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The Lagrangian spectral relaxation model of the scalar dissipation
in homogeneous turbulence

R. O. Fox®
Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506

(Received 24 January 1997; accepted 7 April 1997

Lagrangian pdf methods are employed to extend the spectral relax&®rmmodel of the scalar
dissipation of an inert, passive scalar{$¢) in homogeneous turbulence. The Lagrangian spectral
relaxation(LSR) model divides wavenumber space into a finite nunttres total number depending

on the Taylor-scale Reynolds numi#®y and the Schmidt numb&c) of wavenumber bands whose

time constants are determined from the mean turbulent kinetic energy and instantaneous turbulent
energy dissipation rate. The LSR model accounts for the evolution of the scalar spédwrLipdf)

from an arbitrary initial shape to its fully developed form. The effect of turbulent-frequency
fluctuations on the instantaneous scalar dissipation rate following a Kolmogorov-scale fluid particle
is incorporated into the LSR model through a Lagrangian pdf model for the turbulent frequency.
Model results are compared with DNS data for passive scalar mixing in stationary, isotropic
turbulence. Two distinct causes of non-Gaussian scalar statistics are investigated: small-scale
intermittency due to scalar-dissipation fluctuations at scales near the Kolmogorov scale, and
transient large-scale inhomogeneities due to the form of the initial scalar spectrum at scales near the
integral scale. Despite the absence of fitting parameters, the LSR model shows satisfactory
agreement with available DNS data for both types of flows.1@97 American Institute of Physics.
[S1070-663(197)01108-2

I. INTRODUCTION present work is to extend the SR model using Lagrangian pdf
methods to account for Kolmogorov-scale fluctuations in the
Like the turbulent dissipation rate, the scalar dissipationvortex-stretching rate, and their effect on the one-point scalar
rate provides information about scalar time and length scalesnd scalar dissipation statistics in homogeneous turbulence.
needed to close the scalar variance equation, and is a key Lagrangian pdf methods combine pdf methods with sto-
quantity in the modeling of both inert and reacting turbulentchastic Lagrangian models to provide a computationally trac-
scalar fields:® Nearly all currently employed models for table method for calculating the statistics of inhomogeneous
scalar mixing ranging from simple moment closures to fullturbulent flows of practical importanc¢é Models at the level
probability density functionpdf) simulations require infor-  of the velocity, turbulent frequency, composition Lagrangian
mation concerning the coupling between the turbulence tim@df represent the current state of the'Zamnd provide a
scales and the scalar time scales for closure. Ample exper@lescription of scalar transport in high Reynolds-number tur-
mental and direct numerical simulatigBNS) data exist to  bulent flows. The lack of a dynamic model for the scalar
show that the usual assumption of a direct proportionalitydissipation rate, however, limits their application to fully de-
between these time scales is often unjustified and that, imeloped(equilibrium) scalar field decay in stationary turbu-
reality, the velocity-to-scalar time-scale ratio varies widelylence and to flows for which knowledge of the me@s
according to the flow under consideration and with time,opposed toinstantaneous scalar dissipation rate suffices.
depending in particular on the initial scalar-to-mechanical(Reactive flows dominated by ignition and extinction
integral-scale ratid-1° event$3~8 are an example of a class of flows requiring a
In an earlier work the spectral relaxatiofSR) model of ~ dynamic model like the one developed in this work/ith
themeanscalar dissipation rate was introduced and shown téhe addition of the Lagrangian spectral relaxatitSR)
successfully account for the effect of the velocity spectrummodel, this limitation will be lifted and the resultingelocity,
on the relaxation of the scalar spectrum from an arbitraryturbulent frequency, composition, scalar dissipatida-
initial form in both stationary and decaying turbulence. Thegrangian pdf description will be applicable to cases with ar-
SR model contains a range of turbulent tighength) scales bitrary initial scalar length-scale distributions, and provide
and thus accounts for the cascade of scalar energy from largee-point statistics and tame historyfor the scalar dissipa-
to small scales. This division of physical mixing processedion in each fluid particle.
according to their characteristic length scales removes all The remainder of this work is arranged as follows. In
fitting parameters, replacing them with physical constantssec. Il the SR model is reviewed and minor modifications of
that characterize the fundamental processes of turbulent vothe original model are introduced. The LSR model is pre-
tex stretching and molecular dissipation. The objective of thesented in Sec. Ill in the form of a set of stochastic differential
equations for the mean scalar dissipatmonditioned ona
30n sabbatical leave at the Laboratoire déchtgique des Fluides Nume given turbulent-frequency time historyzZ(t) ={” (S)|S

ique, CORIA UMR 6614 CNRS—Universit INSA de Rouen, 76801 € (—,t]}, wherew*(t) is the turbulent dissipation in a
Saint Etienne du Rouvray, France. Lagrangian fluid particle divided by the mean turbulent ki-
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netic energy at the particle location. The LSR model, com-

bined with the Fokker—Planck mod&t?°is applied to study

passive scalar mixing in stationary, isotropic turbulence in

Sec. IV, and the results are compared to DNS dafafor

joint one-point statistics of the scalar, scalar dissipation, and

turbulent frequency. Conclusions are drawn in Sec. V.

Il. SPECTRAL RELAXATION MODEL

The SR model was introduced to improve the descriptiorthe turbulent Reynolds number by
of the influence of the velocity field on the scalar dissipation

rate in turbulent flows. The model explicitly accounts for the
relaxation of a non-equilibrium scalar spectrum to its final
self-similar form through the actions of turbulent mixing.
Since many fast reactions take place in the non-equilibriunfRy

D(r T
é)—t‘*):ZCDRel(@ﬁ+2CSRe1(w>(r¢,)
—2C4(r p)olr gy +2D (T ), ()
where the mean turbulent frequency is defined by
(@)= % ®
e= o =0.387R, 9)
Vr(e)

is the Taylor-scale Reynolds numherCp=C,/

regime??4the relaxation period is particularly important for (C4—1)=0.25, C¢=0.5/N,, and Cy4=1+2/N,, where
reacting flows where neglect of the transient behavior cai<N,<3 is the effective dimension of the scalar fi¢kke

lead to serious prediction errof3.

Turbulent mixing of a passive scalar can be described by

the discussion after E490)].
In the SR modelCq is Batchelor's constarff?” and has

the Reynolds-averaged moment equations for the scaldreen verified using DN The molecular-diffusion constant
mean and variance. For a homogeneous scalar field with @4 has been determined by forcing the model to agree with

uniform mean scalar gradient and molecular diffusivity
the governing equations become, respectively,

D(¢)
T @)
and
D 12
<§t ) 2S42—2(ey), ¥

where the mean convected derivative is definedrbpeated
indices imply summation

_7 U i 3
E—EJF( i>(9—xi, 3
the mean scalar dissipation by
g’ a¢p’
<6¢>_<Fr9_xia_xi>’ (4)
the scalar variance source by
D)
S¢2——<Uid) >(9—XI, 5

and u;=U;—(U;), ¢'=d—(¢) are the fluctuation fields.

the pure diffusion cagd where (¢’'?)~t N2 for large t.
The symbolT, denotes the flux of scalar energy from wave-
numbers below the scalar-dissipation wavenumber,
kp=CJ%=kg/8 where kg=Sc"%y is the Batchelor-
scale wavenumbgtr and «k«=2w((e)/rv})V* is the
Kolmogorov-scale wavenumbgtThe symboD 4 is defined

by

1 d(¢'? Sy2
Ay A ey o
and the characteristic molecular dissipation rdte,), is
given by Eq.(24) below.(k) and{e) are themeanturbulent
kinetic energy and dissipation rate, respectively, ansl the
kinematic viscosity.

Physically, the first two terms of the right-hand side of
Eq. (7) represent a closure for the effect of the turbulent
velocity field on the scalar gradient. Turbulent advection
works to decrease the scalar length scale by pushing more
scalar energy to larger wavenumbers. The first term thus re-
sults from scalar energy transported from large to small
scales, and the second term models small-scale straining of
the scalar field by the vorticity field. The third term on the
right-hand side is a closure for the effect of molecular dissi-

Note that both the scalar dissipation and the scalar varianggation on the scalar gradient. At spectral equilibrium,

source terms are unclosed.

To/{$'?) is constant and the right-hand side of K@) is

The mean scalar dissipation rate is defined in terms ofull as transport of scalar energy from large to small scales is

the mean scalar dissipation by

<f¢>

<r¢>:m- (6)

exactly balanced by molecular dissipation.

The SR model describes the non-equilibrium transport of
scalar energy as a cascade process from large to small scales.
In order to provide a computationally tractable model, spec-

The governing equation for the scalar gradient can be used toal transport is assumed to be local in scalar wavenumber
find an expression for the mean scalar dissipatidine re-  space?®3°and the turbulent velocity spectrum is assumed to
sulting expression contains terms corresponding to produdse fully developedi.e., equilibrium turbulende®=33In the

tion by the mean scalar gradient, turbulent vortex stretchingriginal formulation of the model, additional dynamical vari-
of the fluctuating scalar gradient, and to molecular dissipaables were then introduced that correspond to “potential”
tion, all of which must be modeled. The SR model closes thescalar dissipation$These variables were referred to as po-
mean scalar dissipation rate equation by tential scalar dissipations because they are formed by multi-
R. O. Fox
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plying the fraction of the scalar spectruB,(«,t), in a finite D<¢12)
band of wavenumberfss; ;_1,x; ;) by a factor proportional Dr ~ 21112715 17)
toTk3: )
, D) _,
(€,;))=CpRey(w)( /%), (11 Dt 2T21t 2721542 (18
where :
D(7,)
(${5)= Eg(x,t)dx, (12 Dt 2Tan,t2720,542 (19
Kij—1 )
D ’
and «; j is the upper-cutoff wavenumber of theh substage {¢s =2T31+2ypSy2, (20)
of theith spectral subrange defined below. Here, in order to Dt '
make the relationship between the SR model variables and D<¢522>
the scalar spectrum more transparent, we shall work with the  —5— =2Ts2 (21
model in terms 0f<¢i”12> or, equivalently, in terms of the
fraction of the scalar energy in a wavenumber band:
D<¢3n >
(#15) > = , 22
(si))=742 (13 Dt 3N 22
(¢"9)"
and
Note that by definition &(s; ;)<1 and the sum of all frac- D(e,)
tions is unity. Dt¢ =2CpRe(w)Tp+2CRe(w)(ey)
In the SR model, the scalar energy in fltle stage of the
cascade is denoted Ky, ?) and in the {,j)th substage, by —2C4(r g)ol€g), (23
<¢i"12>_ Th.e cascade is. composed of three principal Stage\?\;/here(r(b}o is defined by
representing the following.
(rg)o=CopRew)(1=(sp)) +(ry). (24)

(1) Transport from wavenumbers below the integral-scal
wavenumber of the turbulent velocity field to
ko=Re; %%k, i.e., wavenumber ban,«).

%or the cas&Sc=1, n;=0 and the source term in EQO) is
added to the right-hand side of E46). In addition, Eq(23)

) N, becomes
(2) Transport in the inertial subrange from, to the
velocity-dissipation wavenumberc,=C3%, repre- D(ey)

sented byn, substages with upper-cutoff wavenumbers,

3i 32
Kz'j:(CURe1+3J__1) Kky=Tajky, (14

and Kap,=ky- In fully developed turbulenc¥

Cy~0.125=Cp/2 so thatky~ ky /22.6.

