TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 352, Number 2, Pages 711-729 S 0002-9947(99)02243-6 Article electronically published on September 21, 1999

THE U-LAGRANGIAN OF A CONVEX FUNCTION

CLAUDE LEMARÉCHAL, FRANÇOIS OUSTRY, AND CLAUDIA SAGASTIZÁBAL

ABSTRACT. At a given point \overline{p} , a convex function f is differentiable in a certain subspace \mathcal{U} (the subspace along which $\partial f(\overline{p})$ has 0-breadth). This property opens the way to defining a suitably restricted second derivative of f at \overline{p} . We do this via an intermediate function, convex on \mathcal{U} . We call this function the \mathcal{U} -Lagrangian; it coincides with the ordinary Lagrangian in composite cases: exact penalty, semidefinite programming. Also, we use this new theory to design a conceptual pattern for superlinearly convergent minimization algorithms. Finally, we establish a connection with the Moreau-Yosida regularization.

1. INTRODUCTION

This paper deals with higher-order expansions of a nonsmooth function, a problem addressed in [4], [5], [7], [9], [13], [25], and [31] among others.

The initial motivation for our present work lies in the following facts. When trying to generalize the classical second-order Taylor expansion of a function f at a nondifferentiability point \overline{p} , the major difficulty is by far the nonlinearity of the first-order approximation. Said otherwise, the gradient vector $\nabla f(\overline{p})$ is now a set $\partial f(\overline{p})$ and we have to consider difference quotients between sets, say

(1.1)
$$\frac{\partial f(\overline{p}+h) - \partial f(\overline{p})}{\|h\|}$$

Giving a sensible meaning to the minus-sign in this expression is a difficult problem, to say the least; it has received only abstract answers so far; see [1], [3], [10], [12], [16], [18], [23], [24], [30]. However, here are two crucial observations (already mentioned in [22]):

- There is a subspace \mathcal{U} (the "ridge") in which the first-order approximation $f'(\overline{p}; \cdot)$ (the directional derivative) is linear.
- Defining a second-order expansion of f is unnecessary along directions not in \mathcal{U} . Consider for example the case where $f = \max_i f_i$ with smooth f_i 's; then a minimization algorithm of the SQP-type will converge superlinearly, even if the second-order behaviour of f is identified in the ridge only ([26], [6]).

Here, starting from results presented in [14] and [15], we take advantage of these observations. After some preliminary theory in §2, we define our key-objects in §3: the \mathcal{U} -Lagrangian and its derivatives. In §4 we give some specific examples (further studied in [17], [20]): how the \mathcal{U} -Lagrangian specializes in an NLP and an SDP

©1999 American Mathematical Society

Received by the editors July 18, 1996 and, in revised form, August 1, 1997.

¹⁹⁹¹ Mathematics Subject Classification. Primary 49J52, 58C20; Secondary 49Q12, 65K10.

 $Key\ words\ and\ phrases.$ Nonsmooth analysis, generalized derivative, second-order derivative, composite optimization.

framework, and how it could help designing superlinearly convergent algorithms for general convex functions. Finally, we show in §5 a connection between our objects thus defined and the Moreau-Yosida regularization. Indeed, the present paper clarifies and formalizes the theory sketched in §3.2 of [15]; for a related subject see also [29], [25].

Our notation follows closely that of [28] and [11]. The space \mathbb{R}^n is equipped with a scalar product $\langle \cdot, \cdot \rangle$, and $\|\cdot\|$ is the associated norm; in a subspace \mathcal{S} , we will write $\langle \cdot, \cdot \rangle_{\mathcal{S}}$ and $\|\cdot\|_{\mathcal{S}}$ for the induced scalar product and norm. The open ball of \mathbb{R}^n centered at x with radius r is B(x, r); and once again, we use the notation $B_{\mathcal{S}}(x, r)$ in a subspace \mathcal{S} . We denote by $x_{\mathcal{S}}$ the projection of a vector $x \in \mathbb{R}^n$ onto the subspace \mathcal{S} . Throughout this paper, we consider the following situation:

(1.2) f is a finite-valued convex function, \overline{p} and $\overline{g} \in \partial f(\overline{p})$ are fixed.

We will also often assume that \overline{g} lies in the relative interior of $\partial f(\overline{p})$.

2. The \mathcal{VU} decomposition

We start by defining a decomposition of the space $\mathbb{R}^n = \mathcal{U} \oplus \mathcal{V}$, associated with a given $\overline{p} \in \mathbb{R}^n$. We give three equivalent definitions for the subspaces \mathcal{U} and \mathcal{V} ; each has its own merit to help the intuition.

Definition 2.1. (i) Define \mathcal{U}_1 as the subspace where $f'(\overline{p}; \cdot)$ is linear and take $\mathcal{V}_1 := \mathcal{U}_1^{\perp}$. Because $f'(\overline{p}; \cdot)$ is sublinear, we have

$$\mathcal{U}_1 := \{ d \in \mathbb{R}^n : f'(\overline{p}; d) = -f'(\overline{p}; -d) \};$$

if necessary, see for instance Proposition V.1.1.6 in [11]. In other words, \mathcal{U}_1 is the subspace where $f(\overline{p} + \cdot)$ appears to be "differentiable" at 0. Note that this definition of \mathcal{U}_1 does not rely on a particular scalar product.

- (*ii*) Define \mathcal{V}_2 as the subspace parallel to the affine hull of $\partial f(\overline{p})$ and take $\mathcal{U}_2 := \mathcal{V}_2^{\perp}$. In other words, $\mathcal{V}_2 := \lim(\partial f(\overline{p}) \overline{g})$ for an arbitrary $\overline{g} \in \partial f(\overline{p})$, and $d \in \mathcal{U}_2$ means $\langle \overline{g} + v, d \rangle = \langle \overline{g}, d \rangle$ for all $v \in \mathcal{V}_2$.
- (*iii*) Define \mathcal{U}_3 and \mathcal{V}_3 respectively as the normal and tangent cones to $\partial f(\overline{p})$ at an arbitrary g° in the relative interior of $\partial f(\overline{p})$. It is known (see, for example, Proposition 2.2 in [14]) that the property $g^{\circ} \in \operatorname{ri} \partial f(\overline{p})$ is equivalent to these cones being subspaces.

To visualize these definitions, the reader may look at Figure 1 in §3.2 (where $\overline{g} = g^{\circ} \in \operatorname{ri} \partial f(\overline{p})$). We recall the definition of the relative interior: $g^{\circ} \in \operatorname{ri} \partial f(\overline{p})$ means

(2.1)
$$g^{\circ} + (B(0,\eta) \cap \mathcal{V}_2) \subset \partial f(\overline{p}) \text{ for some } \eta > 0.$$

We start with a preliminary result, showing in particular that Definition 2.1 does define the same pair \mathcal{VU} three times.

Proposition 2.2. In Definition 2.1,

(i) the subspace \mathcal{U}_3 is actually given by

(2.2)
$$\{d \in \mathbb{R}^n : \langle g - g^\circ, d \rangle = 0 \text{ for all } g \in \partial f(\overline{p})\} = \mathcal{N}_{\partial f(\overline{p})}(g^\circ)$$

and is independent of the particular $g^{\circ} \in \operatorname{ri} \partial f(\overline{p})$;

- (ii) $\mathcal{U}_1 = \mathcal{U}_2 = \mathcal{U}_3 =: \mathcal{U};$
- (iii) $\mathcal{U} \subset \mathcal{N}_{\partial f(\overline{p})}(\overline{g})$ for all $\overline{g} \in \partial f(\overline{p})$.

Proof. (i) To prove (2.2), take $g^{\circ} \in \operatorname{ri} \partial f(\overline{p})$ and set $N := \operatorname{N}_{\partial f(\overline{p})}(g^{\circ})$. By definition of a normal cone, N contains the left-hand side in (2.2); we only need to establish the converse inclusion. Let $d \in N$ and $g \in \partial f(\overline{p})$; it suffices to prove $\langle g - g^{\circ}, d \rangle \geq 0$. Indeed, (assuming $g - g^{\circ} \neq 0$), $v := -\frac{g - g^{\circ}}{\|g - g^{\circ}\|} \in \mathcal{V}_2$, hence (2.1) and $d \in N$ imply that

$$0 \ge \langle g^{\circ} + \eta v - g^{\circ}, d \rangle = -\frac{\eta}{\|g - g^{\circ}\|} \langle g - g^{\circ}, d \rangle \quad \text{for some } \eta > 0$$

and we are done.

To see the independence on the particular g° , replace g° in (2.2) by some other $\gamma^{\circ} \in \operatorname{ri} \partial f(\overline{p})$:

$$N_{\partial f(\overline{p})}(\gamma^{\circ}) = \left\{ d \in \mathbb{R}^n : \langle g, d \rangle = \langle \gamma^{\circ}, d \rangle = \langle g^{\circ}, d \rangle, \text{ for all } g \in \partial f(\overline{p}) \right\} = \mathcal{U}_3.$$

(*ii*) Write

(2.3)
$$\mathcal{U}_1 = \left\{ d \in \mathbb{R}^n : \max_{g \in \partial f(\overline{p})} \langle g, d \rangle = \min_{g \in \partial f(\overline{p})} \langle g, d \rangle \right\}$$

to see from (i) that $\mathcal{U}_1 = \mathcal{U}_3$. Then we only need to prove $\mathcal{U}_1 \subset \mathcal{U}_2 \subset \mathcal{U}_3$.

Let $d \in \mathcal{U}_1$. For an arbitrary $v = \sum_j \lambda_j (g_j - \overline{g}) \in \mathcal{V}_2$ with $g_j \in \partial f(\overline{p})$, we have from (2.3)

$$\langle v, d
angle = \sum_{j} \lambda_j (\langle g_j, d
angle - \langle \overline{g}, d
angle) = 0;$$

hence $d \in \mathcal{V}_2^{\perp} = \mathcal{U}_2$.

Let $d \in \mathcal{U}_2$. We have $\langle g, d \rangle = \langle \overline{g}, d \rangle$ for all $g \in \partial f(\overline{p})$. It follows that $\langle g, d \rangle = \langle g^{\circ}, d \rangle$ and this, together with (i), implies $d \in \mathcal{U}_3$.

