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THE U-LAGRANGIAN OF A CONVEX FUNCTION

CLAUDE LEMARECHAL, FRANCOIS OUSTRY, AND CLAUDIA SAGASTIZABAL

ABSTRACT. At a given point P, a convex function f is differentiable in a certain
subspace U (the subspace along which df(p) has 0-breadth). This property
opens the way to defining a suitably restricted second derivative of f at p.
We do this via an intermediate function, convex on Y. We call this func-
tion the U-Lagrangian; it coincides with the ordinary Lagrangian in composite
cases: exact penalty, semidefinite programming. Also, we use this new the-
ory to design a conceptual pattern for superlinearly convergent minimization
algorithms. Finally, we establish a connection with the Moreau-Yosida regu-
larization.

1. INTRODUCTION

This paper deals with higher-order expansions of a nonsmooth function, a prob-
lem addressed in [4], [5], [7], [9], [13], [25], and [31] among others.

The initial motivation for our present work lies in the following facts. When
trying to generalize the classical second-order Taylor expansion of a function f at
a nondifferentiability point P, the major difficulty is by far the nonlinearity of the
first-order approximation. Said otherwise, the gradient vector V f(p) is now a set
df(p) and we have to consider difference quotients between sets, say

Of+h) —0f(p)
(1.1) ] :

Giving a sensible meaning to the minus-sign in this expression is a difficult problem,
to say the least; it has received only abstract answers so far; see [1], [3], [10],

[12], [16], [18], [23], [24], [30]. However, here are two crucial observations (already
mentioned in [22]):

— There is a subspace U (the “ridge”) in which the first-order approximation
1(p; ) (the directional derivative) is linear.
— Defining a second-order expansion of f is unnecessary along directions not in
U. Consider for example the case where f = max; f; with smooth f;’s; then
a minimization algorithm of the SQP-type will converge superlinearly, even if
the second-order behaviour of f is identified in the ridge only (][26], [6]).
Here, starting from results presented in [14] and [15], we take advantage of these
observations. After some preliminary theory in §2, we define our key-objects in §3:

the U-Lagrangian and its derivatives. In §4 we give some specific examples (further
studied in [17], [20]): how the U-Lagrangian specializes in an NLP and an SDP
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framework, and how it could help designing superlinearly convergent algorithms
for general convex functions. Finally, we show in §5 a connection between our
objects thus defined and the Moreau-Yosida regularization. Indeed, the present
paper clarifies and formalizes the theory sketched in §3.2 of [15]; for a related
subject see also [29], [25].

Our notation follows closely that of [28] and [11]. The space R™ is equipped
with a scalar product (-,-), and || - || is the associated norm; in a subspace S, we
will write (-,-)s and || - ||s for the induced scalar product and norm. The open ball
of R™ centered at x with radius r is B(z,r); and once again, we use the notation
Bgs(z,r) in a subspace S. We denote by xs the projection of a vector z € R™ onto
the subspace §. Throughout this paper, we consider the following situation:

(1.2) f is a finite-valued convex function, p and g € 9f(p) are fixed.

We will also often assume that g lies in the relative interior of 9 f(p).

2. THE VU DECOMPOSITION

We start by defining a decomposition of the space R" =U & V), associated with
a given p € R™. We give three equivalent definitions for the subspaces U and V;
each has its own merit to help the intuition.

Definition 2.1. (i) Define U; as the subspace where f'(p;-) is linear and take

V1 :=Ui. Because f'(p;-) is sublinear, we have
U ={deR": f'(p;d) = —f'(p; —d) };

if necessary, see for instance Proposition V.1.1.6 in [11]. In other words, U
is the subspace where f(p + -) appears to be “differentiable” at 0. Note that
this definition of U; does not rely on a particular scalar product.

(7i) Define Vs, as the subspace parallel to the affine hull of 9 f(p) and take Us :=
Vs-. In other words, Vo := lin(0f(p) — g) for an arbitrary g € 9f(p), and
d € Uy means (g + v,d) = (g,d) for all v € Vs.

(7i1) Define Us and V5 respectively as the normal and tangent cones to df(p) at an
arbitrary ¢° in the relative interior of f(p). It is known (see, for example,
Proposition 2.2 in [14]) that the property g° € ridf(p) is equivalent to these
cones being subspaces. O

To visualize these definitions, the reader may look at Figure 1 in §3.2 (where
g =g° €ridf(p)). We recall the definition of the relative interior: ¢° € ridf(p)
means

(2.1) 9°+ (B(0,7)N V) C 9f(p) for some n > 0.

We start with a preliminary result, showing in particular that Definition 2.1 does
define the same pair VU three times.