(3) Transport in the viscous-convective subrange<@8o)
from «y to x4=Sc"%y represented by substages
with upper-cutoff wavenumbersg ;= Sd’(2M)

The scalar energy at wavenumbers abeyewill be denoted
by (42 and can be found by subtraction:

() =(d")~(1?)—(b52) — - — (b5 )~ (32
- _<¢3n3>

By assumption, all scalar dissipation occurs at wavenumbers
abovex; thus,

D{(¢p
Dt

(19

However, this expression is redundant since Egs. (15)
and the SR model provide a complete description of the sca-
lar energy distribution.

The SR model for ¥ Scand 1<C_Re is given by
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and

Dt —ZCDRel<w>TD+2CDRel<w) ’)’DS¢2

+2CRer(w)(€y) —2C(r 4)o(€y)- (25

The source weights,€9v; ;<1, sum to unity and are further
discussed below.
In the SR model, the spectral transport terms that model
the energy cascade from large to small scales have the fol-

lowing forms:
T1=—ay(¢1?) = Br(b1%) + Box( b33, (26)
To1= a1{p1?) — ez ¢§2]> + B 1% — 224 ¢§21>
(27)

+B2.A ¢§2 '

Ton,= @2, 1( ¢é,2nz— 1)~ @2n( ¢é,znz>

+ Bany-1(b2n,-1) ~ 2Bon,(Pon) T Bax $53),

(28)
T31=azp( ¢é,2r12> —az($32)+ Be n{ P2 n2>
—2B3($33) + Ba($3%), (29
T3 ng = a3< ¢3 ng— 1> a3< ¢3 n3> + ﬂ3< ¢’3 ng— l>
_233<¢3n3>+,30<¢5 ) (30
R. O. Fox



TD:CY3<¢§,%3>+B3<¢§2 )= Bo{ L) (31) <w>:t”m<r¢> and)’i,j:t|im<9i,j>a

N3
—500

Note that the sum of the spectral transport terms is null,

thereby conserving scalar energy as it moves through wave- with Sc=1 and S,2=0, (38)
number space. and

The SR model rate coefficients; ; and B; ; represent 1
the rates of convective and diffusive transport, respectively, =1, — > YVoj=m e (39
along the scalar spectrum. Only the case whgrg=0 has i=Tn, 7 CopRey

been considered in detdiFor this case, the rate coefficients g, example, for the convective case with=3, the source
aj j=t;;* follow directly from the fully developed turbulent weights are easily found to be
velocity spectrunt:

. y1=b(1-a)(1—a/6)(1—a/3), (40)
tl:@' (32 yo1=ab(1—a/6)(1—a/3), (41)
v, ,=ab(1—al6)/3, (42)
for= ( - CuRel)tl' 33 2,3~ ablb, (43
1 YD™— 1_ b, (44)
=5t 1 (34 >
13 where
1 1
ton,—1= §t2,n2—2’ (35 a=1- CuRe
1 and
t2n,= 5t2n,-1, (36) -
" CoRe’
In(So) DHL
t3:2n3Relt1' (37) Note that afRe;— >, a andb — 1 yielding y;=yp=0 and

implying that almost all of the scalar energy will be con-

The values ofh, (2=<n,) andn; (0<n3) increase linearly tained in the wavenumber ranfieo, x ;] at very high Rey-

with In(Re) and InS9, respectively: Choosingn, and ng nolds numbers.

larger than their minimum values will not adversely affect As noted in the Introduction, the SR model as given

the_ SR model's predictions since the excess stages Willy, e giffers slightly from the original versidnThe main

quickly relax to(quas) steady-state values. Note talthe  itterences are the introduction of the source weights

character.istic time sca_le of the energy-cqntaining range 0(% ). the effective scalar-field dimensioN,, and the

the velocity spectrum, is a key parameter in the made.,  e|ocity-dissipation constanC, (in the original model

it determines the spectral flux at large scales and the scalé%/r2 =N,=Cy=1). These changes result in very minor dif-

dissipation rate at spectral equilibriyrand is dependent on ¢cronces in the model predictions. For example, the case of

the form of the velocity spectrum at large scales. The SRstationary turbulence  withSc=1 yields a limiting

model could thus be further refined by including a more,ochanical-to-scalar time-scale ratio of

detailed description of the large scales using, for example,

large-eddy simulatiofLES). C2ry)
The rate coefficients for the convective-diffusive case '/~ (w)y =

(0<pB;,;) can be derived, for example, from the spectral . . - .
transport model of Leit} in the form proposed by Besnard Wh'Ch agrees with the original model for larg . Finally,

et al®% The primary difference with the convective case since the dynamical behavior of the SR model is mainly
(B -.=O) is the allowance for scalar-energy transport fromiqfluenced by the relgxat_ion Of .the large scales, the conclu-
smléllll to large scales. Without this “reverse” transport theSions drawn concerning its ability to correctly handle scalar

steady-state value df ;) may depend on the initial scalar mixing in decaying turbulence are equally valid for the new
spectrum in the absence of a mean scalar gratiien., if version.
(¢1%)=0 att=0 it will remain so for all time, in which
case, if 0<<¢§%}, (rg)—2ty/t,4). For inhomogeneous
flows, mean scalar gradients produce scalar energy at large The SR model can be extended to inhomogeneous flows
scales (6<y;S,2) and “forward” transport dominates. and solved using a standard finite-volume CFD code, thus
Thus, the differences found by neglecting the diffusive termgroviding a dynamic model for theeanscalar dissipation
may be negligible for many practical applications. rate. However, for reacting flows the reaction source term
In the SR model, the source weightg; () are specified would still be unclosed, leading to many well-known
by forcing the self-similar scalar spectrum for the casedifficulties® A powerful alternative approach is to employ
Sc=1 (n3=0) to be the same for all values &.. This  Lagrangian pdf methods wherein the turbulent transport and
condition yields reaction terms appear in closed fofnin this section, we

(45)

Ill. LAGRANGIAN SPECTRAL RELAXATION MODEL
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develop a Lagrangian pdf version of the spectral relaxation e(X* (1),1)

(LSR) model formulated in terms of a set of stochastic dif- ~ @*(t)=w(x*(1),t)= 0 (49
ferential equations for the scalar spectral distribution and the

scalar dissipation rate following a fluid particle. The validity Note that since the velocity spectral energy belgvis small

of describing the spectral energy cascade by a Lagrangiatpmpared to the total energy, the same Lagrangian pdf
approach has recently been demonstrated using DNS%atamodel can be employed fdd;(t) or UF (1) =U;(x* (1),1).

and employed in a dynamic subgrid-scale model for BES. Hereinafter, we will thus denote the fluid particle velocity by
In developing the LSR model, we follow the approach ofu* . Nevertheless, Kolmogorov-scale velocity fluctuations:
Borgas and Sawfoff and formulate the model in terms of a u/ =U* _Gi o (V<6>)1/4, while negligible relative to integral-
Markovian process conditioned on a particulabulent fre-  scaje fluctuations, are responsible for inter-particle transport
quencyhistory 7 (t) ={w*(s)|s & (—,t]} for each fluid ot spectral energy, and therefore are included in the LSR
particle, wherew* (t) is defined by Eq(49) below. model.

In Lagrangian pdf methods, the turbulent flow is repre-  The | SR model is written in terms of conditional means
sented by a large ensemble of fluid particles whose timey e form(¢i’2|u*,v7//}. Theoretically, the unconditional
evolution is approximated by stochastic models that argxpectations abjpearing in the SR model can be found by
solved using Monte-Carlo methods. In a statistically homo'averaging over the velocity and the set of all possible

geneous flow, the one-point statistics for the scalar field argsgjizations of 7 weighted by the probability measure
everywhere identical; hence, the physical size of the ﬂ“iddF%- 3ja

particle is unimportant. However, in the same flow, since any

two points separated by more than the velocity-dissipation N )2

correlation length scalel (~22.65 based onky=C¥%«y) (¢7)= f/4<¢

must necessarily have different strain-rate histories, condi-

tioning on 27" must imply that the fluid particles have a lin- Numerically, unconditional expectations are computed by

ear dimension at least as smalllas Since a particle’s sca- generating a large number of independent samples’qf

lar dissipation rate in the LSR model will depend on itsand ensemble averaging the solutions to the LSR model.

particular 77, conditional one-point statistics (e.g., Hereinafter, in order to simplify the notation, we shall avoid

(¢'?|77)) will be inhomogeneous near the Kolmogorov introducing a specific notation for velocity7-conditional

scale, even though the flow is homogeneous on the integr&xpectations and simply let, for example,

scale. These small-scale inhomogeneities generate additional PNk 112k o

scale-dependent mixing terrfise., in addition to the uniform (@) =(¢"um. 7). 6D

mean scalar gradient tejrim the LSR model. Moreover, we However, this simplification will be avoided when it may

shall also see that they generate an asymptotic non-Gaussiaause confusion. For example, when computing the scalar

scalar pdfii.e., although the conditional scalar pdf is Gauss-pdf, it will be necessary to introduce the random process

ian, the unconditional pdf need not)bé&ikewise, the initial  ¢'* (t)= ¢’ (x*(t),t), and to model conditional expectations

scalar field may be inhomogeneous at some scales above tbethe form(FV2¢’|¢>’* ,U*, 7). Furthermore, due to the

integral scale(e.g., “blobs” of fluid with different scalar numerical difficulties associated with estimating velocity-

spectra at wavenumbers smaller theg). As demonstrated conditioned scalar statistié8,the LSR model will be pre-

in a recent DNS studf, these “non-equilibrium” spectral ~ sented in a velocity-independent form so that hereinafter the

effects can be a source of transient non-Gaussian statistiosotation( - )* will denote only the7-conditioned expecta-

This behavior is also captured by the LSR model. tion, e.g.,
Formally, we can define a Lagrangian fluid particle in

terms of the Eulerian velocity field by introducing a compact (¢'2)*=(9"

spatial filter function B=K(x) with bandwidth proportional

toly, and

VAdAF . (50)

V) (52)

Nevertheless, a velocity-conditioned formulation of the
model can be derived by substituting velocity-conditioned
scalar statistics for unconditional ones, e(g;?) becomes
L,'K(X)dXZ 1, (46)  (¢p;?lu*) and(p;2)* is given by Eq.(51).
When applying the LSR model, the reader should be
where 7 is the fluid volume. In terms of the filter, the fluid careful to distinguisi ¢'%)* from (¢’'?|w*), i.e., the scalar

particle velocity becomes variance conditioned o#7” from the scalar variance condi-

tioned on the current value ab*. At any instant, many
Ui(t):f K(x—x*)U;(x,t)dx, (47) spatially uncorrelated points in a given flow will have nearly
7 identical w*; however, only points separated by approxi-

where matelyl, i.e., inside a fluid particlecan have nearly identi-
cal 7. Likewise, it is important to distinguish between the

dxs ra_ndom variable&@(t)ze¢(x*(t),t) and(e,)*. The latter

Y (48 will have a single value for each fluid particle, while the

former will vary randomly inside each fluid particle.qg.,
governs the fluid particle position. Likewise, the turbulentconsider X Sc where the fine-scale structure of the scalar
frequency following the fluid particle can be definedb{f  dissipation field [~0.39,/Sc"?) is much smaller than