(*iii*) Let $d \in \mathcal{U} = \mathcal{U}_3$. Given $\overline{g} \in \partial f(\overline{p})$, we have $\langle g^{\circ}, d \rangle = \langle g, d \rangle = \langle \overline{g}, d \rangle$ for all $g \in \partial f(\overline{p})$; hence $d \in \mathcal{N}_{\partial f(\overline{p})}(\overline{g})$.

Using projections, every $x \in \mathbb{R}^n$ can be decomposed as $x = (x_{\mathcal{U}}, x_{\mathcal{V}})^T$. Throughout this paper we use the notation $x_{\mathcal{U}} \oplus x_{\mathcal{V}}$ for the vector with components $x_{\mathcal{U}}$ and $x_{\mathcal{V}}$. In other words, \oplus stands for the linear mapping from $\mathcal{U} \times \mathcal{V}$ onto \mathbb{R}^n defined by

(2.4)
$$\mathcal{U} \times \mathcal{V} \ni (u, v) \mapsto u \oplus v := \begin{pmatrix} u \\ v \end{pmatrix} \in \mathbb{R}^n.$$

With this convention, \mathcal{U} and \mathcal{V} are themselves considered as vector spaces. We equip them with the scalar product induced by \mathbb{R}^n , so that

$$\langle g, x \rangle = \langle g_{\mathcal{U}} \oplus g_{\mathcal{V}}, x_{\mathcal{U}} \oplus x_{\mathcal{V}} \rangle = \langle g_{\mathcal{U}}, x_{\mathcal{U}} \rangle_{\mathcal{U}} + \langle g_{\mathcal{V}}, x_{\mathcal{V}} \rangle_{\mathcal{V}},$$

with similar expressions for norms.

Remark 2.3. The projection $x \mapsto x_{\mathcal{U}}$, as well as the operation $(u, v) \mapsto \overline{p} + u \oplus v$, will appear recurrently in all our development. Consider the three convex functions h_1 , h_2 and h defined by

$$\begin{array}{rcl} \mathcal{U} \ni u & \mapsto & h_1(u) := f(\overline{p} + u \oplus v), & \text{with } v \in \mathcal{V} \text{ arbitrary}; \\ \mathcal{V} \ni v & \mapsto & h_2(v) := f(\overline{p} + u \oplus v), & \text{with } u \in \mathcal{U} \text{ arbitrary}; \\ \mathcal{U} \times \mathcal{V} \ni (u, v) & \mapsto & h(u, v) := f(\overline{p} + u \oplus v). \end{array}$$

Their subdifferentials have the expressions

$$\begin{aligned} \partial h_1(u) &= \{ g_{\mathcal{U}} : g \in \partial f(\overline{p} + u \oplus v) \}, \\ \partial h_2(v) &= \{ g_{\mathcal{V}} : g \in \partial f(\overline{p} + u \oplus v) \}, \\ \partial h(x_{\mathcal{U}}, x_{\mathcal{V}}) &= \{ g_{\mathcal{U}} \oplus g_{\mathcal{V}} : g \in \partial f(\overline{p} + x) \}. \end{aligned}$$

Proving these formulae is a good exercise to become familiar with the operation \oplus of (2.4) and with our \mathcal{VU} notation. Just consider the adjoint of \oplus and of the projections onto the various subspaces involved.

In the \mathcal{VU} language, (2.1) gives the following elementary result.

Proposition 2.4. Suppose in (1.2) that $\overline{g} \in \operatorname{ri} \partial f(\overline{p})$. Then there exists $\eta > 0$ small enough such that

$$\overline{g} + 0 \oplus \frac{\eta v}{\|v\|_{\mathcal{V}}} \in \partial f(\overline{p})$$

for any $0 \neq v \in \mathcal{V}$. In particular,

(2.5)
$$f(\overline{p} + u \oplus v) \ge f(\overline{p}) + \langle \overline{g}_{\mathcal{U}}, u \rangle_{\mathcal{U}} + \langle \overline{g}_{\mathcal{V}}, v \rangle_{\mathcal{V}} + \eta \|v\|_{\mathcal{V}},$$

for any $(u, v) \in \mathcal{U} \times \mathcal{V}$.

Proof. Just translate (2.1): with v as stated, $u \oplus v\overline{g}_{\mathcal{U}}(\overline{g}_{\mathcal{V}} + \frac{\eta v}{\|v\|_{\mathcal{V}}}) \in \partial f(\overline{p})$ and the rest follows easily.

3. The \mathcal{U} -Lagrangian

In this section we formalize the theory outlined in §3.2 of [15]. Along with the \mathcal{VU} decomposition, we introduced there the "tangential" regularization $\phi_{\mathcal{V}}$. Here, we find it convenient to consider $\phi_{\mathcal{V}}$ as a function defined on \mathcal{U} only; in addition, we drop the quadratic term appearing in (13) of [15]. As will be seen in §4, these modifications result in some sort of Lagrangian, which we denote by $L_{\mathcal{U}}$ instead of $\phi_{\mathcal{V}}$.

3.1. Definition and basic properties. Following the above introduction, we define the function $L_{\mathcal{U}}$ as follows:

(3.1)
$$\mathcal{U} \ni u \mapsto L_{\mathcal{U}}(u) := \inf_{v \in \mathcal{V}} \{ f(\overline{p} + u \oplus v) - \langle \overline{g}_{\mathcal{V}}, v \rangle_{\mathcal{V}} \}.$$

Associated with (3.1) we have the set of minimizers

(3.2)
$$W(u) := \operatorname*{Argmin}_{v \in \mathcal{V}} \{ f(\overline{p} + u \oplus v) - \langle \overline{g}_{\mathcal{V}}, v \rangle_{\mathcal{V}} \}.$$

It will be seen below that an important question is whether W(u) is nonempty.

Remark 3.1. The function $L_{\mathcal{U}}$ of (3.1) will be called the \mathcal{U} -Lagrangian. Note that it depends on the particular \overline{g} , a notation $L_{\mathcal{U}}(u,\overline{g})$ is also possible. In fact, since \overline{g} lies in the dual of \mathbb{R}^n , it connotes a dual variable; this will become even more visible in §4.1 (just observe here that $\overline{g} \mapsto -L_{\mathcal{U}}$ is a conjugate function).

At this point, the idea behind (3.1) can be roughly explained. As is commonly known, smoothness of a convex function is related to strong convexity of its conjugate. In our context, a useful property is the "radial" strong convexity of f^* at \overline{g} , say,

$$f^*(\overline{g}+s) \ge f^*(\overline{g}) + \langle s, \overline{p} \rangle + \frac{1}{2}c \|s\|^2 + o(\|s\|^2)$$

for some c > 0. However, the above inequality is hopeless for an s of the form $s = 0 \oplus v$ (see §4 in [14]; see also [2] for related developments). To obtain radial strong convexity on \mathcal{V} , we introduce the function

(3.3)
$$f^*(\overline{g}+s) + \frac{1}{2}c \|s_{\mathcal{V}}\|_{\mathcal{V}}^2.$$

Its conjugate (restricted to \mathcal{U}) is precisely $L_{\mathcal{U}}$ when $c = +\infty$ (a value which yields the "strongest" possible convexity); Theorem 3.3 will confirm the smoothness of $L_{\mathcal{U}}$.

The value c = 1 in (3.3) may be deemed more natural – and indeed, it will be useful in §5; in fact, Lemma 5.1 will show that the choice of c has minor importance for second order.

Theorem 3.2. Assume (1.2).

- (i) The function $L_{\mathcal{U}}$ defined in (3.1) is convex and finite everywhere.
- (ii) A minimum point $w \in W(u)$ in (3.2) is characterized by the existence of some $g \in \partial f(\overline{p} + u \oplus w)$ such that $g_{\mathcal{V}} = \overline{g}_{\mathcal{V}}$.
- (iii) In particular, $0 \in W(0)$ and $L_{\mathcal{U}}(0) = f(\overline{p})$.
- (iv) If $\overline{g} \in \operatorname{ri} \partial f(\overline{p})$, then W(u) is nonempty for each $u \in \mathcal{U}$ and $W(0) = \{0\}$.

Proof. (i) The infimand in (3.1) is $h(u, v) - \langle \overline{g}_{\mathcal{V}}, v \rangle_{\mathcal{V}}$, where the function h was defined in Remark 2.3. It is clearly finite-valued and convex on $\mathcal{U} \times \mathcal{V}$, and the subgradient inequality at (u, v) = (0, 0) gives

$$h(u, v) - \langle \overline{g}_{\mathcal{V}}, v \rangle_{\mathcal{V}} \ge f(\overline{p}) + \langle \overline{g}_{\mathcal{U}}, u \rangle_{\mathcal{U}} \text{ for any } v \in \mathcal{V}.$$

It follows that $L_{\mathcal{U}}$ is nowhere $-\infty$ and, being a partial infimum of a jointly convex function, it is convex as well, see for example §IV.2.4 in [11].

(*ii*) The optimality condition for $w \in W(u)$ is $0 \in \partial h_2(w) - \overline{g}_{\mathcal{V}}$, with h_2 as in Remark 2.3. Knowing the expression of ∂h_2 , we obtain $0 = g_{\mathcal{V}} - \overline{g}_{\mathcal{V}}$, for some $g \in \partial f(\overline{p} + u \oplus w)$.

(*iii*) In particular, for u = 0, we can take w = 0 and $g = \overline{g} \in \partial f(\overline{p} + 0 \oplus 0)$ in (*ii*). This proves that v = 0 satisfies the optimality condition for (3.1); then $L_{\mathcal{U}}(0) = f(\overline{p})$.

(*iv*) Apply (2.5): there exists $\eta > 0$ such that, for any $v \neq 0$,

$$h(u,v) - \langle \overline{g}_{\mathcal{V}}, v \rangle_{\mathcal{V}} \ge f(\overline{p}) + \langle \overline{g}_{\mathcal{U}}, u \rangle_{\mathcal{U}} + \eta \|v\|_{\mathcal{V}}.$$

Thus, the infimand in (3.1) is inf-compact on \mathcal{V} and the set W(u) is nonempty. At u = 0, we have

$$h(0,v) - \langle \overline{g}_{\mathcal{V}}, v \rangle_{\mathcal{V}} \ge f(\overline{p}) + \eta \|v\|_{\mathcal{V}},$$

which shows that v = 0 is the unique minimizer.