Proposition 2.2. In Definition 2.1,
(i) the subspace Us is actually given by
(2:2) {deR":(g—g°d) =0 forallg € 9f(P)} = Noys)(9°)

and is independent of the particular ¢° € ridf(p);
(11) Lll = L{Q = L{3 =: Z/{,'
(ili) U C Noy((9) for all G € Of(P).
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Proof. (i) To prove (2.2), take g° € ridf(p) and set N := Nys()(9°). By definition
of a normal cone, N contains the left-hand side in (2.2); we only need to establish
the converse inclusion. Let d € N and g E 0 f (P); it suffices to prove (g—g°,d) > 0.
Indeed, (assuming g — ¢° # 0), v [ € Vs, hence (2.1) and d € N imply

that

IIqu

0> (g°+nv—g°d) = —ﬁ(g—g‘ﬂd) for some 1 > 0

and we are done.
To see the independence on the particular g°, replace g° in (2.2) by some other

7°€r18f(_)-
Nos@) (v {dER"'< ,d) = (v°,d) = (¢°,d), for all g € Of (p } Us.
(77) Write

2.3 Uy =deR": ,d) = i ,d

23 L= (IR om0 = min (0]

to see from (i) that Uy = Us. Then we only need to prove Uy C Us C Us.
Let d € Uy. For an arbitrary v = >, \j(g; — g) € V2 with g; € 9f(p), we have
from (2.3)

Z)\ 9]7 7d>) 0;

hence d € V- = Us.

Let d € Us. We have (g,d) = (g,d) for all g € 9f(p). It follows that (g,d) =
(g°,d) and this, together with (i), implies d € Us.

(7i1) Let d € U = Us. Given g € 9f(p), we have (g°,d) = {g,d) = (g,d) for all
g € 0f(p); hence d € Ny (7)- O

Using projections, every z € R™ can be decomposed as x = (1, ¥y). Through-
out this paper we use the notation xy @ xy for the vector with components z;, and
zy. In other words, @ stands for the linear mapping from & x V onto R™ defined
by

(2.4) UxVa(u,v)Hu@vtz(Z)eR".

With this convention, &/ and V are themselves considered as vector spaces. We
equip them with the scalar product induced by R™, so that
(9,7) = (u © gv, 71 @ wv) = (9u, Tu)u + (gv, Tv)v,
with similar expressions for norms.
Remark 2.3. The projection x — x4, as well as the operation (u,v) — P+ u P v,

will appear recurrently in all our development. Consider the three convex functions
hi1, he and h defined by

Udu — hi(u):=fP+udv), withv eV arbitrary;
Vov +— he(v):=f(P+udv), withu €U arbitrary;
UxV>s(uv) — hluv):=fD+udv).

Their subdifferentials have the expressions

Ohi(u) = {ou:9€df(P+usv)},
Oha(v) = {gv:g€dfP+udv)},
Oh(zy,xv) = {gu®gv:g€if(p+a)}
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Proving these formulae is a good exercise to become familiar with the operation
® of (2.4) and with our VU notation. Just consider the adjoint of @ and of the
projections onto the various subspaces involved. O

In the VU language, (2.1) gives the following elementary result.

Proposition 2.4. Suppose in (1.2) that § € ri0f(p). Then there exists n > 0
small enough such that

g+0e L caf@)
HUHV

for any 0 # v € V. In particular,
(2.5) fE+uadv) = fB)+ Gy wu + @y, v)v +1llvlv,
for any (u,v) €U x V.

Proof. Just translate (2.1): with v as stated, u @ vgy, () + %) € 0f(p) and the
rest follows easily. O

3. THE U-LAGRANGIAN

In this section we formalize the theory outlined in §3.2 of [15]. Along with the
VU decomposition, we introduced there the “tangential” regularization ¢y . Here,
we find it convenient to consider ¢y as a function defined on U only; in addition,
we drop the quadratic term appearing in (13) of [15]. As will be seen in §4, these
modifications result in some sort of Lagrangian, which we denote by Ly, instead of

Pv.

3.1. Definition and basic properties. Following the above introduction, we de-
fine the function L;; as follows:

(3.1) Us e Lyw) = inf {f(7+u®0) ~ (G, v)v}
Associated with (3.1) we have the set of minimizers
(3.2) W(u) := Ali}gergin{f(ﬁ+u@v) — @y, v}
It will be seen below that an important question is whether W (u) is nonempty.

Remark 3.1. The function Ly of (3.1) will be called the U-Lagrangian. Note that
it depends on the particular g, a notation Ly (u,q) is also possible. In fact, since
g lies in the dual of R", it connotes a dual variable; this will become even more
visible in §4.1 (just observe here that g +— —Ly is a conjugate function).

At this point, the idea behind (3.1) can be roughly explained. As is commonly
known, smoothness of a convex function is related to strong convexity of its conju-
gate. In our context, a useful property is the “radial” strong convexity of f* at g,
say,

F@+s) = @+ (sp) + %cllsl\2 +olls*)

for some ¢ > 0. However, the above inequality is hopeless for an s of the form
s = 0@ v (see §4 in [14]; see also [2] for related developments). To obtain radial
strong convexity on V, we introduce the function

(33) F@+ )+ gellsvli.
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Its conjugate (restricted to U) is precisely Ly when ¢ = 400 (a value which yields
the “strongest” possible convexity); Theorem 3.3 will confirm the smoothness of
Ly.

The value ¢ = 1 in (3.3) may be deemed more natural — and indeed, it will be
useful in §5; in fact, Lemma 5.1 will show that the choice of ¢ has minor importance
for second order. |

Theorem 3.2. Assume (1.2).

(i) The function Ly defined in (3.1) is convexr and finite everywhere.
(i1) A minimum point w € W (u) in (3.2) is characterized by the existence of some
g € 0f(P+ udw) such that gy = Gy,.
(iii) In particular, 0 € W(0) and Ly (0) = f(D).
(iv) If g € riof(p), then W(u) is nonempty for each w € U and W(0) = {0}.

