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The Lagrangian spectral relaxation model of the scalar dissipation
in homogeneous turbulence

R. O. Foxa)
Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506

~Received 24 January 1997; accepted 7 April 1997!

Lagrangian pdf methods are employed to extend the spectral relaxation~SR! model of the scalar
dissipation of an inert, passive scalar (1<Sc) in homogeneous turbulence. The Lagrangian spectral
relaxation~LSR! model divides wavenumber space into a finite number~the total number depending
on the Taylor-scale Reynolds numberRl and the Schmidt numberSc) of wavenumber bands whose
time constants are determined from the mean turbulent kinetic energy and instantaneous turbulent
energy dissipation rate. The LSR model accounts for the evolution of the scalar spectrum~viz., pdf!
from an arbitrary initial shape to its fully developed form. The effect of turbulent-frequency
fluctuations on the instantaneous scalar dissipation rate following a Kolmogorov-scale fluid particle
is incorporated into the LSR model through a Lagrangian pdf model for the turbulent frequency.
Model results are compared with DNS data for passive scalar mixing in stationary, isotropic
turbulence. Two distinct causes of non-Gaussian scalar statistics are investigated: small-scale
intermittency due to scalar-dissipation fluctuations at scales near the Kolmogorov scale, and
transient large-scale inhomogeneities due to the form of the initial scalar spectrum at scales near the
integral scale. Despite the absence of fitting parameters, the LSR model shows satisfactory
agreement with available DNS data for both types of flows. ©1997 American Institute of Physics.
@S1070-6631~97!01108-2#

I. INTRODUCTION

Like the turbulent dissipation rate, the scalar dissipation
rate provides information about scalar time and length scales
needed to close the scalar variance equation, and is a key
quantity in the modeling of both inert and reacting turbulent
scalar fields.1–6 Nearly all currently employed models for
scalar mixing ranging from simple moment closures to full
probability density function~pdf! simulations require infor-
mation concerning the coupling between the turbulence time
scales and the scalar time scales for closure. Ample experi-
mental and direct numerical simulation~DNS! data exist to
show that the usual assumption of a direct proportionality
between these time scales is often unjustified and that, in
reality, the velocity-to-scalar time-scale ratio varies widely
according to the flow under consideration and with time,
depending in particular on the initial scalar-to-mechanical
integral-scale ratio.7–10

In an earlier work4 the spectral relaxation~SR! model of
themeanscalar dissipation rate was introduced and shown to
successfully account for the effect of the velocity spectrum
on the relaxation of the scalar spectrum from an arbitrary
initial form in both stationary and decaying turbulence. The
SR model contains a range of turbulent time~length! scales
and thus accounts for the cascade of scalar energy from large
to small scales. This division of physical mixing processes
according to their characteristic length scales removes all
fitting parameters, replacing them with physical constants
that characterize the fundamental processes of turbulent vor-
tex stretching and molecular dissipation. The objective of the

present work is to extend the SR model using Lagrangian pdf
methods to account for Kolmogorov-scale fluctuations in the
vortex-stretching rate, and their effect on the one-point scalar
and scalar dissipation statistics in homogeneous turbulence.

Lagrangian pdf methods combine pdf methods with sto-
chastic Lagrangian models to provide a computationally trac-
table method for calculating the statistics of inhomogeneous
turbulent flows of practical importance.11 Models at the level
of the velocity, turbulent frequency, composition Lagrangian
pdf represent the current state of the art12 and provide a
description of scalar transport in high Reynolds-number tur-
bulent flows. The lack of a dynamic model for the scalar
dissipation rate, however, limits their application to fully de-
veloped~equilibrium! scalar field decay in stationary turbu-
lence and to flows for which knowledge of the mean~as
opposed toinstantaneous! scalar dissipation rate suffices.
~Reactive flows dominated by ignition and extinction
events13–18 are an example of a class of flows requiring a
dynamic model like the one developed in this work.! With
the addition of the Lagrangian spectral relaxation~LSR!
model, this limitation will be lifted and the resultingvelocity,
turbulent frequency, composition, scalar dissipationLa-
grangian pdf description will be applicable to cases with ar-
bitrary initial scalar length-scale distributions, and provide
one-point statistics and atime historyfor the scalar dissipa-
tion in each fluid particle.

The remainder of this work is arranged as follows. In
Sec. II the SR model is reviewed and minor modifications of
the original model are introduced. The LSR model is pre-
sented in Sec. III in the form of a set of stochastic differential
equations for the mean scalar dissipationconditioned ona
given turbulent-frequency time history:W (t)5$v* (s)us
P (2`,t#%, wherev* (t) is the turbulent dissipation in a
Lagrangian fluid particle divided by the mean turbulent ki-

a!On sabbatical leave at the Laboratoire de Me´canique des Fluides Nume´r-
ique, CORIA UMR 6614 CNRS—Universite´ & INSA de Rouen, 76801
Saint Etienne du Rouvray, France.
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netic energy at the particle location. The LSR model, com-
bined with the Fokker–Planck model,19,20 is applied to study
passive scalar mixing in stationary, isotropic turbulence in
Sec. IV, and the results are compared to DNS data21,22 for
joint one-point statistics of the scalar, scalar dissipation, and
turbulent frequency. Conclusions are drawn in Sec. V.

II. SPECTRAL RELAXATION MODEL

The SR model was introduced to improve the description
of the influence of the velocity field on the scalar dissipation
rate in turbulent flows. The model explicitly accounts for the
relaxation of a non-equilibrium scalar spectrum to its final
self-similar form through the actions of turbulent mixing.
Since many fast reactions take place in the non-equilibrium
regime,23,24the relaxation period is particularly important for
reacting flows where neglect of the transient behavior can
lead to serious prediction errors.25

Turbulent mixing of a passive scalar can be described by
the Reynolds-averaged moment equations for the scalar
mean and variance. For a homogeneous scalar field with a
uniform mean scalar gradient and molecular diffusivityG,
the governing equations become, respectively,

D^f&
Dt

50 ~1!

and

D^f82&
Dt

52Sf222^ef&, ~2!

where the mean convected derivative is defined by~repeated
indices imply summation!

D

Dt
5

]

]t
1^Ui&

]

]xi
, ~3!

the mean scalar dissipation by

^ef&5 K G
]f8

]xi

]f8

]xi
L , ~4!

the scalar variance source by

Sf252^uif8&
]^f&
]xi

, ~5!

and ui5Ui2^Ui&, f85f2^f& are the fluctuation fields.
Note that both the scalar dissipation and the scalar variance
source terms are unclosed.

The mean scalar dissipation rate is defined in terms of
the mean scalar dissipation by

^rf&5
^ef&

^f82&
. ~6!

The governing equation for the scalar gradient can be used to
find an expression for the mean scalar dissipation.4 The re-
sulting expression contains terms corresponding to produc-
tion by the mean scalar gradient, turbulent vortex stretching
of the fluctuating scalar gradient, and to molecular dissipa-
tion, all of which must be modeled. The SR model closes the
mean scalar dissipation rate equation by

D^rf&
Dt

52CDRe1^v&
TD

^f82&
12CsRe1^v&^rf&

22Cd^rf&o^rf&12Df^rf&, ~7!

where the mean turbulent frequency is defined by

^v&5
^e&

^k&
, ~8!

the turbulent Reynolds number by

Re15
^k&

An^e&
50.3873Rl ~9!

(Rl is the Taylor-scale Reynolds number!, CD5Cs /
(Cd21)50.25, Cs50.5/Nz , and Cd5112/Nz , where
1<Nz<3 is the effective dimension of the scalar field@see
the discussion after Eq.~90!#.