3.2. First-order behaviour. The primary interest of the \mathcal{U} -Lagrangian is that it has a gradient at 0. Besides, its subdifferential is obtained from the optimality condition in Theorem 3.2(*ii*).

Theorem 3.3. Assume (1.2).

(i) Let u be such that $W(u) \neq \emptyset$. Then the subdifferential of $L_{\mathcal{U}}$ at this u has the expression

(3.4)
$$\partial L_{\mathcal{U}}(u) = \{ g_{\mathcal{U}} : g_{\mathcal{U}} \oplus \overline{g}_{\mathcal{V}} \in \partial f(\overline{p} + u \oplus w) \},\$$

where w is an arbitrary point in W(u).

(ii) In particular, $L_{\mathcal{U}}$ is differentiable at 0, with $\nabla L_{\mathcal{U}}(0) = \overline{g}_{\mathcal{U}}$.

Proof. (i) Using again the notation of Remark 2.3, write the infimand in (3.1) as $h(u, v) - \langle 0 \oplus \overline{g}_{\mathcal{V}}, u \oplus v \rangle$. For the subdifferential of the marginal function $L_{\mathcal{U}}$,

FIGURE 1. Subdifferential of $L_{\mathcal{U}}$

Corollary VI.4.5.3 in [11] gives the calculus rule

 $s \in \partial_u L_{\mathcal{U}}(u) \quad \iff \quad s \oplus 0 \in \partial_{u,v}(h - \langle 0 \oplus \overline{g}_{\mathcal{V}}, \cdot \rangle)(u, w)$ $\iff \quad s \oplus 0 \in \partial_{u,v}h(u, w) - 0\overline{g}_{\mathcal{V}}$ $\iff \quad s \oplus \overline{g}_{\mathcal{V}} \in \partial_{u,v}h(u, w),$

where $w \in W(u)$ is arbitrary. From the expression of $\partial_{u,v}h = \partial h$ in Remark 2.3, this is (3.4).

(*ii*) Because of Theorem 3.2(*iii*), (3.4) holds at u = 0 and becomes $\partial L_{\mathcal{U}}(0) = \{g_{\mathcal{U}} : g_{\mathcal{U}} \oplus \overline{g}_{\mathcal{V}} \in \partial f(\overline{p})\}$. This latter set clearly contains $\overline{g}_{\mathcal{U}}$. Actually, it does not contain any other point, due to Definition 2.1(*ii*): $\partial f(\overline{p}) \subset \overline{g} + \mathcal{V}$, i.e., all subgradients at \overline{p} have the same \mathcal{U} -component, namely $\overline{g}_{\mathcal{U}}$.

This result is illustrated in Figure 1. We stress the fact that the set in the righthand-side of (3.4) does not depend on the particular $w \in W(u)$. In other words, (3.4) expresses the following: to obtain the subgradients of $L_{\mathcal{U}}$ at u, take those subgradients g of f at $\overline{p} + u \oplus W(u)$ that have the same \mathcal{V} -component as \overline{g} (namely $\overline{g}_{\mathcal{V}}$); then take their \mathcal{U} -component. Remembering that \mathcal{U} is in effect a subset of \mathbb{R}^n , we can also write more informally

$$\partial L_{\mathcal{U}}(u) = [\partial f(\overline{p} + u \oplus W(u)) \cap (\overline{g} + \mathcal{U})]_{\mathcal{U}}.$$

This operation somewhat simplifies when $\overline{g}_{\mathcal{V}} = 0$:

(3.5) if
$$\overline{g}_{\mathcal{V}} = 0$$
, then $\partial L_{\mathcal{U}}(u) = \partial f(\overline{p} + u \oplus W(u)) \cap \mathcal{U}$.

See the end of §3.2 below for additional comments on the "trajectories" $\overline{p}+u\oplus W(u)$. Another observation is that, for all $u \in \mathcal{U}$,

$$f'(\overline{p}; u \oplus 0) = \langle \overline{g}, u \oplus 0 \rangle = \langle \overline{g}_{\mathcal{U}}, u \rangle_{\mathcal{U}} = \langle \nabla L_{\mathcal{U}}(0), u \rangle_{\mathcal{U}}.$$

In other words, $L_{\mathcal{U}}$ agrees, up to first order, with the restriction of f to $\overline{p} + \mathcal{U}$. Continuing with our \mathcal{U} -terminology, we will say that $\overline{g}_{\mathcal{U}}$ is the \mathcal{U} -gradient of f at \overline{p} , and note that $\overline{g}_{\mathcal{U}}$ is actually independent of the particular $\overline{g} \in \partial f(\overline{p})$ (recall Proposition 2.2(*i*)).

Remark 3.4. We add that, because f is locally Lipschitzian, this \mathcal{U} -differentiability property holds also tangentially to \mathcal{U} :

$$(3.6) \qquad f(\overline{p}+h) = f(\overline{p}) + \langle \overline{g}, h \rangle + o(\|h\|) \text{ whenever } \|h_{\mathcal{V}}\|_{\mathcal{V}} = o(\|h_{\mathcal{U}}\|_{\mathcal{U}}).$$

This remark will be instrumental when coming to higher order; then we will have to *select* h appropriately, to allow a specification of the remainder term in (3.6); see Theorem 3.9.

As already mentioned, the existence of $\nabla L_{\mathcal{U}}(0)$ is of paramount importance, since it suppresses the difficulty pointed out in the introduction of this paper; now the difference quotient in (1.1) takes the form

$$\frac{\partial L_{\mathcal{U}}(u) - \overline{g}_{\mathcal{U}}}{\|u\|_{\mathcal{U}}},$$

which does make sense. Here is a useful first consequence: $W(u) = o(||u||_{\mathcal{U}})$.

Corollary 3.5. Assume (1.2). If $\overline{g} \in \operatorname{ri} \partial f(\overline{p})$, then

 $\forall \varepsilon > 0 \; \exists \delta > 0 : \; \|u\|_{\mathcal{U}} \leq \delta \Rightarrow \|w\|_{\mathcal{V}} \leq \varepsilon \|u\|_{\mathcal{U}} \text{ for any } w \in W(u).$

Proof. Use Theorem 3.3(*ii*) to write the first-order expansion of $L_{\mathcal{U}}$:

$$L_{\mathcal{U}}(u) = L_{\mathcal{U}}(0) + \langle \nabla L_{\mathcal{U}}(0), u \rangle_{\mathcal{U}} + o(\|u\|_{\mathcal{U}}) = f(\overline{p}) + \langle \overline{g}_{\mathcal{U}}, u \rangle_{\mathcal{U}} + o(\|u\|_{\mathcal{U}}).$$

For any $w \in W(u)$ we have $L_{\mathcal{U}}(u) = f(\overline{p} + u \oplus w) - \langle \overline{g}_{\mathcal{V}}, w \rangle_{\mathcal{V}}$; therefore, (2.5) written for v = w, gives $L_{\mathcal{U}}(u) \ge f(\overline{p}) + \langle \overline{g}_{\mathcal{U}}, u \rangle_{\mathcal{U}} + \eta \|w\|_{\mathcal{V}}$. Altogether, we obtain

$$o(\|u\|_{\mathcal{U}}) = L_{\mathcal{U}}(u) - f(\overline{p}) - \langle \overline{g}_{\mathcal{U}}, u \rangle_{\mathcal{U}} \ge \eta \|w\|_{\mathcal{V}}. \quad \Box$$

Let us sum up our results so far.

- Given $\overline{g} \in \partial f(\overline{p})$, we define via (3.1) a convex function $L_{\mathcal{U}}$ (Theorem 3.2(i)), which is differentiable at 0 and coincides up to first order with the restriction of f to $\overline{p} + \mathcal{U}$ (Theorem 3.3(ii)).
- When $W(\cdot) \neq \emptyset$, this \mathcal{U} -Lagrangian is indeed the restriction of f to a "thick surface" $\{\overline{p} + \cdot \oplus W(\cdot)\}$, parametrized by $u \in \mathcal{U}$.
- We also define, via Theorem 3.2(ii), a "thick selection" of ∂f on this thick surface, made up of those subgradients that have the same \mathcal{V} -component as \overline{g} .
- As a function of the parameter u, this thick selection behaves like a subdifferential, namely $\partial L_{\mathcal{U}}$ (Theorem 3.3(i)).
- When $\overline{g} \in \operatorname{ri} \partial f(\overline{p})$, our thick surface has \mathcal{U} as "tangent space" at \overline{p} (Corollary 3.5; we use quotation marks because W is multivalued).

Remark 3.6. We note in passing two extreme cases in which our theory becomes trivial:

- when f is differentiable at \overline{p} , then $\mathcal{U} = \mathbb{R}^n$, $\mathcal{V} = \{0\}$ and $L_{\mathcal{U}} \equiv f$;

- when $\partial f(\overline{p})$ has full dimension, then $\mathcal{U} = \{0\}$ and there is no \mathcal{U} -Lagrangian.

3.3. **Higher-order behaviour.** Proceeding further in our differential analysis of $L_{\mathcal{U}}$, we now study the behaviour of $\partial L_{\mathcal{U}}$ near 0. A very basic property of this set is its radial Lipschitz continuity. We say that f has a radially Lipschitz subdifferential at \overline{p} when there is a D > 0 and a $\delta > 0$ such that

(3.7)
$$\partial f(\overline{p}+d) \subset \partial f(\overline{p}) + B(0, D||d||), \text{ for all } d \in B(0, \delta).$$

This is equivalent to an upper quadratic growth condition on the function itself (recall Corollary 3.5 in [14]): there is a C > 0 and an $\varepsilon > 0$ such that

(3.8)
$$f(\overline{p}+d) \le f(\overline{p}) + f'(\overline{p};d) + \frac{1}{2}C ||d||^2, \text{ for all } d \in B(0,\varepsilon).$$

This property is transmitted from f to $L_{\mathcal{U}}$:

Proposition 3.7. Assume (1.2). Assume also that W(u) is nonempty for u small enough, and that $(3.7) \equiv (3.8)$ is satisfied. Then

- (i) $\partial L_{\mathcal{U}}(u) \subset \overline{g}_{\mathcal{U}} + B_{\mathcal{U}}(0, 2C ||u||_{\mathcal{U}})$, for some $\delta > 0$ and all $u \in B_{\mathcal{U}}(0, \delta)$;
- (ii) $L_{\mathcal{U}}(u) \leq L_{\mathcal{U}}(0) + \langle \overline{g}_{\mathcal{U}}, u \rangle_{\mathcal{U}} + \frac{1}{2}R \|u\|_{\mathcal{U}}^2$, for some $\rho > 0$, R > 0 and all $u \in B_{\mathcal{U}}(0, \rho)$.