2368 Phys. Fluids, Vol. 9, No. 8, August 1997 R. O. Fox



ly]. Hence,(€4)* corresponds to the expectation Q‘I in-  depend on both time and location in inhomogeneous flows.
side of a fluid particle. It is thus useful to decomp@%einto For all fluid-particle variables, the models are constructed
the product of two terms: such that the Lagrangian expectations obey an equivalent
* - Reynolds-stress mod&l.In a homogeneous flow, E¢56)
6¢_<6¢> z% (53 generates a multi-variate Gaussian velocity field and Eq.
where Z(t) is a standardized random process that containg57), an independent log-normal turbulent frequency field.
the effect of molecular diffusion on the scalar gradient pdf, In statistically homogeneous flows, E¢7) is self-
and (e4)* models the effects of turbulence and molecularcontained(coefficients are independent gf) and the term
dissipation on the scalar microscale. For lag® separation involving h needed to generate non-zero turbulent frequency
of scales can be invoked to argue t@atnd(e,)* will be in fluid particles withw* =0, but which are located in a
independent random processes if time is rescaled: turbulent region of the flow: &(w), is null. It has been
dtt= o dt (54) noted? that this model foro* does not yield the expected
=" highly intermittent behavior of turbulent dissipation at very
using the “local” scalar dissipation rate: high Reynolds number. More importantly, in the DNS
(e,)* study?* that will be employed for model validation, the tur-
w;:%_ (55) bulent frgquency pdf is not well representgd b){ a log-normal
("% pdf, but instead has a stretched-exponential tail whose decay
This is the approach taken by Fwhere a model is pro- €xponent depends on the turbulent Reynolds number. Since
posed for the standardized scalaf)(and scalar gradient the one-point, one-time statistics computed from the LSR
(2) for the special case wheke* =(w) (i.e., all fluid par- model are sensitive to the modeled turbulent-frequency pdf,
ticles have identical strain-rate histories so thgt=(r,)). ~ Wwe shall employ the following model that more closely ap-
The remainder of this section is organized as follows.proximates the observed pdf:
First, Lagrangian pdf models for the velocity and turbulent

* __ _ ok *
frequency are reviewed and a new model for the latter is do*=-w*(0)S,dt+ o <“’>CXRel

proposed that more closely reproduces the one-point statis- (0*) U w) )

tics of w(x,t) found in the DNS study of Overholt and X 1_W dt+(w)°h dt

Pope?! Next, the LSR model equations are presented for the

convective transport cas@(;=0). Finally, models for con- . [2C,Rey(w)| 1

ditional molecular mixing and the conditional turbulent sca- to R dW,,, (58)

lar flux terms are introduced to describe the evolution of the

scalar and scalar gradient in a fluid particle. A detailed comwhere y,, and y,, are model parameters that depend on
parison between model predictions and DNS data for passive® andRe; as discussed below, ar@, controls the auto-
scalar mixing in stationary, isotropic turbulence is presentedorrelation time of the random processg (t). Note, how-

in the Sec. IV. ever, that the limiting form of the turbulent frequency pdf
_ _ does not uniquely determine the model. For example, the
A. Lagrangian pdf models for the velocity and same limiting pdf could be obtained by replacing the second

turbulent frequency term of the right-hand side of E¢58) with

Pope and co-worketshave used Lagrangian pdf meth- vy
ods to derive and verify stochastic models based on the <w>zc Re (1_ (0*) "’1)
Langevin equation to describe the position, velocity, and tur- xH (wYo1) |
bulent frequency of a fluid particle in a turbulent flow. In
these models, the fluid-particle velocity and turbulent fre-
quency are denoted By and w*, respectively, and obey (ZCXRe1<w)w*)l’2

1 4(p)

and the noise-term coefficient with

Y2 1

Defining X=w*/{w), in homogeneous turbulence the

+(Co(k)w*) Y2 dW, (56)  limiting pdf resulting from Eq(58) with constantparameters
and IS
w* . Yw2 XYl
= _ = JxYw2™2 e
do* = — 0 ()| S,4.C, In(<w>) (0 =1 5702 exp( e <Xmﬂ>), (59
) 1) ) where./"is a normalization constant. Fitting this function to
~\ Ty M 7y | | |dE (@) h at the pdf found by DN&' yields
+w*(2C (w)a?) 2 dW,,. (57) lim v,,,=3.33, (60)
X—0
The parameters and coefficients appearing on the right-hand
sides above are described in detail elsewh&Note that the lim ,,=1.5, (61)
mean fields are evaluated &t and thus the coefficients X0
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and v,; is a function of Re; (e.g., for Rg=10.72, d<¢é2
¥.1=0.778, and foRe; = 32.38,y,,;=0.500). We will thus —qt  ~ 20ty D* —2a30()(p3H*
let
| 3.33+1.5C,X o +2fp(r ) (853 —(639*), (67)
Yo2= TIreX (62)

and fixC,,=0.35 by forcing(X?) to agree with the DNS data q .
(Sec. V. <¢3n3>

* *

Note that the auto-correlation time predicted by i) dt _2a30(t)<¢3” 1)~ 2a50(1)( 3 J
will scale like 1/(C,Re(w)), i.e., it does not reproduce the .
small-scale intermittency expected at large Reynolds +2fp(r ) ((¢3; n3> <¢3n ,2> ): (68)
number<'®4® Moreover, although the auto-correlation time o
can be varied by changing, , »*(t) still remains Markov- d( pL2)* . '
ilan contrary to the requirements of small-scale T gy _2a3‘7(t)<¢3n3> +2fp(ry)((¢p)
intermittency?®#® Thus, in order to test its importance in
determining the scalar statistics in the LSR model, numerical —(p)*)—2(eg)*, (69)

studies withC, significantly larger and smaller than unity

have been carried out. In general, the effect of the auto-

correlation time on the one-point statistics of the scalar dis- d(e¢)* .

sipation has been found to be small compared to the effectof ~— gt =2CpRey(w)azo(t)(¢s; 2" T 2fo(rg)((eg)

the form of stationary turbulent-frequency pdf. On the other

hand, when the auto-correlation time decreases, the correla- —(eg)*)+2CRe(w)o(t)(€y)”

Eli%n betweenw* and the scalar dissipation also decreases. —2Cd(r¢)g<e¢>* (70)
is limiting behavior is consistent with the “white-noise”

models for the vortex-stretching term employed in otherwhere f;=ko/xy=(CyRe) 2 f§=1—fy, fo;=kyj/xy,

studies’’*®We therefore conclude that, although it does notf3;=1—f,;,

correctly reproduce small-scale intermittency, ES) T_ _ t T
should suffice for a quantitative comparison with the DNS (rp)o=CoRe(w)(1—=(sp)") + wy, (71)
data. (pp)*

<§D>T_ TN x (72)
B. Lagrangian pdf model for the conditional means (@'’

The LSR model (convective case for 1<Sc and and
1<CyRe; (Sc=1 is handled as in the SR mogé$ given

o* 1/2
by a(t)= (< >) (73
d<¢i2>* 12\ % 12 12\ % . .
g = 2ax(d1)" +2fp(rg) (17 — (1)) Note that the LSR model contains no independent
“noise” term: all fluctuations are generated ky* in Eq.
+27,Sy2, (63 (73). This results from the assumption that the random
o ¢,2]>* scalar-gradient-amplification, “vortex-stretching” events in
dzf zzal(f1<¢)12>*+f‘l’<¢12>)—2a211<¢é’2 * the di_ssip{:ltion range of the velocity spectrum have a La-
grangian time history of the form
+2fp(r ) (53— ($5*) + 2721542, FM) au; 9’ 7 = C(e* ve 4
(64) ax; X OX; e (eg)"- (74

This model is supported by DN%*° and experimental>?
d<¢’2 y* studies of the scalar gradient alignment in isotropic and
sheared turbulence where it is found that the scalar gradient

————=2ay,._1(fon._ )
dt 2 1l Bk i d)z M2 v is preferentially aligned in the direction opposite the eigen-

<¢ Y)—2a <¢,2 ) vector of the most compressive principal strain ratg, In a
2n,-1{ ®2n, -1 2\ V20, solenoidal flow,e* can be expressed in terms ef; as”?
+2f (1 y)( <¢ > <¢ >*)+272n25¢2 €* =4ves,(1+ 6+ 6°), (75)
(65  where —1/2<$<1 is the ratio of the intermediate and the
d<¢>’2]}* most compressive principal strain rates. The pdbdias a
—gt  ~2@2n,(fan, () n2>* +150,(#2 n2> strong peak at the origit:>2thus, lettings=0 and assuming
that the scalar gradient is exactly colinear with the eigenvec-
_zasg(t)<¢é? * +2fD<r¢>(<¢é’2 tor (implying N,=1) yields Eq.(74) with C4=0.5.
'’ As in the SR model, Eq(69) can be replaced by an
—(b32D*) +2¥pSy2, (66)  expression foK ¢’2)* found by summing Eqs63)—(69):
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d(p'?)* The diffusive-mixing parametel, thus has a significant ef-

G = 2Spt Tyt V4= 2ey). (76)  fect on the statistics of the “local” scalar-variance ratio de-
fined by
The inertial-range mixing term, defined by ($'2)*
y ' ' (I) =T - 81
Ty=2arf1(($1%) = ($1%)*)+ - (6%) oy

+2a0 £S5 (P2 ) —(Ph2 )*), (77)  This can most easily be seen from the governing expression
2Nz 20g1\ 20, 202 for @ for the caseS.=.7,=0:
is a model for the dissipation of large-scale scalar field inho-

mogeneities by the velocity field: E=2fD<r¢)—2[<r¢)(fD—1)+w;]<IJ. (82
12
<ui& 7/> 7. (79) When fp=1, the eigenvalue of Eq82) is —2w;so, and
IX; ¢ thus the equation is unconditionally stable. On the other