In the SR model,Cs is Batchelor’s constant,
26,27and has

been verified using DNS.28 The molecular-diffusion constant
Cd has been determined by forcing the model to agree with
the pure diffusion case20 where ^f82&;t2Nz/2 for large t.
The symbolTD denotes the flux of scalar energy from wave-
numbers below the scalar-dissipation wavenumber,
kD5CD

3/2kB5kB/8 where kB5Sc1/2kK is the Batchelor-
scale wavenumber27 and kK52p(^e&/n3)1/4 is the
Kolmogorov-scale wavenumber.31 The symbolDf is defined
by

Df52
1

2^f82&

d^f82&
dt

5^rf&2
Sf2

^f82&
, ~10!

and the characteristic molecular dissipation rate,^rf&o is
given by Eq.~24! below.^k& and^e& are themeanturbulent
kinetic energy and dissipation rate, respectively, andn is the
kinematic viscosity.

Physically, the first two terms of the right-hand side of
Eq. ~7! represent a closure for the effect of the turbulent
velocity field on the scalar gradient. Turbulent advection
works to decrease the scalar length scale by pushing more
scalar energy to larger wavenumbers. The first term thus re-
sults from scalar energy transported from large to small
scales, and the second term models small-scale straining of
the scalar field by the vorticity field. The third term on the
right-hand side is a closure for the effect of molecular dissi-
pation on the scalar gradient. At spectral equilibrium,
TD /^f82& is constant and the right-hand side of Eq.~7! is
null as transport of scalar energy from large to small scales is
exactly balanced by molecular dissipation.

The SR model describes the non-equilibrium transport of
scalar energy as a cascade process from large to small scales.
In order to provide a computationally tractable model, spec-
tral transport is assumed to be local in scalar wavenumber
space,29,30and the turbulent velocity spectrum is assumed to
be fully developed~i.e., equilibrium turbulence!.31–33 In the
original formulation of the model, additional dynamical vari-
ables were then introduced that correspond to ‘‘potential’’
scalar dissipations.4 These variables were referred to as po-
tential scalar dissipations because they are formed by multi-
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plying the fraction of the scalar spectrum,Ef(k,t), in a finite
band of wavenumbers@k i , j21 ,k i , j ) by a factor proportional
to GkD

2 :

^e i , j&5CDRe1^v&^f i , j82&, ~11!

where

^f i , j82&5E
k i , j21

k i , j
Ef~k,t !dk, ~12!

andk i , j is the upper-cutoff wavenumber of thej th substage
of the i th spectral subrange defined below. Here, in order to
make the relationship between the SR model variables and
the scalar spectrum more transparent, we shall work with the
model in terms of̂ f i , j82& or, equivalently, in terms of the
fraction of the scalar energy in a wavenumber band:

^§ i , j&5
^f i , j82&

^f82&
. ~13!

Note that by definition 0<^§ i , j&<1 and the sum of all frac-
tions is unity.

In the SR model, the scalar energy in thei th stage of the
cascade is denoted by^f i8

2& and in the (i , j )th substage, by
^f i , j82&. The cascade is composed of three principal stages
representing the following.

~1! Transport from wavenumbers below the integral-scale
wavenumber of the turbulent velocity field to
k05Re1

23/2kK , i.e., wavenumber band@0,k0).
~2! Transport in the inertial subrange fromk0 to the

velocity-dissipation wavenumberkU5CU
3/2kK repre-

sented byn2 substages with upper-cutoff wavenumbers,

k2,j5S 3 j

CURe113 j21D
3/2

kU5 f 2,jkU , ~14!

and k2,n2
5kU . In fully developed turbulence,34

CU'0.1255CD/2 so thatkU'kK /22.6.

~3! Transport in the viscous-convective subrange (1,Sc)
from kU to kf5Sc1/2kU represented byn3 substages
with upper-cutoff wavenumbersk3,j5Scj /(2n3)kU .

The scalar energy at wavenumbers abovekf will be denoted
by ^fD8

2& and can be found by subtraction:

^fD8
2&5^f82&2^f18

2&2^f2,182 &2•••2^f2,n2
82 &2^f3,182 &

2•••2^f3,n3
82 &. ~15!

By assumption, all scalar dissipation occurs at wavenumbers
abovekf ; thus,

D^fD8
2&

Dt
52TD22^ef&. ~16!

However, this expression is redundant since Eqs.~2!, ~15!
and the SR model provide a complete description of the sca-
lar energy distribution.

The SR model for 1,Sc and 1,CURe1 is given by

D^f18
2&

Dt
52T112g1Sf2, ~17!

D^f2,182&
Dt

52T2,112g2,1Sf2, ~18!

A

D^f2,n2
82 &

Dt
52T2,n212g2,n2

Sf2, ~19!

D^f3,182&
Dt

52T3,112gDSf2, ~20!

D^f3,282&
Dt

52T3,2, ~21!

A

D^f3,n3
82 &

Dt
52T3,n3, ~22!

and

D^ef&
Dt

52CDRe1^v&TD12CsRe1^v&^ef&

22Cd^rf&o^ef&, ~23!

where^rf&o is defined by

^rf&o5CDRe1^v&~12^§D&!1^rf&. ~24!

For the caseSc51, n350 and the source term in Eq.~20! is
added to the right-hand side of Eq.~16!. In addition, Eq.~23!
becomes

D^ef&
Dt

52CDRe1^v&TD12CDRe1^v&gDSf2

12CsRe1^v&^ef&22Cd^rf&o^ef&. ~25!

The source weights, 0<g i , j<1, sum to unity and are further
discussed below.

In the SR model, the spectral transport terms that model
the energy cascade from large to small scales have the fol-
lowing forms:

T152a1^f18
2&2b1^f18

2&1b2,1̂ f2,182&, ~26!

T2,15a1^f18
2&2a2,1̂ f2,182&1b1^f18

2&22b2,1̂ f2,182&

1b2,2̂ f2,282&, ~27!

A

T2,n25a2,n221^f2,n22182 &2a2,n2
^f2,n2

82 &

1b2,n221^f2,n22182 &22b2,n2
^f2,n2

82 &1b3,1̂ f3,182&,

~28!

T3,15a2,n2
^f2,n2

82 &2a3,1̂ f3,182&1b2,n2
^f2,n2

82 &

22b3^f3,182&1b3^f3,282&, ~29!

A

T3,n35a3^f3,n32182 &2a3^f3,n3
82 &1b3^f3,n32182 &

22b3^f3,n3
82 &1bD^fD8

2&, ~30!

and
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TD5a3^f3,n3
82 &1b3^f3,n3

82 &2bD^fD8
2&. ~31!

Note that the sum of the spectral transport terms is null,
thereby conserving scalar energy as it moves through wave-
number space.

The SR model rate coefficientsa i , j and b i , j represent
the rates of convective and diffusive transport, respectively,
along the scalar spectrum. Only the case whereb i , j50 has
been considered in detail.4 For this case, the rate coefficients
a i , j5t i , j

21 follow directly from the fully developed turbulent
velocity spectrum:4

t15
1

^v&
, ~32!

t2,15S 12
1

CURe1
D t1, ~33!

t2,j5
1

3
t2,j21, ~34!

t2,n2215
1

3
t2,n222 , ~35!

t2,n25
1

2
t2,n221 , ~36!

t35
ln~Sc!

2n3Re1
t1 . ~37!