Proof. Remember that $\nabla L_{\mathcal{U}}(0) = \overline{g}_{\mathcal{U}}$. Because the subdifferential is an outersemicontinuous mapping, we can choose $\delta > 0$ such that for all $u \in B_{\mathcal{U}}(0, \delta)$ and $g_{\mathcal{U}} \in \partial L_{\mathcal{U}}(u)$, $\|g_{\mathcal{U}} - \overline{g}_{\mathcal{U}}\|_{\mathcal{U}} \leq \frac{\varepsilon C}{2}$ (see § VI.6.2 of [11] for example). On the other hand, assume δ so small that W(u) contains some w; from Theorem 3.2(*ii*), $g_{\mathcal{U}} \oplus \overline{g}_{\mathcal{V}} \in \partial f(\overline{p} + u \oplus w)$.

Now $\mathcal{U} \subset \mathcal{N}_{\partial f(\overline{p})}(\overline{g})$ (Proposition 2.2(*iii*)). Using the notation $s := (g_{\mathcal{U}} - \overline{g}_{\mathcal{U}}) \oplus 0$, so that $g_{\mathcal{U}} \oplus \overline{g}_{\mathcal{V}} = \overline{g} + s \in \partial f(\overline{p} + u \oplus w)$, we are in the conditions of Corollary 3.3 in [14] written with $\varphi = f$, $z_0 = \overline{p}$, $g_0 = \overline{g}$, $x = \overline{p} + u \oplus w$. Inequality (14) therein becomes

$$\|g_{\mathcal{U}} - \overline{g}_{\mathcal{U}}\|_{\mathcal{U}}^2 = \|s\|^2 \le 2C\langle s, u \oplus w \rangle = 2C\langle g_{\mathcal{U}} - \overline{g}_{\mathcal{U}}, u \rangle_{\mathcal{U}} \le 2C\|g_{\mathcal{U}} - \overline{g}_{\mathcal{U}}\|_{\mathcal{U}}\|u\|_{\mathcal{U}},$$

which is (i). As for (ii), it is equivalent to (i) (Corollary 3.5 in [14]). \Box

Back to the *f*-context, Proposition 3.7 says: for small $u \in \mathcal{U}$ and all $w \in W(u)$, there holds

$$\{g_{\mathcal{U}}: g_{\mathcal{U}} \oplus \overline{g}_{\mathcal{V}} \in \partial f(\overline{p} + u \oplus w)\} \subset \overline{g}_{\mathcal{U}} + B_{\mathcal{U}}(0, 2C \|u\|_{\mathcal{U}})$$

as well as

$$f(\overline{p} + u \oplus w) \le f(\overline{p}) + \langle \overline{g}, u \oplus w \rangle + \frac{1}{2} R ||u||_{\mathcal{U}}^2.$$

Now, we have a function $L_{\mathcal{U}}$, which is differentiable at 0, and whose second-order difference quotients inherit the qualitative properties of those of f. The stage is therefore set to consider the case where $L_{\mathcal{U}}$ has a generalized Hessian at 0, in the sense of [9] (see also [15], §3). Generally speaking, we say that a convex function φ has at z_0 a generalized Hessian $H\varphi(z_0)$ when

- (i) the gradient $\nabla \varphi(z_0)$ exists;
- (ii) there exists a symmetric positive semidefinite operator $H\varphi(z_0)$ such that

$$\varphi(z_0+d) = \varphi(z_0) + \langle \nabla \varphi(z_0), d \rangle + \frac{1}{2} \langle \mathrm{H}\varphi(z_0)d, d \rangle + o(\|d\|^2);$$

(iii) or equivalently,

(3.9)
$$\partial \varphi(z_0 + d) \subset \nabla \varphi(z_0) + \mathrm{H}\varphi(z_0)d + B(0, o(||d||)).$$

Definition 3.8. Assume (1.2). We say that f has at \overline{p} a \mathcal{U} -Hessian $H_{\mathcal{U}}f(\overline{p})$ (associated with \overline{g}) if $L_{\mathcal{U}}$ has a generalized Hessian at 0; then we set

$$\mathrm{H}_{\mathcal{U}}f(\overline{p}) := \mathrm{H}L_{\mathcal{U}}(0). \quad \Box$$

When it exists, the \mathcal{U} -Hessian $H_{\mathcal{U}}f(\overline{p})$ is therefore a symmetric positive semidefinite operator from \mathcal{U} to \mathcal{U} . Its existence means the possibility of expanding falong the thick surface $\overline{p} + \cdot \oplus W(\cdot)$ introduced at the end of §3.2.

Theorem 3.9. Take $\overline{g} \in \operatorname{ri} \partial f(\overline{p})$ and let the \mathcal{U} -Hessian $\operatorname{H}_{\mathcal{U}} f(\overline{p})$ exist. For $u \in \mathcal{U}$ and $h \in u \oplus W(u)$, there holds

(3.10)
$$f(\overline{p}+h) = f(\overline{p}) + \langle \overline{g}, h \rangle + \frac{1}{2} \langle \mathrm{H}_{\mathcal{U}} f(\overline{p}) u, u \rangle_{\mathcal{U}} + o(\|h\|^2).$$

Proof. We know from Theorem 3.2(iv) that $W(u) \neq \emptyset$. Then apply the definition of $L_{\mathcal{U}}$ and expand $L_{\mathcal{U}}$ to obtain for all u and $w \in W(u)$:

$$L_{\mathcal{U}}(u) = f(\overline{p} + u \oplus w) - \langle \overline{g}_{\mathcal{V}}, w \rangle_{\mathcal{V}} = L_{\mathcal{U}}(0) + \langle \nabla L_{\mathcal{U}}(0), u \rangle_{\mathcal{U}} + \frac{1}{2} \langle \mathrm{H}_{\mathcal{U}} f(\overline{p}) u, u \rangle_{\mathcal{U}} + o(||u||_{\mathcal{U}}^2) = f(\overline{p}) + \langle \overline{g}_{\mathcal{U}}, u \rangle_{\mathcal{U}} + \frac{1}{2} \langle \mathrm{H}_{\mathcal{U}} f(\overline{p}) u, u \rangle_{\mathcal{U}} + o(||u||_{\mathcal{U}}^2).$$

In view of Corollary 3.5, $o(||u||_{\mathcal{U}}^2) = o(||h||^2)$; (3.10) follows, adding $\langle \overline{g}_{\mathcal{V}}, w \rangle_{\mathcal{V}}$ to both sides.

To the second-order expansion (3.10), there corresponds a first-order expansion of *selected* subgradients along the thick surface $\overline{p} + \cdot \oplus W(\cdot)$: with the notation and assumptions of Theorem 3.9,

$$\{g_{\mathcal{U}}: g_{\mathcal{U}} \oplus \overline{g}_{\mathcal{V}} \in \partial f(\overline{p}+h)\} \subset \overline{g}_{\mathcal{U}} + \mathcal{H}_{\mathcal{U}}f(\overline{p})u + B_{\mathcal{U}}(0, o(\|h\|)).$$

With reference to Remark 3.4, the expansion (3.10) makes (3.6) more explicit, for increments $h = h_{\mathcal{U}} \oplus h_{\mathcal{V}}$ such that $h_{\mathcal{V}} \in W(h_{\mathcal{U}})$. The aim of the next section is to disclose some intrinsic interest of these particular h's.

4. Examples of application

This section shows how the \mathcal{U} -concepts developed in §3 generalize well-known objects. We will first consider special situations: max-functions (§4.1) and semi-definite programming (§4.2). Then in §4.3 we outline a conceptual minimization algorithm.

4.1. Exact penalty. Consider an ordinary nonlinear programming problem

(4.1)
$$\begin{cases} \min \psi(p), \\ f_i(p) \le 0, \quad i = 1, \dots, m, \end{cases}$$

with convex C^2 data ψ and f_i . Take an optimal \overline{p} and suppose that the KKT conditions hold: with $L(p,\lambda) := \psi(p) + \sum_i \lambda_i f_i(p)$, defined for $(p,\lambda) \in \mathbb{R}^n \times \mathbb{R}^m$, there exist Lagrange multipliers $\overline{\lambda}_i$ such that

(4.2)
$$\begin{cases} [\nabla_p L(\overline{p}, \overline{\lambda}) =] \nabla \psi(\overline{p}) + \sum_{i=1}^m \overline{\lambda}_i \nabla f_i(\overline{p}) = 0, \\ \overline{\lambda}_i \ge 0 \quad \overline{\lambda}_i f_i(\overline{p}) = 0, \quad \text{for } i = 1, \dots, m. \end{cases}$$

We will use the notation $\gamma := \nabla \psi$, $g_i := \nabla f_i$, $\overline{\gamma} := \nabla \psi(\overline{p})$, $\overline{g}_i := \nabla f_i(\overline{p})$.