Proof. (i) The infimand in (3.1) is h(u,v) — (Gy,v)y, where the function h was
defined in Remark 2.3. Tt is clearly finite-valued and convex on U x V, and the
subgradient inequality at (u,v) = (0,0) gives

h(u,v) = (Gy,v)v = f(P) + (Gy wu  for any v € V.

It follows that L;; is nowhere —oo and, being a partial infimum of a jointly convex
function, it is convex as well, see for example §IV.2.4 in [11].

(#4) The optimality condition for w € W(u) is 0 € dha(w) — Gy, with ho as in
Remark 2.3. Knowing the expression of 0hy, we obtain 0 = gy — gy, for some
geEINP+udw).

(i4i) In particular, for v = 0, we can take w = 0 and g =g € df(p+ 0 0)
in (#¢). This proves that v = 0 satisfies the optimality condition for (3.1); then
Ly(0) = f(P)-

(iv) Apply (2.5): there exists > 0 such that, for any v # 0,

h(u, v) = Gy, v)v = f(P) + (Gu wu + vy

Thus, the infimand in (3.1) is inf-compact on V and the set W (u) is nonempty. At
u = 0, we have
h(0,v) = (v, v)v = f(B) +nlvly,

which shows that v = 0 is the unique minimizer. O

3.2. First-order behaviour. The primary interest of the U-Lagrangian is that
it has a gradient at 0. Besides, its subdifferential is obtained from the optimality
condition in Theorem 3.2(i7).
Theorem 3.3. Assume (1.2).
(i) Let u be such that W(u) # (. Then the subdifferential of Ly at this u has the
expression
(3.4) OLy(u) ={9u : gu ©gy € 0f(P+ud w)},
where w is an arbitrary point in W (u).

(ii) In particular, Ly is differentiable at 0, with VLy(0) = gy,.

Proof. (i) Using again the notation of Remark 2.3, write the infimand in (3.1)
as h(u,v) — (0 ® gy, u @ v). For the subdifferential of the marginal function Ly,
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Y

Of(p+udW(u))

8f(]3) \\

FIGURE 1. Subdifferential of Ly

Corollary V1.4.5.3 in [11] gives the calculus rule

s€0Lyu) <= s®0EJy,(h—(0d7gy, ) (u,w)
<=  s®0€ dyvh(u,w)—0gy
< s@ gv S 8u,vh(u7 w)a

where w € W (u) is arbitrary. From the expression of 9, ,h = Oh in Remark 2.3,
this is (3.4).

(#i) Because of Theorem 3.2(iii), (3.4) holds at u = 0 and becomes 9L;(0) =
{9u : gu ® gy € Of(p)}. This latter set clearly contains g,;. Actually, it does
not contain any other point, due to Definition 2.1(i7): 9f(p) C g+ V, ie., all
subgradients at p have the same {/-component, namely gj,. O

This result is illustrated in Figure 1. We stress the fact that the set in the right-
hand-side of (3.4) does not depend on the particular w € W(u). In other words,
(3.4) expresses the following: to obtain the subgradients of Ly at u, take those
subgradients g of f at D+« @ W (u) that have the same V-component as g (namely
Gy ); then take their i/-component. Remembering that U is in effect a subset of R”™,
we can also write more informally

OLy(u) = [0f(P+udW(u)N(G+U)u.
This operation somewhat simplifies when gy, = 0:
(3.5) if g, =0, then 9Ly (u) =0f(P+ud W(u))NU.

See the end of §3.2 below for additional comments on the “trajectories” p+u®W (u).
Another observation is that, for all u € U,

FBu®0)=(g,u®0) = Gy wu = (VLu(0), u)y.
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In other words, L;; agrees, up to first order, with the restriction of f to p + U.
Continuing with our U-terminology, we will say that g;, is the U-gradient of f at
P, and note that g, is actually independent of the particular g € df(p) (recall
Proposition 2.2(7)).

Remark 3.4. We add that, because f is locally Lipschitzian, this U-differentiability
property holds also tangentially to U:

(3.6)  f(P+h)=f@) + @ h) +o([hll) whenever [|hy|lv = o([[huller)-

This remark will be instrumental when coming to higher order; then we will have
to select h appropriately, to allow a specification of the remainder term in (3.6); see
Theorem 3.9. O

As already mentioned, the existence of VILy(0) is of paramount importance,
since it suppresses the difficulty pointed out in the introduction of this paper; now
the difference quotient in (1.1) takes the form

Ly (u) — gy
[|]]es

which does make sense. Here is a useful first consequence: W (u) = o(||ul|y)-
Corollary 3.5. Assume (1.2). If g € ridf(p), then
Ve>030>0: |lullu <d=||lwly <e|ullu for any w € W(u).
Proof. Use Theorem 3.3(i%) to write the first-order expansion of Ly;:
Lu(u) = Ly (0) + (VL (0), whes + ol[[ullee) = f(P) + (Guus wye + o([[uller)-

For any w € W (u) we have Ly (u) = f(p+udw)— (Gy, w)y; therefore, (2.5) written
for v = w, gives Ly (u) > f(P) + (Gy» w)u + n||w||y. Altogether, we obtain

o(llulle) = Lu(w) — f(B) — (Gu> wu = nlwlly. O

Let us sum up our results so far.