The values ofn2 (2<n2) andn3 (0<n3) increase linearly
with ln(Re1) and ln(Sc), respectively.4 Choosingn2 and n3
larger than their minimum values will not adversely affect
the SR model’s predictions since the excess stages will
quickly relax to~quasi! steady-state values. Note thatt1, the
characteristic time scale of the energy-containing range of
the velocity spectrum, is a key parameter in the model~e.g.,
it determines the spectral flux at large scales and the scalar
dissipation rate at spectral equilibrium!, and is dependent on
the form of the velocity spectrum at large scales. The SR
model could thus be further refined by including a more
detailed description of the large scales using, for example,
large-eddy simulation~LES!.

The rate coefficients for the convective-diffusive case
(0,b i , j ) can be derived, for example, from the spectral
transport model of Leith35 in the form proposed by Besnard
et al.36,37 The primary difference with the convective case
(b i , j50) is the allowance for scalar-energy transport from
small to large scales. Without this ‘‘reverse’’ transport, the
steady-state value of̂rf& may depend on the initial scalar
spectrum in the absence of a mean scalar gradient4 ~e.g., if
^f18

2&50 at t50 it will remain so for all time, in which
case, if 0,^f2,182&, ^rf&→2t1 /t2,1). For inhomogeneous
flows, mean scalar gradients produce scalar energy at large
scales (0,g1Sf2) and ‘‘forward’’ transport dominates.
Thus, the differences found by neglecting the diffusive terms
may be negligible for many practical applications.

In the SR model, the source weights (g i , j ) are specified
by forcing the self-similar scalar spectrum for the case
Sc51 (n350) to be the same for all values ofSf2. This
condition yields

^v&5 lim
t→`

^rf& andg i , j5 lim
t→`

^§ i , j&,

with Sc51 and Sf250, ~38!

and

gD512g12 (
j51,n2

g2,j5
1

CDRe1
. ~39!

For example, for the convective case withn253, the source
weights are easily found to be

g15b~12a!~12a/6!~12a/3!, ~40!

g2,15ab~12a/6!~12a/3!, ~41!

g2,25ab~12a/6!/3, ~42!

g2,35ab/6, ~43!

gD512b, ~44!

where

a512
1

CURe1

and

b512
1

CDRe1
.

Note that asRe1→`, a andb →1 yieldingg15gD50 and
implying that almost all of the scalar energy will be con-
tained in the wavenumber range@k0 ,kf# at very high Rey-
nolds numbers.

As noted in the Introduction, the SR model as given
above differs slightly from the original version.4 The main
differences are the introduction of the source weights
(g i , j ), the effective scalar-field dimensionNz , and the
velocity-dissipation constantCU ~in the original model
g2,15Nz5CU51). These changes result in very minor dif-
ferences in the model predictions. For example, the case of
stationary turbulence withSc51 yields a limiting
mechanical-to-scalar time-scale ratio of

^r &5
2^rf&

^v&
52, ~45!

which agrees with the original model for largeRl . Finally,
since the dynamical behavior of the SR model is mainly
influenced by the relaxation of the large scales, the conclu-
sions drawn concerning its ability to correctly handle scalar
mixing in decaying turbulence are equally valid for the new
version.

III. LAGRANGIAN SPECTRAL RELAXATION MODEL

The SR model can be extended to inhomogeneous flows
and solved using a standard finite-volume CFD code, thus
providing a dynamic model for themeanscalar dissipation
rate. However, for reacting flows the reaction source term
would still be unclosed, leading to many well-known
difficulties.3 A powerful alternative approach is to employ
Lagrangian pdf methods wherein the turbulent transport and
reaction terms appear in closed form.3 In this section, we
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develop a Lagrangian pdf version of the spectral relaxation
~LSR! model formulated in terms of a set of stochastic dif-
ferential equations for the scalar spectral distribution and the
scalar dissipation rate following a fluid particle. The validity
of describing the spectral energy cascade by a Lagrangian
approach has recently been demonstrated using DNS data,38

and employed in a dynamic subgrid-scale model for LES.39

In developing the LSR model, we follow the approach of
Borgas and Sawford40 and formulate the model in terms of a
Markovian process conditioned on a particularturbulent fre-
quencyhistoryW (t)5$v* (s)us P (2`,t#% for each fluid
particle, wherev* (t) is defined by Eq.~49! below.

In Lagrangian pdf methods, the turbulent flow is repre-
sented by a large ensemble of fluid particles whose time
evolution is approximated by stochastic models that are
solved using Monte-Carlo methods. In a statistically homo-
geneous flow, the one-point statistics for the scalar field are
everywhere identical; hence, the physical size of the fluid
particle is unimportant. However, in the same flow, since any
two points separated by more than the velocity-dissipation
correlation length scale (l U'22.6h based onkU5CU

3/2kK)
must necessarily have different strain-rate histories, condi-
tioning onW must imply that the fluid particles have a lin-
ear dimension at least as small asl U . Since a particle’s sca-
lar dissipation rate in the LSR model will depend on its
particular W , conditional one-point statistics ~e.g.,
^f82uW &) will be inhomogeneous near the Kolmogorov
scale, even though the flow is homogeneous on the integral
scale. These small-scale inhomogeneities generate additional
scale-dependent mixing terms~i.e., in addition to the uniform
mean scalar gradient term! in the LSR model. Moreover, we
shall also see that they generate an asymptotic non-Gaussian
scalar pdf~i.e., although the conditional scalar pdf is Gauss-
ian, the unconditional pdf need not be!. Likewise, the initial
scalar field may be inhomogeneous at some scales above the
integral scale~e.g., ‘‘blobs’’ of fluid with different scalar
spectra at wavenumbers smaller thank0). As demonstrated
in a recent DNS study,22 these ‘‘non-equilibrium’’ spectral
effects can be a source of transient non-Gaussian statistics.
This behavior is also captured by the LSR model.

Formally, we can define a Lagrangian fluid particle in
terms of the Eulerian velocity field by introducing a compact
spatial filter function 0<K(x) with bandwidth proportional
to l U , and

E
V

K~x!dx51, ~46!

whereV is the fluid volume. In terms of the filter, the fluid
particle velocity becomes

Ũ i~ t !5E
V

K~x2x* !Ui~x,t !dx, ~47!

where

dxi*

dt
5Ũ i ~48!

governs the fluid particle position. Likewise, the turbulent
frequency following the fluid particle can be defined by41,42

v* ~ t !5v~x* ~ t !,t !5
e~x* ~ t !,t !

^k&
. ~49!

Note that since the velocity spectral energy belowl U is small
compared to the total energy, the same Lagrangian pdf
model can be employed forŨ i(t) or Ui* (t)5Ui(x* (t),t).
Hereinafter, we will thus denote the fluid particle velocity by
Ui* . Nevertheless, Kolmogorov-scale velocity fluctuations:
ui85Ui*2Ũ i } (n^e&)1/4, while negligible relative to integral-
scale fluctuations, are responsible for inter-particle transport
of spectral energy, and therefore are included in the LSR
model.

The LSR model is written in terms of conditional means
of the form ^f i , j82uu* ,W &. Theoretically, the unconditional
expectations appearing in the SR model can be found by
averaging over the velocity and the setM of all possible
realizations ofW weighted by the probability measure
dFW ,43 i.e.,

^f82&5E
M

^f82uW &dFW . ~50!

Numerically, unconditional expectations are computed by
generating a large number of independent samples ofW ,
and ensemble averaging the solutions to the LSR model.
Hereinafter, in order to simplify the notation, we shall avoid
introducing a specific notation for velocity,W -conditional
expectations and simply let, for example,

^f82&*5^f82uu* ,W &. ~51!