hand, whenfp,=0 the eigenvalue is—2(w;—(r¢,)), and
thus it fluctuates between positive and negative values.
Dy=2fp(rg)((d'2)—(d'%)*), (799 Hence, Eg.(82) is stochastically unstablde.g., when
_ w},<(r4) for all t), and the momentédb"), 1<n can grow
is @ model for the molecular dissipation of small-scale scalainbounded. The resulting large variationslinwill generate
variance inhomogeneities generated by the difference in th?trongly non-Gaussian scalar pdfs. It is also worth noting
scalar dissipation rate between any two fluid particles:  that instability is not observed in the presence of a uniform
2 1121 oA — o mean scalar gradient €0S,2), and thus the predicted scalar
(CVE"7)=2,. (80 pdf will be closer to GaLTssian for all values &f. This
The scalar-variance source term, being the product of twéesult agrees with DN where significant non-Gaussian
integral-scale fields, is assumed to be independentof.e., tails are seen only in the absence of a uniform mean scalar
(ui¢'|77y=(u;¢"). Note that for the case of a statistically gradient.
homogeneous scalar field with* =(w), .7,=~,=0 and
(e4)* =(eg4); hence,(¢'2)*=(¢'?) and wl=(r4). The
LSR model thus reverts to the “standard” model for statis-
tically homogeneous scalar mixing when turbulent frequency  The LSR model provides a closure for tfeonditiona)
fluctuations are ignored. scalar dissipation rate following a Kolmogorov-scale fluid
In general, the physical significance of each term in theparticle. However, it provides no information concerning
LSR model follows from the analogous term in the SRfluctuations of the scalar and scalar dissipatinside the
model. Terms that drop out in the SR modelg., fp(r,)  fluid particle (¢'* andey, , respectively resulting from mo-
X(( 12— ($;?)*)] are needed to model flows that are in- lecular diffusion(the so-called molecular mixing teff?9.
homogeneous at some scale as noted above. The same Be to the sensitive dependence of the joint scalar, scalar
mark applies for the use of the weighted unconditionalgradient pdf on the initial scalar field, development of com-
means in the first terms on the right-hand sides of B~  pletely general molecular mixing models remains an open
(66. The weights, f;;=(particle size)/( wavelength of problem:®?%3~>%For binary mixing of an inert scalar, F&x
inhomogeneity), represent the influence of a single particlgproposed the Fokker—Planck model and obtained satisfactory
on the mean of all particles within a diameter of one wave-agreement with data from the numerical solution of the 1-D
length around the fluid particle. Note that in a statisticallydiffusion equation where, in the limit of large time, molecu-
homogeneous flow with all particles having the same initiallar mixing of an inert scalar by itself leads to independent
conditions, Egs. (63)—(65 yield <¢12>=<¢12)* and joint Gaussian statistics for the scalar and scalar gradient. In
(655)=(¢55)* . This is a result of the model assumption thatthis limit, the Fokker—Planck model reduces to a linear
random vortex-stretching events are significant only at waveFokker—Planck equation with coefficients conditioned on the
numbers above the velocity-dissipation wavenumker. “local” scalar dissipation ratdEq. (54)], or, equivalently,
Above «;, convective spectral transport occurs only withinon 77”. The conditional scalar pdf then remains Gaussian
a fluid particle, and thus the first terms on the right-handwith zero mean and variande’?|7"), while the scalar dis-
sides of Eqs(67)—(69) contain the conditional means. Also sipation is given by Eq(53) with Z an independent, standard
note that the molecular dissipation term in Ef0) employs  Gaussian random process.
the “local” scalar dissipation rateo;). This reflects the fact From a modeling standpoint, the key assumption in de-
that molecular diffusion occurs on small scales that adjust toeloping 77-conditioned molecular mixing models is that
local, as opposed to global, flow conditions. after time rescalingEq. (54)], the model will beindependent
Finally, note that fluctuations due t(t) in Egs.(66)—  of the underlying velocity field. The model should thus de-
(70) will generate inhomogeneities below the velocity- pend only of the scalar field, and be equally applicable to
dissipation scale which are dissipated by the diffusive-cases with or without turbulence. Molecular mixing models

While the diffusive-mixing term, defined by

C. Molecular mixing

mixing terms, e.g., can then be validated against numerical simulations of
I . reactive-diffusive systems, or systems with a constant strain
folr o) ((37) —(P35)™)- rate (77 constant (The initial length-scale distribution of
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the scalar field should be “non-singular” to avoid degener-which can be directly compared to the DNS data of Overholt
ate case$’) Note that this assumption does not exclude theand Popé! As noted above, a necessary condition for the
difficulties resulting from initial conditions, unequal molecu- scalar pdf to be Gaussian is that the right-hand side of this
lar diffusivities, or chemical reactions. However, it doesexpression be linear igp’*. In general, this will not be the
place strong conditions on the model for the scalar gradientsase and, hence, small-scale inhomogeneities in the scalar
since they must agree with the non-trivial pdf found for puredissipation rate will lead to a hon-Gaussian scalar pdf.
diffusion?° Indeed, even for inert scalars, the scalar gradient For the homogeneous, uniform mean-scalar-gradient
pdf is strongly dependent of the initial scalar fidklg., bi- flow under consideration, if they are initially Gaussian, the
nary mixing®® versus ternary miximtj) and bounded above %7-conditioned components of the scalar-gradient field will
by a “diffusion-layer” envelopé&® that is not accounted for also remain Gaussian. However, they need not be uncorre-
in most scalar-gradient modéfs. lated. Thus, the standardized random variablppearing in

In the present study, the difficulty of closing the molecu- Eq. (53) will be the modulus of a correlated Gaussian ran-
lar mixing term will be circumvented by limiting consider- dom vector:
ation to an initial scalar field that is “locally’(i.e., in each

fluid particle Gaussian evolving in homogeneous turbulence ZZZM, (89)
with possibly a uniform mean scalar gradiéht’*®The La- (Ut
grangian pdf equation for the scalar then simplifies to and a model is required to describe the correlation. In this
dep'* o &) i’ study, three cases will be compared with DNS dataefor
——=—{u|¢p'*, %) —<ui— ¢’*,7/> All three cases can be modeled by a Fokker—Planck-type
dt X X 19,20
model:
+<1—‘V2¢/|¢/*,%/>’ (83) ) Nz—l : 12
where the first two terms on the right-hand side arise from dz= w</>( N,Z —Z|dt+ N_z(%) dW, (%0

the turbulent scalar flux of the mean and fluctuating scalar .
: . . ; where 1=N,=<3 is the number of uncorrelated components
gradient, respectively, and the third term is due to molecular

mixing. Note that if all three terms are linear if'*, the on the right-hand side of Eq. 89An equivalent IEM-type

“ w [ oy o : . . . model can also be employed that fixésconstant, i.e., de-
local” ( %7-conditioned scalar field will remain Gaussian . o .. .
with variance(¢’2 77); however, the “global” scalar pdf pending only on the initial conditionsThe first case to be
may be non-Gaussyian'due to thé dependence/on considered takes all three components to be uncorrelated
The conditional molecular mixing term for a Gaussian(NZ: 3). The second case assumes only two components are

scalar field can be modeled by modifying the IEM mddel #nlc(:jotrretl)ateld r@ﬁ: 221' Aar:g] tr;e ithr']rdl case ars]suxmeﬁr;hentsclialailrr]
be consistent with the LSR model: €ldto be focally one ensional as seen experimentally

high-Scflows™ (N,=1). Givenz, the scalar dissipation can
(TV2¢' | ">, 7y ==[wl+Tp(ry)(1-D H]p'*, be found from Eq(53). In Sec. IV, a direct comparison of
(84)  the scalar dissipation statistics with DNS data will be carried
or by employing a modified limiting form of the Fokker— out. Of particular interest is the conditional scalar dissipa-
Planck modef° tion:

(TV26'| "%, 7 Ydt=—[ 20+ (1 ) (egld™)=((es)*Z%¢"*). (9D

X (1—d-1)]'* dt Since the “noise” term in Eq(85) would need to be con-
stant, a necessary condition for a Gaussian scalar pdf is that

+(2<5¢>*)1/2 dW,. (85) this expression be independent ¢f*. Again, in general,

this will not be the case due to small-scale inhomogeneities

in the scalar dissipation rate.

Note that both models, when written in termstbf Eq. (54)]
and the “local” standardized scalar field:

V= L (86) D. Conditional scalar flux
[7 1 r2\% '
(6" In order to complete the Lagrangian pdf description of a
are independent o¥". Likewise, both models yield the same scalar field with a uniform mean scalar gradient, models for
77-conditioned scalar-variance diffusion term: the conditional scalar flux terms appearing in E83) are

O2 4 oA N required. These models should be consistent with the analo-
2P TVG'| 7)== 2eg)", &7 gous7 -conditioned terms in the LSR model. In Sec. IV, we
which is consistent with Eq76). Direct comparison of these will employ the “standard” model for the conditional scalar
molecular mixing models with DNS data is challenging duevariance source term at a single point in a statistically homo-
to the difficulty of computingZ-conditioned scalar statis- geneous scalar field:

tics. Thus, instead, we will compute the conditional scalar o B)

Laplacian: (Ul @"*, 7y ———dt=—(Sy2) 2 d W, (92

(9Xi
Fv2 ' Ik — T RN f (r
{ 167 [<w¢|¢ )FTory) which generates a Gaussian scalar pdf wlgnis non-zero.
X(1—(D7 e *))]ep'*, (88 It is important to observe that the Wiener process on the
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right-hand side of Eq(92) is delta-correlated, while the ve- TABLE I Stationary moments _of the pdf of the turbulent frequency
locity field will have a non-zero auto-correlation time pro- (X=«/{«)) found from Eq.(58) with C,=0.35,C,=1,h=0,S,=0, and

: . (w)=1. DNS values are shown in parentheses.
portional to 1{w). Thus, the model will not generate a real-
istic Lagrangian time series fap*. This, however, will not Ru(Vu1) 28 (0.778 84 (0.500
affect the LSR model’s predictions since they are indepen=—: P
dent of *. Also note that Eq(92) would not be required if variance,o, - 0.702+0.023 (0.78% 0.026)  1.24-0.01 (1.25-0.09)

¢ : q e requi _ Skewness 2.280.02 (2.32:0.03)  3.85:0.09 (3.62-0.12)

the velocity were included as a rand405m variable, in whichytosis 11.9-0.4 (11.8:0.4) 34.8:3.7 (28.4:2.6)
case the scalar flux term is clo$éd*® and generates a Superskewness 672183 (499+59) 114006: 8700 (4906- 1440)
Gaussian scalar pdf in homogeneous turbulence with a uni
form mean scalar gradiefit.

The model chosen for conditional advection,

ag'| . I '’ S_Fationa_\ry turbulence with a uniform mean scalar graq“ient,
<uiW ¢ 7//> =[aifi({(1)* = (1 N+ - (i) stationary turbulence with zero mean scalar gradient,
' (i) decaying grid turbulence with zero mean scalar
+ azynzfg,n2(<¢é%2>* gradient! and (iv) decaying grid turbulence with a uniform
mean scalar gradiefitn particular, the sensitive dependence
/2 o' of the mechanical-to-scalar time-scale ratio on the initial sca-
_<¢2,n2>)]<¢r?>* ' (93 lar spectrum is successfully captured by the SR model due to

L . e o . . its explicit representation of scalar spectral transport by a
being linear ing"*, also admits a7-conditioned Gaussian local cascade between finite-sized wavenumber bands. Since

scalalr.pdf. However, in general, it will Iea}ve the shape of thethe LSR model contains a nearly identical spectral descrip-
conditional scalar pdf unchanged, reflecting the fact that onl)ﬁon its predictions for the dynamical behavior of timean

molecular diffusion at small scald@nd not inertial-range scalar dissipation rate in the above flows mimics the SR