Consider now an exact penalty function associated with (4.1): with $f_0(p) \equiv 0$ (and $g_0(p) := \nabla f_0(p) \equiv 0$), set

(4.3)
$$f(p) := \psi(p) + \pi \max\{f_0(p), \dots, f_m(p)\}$$

where $\pi > 0$ is a penalty parameter. Call

$$J(p) := \{ j \in \{0, \dots, m\} : \psi(p) + \pi f_j(p) = f(p) \}$$

the set of indices realizing the max at p. Standard subdifferential calculus gives

 $\partial f(p) = \gamma(p) + \pi \operatorname{conv} \{ g_j(p) : j \in J(p) \}.$

In NLP language, instead of maximal functions, one speaks of active constraints. We therefore set

$$\overline{I} := \left\{ i \in \{1, \dots, m\} : f_i(\overline{p}) = 0 \right\}$$

(naturally, we assume $\overline{I} \neq \emptyset$; otherwise, the problem lacks interest). It is easy to see that $J(\overline{p}) = \overline{I} \cup \{0\}$; correspondingly, we associate with $J(\overline{p})$ the "multipliers"

(4.4)
$$\overline{\mu}_i := \overline{\lambda}_i \text{ for } i \in \overline{I} \text{ and } \overline{\mu}_0 := \pi - \sum_{i \in \overline{I}} \overline{\lambda}_i.$$

For π large enough, it is well known that \overline{p} solving (4.1) also minimizes f of (4.3). We proceed to apply the theory of §3 to the present situation: f is the exact penalty function of (4.3), \overline{p} is optimal and $\overline{g} = 0$. We will show that the \mathcal{U} -Lagrangian $L_{\mathcal{U}}$ coincides up to second order with the restriction to \mathcal{U} of the ordinary Lagrangian $L(\overline{p} + \cdot, \overline{\lambda})$. All along this subsection, we make the following assumptions:

- the active gradients $\{\overline{g}_i\}_{i\in\overline{I}}$ are linearly independent (hence $\overline{\lambda}$ is unique in the KKT conditions (4.2)),
- $-\overline{\lambda}_i > 0$ for $i \in \overline{I}$ (strict complementarity),
- and $\pi > \sum_{i \in \overline{I}} \overline{\lambda}_i$, i.e., $\overline{\mu}_0 > 0$ in (4.4).

The following development should be considered as a mere illustration of the \mathcal{U} -theory. This is why we content ourselves with the above simplifying assumptions, which are relaxed in the more complete work of [17].

We start with a basic result, stating in particular that \mathcal{U} is the space tangent to the surface defined by the active constraints (well-defined thanks to our simplifying assumptions).

Proposition 4.1. With the above notation and assumptions, we have the following relations for $p = \overline{p}$:

(i) $\partial f(\overline{p}) = \overline{\gamma} + \left\{ \sum_{i \in \overline{I}} \mu_i \overline{g}_i : \mu_i \ge 0, \sum_{i \in \overline{I}} \mu_i \le \pi \right\};$ (ii) the subspaces \mathcal{U} and \mathcal{V} of Definition 2.1 are

$$\mathcal{V} = \ln\{\overline{g}_i\}_{i \in \overline{I}}, \quad \mathcal{U} = \{d \in \mathbb{R}^n : \langle \overline{g}_i, d \rangle = 0, i \in \overline{I}\};$$

 $(iii) \ \overline{g} := 0 \in \operatorname{ri} \partial f(\overline{p}).$

Proof.
$$(i)$$
 We have

$$\begin{array}{lll} \partial f(\overline{p}) &=& \overline{\gamma} + \pi \mathrm{conv}\{\overline{g}_i : i \in \overline{I} \cup \{0\}\}\\ &=& \overline{\gamma} + \big\{\pi \alpha_0 0 + \sum_{i \in \overline{I}} \pi \alpha_i \overline{g}_i : \alpha_i \ge 0, \alpha_0 + \sum_{i \in \overline{I}} \alpha_i = 1\big\}. \end{array}$$

The formula is then straightforward, setting $\mu_i := \pi \alpha_i$ and eliminating the unnecessary vector 0.

(*ii*) Apply Definition 2.1(*ii*): $\mathcal{V} = \lim \{ \partial f(\overline{p}) - \overline{\gamma} \}$ because $\overline{\gamma} \in \partial f(\overline{p})$. Together with (*i*), the results clearly follow.

(*iii*) Consider the set $\mathcal{B} := \{\sum_{\overline{I}} \mu_i \overline{g}_i : \mu_i \ge -\overline{\mu}_i, \sum_{\overline{I}} \mu_i \le \overline{\mu}_0\}$, where $\overline{\mu}$ was defined in (4.4). Because of (*ii*), $\mathcal{B} \subset \mathcal{V}$. Because of strict complementarity and $\overline{\mu}_0 > 0$, \mathcal{B} is a relative neighborhood of $0 = \overline{g} \in \mathcal{V}$. Finally, because of (4.2) and (4.4),

$$\mathcal{B} = \overline{\gamma} + \mathcal{B} + \sum_{\overline{I}} \overline{\lambda}_i \overline{g}_i$$

= $\overline{\gamma} + \{\sum_{\overline{I}} (\mu_i + \overline{\mu}_i) \overline{g}_i : \mu_i + \overline{\mu}_i \ge 0, \sum_{\overline{I}} (\mu_i + \overline{\mu}_i) \le \pi\}.$

In view of (i), $\mathcal{B} \subset \partial f(\overline{p})$ and we are done.

Lemma 4.2. With the notation and assumptions of this subsection, let p be close to \overline{p} . Then $J(p) \subset J(\overline{p}) = \overline{I} \cup \{0\}$ and the system in $\{\mu_j\}_{J(p)}$

(4.5)
$$\begin{cases} \langle \overline{g}_i, \gamma(p) \rangle + \sum_{j \in J(p)} \mu_j \langle \overline{g}_i, g_j(p) \rangle = 0 \quad \text{for all } i \in \overline{I}, \\ \sum_{j \in J(p)} \mu_j = \pi \end{cases}$$

has a solution, which is unique, if and only if $J(p) = J(\overline{p}) = \overline{I} \cup \{0\}$. The solution $\mu(p)$ satisfies $\mu_j(p) > 0$ for all $j \in J(p) = J(\overline{p})$. Moreover, $\mu(\overline{p}) = \overline{\mu}$ of (4.4) and $p \mapsto \mu(p)$ is differentiable at $p = \overline{p}$.

Proof. Let $j \notin J(\overline{p})$. By continuity, $f_j(p) < f_i(p)$ for all $i \in J(\overline{p})$, hence $J(p) \subset J(\overline{p})$.

Now consider (4.5). First, observe that, because of (4.2), $\overline{\mu}$ of (4.4) is a solution at $p = \overline{p}$.

(a) Assume first that $J(p) = J(\overline{p}) = \overline{I} \cup \{0\}$. Since $g_0(p) \equiv 0$, the variable μ_0 is again directly given by $\mu_0(p) = \pi - \sum_{\overline{I}} \mu_j(p)$. As for the μ_j 's, $j \in \overline{I}$, they are given by an $\overline{I} \times \overline{I}$ linear system, whose matrix is $(\langle \overline{g}_i, g_j(p) \rangle)_{ij}$. Because the \overline{g}_i 's are linearly independent, this matrix is positive definite. The solution $\mu(p)$ is unique; it is also close to $\overline{\mu}$, is therefore positive and sums up to less than $\pi: \mu_0(p) > 0$. In particular, $\mu(\overline{p}) = \overline{\mu}$ is the unique solution at $p = \overline{p}$. The differentiability property then comes from the Implicit Function Theorem.

(b) On the other hand, assume the set $I_0 := J(\overline{p}) \setminus J(p)$ is nonempty and suppose (4.5) has a solution $\{\mu_j^*\}_{j \in J(p)}$. Set $\mu_j^* := 0$ for $j \in I_0$; then μ^* also solves (4.5) with J(p) replaced by $J(\overline{p})$. This contradicts part (a) of the proof.

The next result reveals a nice interpretation of $W(\cdot)$ in (3.2): it makes a local description of the surface defined by the active constraints.

Theorem 4.3. Use the notation and assumptions of this subsection. For $u \in \mathcal{U}$ small enough, W(u) defined in (3.2) is a singleton w(u), which is the unique solution of the system with unknown $v \in \mathcal{V}$

(4.6)
$$f_i(\overline{p} + u \oplus v) = 0, \quad \text{for all } i \in \overline{I}.$$

Proof. According to Theorem 3.2(*ii*) and (3.5), an arbitrary $p \in \overline{p} + u \oplus W(u)$ is characterized by $\partial f(p) \cap \mathcal{U} \neq \emptyset$; there are convex multipliers $\{\alpha_j\}_{j \in J(p)}$ such that $\gamma(p) + \pi \sum_{J(p)} \alpha_j g_j(p) \in \mathcal{U}$. Setting $\mu_j := \pi \alpha_j$, this means that the system (4.5)

has a nonnegative solution. Now, in view of Proposition 4.1(*iii*) and Corollary 3.5, $p - \overline{p}$ is small; we can apply Lemma 4.2, $J(p) = \overline{I} \cup \{0\}$, and this is just (4.6).

Uniqueness of such a p is then easy to prove. Substituting f_i for h_2 in Remark 2.3, the gradients of the functions $v \mapsto f_i(\overline{p} + u \oplus v)$ are $g_i(\overline{p} + u \oplus v)_{\mathcal{V}}$, which are linearly independent for (u, v) = (0, 0). By the Implicit Function Theorem, (4.6) has a unique solution w(u) for small u.

Now we are in a position to give specific expressions for the derivatives of the \mathcal{U} -Lagrangian.

Theorem 4.4. Use the notation and assumptions of this subsection.

(i) The U-Lagrangian is differentiable in a neighborhood of 0. With μ(·) and w(·) defined in Lemma 4.2 and Theorem 4.3 respectively, and with

$$p(u) := \overline{p} + u \oplus w(u),$$

we have for $u \in \mathcal{U}$ small enough

(4.7)
$$\nabla L_{\mathcal{U}}(u) \oplus 0 = \gamma(p(u)) + \sum_{j \in \overline{I}} \mu_j(p(u))g_j(p(u)).$$

(ii) The Hessian $\nabla^2 L_{\mathcal{U}}(0)$ exists. Using the matrix-like decomposition

$$\nabla^2_{pp} L(\overline{p}, \overline{\lambda}) = \begin{pmatrix} H_{\mathcal{U}\mathcal{U}} & H_{\mathcal{U}\mathcal{V}} \\ H_{\mathcal{V}\mathcal{U}} & H_{\mathcal{V}\mathcal{V}} \end{pmatrix}$$

for the Hessian of the Lagrangian, we have $\nabla^2 L_{\mathcal{U}}(0) = H_{\mathcal{U}\mathcal{U}}$.