However, this simplification will be avoided when it may
cause confusion. For example, when computing the scalar
pdf, it will be necessary to introduce the random process
f8* (t)5f8(x* (t),t), and to model conditional expectations
of the form ^G¹2f8uf8* ,u* ,W &. Furthermore, due to the
numerical difficulties associated with estimating velocity-
conditioned scalar statistics,44 the LSR model will be pre-
sented in a velocity-independent form so that hereinafter the
notation^•&* will denote only theW -conditioned expecta-
tion, e.g.,

^f82&*5^f82uW &. ~52!

Nevertheless, a velocity-conditioned formulation of the
model can be derived by substituting velocity-conditioned
scalar statistics for unconditional ones, e.g.,^f18

2& becomes
^f18

2uu* & and ^f18
2&* is given by Eq.~51!.

When applying the LSR model, the reader should be
careful to distinguisĥf82&* from ^f82uv* &, i.e., the scalar
variance conditioned onW from the scalar variance condi-
tioned on the current value ofv* . At any instant, many
spatially uncorrelated points in a given flow will have nearly
identical v* ; however, only points separated by approxi-
mately l U i.e., inside a fluid particle! can have nearly identi-
cal W . Likewise, it is important to distinguish between the
random variablesef* (t)5ef(x* (t),t) and ^ef&* . The latter
will have a single value for each fluid particle, while the
former will vary randomly inside each fluid particle@e.g.,
consider 1!Sc where the fine-scale structure of the scalar
dissipation field (l D'0.35l U /Sc

1/2) is much smaller than
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l U]. Hence,^ef&* corresponds to the expectation ofef* in-
side of a fluid particle. It is thus useful to decomposeef* into
the product of two terms:

ef*5^ef&*Z2, ~53!

whereZ(t) is a standardized random process that contains
the effect of molecular diffusion on the scalar gradient pdf,
and ^ef&* models the effects of turbulence and molecular
dissipation on the scalar microscale. For largeSc, separation
of scales can be invoked to argue thatZ and ^ef&* will be
independent random processes if time is rescaled:

dt†5vf
† dt, ~54!

using the ‘‘local’’ scalar dissipation rate:

vf
†5

^ef&*

^f82&*
. ~55!

This is the approach taken by Fox20 where a model is pro-
posed for the standardized scalar (V) and scalar gradient
(Z) for the special case wherev*5^v& ~i.e., all fluid par-
ticles have identical strain-rate histories so thatvf

†5^rf&).
The remainder of this section is organized as follows.

First, Lagrangian pdf models for the velocity and turbulent
frequency are reviewed and a new model for the latter is
proposed that more closely reproduces the one-point statis-
tics of v(x,t) found in the DNS study of Overholt and
Pope.21 Next, the LSR model equations are presented for the
convective transport case (b i , j50). Finally, models for con-
ditional molecular mixing and the conditional turbulent sca-
lar flux terms are introduced to describe the evolution of the
scalar and scalar gradient in a fluid particle. A detailed com-
parison between model predictions and DNS data for passive
scalar mixing in stationary, isotropic turbulence is presented
in the Sec. IV.

A. Lagrangian pdf models for the velocity and
turbulent frequency

Pope and co-workers12 have used Lagrangian pdf meth-
ods to derive and verify stochastic models based on the
Langevin equation to describe the position, velocity, and tur-
bulent frequency of a fluid particle in a turbulent flow. In
these models, the fluid-particle velocity and turbulent fre-
quency are denoted byUi* andv* , respectively, and obey

dUi*52
1

r

]^p&
]xi

dt1Li , j~Uj*2^Uj&!dt

1~C0^k&v* !1/2 dWi ~56!

and

dv*52v* ^v&FSv1CxS lnS v*

^v& D
2 K v

^v&
lnS v

^v& D L D Gdt1^v&2h dt

1v* ~2Cx^v&s2!1/2 dWv . ~57!

The parameters and coefficients appearing on the right-hand
sides above are described in detail elsewhere.12 Note that the
mean fields are evaluated atx* and thus the coefficients

depend on both time and location in inhomogeneous flows.
For all fluid-particle variables, the models are constructed
such that the Lagrangian expectations obey an equivalent
Reynolds-stress model.45 In a homogeneous flow, Eq.~56!
generates a multi-variate Gaussian velocity field and Eq.
~57!, an independent log-normal turbulent frequency field.

In statistically homogeneous flows, Eq.~57! is self-
contained~coefficients are independent ofx* ) and the term
involving h needed to generate non-zero turbulent frequency
in fluid particles withv*50, but which are located in a
turbulent region of the flow: 0,^v&, is null. It has been
noted40 that this model forv* does not yield the expected
highly intermittent behavior of turbulent dissipation at very
high Reynolds number. More importantly, in the DNS
study21 that will be employed for model validation, the tur-
bulent frequency pdf is not well represented by a log-normal
pdf, but instead has a stretched-exponential tail whose decay
exponent depends on the turbulent Reynolds number. Since
the one-point, one-time statistics computed from the LSR
model are sensitive to the modeled turbulent-frequency pdf,
we shall employ the following model that more closely ap-
proximates the observed pdf:

dv*52v* ^v&Svdt1v* ^v&CxRe1

3S 12
~v* !gv1^v&

^vgv111& Ddt1^v&2h dt

1v* S 2CxRe1^v&
gv2

D 1/2dWv , ~58!

where gv1 and gv2 are model parameters that depend on
v* andRe1 as discussed below, andCx controls the auto-
correlation time of the random processv* (t). Note, how-
ever, that the limiting form of the turbulent frequency pdf
does not uniquely determine the model. For example, the
same limiting pdf could be obtained by replacing the second
term of the right-hand side of Eq.~58! with

^v&2CxRe1S 12
~v* !gv1

^vgv1& D ,
and the noise-term coefficient with

S 2CxRe1^v&v*

gv221 D 1/2.
Defining X5v* /^v&, in homogeneous turbulence the

limiting pdf resulting from Eq.~58! with constantparameters
is

f X~x!5N xgv222 expS 2
gv2

gv1

xgv1

^Xgv111& D , ~59!

whereN is a normalization constant. Fitting this function to
the pdf found by DNS21 yields

lim
X→0

gv253.33, ~60!

lim
X→`

gv251.5, ~61!

2369Phys. Fluids, Vol. 9, No. 8, August 1997 R. O. Fox
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.186.176.40 On: Thu, 01 May 2014 14:44:11



and gv1 is a function of Re1 ~e.g., for Re1510.72,
gv150.778, and forRe1532.38,gv150.500). We will thus
let

gv25
3.3311.5CvX

11CvX
, ~62!

and fixCv50.35 by forcinĝ X2& to agree with the DNS data
~Sec. IV!.

Note that the auto-correlation time predicted by Eq.~58!
will scale like 1/(CxRe1^v&), i.e., it does not reproduce the
small-scale intermittency expected at large Reynolds
numbers.40,46 Moreover, although the auto-correlation time
can be varied by changingCx , v* (t) still remains Markov-
ian contrary to the requirements of small-scale
intermittency.40,46 Thus, in order to test its importance in
determining the scalar statistics in the LSR model, numerical
studies withCx significantly larger and smaller than unity
have been carried out. In general, the effect of the auto-
correlation time on the one-point statistics of the scalar dis-
sipation has been found to be small compared to the effect of
the form of stationary turbulent-frequency pdf. On the other
hand, when the auto-correlation time decreases, the correla-
tion betweenv* and the scalar dissipation also decreases.
This limiting behavior is consistent with the ‘‘white-noise’’
models for the vortex-stretching term employed in other
studies.47,48We therefore conclude that, although it does not
correctly reproduce small-scale intermittency, Eq.~58!
should suffice for a quantitative comparison with the DNS
data.

B. Lagrangian pdf model for the conditional means

The LSR model ~convective case! for 1,Sc and
1,CURe1 (Sc51 is handled as in the SR model! is given
by

d^f18
2&*

dt
522a1^f18

2&*12 f D^rf&~^f18
2&2^f18

2&* !