— Given g € 0f(p), we define via (3.1) a convex function Ly (Theorem 3.2(i)),
which is differentiable at 0 and coincides up to first order with the restriction
of f to p+ U (Theorem 3.3(ii)).

— When W (-) # (), this U-Lagrangian is indeed the restriction of f to a “thick
surface” {p+ - @ W(-)}, parametrized by u € U.

— We also define, via Theorem 3.2(ii), a “thick selection” of df on this thick
surface, made up of those subgradients that have the same V-component as

g.

— As a function of the parameter u, this thick selection behaves like a subdif-
ferential, namely 0Ly (Theorem 3.3(i)).

— When g € ridf(p), our thick surface has U as “tangent space” at p (Corol-

lary 3.5; we use quotation marks because W is multivalued).

Remark 3.6. We note in passing two extreme cases in which our theory becomes
trivial:

— when f is differentiable at p, then & = R™, V = {0} and Ly = f;

— when 9f(p) has full dimension, then U = {0} and there is no U-Lagrangian. [
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3.3. Higher-order behaviour. Proceeding further in our differential analysis of
Ly, we now study the behaviour of 9Ly near 0. A very basic property of this set is
its radial Lipschitz continuity. We say that f has a radially Lipschitz subdifferential
at p when there is a D > 0 and a ¢ > 0 such that

(3.7) af (@ +d) C df() + B(0,D|d||), for all d € B(0,4).

This is equivalent to an upper quadratic growth condition on the function itself
(recall Corollary 3.5 in [14]): there is a C' > 0 and an £ > 0 such that

1
(3.8) f@+d) < f(P)+ ' B:d) + 5C|ld|J?,  for all d € B(0,e).
This property is transmitted from f to Ly,:

Proposition 3.7. Assume (1.2). Assume also that W (u) is nonempty for u small
enough, and that (3.7) = (3.8) is satisfied. Then
(1) 0Ly (u) C Gy + Bu(0,2C|ullu), for some § >0 and all u € By(0,5);
(i) Ly(u) < Ly(0) + (Gy> wu + 3R|ullf, for some p >0, R > 0 and all u €
BZ/{(Oa p)

Proof. Remember that VLy(0) = g;,,. Because the subdifferential is an outer-
semicontinuous mapping, we can choose 6 > 0 such that for all u € By(0,9)
and gy € 0Ly(u), |lgu — Gullu < =2 (see §VL.6.2 of [11] for example). On the
other hand, assume ¢ so small that W (u) contains some w; from Theorem 3.2(ii),
guSGy €E0f(P+udw).

Now U C Nys)(g) (Proposition 2.2(iii)). Using the notation s := (g — ;) ©0,
so that gy ®gy =g+ s € 0f(P+ udw), we are in the conditions of Corollary 3.3
in [14] written with ¢ = f, 20 =P, go = 7, * = P + u ® w. Inequality (14) therein
becomes

e = Gullze = NIslI* < 2C(s,u @ w) = 2C{gu — Gy whu < 2Cgu — Guulluallllur,
which is (#). As for (1), it is equivalent to (i) (Corollary 3.5 in [14]). |

Back to the f-context, Proposition 3.7 says: for small v € U and all w € W (u),
there holds

{ou : gu ®7y € 0f(P+u®w)} C Gy + Bu(0,2C ullu)
as well as )
FE+u®w) < f(B)+ (g, u®w) + S Rllul

Now, we have a function L, which is differentiable at 0, and whose second-order
difference quotients inherit the qualitative properties of those of f. The stage is
therefore set to consider the case where Ly has a generalized Hessian at 0, in the
sense of [9] (see also [15], §3). Generally speaking, we say that a convex function ¢
has at zp a generalized Hessian Hp(zg) when

(i) the gradient V(zg) exists;
(ii) there exists a symmetric positive semidefinite operator Hy(zp) such that

plz0 +d) = plz0) + (Vip(zo)sd) + 5 (Ho(z0)ds ) + of )
(iii) or equivalently,
(39) Dl +d) C Viplzo) + Hop(z0)d + B0, o(|d])

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE U-LAGRANGIAN OF A CONVEX FUNCTION 719

Definition 3.8. Assume (1.2). We say that f has at p a U-Hessian Hy f(P) (as-
sociated with g) if Ly, has a generalized Hessian at 0; then we set

Hy f(p) := HLy(0). O

When it exists, the U-Hessian Hy, f(P) is therefore a symmetric positive semi-
definite operator from U to U. Its existence means the possibility of expanding f
along the thick surface p+ - @ W(:) introduced at the end of §3.2.

Theorem 3.9. Take g € ridf (D) and let the U-Hessian Hy f (D) exist. For u € U
and h € w® W (u), there holds

(310) B+ R) = 1)+ (G h) + 5 f B, + ol ).

