 (1997), no. 2, 367-385. MR 98e:49085
16. C. Lemaréchal and J. Zowe, The eclipsing concept to approximate a multi-valued mapping, Optimization 22 (1991), no. 1, 3-37. MR 92a:49024
17. R. Mifflin and C. Sagastizábal, $\mathcal{V U}$-decomposition derivatives for convex max-functions, IllPosed Problems and Variational Inequalities (R. Tichatschke and M. Théra, eds.) Lecture Notes, Springer-Verlag (to appear).
18. B.S. Mordukhovich, Generalized differential calculus for nonsmooth and set-valued mappings, Journal of Mathematical Analysis and Applications 183 (1993), no. 1, 250-288. MR 95i:49029
19. J.J. Moreau, Proximité et dualité dans un espace hilbertien, Bulletin de la Société Mathématique de France 93 (1965), 273-299. MR 34:1829
20. F. Oustry, The \mathcal{U}-Lagrangian of the maximum eigenvalue function, SIAM Journal of Optimization 9 (1999), 526-549.
21. M. L. Overton and R.S. Womersley, Second derivatives for optimizing eigenvalues of symmetric matrices, SIAM J. Matrix Anal. Appl. 16 (1995), 697-718. MR 96c:65062
22. M.L. Overton and X.J. Ye, Towards second-order methods for structured nonsmooth optimization, Advances in Optimization and Numerical Analysis (S. Gomez and J.P. Hennart, eds.), Kluwer, 1994, pp. 97-109. MR 95e:90099
23. J.-P. Penot, Differentiability of relations and differential stability of perturbed optimization problems, SIAM Journal on Control and Optimization 22 (1984), no. 4, 529-551, 26 (1988), 997-998. MR 85i:49041; MR 89d:49027.
24. R.A. Poliquin, Proto-differentiation of subgradient set-valued mappings, Canadian Journal of Mathematics 42 (1990), no. 3, 520-532. MR 91g:49007
25. R.A. Poliquin and R.T. Rockafellar, Generalized hessian properties of regularized nonsmooth functions, SIAM Journal on Optimization 6 (1996), no. 4, 1121-1137. MR 97j:49025
26. M.J.D. Powell, The convergence of variable metric methods for nonlinearly constrained optimization calculations, Nonlinear Programming 3 (O.L. Mangasarian, R.R. Meyer, and S.M. Robinson, eds.), 1978, pp. 27-63. MR 80c:90138
27. L.Q. Qi and D.F. Sun, A nonsmooth version of Newton's method, Mathematical Programming 58 (1993), no. 3, 353-367. MR 94b:90077
28. R.T. Rockafellar, Convex analysis, Princeton Mathematics Ser., no. 28, Princeton University Press, 1970. MR 43:445
29. _, Maximal monotone relations and the second derivatives of nonsmooth functions, Annales de l'Institut Henri Poincaré, Analyse non linéaire 2 (1985), no. 3, 167-186. MR 87c:49021
30. \qquad , Proto-differentiability of set-valued mappings and its applications in optimization, Annales de l'Institut Henri Poincaré, Analyse Non Linéaire 6 (1989), 449-482. MR 90k:90140
31. _ Generalized second derivatives of convex function and saddle functions, Transactions of the American Mathematical Society 322 (1990), no. 1, 51-78. MR 91b:90190
32. K. Yosida, Functional analysis, Springer Verlag, 1965. MR 31:5054

INRIA, 655 avenue de l'Europe, 38330 Montbonnot, France
E-mail address: Claude.Lemarechal@inria.fr
INRIA, 655 avenue de l'Europe, 38330 Montbonnot, France
E-mail address: Francois.Oustry@inria.fr
INRIA, BP 105, 78153 Le Chesnay, France
E-mail address: Claudia.Sagastizabal@inria.fr

[^0]: Received by the editors July 18, 1996 and, in revised form, August 1, 1997.
 1991 Mathematics Subject Classification. Primary 49J52, 58C20; Secondary 49Q12, 65K10.
 Key words and phrases. Nonsmooth analysis, generalized derivative, second-order derivative, composite optimization.