12g1Sf2, ~63!

d^f2,182&*

dt
52a1~ f 1^f18

2&*1 f 1
c^f18

2&!22a2,1̂ f2,182&*

12 f D^rf&~^f2,182&2^f2,182&* !12g2,1Sf2,

~64!

A

d^f2,n2
82 &*

dt
52a2,n221~ f 2,n221^f2,n22182 &*

1 f 2,n221
c ^f2,n22182 &!22a2,n2

^f2,n2
82 &*

12 f D^rf&~^f2,n2
82 &2^f2,n2

82 &* !12g2,n2
Sf2,

~65!

d^f3,182&*

dt
52a2,n2

~ f 2,n2^f2,n2
82 &*1 f 2,n2

c ^f2,n2
82 &!

22a3s~ t !^f3,182&*12 f D^rf&~^f3,182&

2^f3,182&* !12gDSf2, ~66!

d^f3,282&*

dt
52a3s~ t !^f3,182&*22a3s~ t !^f3,282&*

12 f D^rf&~^f3,282&2^f3,282&* !, ~67!

A

d^f3,n3
82 &*

dt
52a3s~ t !^f3,n32182 &*22a3s~ t !^f3,n3

82 &*

12 f D^rf&~^f3,n3
82 &2^f

3,n382
&* !, ~68!

d^fD8
2&*

dt
52a3s~ t !^f3,n3

82 &*12 f D^rf&~^fD8
2&

2^fD8
2&* !22^ef&* , ~69!

and

d^ef&*

dt
52CDRe1^v&a3s~ t !^f3,n3

82 &*12 f D^rf&~^ef&

2^ef&* !12CsRe1^v&s~ t !^ef&*

22Cd^rf&o
†^ef&* , ~70!

where f 15k0 /kU5(CURe1)
23/2, f 1

c512 f 1, f 2,j5k2,j /kU ,
f 2,j
c 512 f 2,j ,

^rf&o
†5CDRe1^v&~12^§D&†!1vf

† , ~71!

^§D&†5
^fD8

2&*

^f82&*
, ~72!

and

s~ t !5S v*

^v& D
1/2

. ~73!

Note that the LSR model contains no independent
‘‘noise’’ term: all fluctuations are generated byv* in Eq.
~73!. This results from the assumption that the random
scalar-gradient-amplification, ‘‘vortex-stretching’’ events in
the dissipation range of the velocity spectrum have a La-
grangian time history of the form

K G
]f8

]xi

]uj
]xi

]f8

]xj
UW L 52CsS e*

n D 1/2^ef&* . ~74!

This model is supported by DNS49,50 and experimental51,52

studies of the scalar gradient alignment in isotropic and
sheared turbulence where it is found that the scalar gradient
is preferentially aligned in the direction opposite the eigen-
vector of the most compressive principal strain rate,e11. In a
solenoidal flow,e* can be expressed in terms ofe11 as

52

e*54ne11
2 ~11d1d2!, ~75!

where21/2<d<1 is the ratio of the intermediate and the
most compressive principal strain rates. The pdf ofd has a
strong peak at the origin;50,52thus, lettingd50 and assuming
that the scalar gradient is exactly colinear with the eigenvec-
tor ~implying Nz51) yields Eq.~74! with Cs50.5.

As in the SR model, Eq.~69! can be replaced by an
expression for̂f82&* found by summing Eqs.~63!–~69!:
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d^f82&*

dt
52Sf21I f1Df22^ef&* . ~76!

The inertial-range mixing term, defined by

I f52a1f 1
c~^f18

2&2^f18
2&* !1•••

12a2,n2
f 2,n2
c ~^f2,n2

82 &2^f2,n2
82 &* !, ~77!

is a model for the dissipation of large-scale scalar field inho-
mogeneities by the velocity field:

K ui ]f82

]xi
UW L 52I f . ~78!

While the diffusive-mixing term, defined by

Df52 f D^rf&~^f82&2^f82&* !, ~79!

is a model for the molecular dissipation of small-scale scalar
variance inhomogeneities generated by the difference in the
scalar dissipation rate between any two fluid particles:

^G¹2f82uW &5Df . ~80!

The scalar-variance source term, being the product of two
integral-scale fields, is assumed to be independent ofW , i.e.,
^uif8uW &5^uif8&. Note that for the case of a statistically
homogeneous scalar field withv*5^v&, I f5Df50 and
^ef&*5^ef&; hence, ^f82&*5^f82& and vf

†5^rf&. The
LSR model thus reverts to the ‘‘standard’’ model for statis-
tically homogeneous scalar mixing when turbulent frequency
fluctuations are ignored.

In general, the physical significance of each term in the
LSR model follows from the analogous term in the SR
model. Terms that drop out in the SR model@e.g., f D^rf&
3(^f18

2&2^f18
2&* )# are needed to model flows that are in-

homogeneous at some scale as noted above. The same re-
mark applies for the use of the weighted unconditional
means in the first terms on the right-hand sides of Eqs.~64!–
~66!. The weights, f i , j5(particle size)/( wavelength of
inhomogeneity), represent the influence of a single particle
on the mean of all particles within a diameter of one wave-
length around the fluid particle. Note that in a statistically
homogeneous flow with all particles having the same initial
conditions, Eqs. ~63!–~65! yield ^f18

2&5^f18
2&* and

^f2,j82&5^f2,j82&* . This is a result of the model assumption that
random vortex-stretching events are significant only at wave-
numbers above the velocity-dissipation wavenumberkU .
AbovekU , convective spectral transport occurs only within
a fluid particle, and thus the first terms on the right-hand
sides of Eqs.~67!–~69! contain the conditional means. Also
note that the molecular dissipation term in Eq.~70! employs
the ‘‘local’’ scalar dissipation ratevf

† . This reflects the fact
that molecular diffusion occurs on small scales that adjust to
local, as opposed to global, flow conditions.

Finally, note that fluctuations due tos(t) in Eqs.~66!–
~70! will generate inhomogeneities below the velocity-
dissipation scale which are dissipated by the diffusive-
mixing terms, e.g.,

f D^rf&~^f3,j82&2^f3,j82&* !.

The diffusive-mixing parameterf D thus has a significant ef-
fect on the statistics of the ‘‘local’’ scalar-variance ratio de-
fined by

F5
^f82&*

^f82&
. ~81!

This can most easily be seen from the governing expression
for F for the caseSf25I f50:

dF

dt
52 f D^rf&22@^rf&~ f D21!1vf

† #F. ~82!

When f D51, the eigenvalue of Eq.~82! is 22vf
†<0, and

thus the equation is unconditionally stable. On the other
hand, whenf D50 the eigenvalue is22(vf

†2^rf&), and
thus it fluctuates between positive and negative values.
Hence, Eq. ~82! is stochastically unstable~e.g., when
vf
†,^rf& for all t), and the momentŝFn&, 1,n can grow

unbounded. The resulting large variations inF will generate
strongly non-Gaussian scalar pdfs. It is also worth noting
that instability is not observed in the presence of a uniform
mean scalar gradient (0,Sf2), and thus the predicted scalar
pdf will be closer to Gaussian for all values off D . This
result agrees with DNS22 where significant non-Gaussian
tails are seen only in the absence of a uniform mean scalar
gradient.