Proof. (i) Put together Lemma 4.2 and Theorem 4.3. Observe, in particular, that the right-hand side of (4.7) lies in \mathcal{U} . Then invoke (3.5).

(*ii*) In view of Lemma 4.1(*iii*) and Corollary 3.5, $w(u) = o(||u||_{\mathcal{U}})$, hence $p(\cdot)$ has a Jacobian at 0; in fact, $Jp(0)u = u \oplus 0$ for all $u \in \mathcal{U}$. Then, using Lemma 4.2, (4.7) clearly shows that $\nabla L_{\mathcal{U}}$ is differentiable at 0. Compute from (4.7) the differential $\nabla^2 L_{\mathcal{U}}(0)u$ for $u \in \mathcal{U}$:

$$\begin{aligned} (\nabla^2 L_{\mathcal{U}}(0)u) \oplus 0 &= \nabla^2 \psi(\overline{p}) \operatorname{J}p(0)u + \sum_{\overline{I}} \overline{\lambda}_j \nabla^2 f_j(\overline{p}) \operatorname{J}p(0)u \\ &+ \sum_{\overline{I}} \langle \nabla \mu_j(\overline{p}), \operatorname{J}p(0)u \rangle \overline{g}_j \\ &= \nabla_{pp}^2 L(\overline{p}, \overline{\lambda})(u \oplus 0) + \sum_{\overline{I}} \langle \nabla \mu_j(\overline{p}), \operatorname{J}p(0)u \rangle \overline{g}_j. \end{aligned}$$

Thus, $\nabla^2 L_{\mathcal{U}}(0)u$ is the \mathcal{U} -part of the right-hand side. The second term is a sum of vectors in \mathcal{V} , which does not count; we do obtain (*ii*).

In Remark 3.1 we have said that \overline{g} in §3 plays the role of a dual variable. This is suggested by the relation $0 = \overline{g}_0 + \sum_{\overline{I}} \overline{\lambda}_i \overline{g}_i \in \partial f(\overline{p})$ which, in the present NLP context, establishes a correspondence between $\overline{g} = 0$ and the multipliers $\overline{\lambda}_i$ or $\overline{\mu}_i$. Taking some nonzero $\overline{g}' \in \operatorname{ri} \partial f(\overline{p})$ does not change the situation much; this just amounts to applying the theory to $f - \langle \overline{g}', \cdot \rangle$, which is still minimal at \overline{p} – but of course the multipliers are changed, say, to $\overline{\lambda}'_i$ or $\overline{\mu}'_i$. Denoting by g(p(u)) the right-hand side in (4.7), the correspondence $\overline{g} \leftrightarrow \overline{\lambda} \leftrightarrow \overline{\mu}$ can even be extended to $g(p(u)) \leftrightarrow \overline{\lambda}(u) \leftrightarrow \mu(u)$.

723

4.2. **Eigenvalue optimization.** Consider the problem of minimizing with respect to $x \in \mathbb{R}^m$ the largest eigenvalue λ_1 of a real symmetric $n \times n$ matrix A, depending affinely on x. Most of the relevant information for the function $\lambda_1 \circ A$ can be obtained by analyzing the maximum eigenvalue function $\lambda_1(A)$, which is convex (and finite-valued). We briefly describe here how the \mathcal{U} -theory applies to this context. For a detailed study, we refer to [20] where an interesting connection is established with the geometrical approach of [21].

For the sake of consistency, we keep the notation $\overline{p} := A(\overline{x})$ for the reference matrix where the analysis is performed. If \overline{r} denotes the multiplicity of $\lambda_1(\overline{p})$, then

$$\mathcal{W}_{\overline{r}} := \{p : p \text{ is a symmetric matrix and } \lambda_1(p) \text{ has multiplicity } \overline{r}\}$$

is the smooth manifold Ω of [21].

First, the subspaces \mathcal{U} and \mathcal{V} in Definition 2.1 are just the tangent and normal spaces to $\mathcal{W}_{\overline{r}}$ at \overline{p} (Corollary 4.8 in [20]). Similarly to Theorem 4.3, Theorem 4.11 in [20] shows that the set W(u) of (3.2) is a singleton w(u), characterized by

$$\overline{p} + u \oplus w(u) \in \mathcal{W}_{\overline{r}}$$

As for second order, the \mathcal{U} -Lagrangian (3.1) is twice continuously differentiable in a neighbourhood of $0 \in \mathcal{U}$. Finally, use again the matrix-like decomposition

$$\left(\begin{array}{cc}H_{\mathcal{U}\mathcal{U}} & H_{\mathcal{U}\mathcal{V}}\\H_{\mathcal{V}\mathcal{U}} & H_{\mathcal{V}\mathcal{V}}\end{array}\right)$$

for the Hessian of the Lagrangian introduced in Theorem 5 of [21]. Then Theorem 4.12 in [20] shows that $\nabla^2 L_{\mathcal{U}}(0) = H_{\mathcal{U}\mathcal{U}}$ is the reduced Hessian matrix (5.31) in [21].

4.3. A conceptual superlinear scheme. The previous subsections have shown that our \mathcal{U} -objects become classical when f has some special form. It is also demonstrated in [17] and [20] how these \mathcal{U} -objects can provide interpretations of known minimization algorithms. Here we go back to a general f and we design a superlinearly convergent conceptual algorithm for minimizing f. Again, we obtain a general formalization of known techniques from classical optimization.

Given p close to a minimum point \overline{p} , the problem is to compute some p_+ , superlinearly closer to \overline{p} . We propose a conceptual scheme, in which we compute first the \mathcal{V} -component of the increment $p_+ - p$, and then its \mathcal{U} -component. This idea of decomposing the move from p to p_+ in a "vertical" and a "horizontal" step can be traced back to [8].

Algorithm 4.5. \mathcal{V} -Step. Compute a solution $\delta v \in \mathcal{V}$ of

(4.8)
$$\min\{f(p+0\oplus\delta v):\delta v\in\mathcal{V}\}$$

and set $p' := p + 0 \oplus \delta v$.

 \mathcal{U} -Step. Make a Newton step in $p' + \mathcal{U}$: compute the solution $\delta u \in \mathcal{U}$ of

(4.9)
$$g'_{\mathcal{U}} + \mathcal{H}_{\mathcal{U}}f(\overline{p})\delta u = 0,$$

where $g' \in \partial f(p')$ is such that $g'_{\mathcal{V}} = 0$, so that $g'_{\mathcal{U}} \in \partial L_{\mathcal{U}}((p' - \overline{p})_{\mathcal{U}})$. Update. Set $p_+ := p' + \delta u \oplus 0 = p + \delta u \oplus \delta v$.

Remark 4.6. This algorithm needs the subspace \mathcal{U} associated with \overline{p} , as well as the \mathcal{U} -Hessian $H_{\mathcal{U}}f(\overline{p})$, which must exist and be positive definite. The knowledge of \mathcal{U} may be considered as a bold requirement; constructing appropriate approximations of it is for sure a key to obtain implementable forms. As for existence and positive

FIGURE 2. Conceptual algorithm

definiteness of $H_{\mathcal{U}}f(\overline{p})$, it is a natural assumption. Quasi-Newton approximations of it might be suitable, as well as other approaches in the lines of [27].

The next result supports our scheme.

Theorem 4.7. Using the notation of §3, assume that $\overline{g} := 0 \in \operatorname{ri} \partial f(\overline{p})$, and that f has at \overline{p} a positive definite \mathcal{U} -Hessian. Then the point p_+ constructed by Algorithm 4.5 satisfies $||p_+ - \overline{p}|| = o(||p - \overline{p}||)$.

Proof. We denote by $u := (p - \overline{p})_{\mathcal{U}}$ the \mathcal{U} -component of $p - \overline{p}$ (see Figure 2). For $\delta v \in \mathcal{V}$, make the change of variables $v := (p - \overline{p})_{\mathcal{V}} + \delta v$, so that (4.8) can be written $\min_{v \in \mathcal{V}} f(\overline{p} + u \oplus v)$. Denoting by v_+ a solution, we have

$$v_{+} = (p - \overline{p})_{\mathcal{V}} + \delta v = (p_{+} - \overline{p})_{\mathcal{V}} \in W(u)$$

and Corollary 3.5 implies that

(4.10)
$$\|(p_+ - \overline{p})_{\mathcal{V}}\|_{\mathcal{V}} = o(\|u\|_{\mathcal{U}}) = o(\|p - \overline{p}\|).$$

From the definition (3.9) of $H_{\mathcal{U}}f(\overline{p})$ and observing that $\nabla L_{\mathcal{U}}(0) = 0$, we have

$$\partial L_{\mathcal{U}}(u) \ni g'_{\mathcal{U}} = 0 + \mathcal{H}_{\mathcal{U}}f(\overline{p})u + o(||u||_{\mathcal{U}}).$$

Subtracting from (4.9), $H_{\mathcal{U}}f(\overline{p})(u+\delta u) = o(||u||_{\mathcal{U}})$ and, since $H_{\mathcal{U}}f(\overline{p})$ is invertible, $||u+\delta u||_{\mathcal{U}} = o(||u||_{\mathcal{U}})$. Then, writing

$$(p_+ - \overline{p})_{\mathcal{U}} = (p_+ - p')_{\mathcal{U}} + (p' - p)_{\mathcal{U}} + (p - \overline{p})_{\mathcal{U}} = u + \delta u,$$

we do have $\|(p_+ - \overline{p})_{\mathcal{U}}\|_{\mathcal{U}} = o(\|u\|_{\mathcal{U}}) = o(\|p - \overline{p}\|)$. With (4.10), the conclusion follows.

5. U-Hessian and Moreau-Yosida Regularizations

The whole business of §3 was to develop a theory ending up with the definition of a \mathcal{U} -Hessian (Definition 3.8). Our aim now is to assess this concept: we give a necessary and sufficient condition for the existence of $H_{\mathcal{U}}f$, in terms of Moreau-Yosida regularization ([32], [19]).