?Lbourlr?ontemnz((l)zi sttlzltlallr;]roggﬁydjg?es'cﬂieinm ;hneef;azrcﬁ) ifu?; model. Thus, the focus of the present section is on the ability
will be r?e uired for the conditional a,dve?:tion te,rm even if of the LSR model to predict pdf and higher-order statistics
q ' for the scalar and the scalar dissipation in stationary, isotro-

the velocity is used as a random vgriable, in which case thSic turbulence. Results for two cases will be considefAqg:
conditioning variables would include; and a model would  gtationary andB) transient statistics for a passive scalar with

be needed for and without a uniform mean scalar gradient. For case A,
ad' |~ ‘ model predictions will be compared with the extensive DNS
Ui Ui ™. 7). (94 results of Overholt and Poflefor the joint statistics of the
I

scalar, scalar gradient, and the turbulent frequency at two
[One can argue that the left-hand side of E38) need only  Reynolds numbers. For case B, model predictions show a
containu; in place ofu; since the conditional advection with sensitive dependence on the initial scalar spectrum, and a
respect tou; should be null in homogeneous turbulefife. transient non-Gaussian scalar pdf can result due to large-
Indeed, although the magnitude ofdt~ 7 is small com- scale inhomogeneity of the scalar field. For this case, a quali-

pared tou; dt~Re}?z, it is of the same order of magnitude
as the size of the fluid particle. Thus, E§3) represents the
sole mechanism for inertial-range “homogenization” of the
scalar field(the right-hand side will be null if the scalar field
is homogeneous above the Kolmogorov sgale general, \
Eq. (93) will be non-zero only when a “non-equilibrium” .l
initial scalar field is employede.qg., the scalar field is statis- O
tically homogeneous at the velocity integral scale, but con- \ %"‘o
tains regions with different initial scalar spectral distribu- o L o N s,
tions). For this case, the conditional advection term, & S agy, %"%,%
= 9,

=

u,_
: l?Xi

¢r*>, (95) 10"k a M 4

may be non-linear irp’*, leading to transient non-Gaussian . = ﬂu‘,u% =]
scalar pdfs as seen in DNS.As shown in Sec. IV, this 107 F g 3
effect is most pronounced in the absence of a mean scal: E'g"u'!nm

gradient[i.e., when Eq(92) is null]. , . ‘

IV. APPLICATION OF THE LSR MODEL TO

HOMOGENEOUS FLOWS FIG. 1. Stationary pdf of the turbulent frequenf}’ =(o* —(w))/a,]
. . found with C,=1, C,=0.35, h=0, S,=0, and (w)=1. O: R,=28
The SR model has been showo yield satisfactory (yml=0.778).XOZR)\=84 (7.1="0.500), shifted up one decade. The dashed

agreement with available DNS and experimental dataijor curves correspond to the stretched-exponential pdf fitted using DNS'data.
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TABLE II. Stationary moments of the pdf of the natural logarithm of the TABLE Ill. Stationary moments of the scalar pdf wifty=1. First three

turbulent frequencyIn(X)] found with the parameters in Table I. rows: S,2=1. Last two rows:S,2=0. DNS values are shown in parenthe-

ses.
Ry 28 84
- > Ry, Sc N, 28,1,1 84,1,1 84,1,3 84,2001

Variance,ojyx) 0.730+0.001 (0.7280.003) 1.030£0.002

Skewness —0.496+0.004 (—0.335-0.005) —0.354+0.003 Variance,ofb 1.04 1.03 1.03 1.12

Kurtosis 3.58:0.01 (3.31-0.01) 3.3%:0.01 Kurtosis 3.03 (2.9&0.03) 3.05(2.86:0.10) 3.01 3.08

Superskewness 28t9).5 (22.5-0.3) 23.2:0.3 Superskewness 15.4 (136.4) 15.7 (13.*+1.2) 15.2 16.2
Kurtosis 3.08 3.09 3.02 3.13
Superskewness 16.3 16.4 15.0 17.0

tative comparison of the transient statistics predicted by the

LSR model with the DNS data of Jabeti al?? is presented.

values ofR, . The model constar® ,=0.35 in Eq.(62) was

fitted by forcing the model variancerﬁ) to agree with the
The first case to be considered is the asymptotic behayoNS variance atR, =84. In general, it can be seen that

ior for scalar mixing in forced, isotropic turbulence. At the within the bounds of statistical error the model satisfactorily

statistically stationaryS9 state(r ,) is constant and, in the reproduces the DNS results, including the dependence on

presence of a uniform mean scalar gradiefd,)=S,2. R, . (Recall, however, thay,, supplies theR, dependence,

Thus, when &Sz, the stationary LSR model simplifies sig- and it is an input to the modgIStationary pdfs for the stan-

nificantly since (¢;?)=($1%)*, ($55)=(¢55)*, and the dardized turbulent frequency,

right-hand sides of Eq$63)—(65) are null. Similar simplifi- .

cations result in the absence of a mean scalar gradient if the - :w__<“’>

model equations are rewritten in terms of fraction of scalar o,

energy in a wavenumber band, i.és; ;)". At the SS state, are shown in Fig. 1. For comparison, the stretched-

the mean spectral fractions become constant, and fluctuatiO@ponentia| pdf fitted to DNS data by Overholt and Pdje

in (e4)* are generated by(t) in Eq. (70); hence, as noted shown by a dashed line. As expected from the choice of the

earlier, the statistics ab* play a crucial role in determining  model parameters, the upper tails of the simulated pdfs are in

the scalar statistics. excellent agreement with the DNS stretched-exponential

forms.[This would not be the case if, for instance, E§7)

were employed to modeb*.] Similar results for InK) are

presented in Table Il and Fig. 2 where again satisfactory

A. Stationary scalar statistics in isotropic turbulence

1. Turbulent frequency statistics
In Table |, results for the dimensionless turbulent fre-

quency, agreement with the DNS data is observed. In order to high-
o* light the non-log-normality ofX, a Gaussian pdf has been
X= @ included in Fig. 2. Note that unlike E¢57), Eq. (58) pre-

_ _ . dicts significant negative skewness forXi(In conclusion,
found from Monte-Carlo simulations of E(8) (hereinafter it is found that Eq.(58) yields a satisfactory description of

all simulations employN=10° notional particles unless the one-point, one-time turbulent frequency statistics ob-
noted otherwiseare compared with the DNS data for two

10° 10 R A A e s

FIG. 2. Stationary pdf of the natural logarithm of the turbulent frequencyFIG. 3. Stationary scalar pdfY(=¢'*/o ;) found with S;2=0, R, =84,
[X"=(In(X)—=({In(X)))/o1nx] found with parameters in Fig. T1: R, =28; Sc=200,N,=1, andfp=1. All other parameters are the same as in Fig. 1.
¢ R, =84, shifted up two decades; dashed curve: Gaussian pdf. Dashed curve: Gaussian pdf.
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TABLE IV. Stationary moments of the pdf of the scalar dissipati¥n € €, /(€,)) with a uniform mean scalar
gradient §,2=1) andfp=1. DNS values are shown in parentheségis the number of uncorrelated scalar-
gradient components in the model far

R,, Sc N, 28,1, 1 84,1, 1 84,1,2 84,1,3 84,200, 1
Variance,o?, 2.14 (2.97:0.31) 2.72 (5.682.17) 1.13 0.717 3.85
Skewness 3.14 (4.280.07) 4.82 (6.820.61) 2.42 1.80 5.65
Kurtosis 18.9 (31.51.2) 54.5 (84.2:16.8) 13.3 8.12 65.4
Superskewness 1485 (326870) 31400 (28608 12200) 846 251 35600

tained from DNS. The effect of the autocorrelation tithe.,  rapid decay of scalar fluctuationg.he predicted dependence
C,) will be explored below in relation to joint scalar dissi- on Reynolds number is more subtlacreasingr, increases
pation, turbulent frequency statistics. the variance ofw*, but decreases the fraction of the scalar
Given a model forw* (and hence?7) the LSR model spectrum subject to turbulent fluctuations as discussed be-
can be employed to predict joint scalar, scalar dissipationlow); however, a slight increagéinked to an increase in the
turbulent frequency statistics as a functionRf, Sc, and  variance of®) is observed aR, =84. On the other hand, it
N,. As noted in Sec. lll, only the case wheveandZ are s clearly seen that increasing the Schmidt number leads to a
independent, Gaussian random fields will be considered isignificant increase in non-Gaussian behaviwr DNS data
this work. This implies that either E@84) or Eq.(85) (and is available for largeSc), while increasingN, leads to a
the corresponding expressions #)rcan be used to close the decrease. Physically, one can contribute Khedependence
molecular mixing term(Simulations have been carried out to a decrease in the scalar dissipation variafdiscussed
with both models and statistically identical results werebelow). The Sc dependence can be understood in a similar
found) Note that the parametdd, enters the LSR model manner: increasin§cleads to a larger fraction of the scalar
both through the initialization oZ and in the parameters spectrum in the viscous-convective subrarige., stage B
C; andCy. For the range of Reynolds numbers consideredvhere it is directly subject to turbulent-frequency fluctua-
(R,=84), a maximum ofn,=3 substages are required to tions, thereby increasing the scalar dissipation variance.
describe the inertial subrange of the scalar specfriiike-
wise, two Schmidt numbersSc=1 and 200 have been in- o o
vestigated and correspond, respectively, ng=0 and 3 Scalar dissipation statistics

nz=1. Finally, in order to treat the zero-mean-gradient case, The LSR model predictions for the scalar dissipation are
the LSR model equations were rewritten in terms of the “lo-presented in Tables IV and V. All of the simulation results
cal” spectral fractiongi.e.,(s; ;) T=(#/5)*/(¢'?)*) and the  for the scalar dissipation show a very wealegligible de-
“local” scalar dissipation rate ¢,). Thus, each notional pendence o5,2. Looking first at results for the normalized
particle in a Monte-Carlo simulation carries the following scalar dissipation,
random variables: o*, (s1)t, (s207, (5227, (s29 o
(s3)", @, andw),. Xqﬁ:ﬁ'
¢
it can be seen that the LSR model captures the large values
As noted in Sec. lll, a non-Gaussian scalar pdf can resulof the skewness, kurtosis, and superskewriasd theirR,
from the LSR model due to fluctuations in the “local” dependendgeseen in the DNS resultgAs reflected in the
scalar-variance ratigi.e., ). This “small-scale intermit- error bounds, due to the large number of extreme values
tency” route to non-Gaussian behavior is evident in Table Illpresent, it is difficult to determine if these moments are
and in Fig. 3 where the tails of the scalar pdf decay moresample-size independent. Compare the results with Table IX
slowly than the quadratic dependence seen with a Gaussiavhere the sample size is 1PNote, however, that the model
pdf. Nearly identical tails are obtained from DNSFrom generally underpredicts the variance and its scaling with
Table IlI, it can be observed that, as expected, non-GaussidR, . This trend persists for other values®©f (Table IX), but
behavior is greatest in the absence of a mean scalar gradieimhproves with increasingc. This observation suggests that
(DNS of the zero-mean-gradient case is difficult due to thecoherent turbulent-frequency fluctuatiofwhich were as-
sensitive dependence on the initial scalar spectrum and to tteimed to exist only for wavenumbers greater thgh may

2. Scalar statistics

TABLE V. Stationary moments of the pdf of the natural logarithm of the scalar dissipaigK,)] with
Sy2=0 andfp=1.