C. Molecular mixing

The LSR model provides a closure for the~conditional!
scalar dissipation rate following a Kolmogorov-scale fluid
particle. However, it provides no information concerning
fluctuations of the scalar and scalar dissipationinside the
fluid particle (f8* andef* , respectively! resulting from mo-
lecular diffusion~the so-called molecular mixing term19,20!.
Due to the sensitive dependence of the joint scalar, scalar
gradient pdf on the initial scalar field, development of com-
pletely general molecular mixing models remains an open
problem.19,20,53–55For binary mixing of an inert scalar, Fox20

proposed the Fokker–Planck model and obtained satisfactory
agreement with data from the numerical solution of the 1-D
diffusion equation where, in the limit of large time, molecu-
lar mixing of an inert scalar by itself leads to independent
joint Gaussian statistics for the scalar and scalar gradient. In
this limit, the Fokker–Planck model reduces to a linear
Fokker–Planck equation with coefficients conditioned on the
‘‘local’’ scalar dissipation rate@Eq. ~54!#, or, equivalently,
on W . The conditional scalar pdf then remains Gaussian
with zero mean and variance^f82uW &, while the scalar dis-
sipation is given by Eq.~53! with Z an independent, standard
Gaussian random process.

From a modeling standpoint, the key assumption in de-
veloping W -conditioned molecular mixing models is that
after time rescaling@Eq. ~54!#, the model will beindependent
of the underlying velocity field. The model should thus de-
pend only of the scalar field, and be equally applicable to
cases with or without turbulence. Molecular mixing models
can then be validated against numerical simulations of
reactive-diffusive systems, or systems with a constant strain
rate (W constant!. ~The initial length-scale distribution of
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the scalar field should be ‘‘non-singular’’ to avoid degener-
ate cases.19! Note that this assumption does not exclude the
difficulties resulting from initial conditions, unequal molecu-
lar diffusivities, or chemical reactions. However, it does
place strong conditions on the model for the scalar gradients
since they must agree with the non-trivial pdf found for pure
diffusion.20 Indeed, even for inert scalars, the scalar gradient
pdf is strongly dependent of the initial scalar field~e.g., bi-
nary mixing20 versus ternary mixing56! and bounded above
by a ‘‘diffusion-layer’’ envelope20 that is not accounted for
in most scalar-gradient models.48

In the present study, the difficulty of closing the molecu-
lar mixing term will be circumvented by limiting consider-
ation to an initial scalar field that is ‘‘locally’’~i.e., in each
fluid particle! Gaussian evolving in homogeneous turbulence
with possibly a uniform mean scalar gradient.44,57,58The La-
grangian pdf equation for the scalar then simplifies to

df8*

dt
52^ui uf8* ,W &

]^f&
]xi

2 K ui ]f8

]xi
Uf8* ,W L

1^G¹2f8uf8* ,W &, ~83!

where the first two terms on the right-hand side arise from
the turbulent scalar flux of the mean and fluctuating scalar
gradient, respectively, and the third term is due to molecular
mixing. Note that if all three terms are linear inf8* , the
‘‘local’’ ( W -conditioned! scalar field will remain Gaussian
with variance^f82uW &; however, the ‘‘global’’ scalar pdf
may be non-Gaussian due to the dependence onW .

The conditional molecular mixing term for a Gaussian
scalar field can be modeled by modifying the IEM model3 to
be consistent with the LSR model:

^G¹2f8uf8* ,W &52@vf
†1 f D^rf&~12F21!#f8* ,

~84!

or by employing a modified limiting form of the Fokker–
Planck model:20

^G¹2f8uf8* ,W &dt52@2vf
†1 f D^rf&

3~12F21!#f8* dt

1~2^ef&* !1/2 dWf . ~85!

Note that both models, when written in terms oft† @Eq. ~54!#
and the ‘‘local’’ standardized scalar field:

V5
f8*

A^f82&*
, ~86!

are independent ofW . Likewise, both models yield the same
W -conditioned scalar-variance diffusion term:

2^f8G¹2f8uW &5Df22^ef&* , ~87!

which is consistent with Eq.~76!. Direct comparison of these
molecular mixing models with DNS data is challenging due
to the difficulty of computingW -conditioned scalar statis-
tics. Thus, instead, we will compute the conditional scalar
Laplacian:

^G¹2f8uf8* &52@^vf
† uf8* &1 f D^rf&

3~12^F21uf8* &!#f8* , ~88!

which can be directly compared to the DNS data of Overholt
and Pope.21 As noted above, a necessary condition for the
scalar pdf to be Gaussian is that the right-hand side of this
expression be linear inf8* . In general, this will not be the
case and, hence, small-scale inhomogeneities in the scalar
dissipation rate will lead to a non-Gaussian scalar pdf.

For the homogeneous, uniform mean-scalar-gradient
flow under consideration, if they are initially Gaussian, the
W -conditioned components of the scalar-gradient field will
also remain Gaussian. However, they need not be uncorre-
lated. Thus, the standardized random variableZ appearing in
Eq. ~53! will be the modulus of a correlated Gaussian ran-
dom vector:

Z25
c ic i

^ckck&
, ~89!

and a model is required to describe the correlation. In this
study, three cases will be compared with DNS data fore* .
All three cases can be modeled by a Fokker–Planck-type
model:19,20

dZ5vf
† SNz21

NzZ
2ZDdt1S 2Nz

vf
† D 1/2dWz , ~90!

where 1<Nz<3 is the number of uncorrelated components
on the right-hand side of Eq. 89.~An equivalent IEM-type
model can also be employed that fixesZ constant, i.e., de-
pending only on the initial conditions.! The first case to be
considered takes all three components to be uncorrelated
(Nz53). The second case assumes only two components are
uncorrelated (Nz52). And the third case assumes the scalar
field to be locally one-dimensional as seen experimentally in
high-Scflows51 (Nz51). GivenZ, the scalar dissipation can
be found from Eq.~53!. In Sec. IV, a direct comparison of
the scalar dissipation statistics with DNS data will be carried
out. Of particular interest is the conditional scalar dissipa-
tion:

^efuf8* &5^^ef&*Z2uf8* &. ~91!

Since the ‘‘noise’’ term in Eq.~85! would need to be con-
stant, a necessary condition for a Gaussian scalar pdf is that
this expression be independent off8* . Again, in general,
this will not be the case due to small-scale inhomogeneities
in the scalar dissipation rate.

D. Conditional scalar flux

In order to complete the Lagrangian pdf description of a
scalar field with a uniform mean scalar gradient, models for
the conditional scalar flux terms appearing in Eq.~83! are
required. These models should be consistent with the analo-
gousW -conditioned terms in the LSR model. In Sec. IV, we
will employ the ‘‘standard’’ model for the conditional scalar
variance source term at a single point in a statistically homo-
geneous scalar field:

^ui uf8* ,W &
]^f&
]xi

dt52~Sf2!1/2 dWs , ~92!

which generates a Gaussian scalar pdf whenSf2 is non-zero.
It is important to observe that the Wiener process on the
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right-hand side of Eq.~92! is delta-correlated, while the ve-
locity field will have a non-zero auto-correlation time pro-
portional to 1/̂v&. Thus, the model will not generate a real-
istic Lagrangian time series forf* . This, however, will not
affect the LSR model’s predictions since they are indepen-
dent off* . Also note that Eq.~92! would not be required if
the velocity were included as a random variable, in which
case the scalar flux term is closed3,12,45 and generates a
Gaussian scalar pdf in homogeneous turbulence with a uni-
form mean scalar gradient.44

The model chosen for conditional advection,

K ui ]f8

]xi
Uf8* ,W L 5@a1f 1

c~^f18
2&*2^f18

2&!1•••

1a2,n2
f 2,n2
c ~^f2,n2

82 &*

2^f2,n2
82 &!#

f8*

^f82&*
, ~93!

being linear inf8* , also admits aW -conditioned Gaussian
scalar pdf. However, in general, it will leave the shape of the
conditional scalar pdf unchanged, reflecting the fact that only
molecular diffusion at small scales~and not inertial-range
turbulent mixing! will modify the shape of the scalar pdf of
a homogeneous scalar field.3 Note that, in general, a closure
will be required for the conditional advection term, even if
the velocity is used as a random variable, in which case the
conditioning variables would includeũ i and a model would
be needed for

K ui8 ]f8

]xi
U ũ i ,f8* ,W L . ~94!