Proof. We know from Theorem 3.2(iv) that W (u) # 0. Then apply the definition
of Ly and expand Ly to obtain for all w and w € W (u):

Ly(u) = fP+udw)—(Gy,w)y
= Luy(0) + (VLy(0), e + 5 (Hu f(P)u, whrs + o(||ull;)
F®) + (Gu» wu + 5 (Hu f(P)u, whu + o([|ullZ))-

In view of Corollary 3.5, o(||ul|) = o(||h[|?); (3.10) follows, adding (g,,, w)y to both
sides. 0

To the second-order expansion (3.10), there corresponds a first-order expansion
of selected subgradients along the thick surface p+-@® W (-): with the notation and
assumptions of Theorem 3.9,

{ou: gu®gy € 0f P+ h)} C Gy +Huf(B)u+ Bu(0, of[|A]))-

With reference to Remark 3.4, the expansion (3.10) makes (3.6) more explicit,
for increments h = hy @ hy such that hy € W(hy). The aim of the next section is
to disclose some intrinsic interest of these particular h’s.

4. EXAMPLES OF APPLICATION

This section shows how the U-concepts developed in §3 generalize well-known
objects. We will first consider special situations: max-functions (§4.1) and semi-
definite programming (§4.2). Then in §4.3 we outline a conceptual minimization
algorithm.

4.1. Exact penalty. Consider an ordinary nonlinear programming problem

min ¢ (p),
(4.1) { fi(p) gp0, i=1,...,m,

with convex C? data 1 and f;. Take an optimal p and suppose that the KKT
conditions hold: with L(p,A) := 9(p) + >, Ai fi(p), defined for (p, A) € R™ x R™,
there exist Lagrange multipliers \; such that

[V,L(,A) =] Vo@) + > NV/i(D) =0,

_ _ i=1

/\iZO /\ifi(]_?)zo, forizl,...,m.

We will use the notation v := V), g; := V f;, 7 := VY(D), g; := V fi(D).

(4.2)
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Consider now an exact penalty function associated with (4.1): with fo(p) =0
(and go(p) := Vfo(p) =0), set

(4.3) f(p) == ¢(p) + mmax{fo(p),... , fm(P)},

where m > 0 is a penalty parameter. Call

J(p):={j€{0,...,m}: () +7fip)=f(p)}

the set of indices realizing the max at p. Standard subdifferential calculus gives

of(p) = v(p) + mconv{g;(p) : j € J(p)}

In NLP language, instead of maximal functions, one speaks of active constraints.
We therefore set

I:= {ie{l,...,m}: fi(p) =0}
(naturally, we assume T # 0; otherwise, the problem lacks interest). It is easy to
see that J(p) = I U {0}; correspondingly, we associate with J(p) the “multipliers”

(4.4) m;:=XNiforiel and Jig:=m— in.
i€l
For 7 large enough, it is well known that D solving (4.1) also minimizes f of (4.3).
We proceed to apply the theory of §3 to the present situation: f is the exact penalty
function of (4.3), p is optimal and g = 0. We will show that the U-Lagrangian L,
coincides up to second order with the restriction to U of the ordinary Lagrangian
Lp+ -,X). All along this subsection, we make the following assumptions:

— the active gradients {g; },.7 are linearly independent (hence X is unique in the
KKT conditions (4.2)),

— X >0 for i € T (strict complementarity),

—and 7> 3, 7 N, Le., iy > 0in (4.4).

The following development should be considered as a mere illustration of the U-
theory. This is why we content ourselves with the above simplifying assumptions,
which are relaxed in the more complete work of [17].

We start with a basic result, stating in particular that I/ is the space tangent to
the surface defined by the active constraints (well-defined thanks to our simplifying
assumptions).

Proposition 4.1. With the above notation and assumptions, we have the following
relations for p = p:

(73) the subspaces U and V of Definition 2.1 are

V=1in{g;};er. U={deR":(g;,d)=0,i€l};
(1i1) g:=0€ridf(p).
Proof. (i) We have

of(p) = 7+ mconv{g, i€ TU{0}}
= 7+{7TozoO+Z7rozi§i :aiZO,a0+Zai:1}.
i€l i€l

The formula is then straightforward, setting u; := ma; and eliminating the unnec-
essary vector 0.
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(#7) Apply Definition 2.1(i): V = lin{0f(p) — 7} because 7 € 9f(p). Together
with (2), the results clearly follow.
(#7i) Consider the set B := {d 7pig; : i > —J p 7Mi < Mg}, Where [i was

defined in (4.4). Because of (i), B C V. Because of strict complementarity and
Tip > 0, B is a relative neighborhood of 0 = g € V. Finally, because of (4.2) and

(4.4),
B = +B+)> A7
T
= F+{ (s + )G i+ = 0,) (i + 1) < 7
1 T
In view of (i), B C 0f(p) and we are done. O

Lemma 4.2. With the notation and assumptions of this subsection, let p be close
top. Then J(p) C J(p) = 1 U{0} and the system in {1} j(p)

Gov®) + D 13T 95(p)) =0 foralli €T,
(45) j€J(p)

S py=n

J€JI(p)

has a solution, which is unique, if and only if J(p) = J(p) = I U{0}. The solution
w(p) satisfies pj(p) > 0 for all j € J(p) = J(p). Moreover, u(p) = i of (4.4) and
p— u(p) is differentiable at p = P.

Proof. Let j & J(p). By continuity, f;(p) < fi(p) for all ¢ € J(p), hence J(p) C

J (D).
Now consider (4.5). First, observe that, because of (4.2), &t of (4.4) is a solution
at p="D.