R\, Sc¢ N, 28,1,1 84,1,1 84,1, 2 84,1,3 84, 200, 1
Variance,aﬁ](xd)) 5.00 (1.98-0.02) 5.13 1.75 0.987 5.65
Skewness -1.50- 0.204+0.008) -1.44 -1.06 -0.881 -1.27
Kurtosis 6.90 (3.020.01) 6.66 5.04 4.55 6.08
Superskewness 157 (1&8.3) 146 68.5 58.5 121

Phys. Fluids, Vol. 9, No. 8, August 1997 R. O. Fox 2375



TABLE VI. Stationary mechanical-to-scalar time-scale ratio, correlation co-

10 i T j ) j j ) efficients, and the standard deviation ®f with f;=1. DNS values are
‘\‘ shown in parentheses. First four rov&;.=1. Last four rows:S;,2=0.
, X
0 F | ‘5:,0 3 Ry, Sc N, 28,1,1 84,1,1 84,1,284,1,3 84,200,1
\ Q.
‘ o‘\ %b%% (r) 1.92(1.82 1.95(2.22 1.94  1.94 1.79
100 ¢ pog,b o0, 3 p(p?.€4) -0.006(-0.022 -0.008(-0.02) -0.003 -0.001 -0.012
\ °oo° %006, p(e€s) 0.116(0.235 0.217(0.165 0.176 0.146  0.273
o, \ M ] oo 0.092 0.120 0.075 0.054  0.159
g wE 0%0g 0t (r) 2.00 2.00 200 200 200
°°°<>\_\_~ p(d?€,) 0.002 0.001 0.001 0.000  0.002
oo %, 000, 1 p(e.€4) 0.116 0.209 0.180 0.154  0.246
0 \u‘“%_qn e@%% oy 0.164 0.173 0.117 0.088  0.205
(e
“og, =]
107 b mﬂ“‘h%u E
"
10’3 i L i Il ] 1 1
2 A 0 ! 2 3 4 5 6 @z, +10(1) = CyReo(t),
X’_phi N2

FIG. 4. Stationary pdf of the scalar dissipati@b(jﬁ(e;—(eé))/05¢] and by replaﬁmg:é, with Cf; in, for exampltfa, qus(l4) andq.
found withR, =84,Sc=1, S,2=1, andf=1. All other parameters are the (33). [Note that, due to the separation-of-scales con ition,
same as in Fig. 10: N,=3; O: N,=2, shifted up one decade$: 1<C,Re, (42<R,), care must be taken when applying the

N,=1, shifted up two decades. The dashed curves correspond to the
stretched-exponential pdf fit using DNS data.

extend back into stage 2, and that the LSR model may b
further improved by including a dependence ®ft) at the

end of this stageNote that forSc=1, the first term of the

right-hand side of Eq.(70) contains a,, in place of of
azo(t). This has the result of artificially reducing fluctua-
tions in (e4)* (cf. Fig. 7 as compared to cases where
1< Sc] This modification can be implemented by introduc-
ing an additional wavenumber band to represent the begir
ning of the velocity-dissipation rantfk(i.e., the end of the -3k
inertial range: «,=C>%, where C;=Cy/2, an additional

substagerf,+ 1) in stage 2 with a convective transport rate,

In(X_phi)

1 0‘5 ) 1 I 1 1 1 1 I L L LY
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5
X**_phi

2 1
In(X)

FIG. 5. Stationary pdf of the natural logarithm of the scalar dissipationF|G. 6. Stationary joint pdf of the natural logarithm of the turbulent fre-
[X5=(IN(X4)=(IN(X))/Tinx »] found with R, =84 andS,2=0. All other  quency[In(X)] and of the scalar dissipatidin(X,)]. All other parameters
parameters are the same as in Figil.N,=3; O: N,=2, shifted up one are the same as in Fig. 4. Topt,=1; bottom: N,=3. Contour levels:
decade;¢ : N,=1, shifted up two decades; dashed curve: Gaussian pdf. —1:107%, —2:10°2, —3:10°%, —4:10°“.
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FIG. 8. Stationary conditional expectation of the scalar dissipatg) (
‘F ° 1 given the scalarY). All other parameters are the same as in Fig. 3.
° o
< Oo o °
A3F ¢ 000 ° 3 . L. .
E O o 50 which has the characteristic stretched-exponential form seen
g o . in earlier studie$>°%%%n Fig. 4, the dashed curves are again
Vat & ° SRR SR A the stretched-exponential forms fitted to the DNS data by
wow Overholt and Popé&* Note that the behavior of the pdf for
& large values ofX;, is dominated by the behavior ¢k )*.
: 'ooo"” 1 Thus, the stretched-exponential tails seen in Fig. 4 are a di-
4 rect result of having stretched-exponential tails for the pdf of
0 T *. (This result has been confirmed by simulations employ-
L ing alternative models fow*.) On the other hand, the be-
5 T havior for small values OX;& is dominated by the behavior
of Z2. For smallZ?, its pdf scales likef(x)~x"Z?"1, and
& this scaling is clearly seen in Fig. 4. Similar conclusions can
M ° °& o 1 be drawn from the results for IX() presented in Table V
0 70 o and Fig. 5 where it can be observed that the model moder-
Aab moq,q’ o ° i ately overpredicts the magnitude of the moments. This result
=2 @b o o° °. can be traced to an underprediction of the fall-off rate of the
o} dpdf’% ° % left-hand tail of the pdf(Fig. 5 as compared to the DNS
Vat L ] resultst’
oo
odp
HE OOO"P 1 4. Joint statistics
°°° Additional stationary statistics are presented in Table VI.
o . . . . . . : A : Note that the value of the mechanical-to-scalar time-scale
L S A ratio is controlled, primarily, by the choice of the integral-

scale time-scaldé; [Eq. (32)] which will be affected, for

FIG. 7. Stationary conditional expectation of the scalar dissipatig) ( example’ by the fo_rcmg scheme employed in the [§R|81

given the turbulent frequencyXj with N,=1. 0: R,=28, Sc=1; ¢: the LSR modelt; is chosen to be {&), and thus(r) is
R,=84,Sc=1; O: R, =84, Sc=200. All other parameters are the same as nNearly independent d®, . The model's agreement with DNS

in Fig. 4. could thus be improved by incorporating the

R,-dependence seen in the DNS results. Also note that the
modified model to low Reynolds number flows where theturbulent-dissipation, scalar-dissipation correlation coeffi-
integral and dissipation scales are not clearly sepafated. cient, p(e,€,), predicted by the model is near thgositive
The generally good agreement with the DNS results iDNS value.(The model value is dependent @y as seen in

also reflected in the pdf of the standardized scalar dissipatiomable X, but is always positive This results from the rela-

(Fig. 4): tively strong correlation betweew* and (e,)* that is
62_<6¢> clearly evident in Figs. 6 and 7, and in similar figures from
x(’ﬁ:—, DNS?! that show precisely the same trend. Indeed, in Fig. 7,
Tey the scalar dissipation conditioned on the turbulent frequency,
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FIG. 9. Stationary conditional expectation of the scalar LaplacianEIaGS'h;'g'ertsg?gaargsggnwdtfhiﬁca;?;n\ggfsng?er?m(ﬁn;<aq;>i)n/('r:‘i")'3
[D=(FV2¢>’)/(<r¢>a¢)] given the scalarY). All other parameters are the ' pdl- P 9=

same as in Fig. 3.

Note that a sufficient condition for a Gaussian scalar pdf is

that the curves in both figures be linearxiras appears to be
w—*—x the case for-3<Y=<3 (cf. Fig. 3. Nearly identical behav-
(0) 7" ior is found from DNS*

shows the same behavior with respecktas found by DNS, . ] o
suggesting that Eq70) captures the essential physics of the 5- Scalar-variance ratio statistics
coupling between small-scale turbulent-frequency fluctua-  Stationary moments for the scalar-variance ratio are pre-
tions and scalar dissipation. As discussed in greater detadlented in Tables VI and VII. As noted earlidr, plays a key
below, the fact that the autocorrelation time ot is finite  role in determining the extent of non-Gaussian behavior in
and of the same order of magnitude as tha{€f)* in the  the scalar pdf. As is evident from Table VI, the magnitude of
LSR model is also significant in determining the form of thethe fluctuations inb, as measured by the standard deviation
conditional scalar dissipation. o, is strongly correlated with the extent of non-Gaussianity
The model predicts, in good agreement with DNS, thatin Table IIl. The higher-order moments in Table VIl indicate
the scalar, scalar-dissipation correlation coefficientthat the shape of the pdf is strongly dependent on the simu-
p(¢2,6¢), is nearly zero. The lack of significant correlation |ation parameters. For example, the pdf of
between the scalar and scalar dissipation is also observed in

<x¢|x=x>=<<%

Fig. 8 for the conditional statistic: S= cp_<q>>,
T
(x |Y=x)=<i ¢ =x> for Sc=200 shown in Fig. 10 is slightly shewed towards
¢ (€p)| T4 ' positive values. As expected from the model formulation, the
presence of a mean scalar gradient greatly redugesThe
and in Fig. 9 for the conditional scalar Laplacian: effect of reducing the diffusive-mixing parametdt, , is
shown in Table VIII where it can be seen that smaller values
I'V2¢'|p'* of fp lead to larger fluctuations i® and eventually to nu-
<D|Y:X>:<m U_¢: > merical instability. In theory, DNS data could be employed

to estimatef; from the diffusive-mixing model:

TABLE VII. Stationary moments of the pdf of the scalar—variance ratio

(®) with fp=1. First three rowsS;.=1. Last three rowsS,2=0. TABLE VIII. Effect of diffusive-mixing parameterfp) on selected station-

ary scalar statistics withR, =84, Sc=1, N,=1, and S,2=0. When

Ry, Sc N, 28,1,1 84,1,1 84,1, 3 84,200,1 f{p=<0.4, the simulation becomes statistically unstable before attaining a
statistically stationary state.

Skewness -0.09 -0.53 -0.53 0.00

Kurtosis 2.86 3.35 3.61 3.10

Superskewness 13.1 22.0 30.0 16.0 fo 10 08 06 04

Skewness 0.52 0.05 -0.14 0.40 [ 0.171 0.218 0.234 0.366

Kurtosis 3.48 3.04 3.14 3.50 Kurtosis 3.09 3.15 3.17 3.13

Superskewness 25.9 155 17.3 26.5 Superskewness 16.4 16.4 17.7 17.0

2378 Phys. Fluids, Vol. 9, No. 8, August 1997 R. O. Fox



Auto—correlation function

3.0 32 34 36 38 40 0.00 0.05 0.10 0.15 0.20 025
t* t*

FIG. 11. Example Lagrangian time series following a notional particle
found with R,=84 and Sc=1. The dimensionless time is defined by
t* =(w)t. All other parameters are the same as in Fig. 4. Solid liviE;

O wh; O .

, ’ <Fv2¢/2|7//>
fo((¢"%)—(e" Ty

but this would require Lagrangian conditional statistics thai
are difficult to obtain with sufficient accuracy from DNS
with Sc=1. Note, however, that the effective sample size of
the scalar field in a Kolmogorov-scale fluid particle can be
increased by using larger values 8t for which DNS is
unfeasible. For this case, it may be possible to extract cor
ditional statistics from higtSc experimental dafd where, B ) ,
for example, the conditional variande'?|%) would cor- 0.00 005 o.10 Otgé 020 025
respond to the variance in a 3-D, Kolmogorov-scale mea

surement window at a fixed time, and multiple samples coul
be obtained by extracting data over many instants in time.