We denote by F the Moreau-Yosida regularization of f, associated with the Euclidean metric,

(5.1)
$$F(x) := \min_{y \in \mathbb{R}^n} \left\{ f(y) + \frac{1}{2} \|x - y\|^2 \right\}.$$

The unique minimizer in (5.1), called the *proximal* point of x, is denoted by

(5.2)
$$p(x) := \operatorname*{argmin}_{y \in \mathbb{R}^n} \left\{ f(y) + \frac{1}{2} \|x - y\|^2 \right\}$$

It is well known that F has a (globally) Lipschitzian gradient, satisfying

(5.3)
$$\nabla F(x) = x - p(x) \in \partial f(p(x)).$$

Given \overline{p} and \overline{g} satisfying (1.2), we are interested in the behaviour of F near

(5.4)
$$\overline{x} := \overline{p} + \overline{g}$$

(recall, for example, Theorem 2.8 of [15]: $\overline{g} = \nabla F(\overline{x})$ and \overline{x} is such that $p(\overline{x}) = \overline{p}$). More precisely, restricting our attention to $\overline{x} + \mathcal{U}$, we will give an equivalence result and a formula linking the so restricted Hessian of F, with the \mathcal{U} -Hessian of f at \overline{p} . To prove our results, we introduce an intermediate function, similar to $\phi_{\mathcal{V}}$ in §3.2 of [15], but adapted to our \mathcal{U} -context:

(5.5)
$$\mathcal{U} \ni u \mapsto \phi_{\mathcal{V}}(u) := \min_{v \in \mathcal{V}} \{ f(\overline{p} + u \oplus v) - \langle \overline{g}_{\mathcal{V}}, v \rangle_{\mathcal{V}} + \frac{1}{2} \|v\|_{\mathcal{V}}^2 \}.$$

We start by showing that this function agrees up to second order with $L_{\mathcal{U}}$.

Lemma 5.1. With the notation above, assume that the conclusion of Corollary 3.5 holds for at least one $w \in W(u)$ – for example, let \overline{g} be in ri $\partial f(\overline{p})$. Then

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \; \|u\|_{\mathcal{U}} \le \delta \Rightarrow |\phi_{\mathcal{V}}(u) - L_{\mathcal{U}}(u)| \le \varepsilon \|u\|_{\mathcal{U}}^2.$$

In particular,

(5.6)
$$\nabla \phi_{\mathcal{V}}(0) = \overline{g}_{\mathcal{U}} \quad and \quad \exists \mathrm{H} L_{\mathcal{U}}(0) \iff \exists \mathrm{H} \phi_{\mathcal{V}}(0) = \mathrm{H} L_{\mathcal{U}}(0).$$

Proof. Clearly $\phi_{\mathcal{V}}(u) \geq L_{\mathcal{U}}(u)$. To obtain an opposite inequality, write the minimand in (5.5) for $v = w \in W(u)$:

$$\phi_{\mathcal{V}}(u) \leq f(\overline{p} + u \oplus w) - \langle \overline{g}_{\mathcal{V}}, w \rangle_{\mathcal{V}} + \frac{1}{2} \|w\|_{\mathcal{V}}^2$$
$$= L_{\mathcal{U}}(u) + \frac{1}{2} \|w\|_{\mathcal{V}}^2.$$

Taking, in particular, w such that $||w||_{\mathcal{V}} = o(||u||_{\mathcal{U}})$ (or applying Corollary 3.5), the results follow.

The reason for introducing $\phi_{\mathcal{V}}$ is that its Moreau-Yosida regularization $\Phi_{\mathcal{V}}$ is obtained from the restriction $F_{\mathcal{U}}$ of F to $\overline{x} + \mathcal{U}$ by a mere translation.

Proposition 5.2. Assume (1.2). The two functions

$$\mathcal{U} \ni d_{\mathcal{U}} \mapsto \begin{cases} \Phi_{\mathcal{V}}(d_{\mathcal{U}}) := \min_{u \in \mathcal{U}} \{\phi_{\mathcal{V}}(u) + \frac{1}{2} \| d_{\mathcal{U}} - u \|_{\mathcal{U}}^2 \}, \\ F_{\mathcal{U}}(d_{\mathcal{U}}) := F(\overline{x} + d_{\mathcal{U}} \oplus 0), \end{cases}$$

satisfy

$$F_{\mathcal{U}}(d_{\mathcal{U}}) = \Phi_{\mathcal{V}}(\overline{g}_{\mathcal{U}} + d_{\mathcal{U}}) + \frac{1}{2} \|\overline{g}_{\mathcal{V}}\|_{\mathcal{V}}^2 \quad \text{for all } d_{\mathcal{U}} \in \mathcal{U}.$$

Proof. Take $d_{\mathcal{U}} \in \mathcal{U}$. Recalling (5.4), compute $F_{\mathcal{U}}(d_{\mathcal{U}}) = F(\overline{p} + (\overline{g}_{\mathcal{U}} + d_{\mathcal{U}}) \oplus \overline{g}_{\mathcal{V}})$ in the following tricky way:

$$F_{\mathcal{U}}(d_{\mathcal{U}}) = \min_{(u,v)\in\mathcal{U}\times\mathcal{V}} \{f(\overline{p}+u\oplus v) + \frac{1}{2} \| (\overline{g}_{\mathcal{U}}+d_{\mathcal{U}}-u)\oplus (\overline{g}_{\mathcal{V}}-v) \|^2 \}$$

$$= \min_{u\in\mathcal{U}} \{\min_{v\in\mathcal{V}} \{f(\overline{p}+u\oplus v) + \frac{1}{2} \| \overline{g}_{\mathcal{V}}-v \|^2_{\mathcal{V}} \} + \frac{1}{2} \| \overline{g}_{\mathcal{U}}+d_{\mathcal{U}}-u \|^2_{\mathcal{U}} \}$$

$$= \min_{u\in\mathcal{U}} \{\phi_{\mathcal{V}}(u) + \frac{1}{2} \| \overline{g}_{\mathcal{V}} \|^2_{\mathcal{V}} + \frac{1}{2} \| \overline{g}_{\mathcal{U}}+d_{\mathcal{U}}-u \|^2_{\mathcal{U}} \}$$

$$= \Phi_{\mathcal{V}}(\overline{g}_{\mathcal{U}}+d_{\mathcal{U}}) + \frac{1}{2} \| \overline{g}_{\mathcal{V}} \|^2_{\mathcal{V}}. \square$$

Since $L_{\mathcal{U}}$ is so close to $\phi_{\mathcal{V}}$ (Lemma 5.1), its Moreau-Yosida regularization is close to $\Phi_{\mathcal{V}}$, i.e., to $F_{\mathcal{U}}$, up to a translation. This explains the next result, which is the core of this section.

Theorem 5.3. Make the assumptions of Lemma 5.1.

(i) If
$$H_{\mathcal{U}}f(\overline{p})$$
 exists, then $\nabla^2 F_{\mathcal{U}}(0)$ exists and is given by

(5.7)
$$\nabla^2 F_{\mathcal{U}}(0) = \mathcal{I}_{\mathcal{U}} - (\mathcal{I}_{\mathcal{U}} + \mathcal{H}_{\mathcal{U}}f(\overline{p}))^{-1};$$

here $\mathcal{I}_{\mathcal{U}}$ denotes the identity in \mathcal{U} .

(ii) Conversely, assume that $\nabla^2 F_{\mathcal{U}}(0)$ exists. If (3.7) \equiv (3.8) holds, then $H_{\mathcal{U}}f(\overline{p})$ exists and is given by

(5.8)
$$\operatorname{H}_{\mathcal{U}}f(\overline{p}) = (\mathcal{I}_{\mathcal{U}} - \nabla^2 F_{\mathcal{U}}(0))^{-1} - \mathcal{I}_{\mathcal{U}}$$

If, in addition, $H_{\mathcal{U}}f(\overline{p})$ is positive definite – for example, if f is strongly convex–, we also have

$$\mathbf{H}_{\mathcal{U}}f(\overline{p}) = (\nabla^2 F_{\mathcal{U}}(0)^{-1} - \mathcal{I}_{\mathcal{U}})^{-1}.$$

Proof. (i) When $H_{\mathcal{U}}f(\overline{p})$ exists, use (5.6) to see that

(5.9)
$$H_{\mathcal{U}}f(\overline{p}) = HL_{\mathcal{U}}(0) = H\phi_{\mathcal{V}}(0).$$

Then we can apply Theorem 3.1 of [15] to $\phi_{\mathcal{V}}$. We see from (5.6) that the proximal point giving $\Phi_{\mathcal{V}}(\overline{g}_{\mathcal{U}})$ is $0 \in \mathcal{U}$, so we have

$$\nabla^2 \Phi_{\mathcal{V}}(\overline{g}_{\mathcal{U}}) = \mathcal{I}_{\mathcal{U}} - (\mathcal{I}_{\mathcal{U}} + \mathrm{H}\phi_{\mathcal{V}}(0))^{-1}.$$

In view of Proposition 5.2 and (5.9), this is just (5.7).

(*ii*) Combine Proposition 3.7(*i*) with Lemma 5.1 to see that $(3.7) \equiv (3.8)$ also holds for $\phi_{\mathcal{V}}$ at $0 \in \mathcal{U}$; furthermore, $\nabla \phi_{\mathcal{V}}(0)$ exists. Then we can apply Theorem 3.14 of [15] to $\phi_{\mathcal{V}}$: when $\nabla^2 \Phi_{\mathcal{V}}(\overline{g}_{\mathcal{U}}) = \nabla^2 F_{\mathcal{U}}(0)$ exists, then $\mathrm{H}\phi_{\mathcal{V}}(0) = \mathrm{H}_{\mathcal{U}}f(\overline{p})$ exists. We can write (5.7) and invert it to obtain (5.8).