(a) Assume first that J(p) = J(p) = I U {0}. Since go(p) = 0, the variable ug
is again directly given by po(p) = 7 — Y74, (p). As for the u;’s, j € I, they are
given by an I x I linear system, whose matrix is ((g;, g;(p)))i;. Because the g,’s are
linearly independent, this matrix is positive definite. The solution u(p) is unique;
it is also close to T, is therefore positive and sums up to less than 7: ug(p) > 0. In
particular, u(p) = T is the unique solution at p = p. The differentiability property
then comes from the Implicit Function Theorem.

(b) On the other hand, assume the set Iy := J(p)\J(p) is nonempty and suppose
(4.5) has a solution {}}jes(p). Set pj := 0 for j € Ip; then p* also solves (4.5)
with J(p) replaced by J(p). This contradicts part (a) of the proof. |

The next result reveals a nice interpretation of W(-) in (3.2): it makes a local
description of the surface defined by the active constraints.

Theorem 4.3. Use the notation and assumptions of this subsection. For u € U
small enough, W (u) defined in (3.2) is a singleton w(u), which is the unique solution
of the system with unknown v € V

(4.6) fip+udv)=0, forallicl.

Proof. According to Theorem 3.2(ii) and (3.5), an arbitrary p € p+ u @ W (u) is
characterized by 0f(p) NU # (); there are convex multipliers {a;};e () such that
Y(P) + 73 5 @395 (p) € U. Setting p; := 7oy, this means that the system (4.5)
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has a nonnegative solution. Now, in view of Proposition 4.1(é¢i) and Corollary 3.5,
p — P is small; we can apply Lemma 4.2, J(p) = T U {0}, and this is just (4.6).
Uniqueness of such a p is then easy to prove. Substituting f; for hs in Remark 2.3,
the gradients of the functions v — f;(D + u & v) are ¢;(p + u @ v)y, which are
linearly independent for (u,v) = (0,0). By the Implicit Function Theorem, (4.6)
has a unique solution w(u) for small u. |

Now we are in a position to give specific expressions for the derivatives of the
U-Lagrangian.

Theorem 4.4. Use the notation and assumptions of this subsection.

(i) The U-Lagrangian is differentiable in a neighborhood of 0. With u(-) and w(-)
defined in Lemma 4.2 and Theorem 4.3 respectively, and with

p(u) =7+ ud wu),

we have for uw € U small enough

(4.7) VLy(u) ®0=75(p(w) + Y ;(p(u))g; (p(u)).
jel
(ii) The Hessian V?Ly/(0) exists. Using the matriz-like decomposition

2 v~ v _ [ Huu Huy
vppL(p, /\) - ( HVM HVV

for the Hessian of the Lagrangian, we have V?Ly/(0) = Hypy.

Proof. (i) Put together Lemma 4.2 and Theorem 4.3. Observe, in particular, that
the right-hand side of (4.7) lies in U. Then invoke (3.5).

(#) In view of Lemma 4.1(¢%¢) and Corollary 3.5, w(u) = o(||ul|x), hence p(-) has
a Jacobian at 0; in fact, Jp(0)u = u®O0 for all u € U. Then, using Lemma 4.2, (4.7)
clearly shows that VL is differentiable at 0. Compute from (4.7) the differential
V2 Ly (0)u for u € U:

(V2Ly(0)u) ®0 = vw(ﬁ)me)wZXjVij<ﬁ>Jp<0>u

I
+> (Vu;(B), Ip(0)u)g,

I
= VZLEN(u®0)+ > (Vi(D), Ip0)u)g;.

I

Thus, V2 Ly(0)u is the U-part of the right-hand side. The second term is a sum of
vectors in V; which does not count; we do obtain (i4). O

In Remark 3.1 we have said that g in §3 plays the role of a dual variable. This
is suggested by the relation 0 = g, + > 7Xig; € Of(p) which, in the present NLP
context, establishes a correspondence between § = 0 and the multipliers \; or ;.
Taking some nonzero g’ € ridf(p) does not change the situation much; this just
amounts to applying the theory to f — (§’,-), which is still minimal at p — but
of course the multipliers are changed, say, to X; or ;. Denoting by g(p(u)) the
right-hand side in (4.7), the correspondence § <> A « Ji can even be extended to

9(p(w)) = Nu) < p(w).
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4.2. Eigenvalue optimization. Consider the problem of minimizing with respect
to x € R™ the largest eigenvalue A\ of a real symmetric n X n matrix A, depending
affinely on x. Most of the relevant information for the function A\; o A can be
obtained by analyzing the maximum eigenvalue function A;(A), which is convex
(and finite-valued). We briefly describe here how the U-theory applies to this
context. For a detailed study, we refer to [20] where an interesting connection is
established with the geometrical approach of [21].

For the sake of consistency, we keep the notation p := A(Z) for the reference
matrix where the analysis is performed. If 7 denotes the multiplicity of A;(p), then

Wr:={p: pis a symmetric matrix and A (p) has multiplicity 7}

is the smooth manifold Q of [21].