7Y)=

Cross—correlation function

c;:IG. 12. Lagrangian auto- and cross-correlation functions @ifk-1 and
all other parameters are as in Fig. 4. Top+—ow*; <: wL; O: o.
Bottom—O: 0* andw),; ¢ o), and®; O: v* and®.
6. Temporal statistics
The one-point, one-time statistics presented thus far pro-
vide no information about the temporal behavior of the sto-and
chastic models. This information can be extracted from La- (T1(D)To(t+ 7))
grangian time series such as those presented in Fig. 11 where p1A7)= (Tz(t)>1’2<T2(t))1’2’
the dimensionless time is defined by=(w)t. (No DNS ! 2
Lagrangian statistics for the scalar quantities have been rgespectively.(Note that stationarity implies that the right-
ported in the literature. However, it should possiblend of  hand sides are independentdfLagrangian auto- and cross-
considerable interest to compute them for comparison witlgorrelation functions for the LSR model appear in Fig. 12.
model predictions. Qualitatively, it is clear that the time From the behavior of its auto-correlation function near
series for the scalar quantitiesl and®) are smoother than t*=0, it can be seen thab* becomes uncorrelated expo-
that of the turbulent frequency. Moreover, it can also be obhentially fast[as would be expected for a random process
served that peaks in the scalar quantities occur with a shogtriven by white-noise, Eq(57)] with a dimensionless auto-
time delay after peaks in the turbulent frequency, and that theorrelation time of approximately 0.06~2.8¢ where
time series for® is considerably smoother than the othertx=1/Re;=0.031 is the dimensionless Kolmogorov time
two. These observations can be made quantitative by conscalg. On the other hand, the auto-correlation functions for
puting the Lagrangian stationary auto- and cross-correlatiom;, and® both have zero slope &t =0, reflecting the fact
functions defined for arbitrary second-order stationary, zerothat their time series are differentiabler twice differen-
mean, Lagrangian time seri@g(t) and T,(t) by tiable in the case o) and, hence, relatively smooth func-
tions of time. Also note that their auto-correlation times are
<T|(I)T|(t+ T)> al . .
pi(7) = " pproximately the same as that ©f. The existence of a
(Ti (1) time delay is confirmed by the cross-correlation functions.
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For examplew™* (t*) is most strongly(positive correlated
with w},(t*+0.6t¢) and (negative with ®(t* +3.2t),

while wT(t*) is most strongly(negative correlated with
O(t*+2. 4tK) Finally, as discussed below, it is important to
keep in mind that these results are strongly dependent on the
choice of C,=1 in the model forw*. In particular, if
C,~1/Re, then the auto-correlation times will no longer
scale likety (Fig. 14).

7. Effect of the auto-correlation time

In the Lagrangian pdf model fow*, C, controls the
auto-correlation time and, since it describes processes neai
the Kolmogorov scale, the latter is assumed to scale like
1/Re,. Nevertheless, available DNS statisticsuggest that
the Lagrangian auto-correlation time may be independent of
Re,, in which caseC,~1/Re,. The effect ofC, on the
predictions of the LRM model has thus been investigated,

and the results are presented in Table IX and Figs. 13—-15. As

noted earlier, a stretched-exponential pdf for the scalar dis-
sipation is predicted for all three values®©f (i.e., if the pdf

of X is stretched exponential, then so is thatXgf). Never-
theless,C, has a strong effect on the correlation coefficient
p(€,€4), and on the magnitude of the moments of the scalar
dissipation pdf. Experimentation has revealed that all of
these statistics have their maximum val(asd are closest to
DNS) whenC,~1. On the other hand, the largest value of
og occurs with the smallest value &, . The conditional
scalar dissipation, presented in Fig. 13, also shows a strong
dependence o€, . (Qualitatively, the conditional scalar dis-
sipation found WlthC =1/Re, agrees most closely with the
DNS result€?) For C = 1Rey, (X4|X=x) falls off more
quickly with increasing than is seen witlC, = 1, indicating
that large values of the scalar dissipation are less correlated
with large values of the turbulent frequency when the auto-
correlation time is increased. This behavior can be under-
stood by observing that in the LSR modé}~ w),® so that

the effect of changing the autocorrelation time will depend
on its influence on botla)f/, and®. Scatter plots of these two
variables versus* reveal that a<C, decreasesp is more
strongly affected, and that for large* the value of® be-
comes significantly smaller a€, decreases, thereby de-
creasingX. In the limit C,—0, the LSR variables will be

in a quasi-equilibrium state where all time derivatives are
approximately zero. LettinG= S¢2/<¢'2>, the model equa-
tion for @ in this limit then yields (p=1)
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Noting that if 0<S, then(r ,)=S; the limiting behavior for

X, is thus found to be
Xy=1, if S=0
or
N

w
@ .
X4=C-——, otherwise,
¢ 1+ W,

FIG. 13. Effect of the auto-correlation time of the turbulent frequency on
the stationary conditional expectation of the scalar dissipatiof) @iven

the turbulent frequencyX) found with R,=84, Sc=1, andN,=1. All
other parameters are the same as in Figl1C,=1/Re; O: C,=1; ¢
C,=10.

model predicts that;; andw™* will be nearly uncorrelated in
the absence of a mean scalar gradien€Cif~1/Re,. The
latter has been confirmed from simulations and is in sharp
contrast to the cas€, =1 where the conditional scalar dis-

where C= l+(1/w¢> Note that the second relation above sipation is nearly the same in the absence of or with a mean
agrees well with the case, = 1/Re, in Fig. 13, and that the scalar gradient. Conversely, when<C, both w¢ and ¢
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Auto—correlation function
Auto—correlation function
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Cross—correlation function
Cross—correlation function
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t* t*

FIG. 14. Lagrangian auto- and cross-correlation functions Wik 1/Re; FIG. 15. Lagrangian auto- and cross-correlation functions ®5;Ifr 10 and
and all other parameters are as in Fig. {idote the change in the time all other parameters are as in Fig. 12. Top+o*; O: wl,; O: ®.
scale) Top—O: w*; ¢ wL; O: ®. Bottom—O: w* andcuf,,; 0wl and Bottom—O: w* andw;; ¢ : wTd) and®; O: o* and®.

O; O0: w* andd.

become uncorrelated from*, and the latter behaves more From the above results, we can conclude that for station-
and more like a delta-correlated random proc@ss, the ary isotropic turbulencéi) the scalar and scalar dissipation
“white-noise” limit employed in earlier studié$*®. For statistics predicted by the LSR model are in satisfactory
good agreement with the DNS data, it is thus important thabgreement with available DNS daf) the role of “small-
the auto-correlation time ab* be larger than the character- scale intermittency” of the scalar dissipatiéviz., turbulent
istic scalar-dissipation diffusion tinfd/(Cq4(r){) = 1/Re]in  frequency in the generation of non-Gaussian scalar statistics
the LSR modelcompare this conclusion with those concern-is consistent with other studi€& (iii) the model predic-
ing the white-noise limit in Holzer and Sigfa The auto-  tions are fairly insensitive to the auto-correlation time, pro-
and cross-correlation functions presented in Figs. 14 and 1¥ded C,<1; (iv) the scalar dissipation moments found with
confirm these observations. Additionally, as can be see ~1 agree best with DNS, but agreement is adequate when
from Fig. 14, wherC, ~ 1/Re, the cross-correlation between C +~ 1/Re;; (v) the conditional scalar dissipation found with
w(t*) andwT(t*) is posmve and nearly unity, implying that C = 1/Re, agrees most closely with DN$yi) DNS results
w¢ is nearly a deterministic increasing function ®f . The for the conditional scalar dissipation wits,2=0 would be
DNS resulté® (with a uniform mean scalar gradignfor  useful for determining ifC,~1/Re, in the turbulent fre-
(X4|X=x) atR,=84 display a limiting value for largg of  quency model(vii) experimental measurements of Lagrang-
approximately 2.4 which agrees well with limiting expres- ian conditional scalar statistics in higbe flows may be use-
sion given above WItf‘(l/wT>~1 4. The latter is slightly ful for validating the statistics of and the diffusive-mixing
Iarger than the LSR model predlctlon ()I/w(/,) 1.13 with  model; and(viii) detailed Lagrangian DNS statistics for the
=1/Rey, suggesting that the appropriate valueflies  scalar quantities are needed to further validate the temporal
near the left-hand side of the interval Rl ,1). statistics predicted by the LSR model.
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B. Transient scalar statistics in stationary, isotropic TABLE IX. Stationary moments of the pdf of the scalar dissipatiofX
turbulence and selected statistics found wily =84, Sc=1, N,=1, andS,.=1 for

scale(presumably universpphenomena, is strongly depen-

. . ] ] selected values of the auto-correlation time of the turbulent frequedgy
The second case, unlike the first which dealt with small-in Eq. (58)]. Simulations run with 19notional particles.

dent upon the initial conditions of the large scales and, Cx 1R, . 10Re DNS
hence, will be highly flow dependent. Due to this depen- Variance 2.18 2.70 1.94 5.68.17
dence on large scales, experimetftand DNS? results for Skewness 3.26 4.70 3.20 6:89.61
transient statistics for such flows are often plagued by the Kurtosis 206 482 206 84:216.8
. P .. Superskewness 1750 14400 1830 2860@200

effects of an inadequate sample size., over a sufficient ) 182 195 1.89 2 99
number. of ir;teg_ral length scabeéea}ding to Ia_rgg statistical_ pleey) 0130 0217 0.055 0.165
fluctuations>® This fact makes detailed quantitative compari- o, 0.179 0.120 0.042

sons with experimental/DNS data difficult. Nevertheless, &
qualitative comparison with the LSR model is possible, and
will suffice to illustrate the model’s ability to capture non-
Gaussian scalar behavior due to large-scale inhomogeneities.