Finally, suppose that f is strongly convex: for some c > 0 and all $(u, w) \in \mathcal{U} \times \mathcal{V}$,

$$f(\overline{p} + u \oplus w) \ge f(\overline{p}) + \langle \overline{g}, u \oplus w \rangle + \frac{c}{2} ||u \oplus w||^2$$
$$\ge f(\overline{p}) + \langle \overline{g}_{\mathcal{U}}, u \rangle_{\mathcal{U}} + \langle \overline{g}_{\mathcal{V}}, w \rangle_{\mathcal{V}} + \frac{c}{2} ||u||_{\mathcal{U}}^2.$$

Take $w \in W(u)$ and subtract $\langle \overline{g}_{\mathcal{V}}, w \rangle_{\mathcal{V}}$ from both sides

$$L_{\mathcal{U}}(u) \ge L_{\mathcal{U}}(0) + \langle \nabla L_{\mathcal{U}}(0), u \rangle_{\mathcal{U}} + \frac{c}{2} \|u\|_{\mathcal{U}}^2,$$

hence $H_{\mathcal{U}}f(\overline{p}) = HL_{\mathcal{U}}(0)$ is certainly positive definite. Computing its inverse from (5.8) and applying (20) from [15], we obtain the last relation.

A consequence of this result is that, when $\nabla^2 F(\overline{x})$ exists, then $H_{\mathcal{U}}f(\overline{p})$ exists; $\nabla^2 F_{\mathcal{U}}(0)$ is just the $\mathcal{U}\mathcal{U}$ -block of $\nabla^2 F(\overline{x})$. Furthermore, $x \mapsto p(x)$ has at \overline{x} a Jacobian of the form

$$Jp(\overline{x}) = \mathcal{I} - \nabla^2 F(\overline{x}) = \begin{pmatrix} P & 0\\ 0 & 0 \end{pmatrix}$$

(recall Corollary 2.6 in [15]). If f satisfies (3.8) at \overline{p} , then

$$P = (\mathcal{I} - \nabla^2 F(\overline{x}))_{\mathcal{U}\mathcal{U}} = \mathcal{I}_{\mathcal{U}} - \nabla^2 F_{\mathcal{U}}(0) = (\mathrm{H}_{\mathcal{U}} f(\overline{p}) + \mathcal{I}_{\mathcal{U}})^{-1}$$

is positive definite.

6. Conclusion

The distinctive difficulty of nonsmooth optimization is that the graph of f near a minimum point \overline{p} behaves like an elongated, gully-shaped valley. Such a valley is relatively easy to describe in the composite case (max-functions, maximal eigenvalues): it consists of those points where the non-differentiability of f stays qualitatively the same as at \overline{p} ; see the considerations developed in [22]. In the general case, however, even an appropriate definition of this valley is already not clear. We believe that the main contribution of this paper lies precisely here: we have generalized the concept of the gully-shaped valley to arbitrary (finite-valued) convex functions. To this aim, we have adopted the following process:

- First, we have used the tangent space to the active constraints, familiar in the NLP world; this was \mathcal{U} of Definition 2.1.
- Then we have defined the gully-shaped valley, together with its parametrization by $u \in \mathcal{U}$, namely the mapping $W(\cdot)$ of (3.2).
- At the same time, we have singled out in (3.5) a selection of subgradients of f, together with a potential function $L_{\mathcal{U}}$. A nice feature is that our definitions are *constructive* via (3.1).
- This has allowed us to reduce the second-order study of f, restricted to the valley, to that of $L_{\mathcal{U}}$ (in \mathcal{U}).
- We have shown how our generalizations reduce to known objects in composite optimization, and how they can be used for the design of superlinearly convergent algorithms.
- Finally, we have related our new objects with the Moreau-Yosida regularization of f.

Acknowledgment

We are deeply indebted to R. Mifflin, for his careful reading and numerous helpful suggestions. The \mathcal{U} -terminology is due to him.

References

- J.P. Aubin, Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential equations, Mathematical Analysis and Applications (L. Nachbin, ed.), Academic Press, 1981, pp. 159–229. MR 83m:58014
- D. Azé, On the remainder of the first order development of convex functions, Ann. Sci. Math. Quebec 23 (1999), 1–13.
- H.T. Banks and M.Q. Jacobs, A differential calculus for multifunctions, Journal of Mathematical Analysis and Applications 29 (1970), 246–272. MR 42:846

- A. Ben-Tal and J. Zowe, Necessary and sufficient optimality conditions for a class of nonsmooth minimization problems, Mathematical Programming 24 (1982), no. 1, 70–91. MR 83m:90075
- R.W. Chaney, On second derivatives for nonsmooth functions, Nonlinear Analysis: Theory, Methods and Applications 9 (1985), no. 11, 1189–1209. MR 87c:49018
- T.F. Coleman and A.R. Conn, Nonlinear programming via an exact penalty function: asymptotic analysis, Mathematical Programming 24 (1982), 123–136. MR 84e:90087a
- R. Cominetti and R. Correa, A generalized second-order derivative in nonsmooth optimization, SIAM Journal on Control and Optimization 28 (1990), no. 4, 789–809. MR 91h:49017
- A.R. Conn, Constrained optimization using a nondifferentiable penalty function, SIAM Journal on Numerical Analysis 10 (1973), no. 4, 760–784. MR 49:12094
- J.-B. Hiriart-Urruty, The approximate first-order and second-order directional derivatives for a convex function, Mathematical Theories of Optimization (J.-P. Cecconi and T. Zolezzi, eds.), Lecture Notes in Mathematics, no. 979, Springer-Verlag, 1983, pp. 144–177. MR 84i:49029
- A new set-valued second order derivative for convex functions, Fermat Days 85: Mathematics for Optimization (J.B. Hiriart-Urruty, ed.), Mathematics Studies, no. 129, North-Holland, 1986, pp. 157–182. MR 88d:90092
- J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms, Grundlehren der mathematischen Wissenschaften, no. 305-306, Springer-Verlag, 1993. MR 95m:90001; MR 95m:90002
- A.D. Ioffe, Nonsmooth analysis and the theory of fans, Convex Analysis and Optimization (J.P. Aubin and R.B. Vinter, eds.), Pitman, 1982, pp. 93–118. MR 83h:58012
- M. Kawasaki, An envelope-like effect of infinitely many inequality constraints on second-order conditions for minimization problems, Mathematical Programming 41 (1988), no. 1, 73–96. MR 89d:90191
- C. Lemaréchal and C. Sagastizábal, More than first-order developments of convex functions: primal-dual relations, Journal of Convex Analysis 3 (1996), 255–268. MR 98k:49048
- Practical aspects of the Moreau-Yosida regularization: theoretical preliminaries, SIAM Journal on Optimization 7 (1997), no. 2, 367–385. MR 98e:49085
- C. Lemaréchal and J. Zowe, The eclipsing concept to approximate a multi-valued mapping, Optimization 22 (1991), no. 1, 3–37. MR 92a:49024
- R. Mifflin and C. Sagastizábal, VU-decomposition derivatives for convex max-functions, Ill-Posed Problems and Variational Inequalities (R. Tichatschke and M. Théra, eds.) Lecture Notes, Springer-Verlag (to appear).
- B.S. Mordukhovich, Generalized differential calculus for nonsmooth and set-valued mappings, Journal of Mathematical Analysis and Applications 183 (1993), no. 1, 250–288. MR 95i:49029
- J.J. Moreau, Proximité et dualité dans un espace hilbertien, Bulletin de la Société Mathématique de France 93 (1965), 273–299. MR 34:1829
- F. Oustry, The U-Lagrangian of the maximum eigenvalue function, SIAM Journal of Optimization 9 (1999), 526-549.
- M. L. Overton and R.S. Womersley, Second derivatives for optimizing eigenvalues of symmetric matrices, SIAM J. Matrix Anal. Appl. 16 (1995), 697–718. MR 96c:65062
- M.L. Overton and X.J. Ye, Towards second-order methods for structured nonsmooth optimization, Advances in Optimization and Numerical Analysis (S. Gomez and J.P. Hennart, eds.), Kluwer, 1994, pp. 97–109. MR 95e:90099
- J.-P. Penot, Differentiability of relations and differential stability of perturbed optimization problems, SIAM Journal on Control and Optimization 22 (1984), no. 4, 529–551, 26 (1988), 997–998. MR 85i:49041; MR 89d:49027.
- R.A. Poliquin, Proto-differentiation of subgradient set-valued mappings, Canadian Journal of Mathematics 42 (1990), no. 3, 520–532. MR 91g:49007
- R.A. Poliquin and R.T. Rockafellar, Generalized hessian properties of regularized nonsmooth functions, SIAM Journal on Optimization 6 (1996), no. 4, 1121–1137. MR 97j:49025
- M.J.D. Powell, The convergence of variable metric methods for nonlinearly constrained optimization calculations, Nonlinear Programming 3 (O.L. Mangasarian, R.R. Meyer, and S.M. Robinson, eds.), 1978, pp. 27–63. MR 80c:90138
- L.Q. Qi and D.F. Sun, A nonsmooth version of Newton's method, Mathematical Programming 58 (1993), no. 3, 353–367. MR 94b:90077

- R.T. Rockafellar, *Convex analysis*, Princeton Mathematics Ser., no. 28, Princeton University Press, 1970. MR 43:445
- Maximal monotone relations and the second derivatives of nonsmooth functions, Annales de l'Institut Henri Poincaré, Analyse non linéaire 2 (1985), no. 3, 167–186. MR 87c:49021
- Proto-differentiability of set-valued mappings and its applications in optimization, Annales de l'Institut Henri Poincaré, Analyse Non Linéaire 6 (1989), 449–482. MR 90k:90140
- Generalized second derivatives of convex function and saddle functions, Transactions of the American Mathematical Society 322 (1990), no. 1, 51–78. MR 91b:90190
- 32. K. Yosida, Functional analysis, Springer Verlag, 1965. MR 31:5054

INRIA, 655 AVENUE DE L'EUROPE, 38330 MONTBONNOT, FRANCE *E-mail address*: Claude.Lemarechal@inria.fr

INRIA, 655 AVENUE DE L'EUROPE, 38330 MONTBONNOT, FRANCE *E-mail address*: Francois.Oustry@inria.fr

INRIA, BP 105, 78153 LE CHESNAY, FRANCE E-mail address: Claudia.Sagastizabal@inria.fr