First, the subspaces & and V in Definition 2.1 are just the tangent and normal
spaces to Wr at p (Corollary 4.8 in [20]). Similarly to Theorem 4.3, Theorem 4.11
in [20] shows that the set W (u) of (3.2) is a singleton w(u), characterized by

D+ udwu) € Wk

As for second order, the U-Lagrangian (3.1) is twice continuously differentiable in
a neighbourhood of 0 € U. Finally, use again the matrix-like decomposition

Huu  Huv
Hyvy  Hyy
for the Hessian of the Lagrangian introduced in Theorem 5 of [21]. Then Theo-

rem 4.12 in [20] shows that V2L (0) = Hyyy is the reduced Hessian matrix (5.31)
in [21].

4.3. A conceptual superlinear scheme. The previous subsections have shown
that our U-objects become classical when f has some special form. It is also demon-
strated in [17] and [20] how these U-objects can provide interpretations of known
minimization algorithms. Here we go back to a general f and we design a superlin-
early convergent conceptual algorithm for minimizing f. Again, we obtain a general
formalization of known techniques from classical optimization.

Given p close to a minimum point p, the problem is to compute some p., super-
linearly closer to p. We propose a conceptual scheme, in which we compute first
the V-component of the increment p, — p, and then its ¢/-component. This idea of
decomposing the move from p to p4 in a “vertical” and a “horizontal” step can be
traced back to [8].

Algorithm 4.5. V-Step. Compute a solution dv € V of

(4.8) min{f(p+ 0 & év) : dv € V}

and set p’ :=p+ 0D dv.

U-Step. Make a Newton step in p’ +U: compute the solution du € U of
(4.9) gu + Hu f(p)ou = 0,

where g’ € df(p’) is such that ¢}, = 0, so that g, € ILy((p — D)u)-
Update. Set p :=p' +du®0=p+ du @ dv.

Remark 4.6. This algorithm needs the subspace U associated with p, as well as the
U-Hessian Hy, f(P), which must exist and be positive definite. The knowledge of U
may be considered as a bold requirement; constructing appropriate approximations
of it is for sure a key to obtain implementable forms. As for existence and positive
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FI1GURE 2. Conceptual algorithm

definiteness of Hy, f (D), it is a natural assumption. Quasi-Newton approximations
of it might be suitable, as well as other approaches in the lines of [27]. O

The next result supports our scheme.

Theorem 4.7. Using the notation of §3, assume that g := 0 € ridf(p), and that
f has at p a positive definite U-Hessian. Then the point py constructed by Algo-

rithm 4.5 satisfies |[p+ — B = o([lp — B|)-

Proof. We denote by u := (p — D)y the U-component of p — D (see Figure 2). For
dv € V, make the change of variables v := (p—p)y + dv, so that (4.8) can be written
min,ey f(P+ u @ v). Denoting by v4 a solution, we have

vy = (p—p)v +6v=(py —D)y € W(u)
and Corollary 3.5 implies that
(4.10) I(p+ =P)vllv = olluller) = o(llp — BI)-
From the definition (3.9) of Hy, f(p) and observing that V.L;(0) = 0, we have
OLu(u) 3 gy = 0+ Hu f(P)u + o([[uw)-
Subtracting from (4.9), Hy f (D) (v + du) = o(||u|lys) and, since Hy f(P) is invertible,
|l + duljzs = o(]|uljes). Then, writing
0+ —Pu = 0+ = )u+ (@' —pP)u + (p —Dlu = u + du,
we do have ||(p+ — Dullu = o(||lull) = o(|lp — Pl|). With (4.10), the conclusion
follows. =

5. U-HESSIAN AND MOREAU-Y OSIDA REGULARIZATIONS

The whole business of §3 was to develop a theory ending up with the definition
of a U-Hessian (Definition 3.8). Our aim now is to assess this concept: we give a
necessary and sufficient condition for the existence of Hy, f, in terms of Moreau-
Yosida regularization ([32], [19]).
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We denote by F' the Moreau-Yosida regularization of f, asssociated with the
Euclidean metric,

(5.1) F(z) := min {F) + slle—yl*}.
The unique minimizer in (5.1), called the prozimal point of z, is denoted by
(5.2) p(z) == argmin { f(y) + [z — y[*}.
yeR?

It is well known that F has a (globally) Lipschitzian gradient, satisfying
(5.3) VF(z) =z —p(z) € 0f(p(x)).

Given p and g satisfying (1.2), we are interested in the behaviour of F' near
(5.4) T:=p+7

(recall, for example, Theorem 2.8 of [15]: § = VF(T) and T is such that p(T) = p).
More precisely, restricting our attention to =+ U, we will give an equivalence result
and a formula linking the so restricted Hessian of F, with the U-Hessian of f at p.
To prove our results, we introduce an intermediate function, similar to ¢y in §3.2
of [15], but adapted to our U-context:

. _ _ 1
(55) U ur gu() = min{fE+uv) - (g0 + 5ol
We start by showing that this function agrees up to second order with L.

Lemma 5.1. With the notation above, assume that the conclusion of Corollary 3.5
holds for at least one w € W (u) — for example, let G be in ridf(p). Then

Ve>038>0: [lullu <= |ov(u) — Ly(uw)| < ellull?.
In particular,
(5.6) Voy(0) =7, and FHLy(0) < IFHey(0) = HLy(0).
Proof. Clearly ¢y(u) > Ly(u). To obtain an opposite inequality, write the mini-
mand in (5.5) for v =w € W(u):
_ _ 1
ov(u) < fP+u@w) = Gy, + 5wl
1
= Lu(w) + 5wl

Taking, in particular, w such that ||wl||y = o(||ully) (or applying Corollary 3.5), the
results follow. O

The reason for introducing ¢y is that its Moreau-Yosida regularization ®y, is
obtained from the restriction Fy; of F' to T 4+ U by a mere translation.