@One can argue that the left-hand side of Eq.~93! need only
containui8 in place ofui since the conditional advection with
respect toũ i should be null in homogeneous turbulence.57#
Indeed, although the magnitude ofui8dt;h is small com-
pared toũ i dt;Re1

1/2h, it is of the same order of magnitude
as the size of the fluid particle. Thus, Eq.~93! represents the
sole mechanism for inertial-range ‘‘homogenization’’ of the
scalar field~the right-hand side will be null if the scalar field
is homogeneous above the Kolmogorov scale!. In general,
Eq. ~93! will be non-zero only when a ‘‘non-equilibrium’’
initial scalar field is employed~e.g., the scalar field is statis-
tically homogeneous at the velocity integral scale, but con-
tains regions with different initial scalar spectral distribu-
tions!. For this case, the conditional advection term,

K ui ]f8

]xi
Uf8* L , ~95!

may be non-linear inf8* , leading to transient non-Gaussian
scalar pdfs as seen in DNS.22 As shown in Sec. IV, this
effect is most pronounced in the absence of a mean scalar
gradient@i.e., when Eq.~92! is null#.

IV. APPLICATION OF THE LSR MODEL TO
HOMOGENEOUS FLOWS

The SR model has been shown4 to yield satisfactory
agreement with available DNS and experimental data for~i!

stationary turbulence with a uniform mean scalar gradient,1

~ii ! stationary turbulence with zero mean scalar gradient,10

~iii ! decaying grid turbulence with zero mean scalar
gradient,7 and ~iv! decaying grid turbulence with a uniform
mean scalar gradient.8 In particular, the sensitive dependence
of the mechanical-to-scalar time-scale ratio on the initial sca-
lar spectrum is successfully captured by the SR model due to
its explicit representation of scalar spectral transport by a
local cascade between finite-sized wavenumber bands. Since
the LSR model contains a nearly identical spectral descrip-
tion, its predictions for the dynamical behavior of themean
scalar dissipation rate in the above flows mimics the SR
model. Thus, the focus of the present section is on the ability
of the LSR model to predict pdf and higher-order statistics
for the scalar and the scalar dissipation in stationary, isotro-
pic turbulence. Results for two cases will be considered:~A!
stationary and~B! transient statistics for a passive scalar with
and without a uniform mean scalar gradient. For case A,
model predictions will be compared with the extensive DNS
results of Overholt and Pope21 for the joint statistics of the
scalar, scalar gradient, and the turbulent frequency at two
Reynolds numbers. For case B, model predictions show a
sensitive dependence on the initial scalar spectrum, and a
transient non-Gaussian scalar pdf can result due to large-
scale inhomogeneity of the scalar field. For this case, a quali-

TABLE I. Stationary moments of the pdf of the turbulent frequency
(X5v/^v&) found from Eq.~58! with Cv50.35,Cx51, h50, Sv50, and
^v&51. DNS values are shown in parentheses.

Rl(gv1) 28 ~0.778! 84 ~0.500!

Variance,sv
2 0.70260.023 (0.78360.026) 1.2460.01 (1.2560.09)

Skewness 2.2360.02 (2.3260.03) 3.8560.09 (3.6260.12)
Kurtosis 11.960.4 (11.860.4) 34.863.7 (28.462.6)
Superskewness 6726183 (499659) 1140068700 (490061440)

FIG. 1. Stationary pdf of the turbulent frequency@X85(v*2^v&)/sv#
found with Cx51, Cv50.35, h50, Sv50, and ^v&51. h: Rl528
(gv150.778).L: Rl584 (gv150.500), shifted up one decade. The dashed
curves correspond to the stretched-exponential pdf fitted using DNS data.21
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tative comparison of the transient statistics predicted by the
LSR model with the DNS data of Jaberiet al.22 is presented.

A. Stationary scalar statistics in isotropic turbulence

The first case to be considered is the asymptotic behav-
ior for scalar mixing in forced, isotropic turbulence. At the
statistically stationary~SS! state,̂ rf& is constant and, in the
presence of a uniform mean scalar gradient,^ef&5Sf2.
Thus, when 0,Sf2, the stationary LSR model simplifies sig-
nificantly since ^f18

2&5^f18
2&* , ^f2,j82&5^f2,j82&* , and the

right-hand sides of Eqs.~63!–~65! are null. Similar simplifi-
cations result in the absence of a mean scalar gradient if the
model equations are rewritten in terms of fraction of scalar
energy in a wavenumber band, i.e.,^§ i , j&

†. At the SS state,
the mean spectral fractions become constant, and fluctuations
in ^ef&* are generated bys(t) in Eq. ~70!; hence, as noted
earlier, the statistics ofv* play a crucial role in determining
the scalar statistics.

1. Turbulent frequency statistics

In Table I, results for the dimensionless turbulent fre-
quency,

X5
v*

^v&
,

found from Monte-Carlo simulations of Eq.~58! ~hereinafter
all simulations employN5106 notional particles unless
noted otherwise! are compared with the DNS data for two

values ofRl . The model constantCv50.35 in Eq.~62! was
fitted by forcing the model variance (sv

2 ) to agree with the
DNS variance atRl584. In general, it can be seen that
within the bounds of statistical error the model satisfactorily
reproduces the DNS results, including the dependence on
Rl . ~Recall, however, thatgv1 supplies theRl dependence,
and it is an input to the model.! Stationary pdfs for the stan-
dardized turbulent frequency,

X85
v*2^v&

sv
,

are shown in Fig. 1. For comparison, the stretched-
exponential pdf fitted to DNS data by Overholt and Pope21 is
shown by a dashed line. As expected from the choice of the
model parameters, the upper tails of the simulated pdfs are in
excellent agreement with the DNS stretched-exponential
forms. @This would not be the case if, for instance, Eq.~57!
were employed to modelv* .# Similar results for ln(X) are
presented in Table II and Fig. 2 where again satisfactory
agreement with the DNS data is observed. In order to high-
light the non-log-normality ofX, a Gaussian pdf has been
included in Fig. 2. Note that unlike Eq.~57!, Eq. ~58! pre-
dicts significant negative skewness for ln(X). In conclusion,
it is found that Eq.~58! yields a satisfactory description of
the one-point, one-time turbulent frequency statistics ob-

TABLE II. Stationary moments of the pdf of the natural logarithm of the
turbulent frequency@ ln(X)# found with the parameters in Table I.

Rl 28 84

Variance,s ln(X)
2 0.73060.001 (0.72860.003) 1.03060.002

Skewness 20.49660.004 (20.33560.005) 20.35460.003
Kurtosis 3.5860.01 (3.3160.01) 3.3960.01
Superskewness 28.560.5 (22.560.3) 23.260.3

TABLE III. Stationary moments of the scalar pdf withf D51. First three
rows:Sf251. Last two rows:Sf250. DNS values are shown in parenthe-
ses.