1. Model problem

for a given initial scalar spectrumNotional particles
with different initializations would then be advected be-
tween the grid cells, and the inertial- and diffusive-
mixing terms (e.g., 7, and &, respectively in the
LSR model would serve to “homogenize” the scalar
In the model problem to be considered, we will again  field at all scales.

assume the turbulence to be fully developed, isotropic, ang3) Since the DNS simulations are homogeneous on large
stationary. The scalar spectrum, on the other hand, will be  scales [ <I), the spatial mixing by “turbulent diffu-

assumed to be initially out of equilibrium so that transient  sjon” can be approximated by splitting the notional par-
scalar statistics result as it relaxes to a fully developed form. ticles into two setdi.e., regions 1 and)?2 and, for the
In the LSR model, this Imp|les that the dynamiC variables n; particles in Seti, by rep|acing the unconditional
(e.9.,(s;;)") must be initialized to represent the desired ini-  means in the LSR model by weighted means, e.g.,
tial scalar spectrum. In the DNSstudy that will be used for

a qualitative model comparison, the most significant non- <g1>i:wi’1(t*)(gl>l+wi2(t*)<gl>2,

Gaussian behavior is found when the initial scalar spectrum

is bimodal with one strong peak at small wavenumbers where(-); is the(conditiona) expected value computed
(0<k<kp) and a second at relatively high wavenumbers  using only those particles in setThen, taking the char-
(kg<<k<ky). In the LSR model, this would correspond to acteristic large-scale mixing time to be(a}, the
initializing all spectral fractions, except;)" and(s,, )7, to weights become

zero. [Note thatw;, must also be initialized and, theoreti-
cally, is quite arbitrary since an infinitesimal amount of sca- ~ Wy 1(t*)=

(np+net),

. n;+n
lar energy placed at a very large wavenumber could result in 12
(spy'=0, butw;~1. I_ts initi_alization, however, is of little Wy )= (ny+ne ),
consequence since it rapidlyt*(~1/Re;) relaxes to a ’ ni+n;

quasi-SS value determined, primarily, by the scalar flux from  gndw, ,=1—w, ;. This is the method that we shall em-
large scaleg.Nevertheless, since in the LSR model all large  pjoy in the seduel wit,;=n, (regions of equal vol-
scales are “lumped” into stage 1 and treated as a simple ume, and the initial conditions given in Table XThe

source of scalar energy, care must be taken when applying “global average” in Table X is defined by
the model to flows dominated by large scales. In practice, at  (.)=(n,(-);+ny(-),)/(n;+n,).]

least three possibilities present themselves for handling such ) ) o . )
flows. In the simulations, two sets of initial conditions will be

@

@

consideredTable X). The first, denoted by IC1, corresponds
As noted in Sec. Il, the large scales can be simulategy an initial scalar spectrum with one-half of the energy at
separately(e.g., LES up to a cut-off wavenumbek., |arge scales, and the other half at small scétestotal initial
located somewhere in the inertial subraigtage 2. The  scalar energy is arbitrarily set to unityC1 thus models the
LSR model could then be applied as a subgrid modeloyble-hat DNS initial conditions of Jabest al?? The sec-
with the scalar flux ak provided as model input. ond set, denoted by IC2, employs the same spectral fractions,

The large scales can be treated using classical “turbulerfyt assumes that region(large scaleshas a much smaller
diffusivity” (or scalar flux models(e.g., standard La-

grangian pdf methodson a computational grid of size TABLEX. Non-equilibrium spectral initial conditions for IC1 and IC2 with
L~27T/K0. Large-scale scalar structures would then faIIRAZSf‘ andSc=1. AII other paramgters are as in Tables | and llI. Initial
across one or more grid celibereinafter called region Ccondiions for remaining modef variablei=1, (22" ={s22"=0.

_1). :_anq all nqtional particle; wit_hin this region would be ICL(¢'2)"  IC2(¢'D)  (s)' (50" @)}
initialized with (s;)T=1. Likewise, a region of small-

. . Region 1 1.0 0.04 1.0 0.0 0.0
scale structuregregion 2 could coc.ex[st betyveen the Region 2 10 1.96 0.0 1.0 6.0
large-scale  structures, and within this region gjopal average 1.0 1.0 05 05 3.0

(§2,n2>*= 1 (or whatever initialization that is appropriate
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FIG. 16. Evolution of the scalar dissipation rate and the scalar-mechanicat|g_ 17. Evolution of the spectral distribution with non-equilibrium spectral
dissipation correlation coefficient with non-equilibrium spectral initial con- jnitial conditions.O: (51); O: (5207 O (sa2; Az (sp9. All parameters
ditions, R, =84, Sc=1, andN,=1. O: (r,); ©: p(e,€,). One Kolmog-  gre the same as in Fig. 16. ' ' '

orov time for this flow corresponds t3 =0.031.

tively quickly due to the fact that the characteristic time scale

spectral energy than region 2. In physical space, 1C2 wouldht cajar dissipation is proportional toRé in the LSR
correspond to large areas with nearly zero scalar fluctuations,,4e| C.=1)
X .

(region 1), separated by areas with high scalar fluctuations
over short length scalgsegion 2. This type of scalar field
has been observed in earlier numerical studies of scal
mixing,>*° and is seen experimentally in grid turbulence  The evolution of the superskewness of the scalar pdf is
where scalar fluctuations are generated by (grid) sources  shown in Fig. 18. From these curves it can be seen that the
separated by approximately one integral s€al€or both transient scalar pdf is highly non-Gaussian, especially in the
sets of initial conditions, we will again assume that the scalanbsence of a mean scalar gradient, relaxing to a self-similar
and scalar gradient fields are initially Gaussianith a pos- form only aftert* ~3. By construction, the scalar pdf for
sibility different variance for each regignand that all no- IC1 is initially Gaussian; however, since the large and small
tional particles have initiallgpb=1. In addition, the effect of scales have the same fraction of the total spectral energy, it
including a mean scalar gradient on the non-Gaussian behaxvapidly becomes non-Gaussian due to the loss of spectral
ior will be considered. energy in the small scaldge., the scalar variance in region
2 decreases much faster than that in regipThe scalar pdf

a Evolution of the scalar pdf

2. Evolution of the scalar spectrum

Figures 16 and 17 have been included to illustrate the
LSR model's prediction of transient scalar spectrum. Since
the results are qualitatively similar for both IC1 and IC2,
only one set of curves has been included in the figures. Ir
Fig. 16, the evolution ofr ;) andp(e,e,) is presented and
can be divided into two distinct time periods. The first period
(t*<0.5) is dominated by the fast relaxation of the small
scales and, during this period, most of the spectral energy ¢
small scaledi.e., in region 2 dissipates. The second period
(0.5<t*) is dominated by the slow relaxation of large
scales, the homogenization of the scalar field by “turbulent
diffusion,” and the gradual approach to spectral equilibrium.
Note that the dimensionless Kolmogorov time scale for this
flow is tx=0.031 and, hence, the first period is relatively 0 f .
long. (Nevertheless, its length is proportional to the charac- ; g
teristic time scale of the small scaldg;z=0.125( w).) The o0 o 20 30 a0
spectral fractions, appearing in Fig. 17, display a similar be- ¢
hE.iVIOFI and a_lre conglstenz'[ Wlth the DNS reSL{mmpar_e FIG. 18. Evolution of the scalar superskewness with non-equilibrium spec-
with Fig. 11 in Jaberet al*). Finally, note that scalar dis- ) initial conditions.O: IC1 with S,2=0; ¢ : IC1 with Sye=1; CJ: IC2
sipation statisticgviz., p(€,€,4)] reach their final values rela- with S;2=0; Gaussian value: 15.
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K4 KN 4. Evolution of conditional scalar statistics
o// ‘\% . . .
o b oo" > l The role of the various unclosed terms in the Lagrangian
= &/ ‘\‘% scalar pdf equatiofEq. (83)] in the production of transient
o L :o,'l o] non-Gaussian scalar pdf can be highlighted by computing the
w e conditional scalar dissipatiofX,4Y=x), the conditional
. \ scalar LaplaciagD|Y=x), and the conditional scalar flux,
107 i \ 4
/l ‘\\ UV¢)/ ¢!*
. e ) <A|Y:X>:<(w>0 o, I
10 -6 -5 4 -3 -2 - 0 1 2 3 4 5 6 ¢ ¢
Y

As noted earlier, if all three functions are lineandnthen the
scalar pdf will be Gaussian. These quantities, computed from
FIG. 19. Scalar pdf at”=0.4 for IC1.O: S,2=0; ©: S;z=1. Dashed  ha | SR model at four different times for IC2 Wit,2=0
curves: Gaussian pdf. . . . . .
appear in Figs. 20—22, respectively. Looking first at the con-
ditional scalar dissipation, note that it displays the parabolic
form found in grid turbulend® and is often taken as a tell-
tale sign of non-Gaussian behavif (It is, however, not a
for IC2, on the other hand, is initially highly non-Gaussian,
but evolves towards a Gaussian form by the same mecha-
nism. The large effect of the presence of a mean scalar gre

8.0 T T T T T T T T T

dient is also evident in the figure where it can be seen tha o "3;%
the maximum deviation from Gaussian behavior is over three 6o} © 2 u";b 1
times larger wher§,2=0 than whenS,.=1. Scalar pdf at i o q:é’g}b

<> 4

t*=0.4, presented in Fig. 19, further illustrate the strong 40T m
“smoothing” effect of a mean scalar gradient. Nearly iden- )
tical behavior is seen from DN&.The essential difference or B
between zero- and uniform mean scalar gradient results is th
fact the latter has a Gaussian scalar variance sourcq Em
(92)] that is uniform in both regions. Thus, as the initial 20l
scalar energy dissipates away, it is quickiynd uniformly
replenished until both regions are statistically identical at all <o}
scales. Note that, in addition, if the source term producec
regions where the scalar variance and spectral distributior
were correlated (e.g., the “ramp-and-cliff’ structures seen
in uniform mean gradient studi®$%%3, then the scalar pdf TS IS
would be further modified from the Gaussian form. In prin-

ciple, the LSR model is applicable to such flows; hOWever’FlG. 21. Conditional expectation of the scalar Laplacian
the conditional scalar variance source modEl. (92)]  [p=(rv2e')/((r )o,)] given the scalarY) for IC2 with S,2=0. O:
would need to be modified to account for the correlations. t*=0.2;0: 0.4; ¢: 0.8; A: 1.6.

-6.0 |
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turbulent frequency plays an important role in the overall

satisfactory agreement of the scalar field statistics. In particu-

lar, it was shown that a stretched-exponential form for the

1 scalar dissipation pdf results only in the case where the tur-

bulent frequency pdf is also stretched exponential, that the

] auto-correlation time of the turbulent frequency strongly in-

fluences the joint statistics, and that the mean turbulent fre-

guency has a significant effect on the equilibrium mean sca-
lar dissipation rate. Further improvement in scalar-
dissipation models in general will thus depend directly on

1 improvements in the turbulent frequency mogelg., in the

description of non-equilibrium effects and of large scales

The field of application of the Lagrangian spectral relax-
ation model can be extended in various ways beyond the
simple homogeneous flows considered in the present work.

1 2 3 4 5 6 In its current form, the model is directly applicable to the

study of differential diffusion of passive scalars in homoge-
neous turbulenc& With minor modifications, it should also

FIG. 22. Conditional expectation of scalar fliR=(u-V4')/((w)oy)]  pe possible to apply the model to the study of the important

given the scalarY) for IC2 with S;2=0. O: t*=0.2; . 0.4; ¢: 0.8; . .

A- 16, areas of homogeneous non-premixed turbulent reacting flows
near extinction, inhomogeneous scalar mixing problems, and
premixed turbulent combustidf. Furthermore, application

necessarycondition since the transient conditional dissipa-of the model to the description of small-scale miximgicro-

tion for IC1 has arnnvertedparabolic form) The appearance mixing) in the chemical process industhshould be particu-

of a parabolic form for IC2 is easily understood from the larly fruitful due to the relative abundance of flows far from

initial conditions: large scalar fluctuations are initially corre- scalar-spectral equilibriunfe.g., reacting point source in a

lated with large scalar dissipation. The conditional scalar Lafully developed turbulent j&° or in a fully developed tur-

placian (Fig. 21 and the conditional scalar flujEQ. (22)]  bulent pipe flov?).

also display strongly non-linear forms, and also behave dif- Note added in proofThe most recent version of the

ferently for different initial conditions(The former is often model employs the following definitions of the molecular

modeled as a linear function, even in cases where the scaldissipation  rate: (r¢)0:(e¢>/<¢>,’32 and (ry)"

pdf is highly non-Gaussial?) Neither of these quantities are :<e¢>*/<¢|’32)*,

available from the DNS stud§ for comparison with the

model, but both would be particularly useful for model vali- ACKNOWLEDGMENTS
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