Proposition 5.2. Assume (1.2). The two functions
. 1 2
U dy { Py (dyy) = min{oy(u) + 3 [ldu — ulf},
Fz,{(d[,{) = F(E—F dz,{ S¥ 0),
satisfy
1
Fy(dy) = ®v(g, + du) + §||§V|\$, for all dy € U.
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Proof. Take dyy € U. Recalling (5.4), compute Fy(dy) = F(D+ (G, + du) ® gy) in
the following tricky way:

: _ 1. _
Fu(dy) = (ugéng{f(PJru@v)Jr§||(gu+du—u)@(9v—v)||2}
— min{min{ fG+u®v) + gy — o3} + Hg + du — ulZ }

. 1,_ 1,_
= min{ov(u) + 39y 13 + 515 + du — ul)
= DGy +du) +3lgul}. O
Since Ly, is so close to ¢y (Lemma 5.1), its Moreau-Yosida regularization is close

to @y, i.e., to Fy, up to a translation. This explains the next result, which is the
core of this section.

Theorem 5.3. Make the assumptions of Lemma 5.1.
(i) If Hy f(P) emists, then V2Fy(0) exists and is given by
(5.7) V2Fu(0) = Ty — (Zu + Hu f(P)) 5

here Tyy denotes the identity in U.
(ii) Conwversely, assume that V2Fy(0) exists. If (3.7) = (3.8) holds, then Hy f(P)
exists and is given by

(5.8) Hy f(P) = (Tu — V?Fyu(0)) ™" — Iy.

If, in addition, Hy f(D) is positive definite — for example, if f is strongly
convex—, we also have

Hy f(B) = (V2 Fu(0)~" = Ty) 1.
Proof. (i) When Hy, f(p) exists, use (5.6) to see that
(5.9) Hy f(p) = HLy(0) = Hoy(0).

Then we can apply Theorem 3.1 of [15] to ¢p. We see from (5.6) that the proximal
point giving ®v(g;,) is 0 € U, so we have

Vv (gy) = Tu — (Tu + Hey(0)) 7"

In view of Proposition 5.2 and (5.9), this is just (5.7).

(#4) Combine Proposition 3.7(:) with Lemma 5.1 to see that (3.7) = (3.8) also
holds for ¢y at 0 € U; furthermore, V¢y,(0) exists. Then we can apply Theorem 3.14
of [15] to ¢y: when V2®y(g,,) = V2Fy(0) exists, then Hoy(0) = Hy f(p) exists.
We can write (5.7) and invert it to obtain (5.8).

Finally, suppose that f is strongly convex: for some ¢ > 0 and all (u,w) € U XV,

fE+udw) 2 f(B)+ G udw) + 3 uew|
> FB) + Gus whu + s w)y + 5 [l
Take w € W (u) and subtract (gy,, w)y from both sides
Lu(w) 2 Ly (0) + (VLut(0), wee + 3l

hence Hy f(p) = HLy(0) is certainly positive definite. Computing its inverse from
(5.8) and applying (20) from [15], we obtain the last relation. |
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A consequence of this result is that, when V2F(Z) exists, then Hy f(P) exists;
V2Fy,(0) is just the UU-block of V2F(Z). Furthermore, x +— p(z) has at 7 a
Jacobian of the form

Ip(@) =T - V*F(@) = ( po )

(recall Corollary 2.6 in [15]). If f satisfies (3.8) at P, then

P =(T—V?F(@)huu = Tu — V?Fu(0) = (Hu f(p) + Tu) ™!

is positive definite.

6. CONCLUSION

The distinctive difficulty of nonsmooth optimization is that the graph of f near
a minimum point p behaves like an elongated, gully-shaped valley. Such a val-
ley is relatively easy to describe in the composite case (max-functions, maximal
eigenvalues): it consists of those points where the non-differentiability of f stays
qualitatively the same as at P; see the considerations developed in [22]. In the
general case, however, even an appropriate definition of this valley is already not
clear. We believe that the main contribution of this paper lies precisely here: we
have generalized the concept of the gully-shaped valley to arbitrary (finite-valued)
convex functions. To this aim, we have adopted the following process:

First, we have used the tangent space to the active constraints, familiar in
the NLP world; this was U/ of Definition 2.1.

Then we have defined the gully-shaped valley, together with its parametriza-
tion by u € U, namely the mapping W (-) of (3.2).

At the same time, we have singled out in (3.5) a selection of subgradients of f,
together with a potential function Ly;. A nice feature is that our definitions
are constructive via (3.1).

This has allowed us to reduce the second-order study of f, restricted to the
valley, to that of Ly (in U).

We have shown how our generalizations reduce to known objects in compos-
ite optimization, and how they can be used for the design of superlinearly
convergent algorithms.

Finally, we have related our new objects with the Moreau-Yosida regulariza-
tion of f.
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