Rl , Sc, Nz 28, 1, 1 84, 1, 1 84, 1, 3 84, 200, 1

Variance,sf
2 1.04 1.03 1.03 1.12

Kurtosis 3.03 (2.9060.03) 3.05 (2.8660.10) 3.01 3.08
Superskewness 15.4 (13.660.4) 15.7 (13.161.2) 15.2 16.2
Kurtosis 3.08 3.09 3.02 3.13
Superskewness 16.3 16.4 15.0 17.0

FIG. 2. Stationary pdf of the natural logarithm of the turbulent frequency
@X95(ln(X)2^ln(X)&)/sln(X)# found with parameters in Fig. 1.h: Rl528;
L: Rl584, shifted up two decades; dashed curve: Gaussian pdf.

FIG. 3. Stationary scalar pdf (Y5f8* /sf) found with Sf250, Rl584,
Sc5200,Nz51, andf D51. All other parameters are the same as in Fig. 1.
Dashed curve: Gaussian pdf.
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tained from DNS. The effect of the autocorrelation time~i.e.,
Cx) will be explored below in relation to joint scalar dissi-
pation, turbulent frequency statistics.

Given a model forv* ~and henceW ) the LSR model
can be employed to predict joint scalar, scalar dissipation,
turbulent frequency statistics as a function ofRl , Sc, and
Nz . As noted in Sec. III, only the case whereV andZ are
independent, Gaussian random fields will be considered in
this work. This implies that either Eq.~84! or Eq. ~85! ~and
the corresponding expressions forZ) can be used to close the
molecular mixing term.~Simulations have been carried out
with both models and statistically identical results were
found.! Note that the parameterNz enters the LSR model
both through the initialization ofZ and in the parameters
Cs andCd . For the range of Reynolds numbers considered
(Rl<84), a maximum ofn253 substages are required to
describe the inertial subrange of the scalar spectrum.4 Like-
wise, two Schmidt numbers (Sc51 and 200! have been in-
vestigated and correspond, respectively, ton350 and
n351. Finally, in order to treat the zero-mean-gradient case,
the LSR model equations were rewritten in terms of the ‘‘lo-
cal’’ spectral fractions~i.e., ^§ i , j&

†5^f i , j82&* /^f82&* ) and the
‘‘local’’ scalar dissipation rate (vf

† ). Thus, each notional
particle in a Monte-Carlo simulation carries the following
random variables:v* , ^§1&

†, ^§2,1&
†, ^§2,2&

†, ^§2,3&
†,

^§3,1&
†, F, andvf

† .

2. Scalar statistics

As noted in Sec. III, a non-Gaussian scalar pdf can result
from the LSR model due to fluctuations in the ‘‘local’’
scalar-variance ratio~i.e., F). This ‘‘small-scale intermit-
tency’’ route to non-Gaussian behavior is evident in Table III
and in Fig. 3 where the tails of the scalar pdf decay more
slowly than the quadratic dependence seen with a Gaussian
pdf. Nearly identical tails are obtained from DNS.59 From
Table III, it can be observed that, as expected, non-Gaussian
behavior is greatest in the absence of a mean scalar gradient.
~DNS of the zero-mean-gradient case is difficult due to the
sensitive dependence on the initial scalar spectrum and to the

rapid decay of scalar fluctuations.! The predicted dependence
on Reynolds number is more subtle~increasingRl increases
the variance ofv* , but decreases the fraction of the scalar
spectrum subject to turbulent fluctuations as discussed be-
low!; however, a slight increase~linked to an increase in the
variance ofF) is observed atRl584. On the other hand, it
is clearly seen that increasing the Schmidt number leads to a
significant increase in non-Gaussian behavior~no DNS data
is available for largeSc), while increasingNz leads to a
decrease. Physically, one can contribute theNz dependence
to a decrease in the scalar dissipation variance~discussed
below!. TheSc dependence can be understood in a similar
manner: increasingSc leads to a larger fraction of the scalar
spectrum in the viscous-convective subrange~i.e., stage 3!
where it is directly subject to turbulent-frequency fluctua-
tions, thereby increasing the scalar dissipation variance.

3. Scalar dissipation statistics

The LSR model predictions for the scalar dissipation are
presented in Tables IV and V. All of the simulation results
for the scalar dissipation show a very weak~negligible! de-
pendence onSf2. Looking first at results for the normalized
scalar dissipation,

Xf5
ef*

^ef&
,

it can be seen that the LSR model captures the large values
of the skewness, kurtosis, and superskewness~and theirRl

dependence! seen in the DNS results.~As reflected in the
error bounds, due to the large number of extreme values
present, it is difficult to determine if these moments are
sample-size independent. Compare the results with Table IX
where the sample size is 105.! Note, however, that the model
generally underpredicts the variance and its scaling with
Rl . This trend persists for other values ofCx ~Table IX!, but
improves with increasingSc. This observation suggests that
coherent turbulent-frequency fluctuations~which were as-
sumed to exist only for wavenumbers greater thankU) may

TABLE IV. Stationary moments of the pdf of the scalar dissipation (Xf5ef /^ef&) with a uniform mean scalar
gradient (Sf251) and f D51. DNS values are shown in parentheses.Nz is the number of uncorrelated scalar-
gradient components in the model forZ.

Rl , Sc, Nz 28, 1, 1 84, 1, 1 84, 1, 2 84, 1, 3 84, 200, 1

Variance,sef

2 2.14 (2.9760.31) 2.72 (5.6862.17) 1.13 0.717 3.85
Skewness 3.14 (4.2860.07) 4.82 (6.8960.61) 2.42 1.80 5.65
Kurtosis 18.9 (31.561.2) 54.5 (84.2616.8) 13.3 8.12 65.4
Superskewness 1485 (32006370) 31400 (28600612200) 846 251 35600

TABLE V. Stationary moments of the pdf of the natural logarithm of the scalar dissipation@ ln(Xf)# with
Sf250 and f D51.

Rl , Sc, Nz 28, 1, 1 84, 1, 1 84, 1, 2 84, 1, 3 84, 200, 1

Variance,s ln(Xf)
2 5.00 (1.9860.02) 5.13 1.75 0.987 5.65

Skewness -1.50 (20.20460.008) -1.44 -1.06 -0.881 -1.27
Kurtosis 6.90 (3.0960.01) 6.66 5.04 4.55 6.08
Superskewness 157 (18.860.3) 146 68.5 58.5 121
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extend back into stage 2, and that the LSR model may be
further improved by including a dependence ons(t) at the
end of this stage.@Note that forSc51, the first term of the
right-hand side of Eq.~70! contains a2,n2

in place of
a3s(t). This has the result of artificially reducing fluctua-
tions in ^ef&* ~cf. Fig. 7! as compared to cases where
1,Sc.# This modification can be implemented by introduc-
ing an additional wavenumber band to represent the begin-
ning of the velocity-dissipation range34 ~i.e., the end of the
inertial range!: k I5CI

3/2kK whereCI5CU/2, an additional
substage (n211) in stage 2 with a convective transport rate,

a2,n211s~ t !5 2
3CURe1s~ t !,

and by replacingCU with CI in, for example, Eqs.~14! and
~33!. @Note that, due to the separation-of-scales condition,
1,CIRe1 (42,Rl), care must be taken when applying the

TABLE VI. Stationary mechanical-to-scalar time-scale ratio, correlation co-
efficients, and the standard deviation ofF with f D51. DNS values are
shown in parentheses. First four rows:Sf251. Last four rows:Sf250.

Rl , Sc, Nz 28, 1, 1 84, 1, 1 84, 1, 2 84, 1, 3 84, 200, 1

^r & 1.92 ~1.82! 1.95 ~2.22! 1.94 1.94 1.79
r(f2,ef) -0.006~-0.022! -0.008~-0.021! -0.003 -0.001 -0.012
r(e,ef) 0.116~0.235! 0.217~0.165! 0.176 0.146 0.273
sF 0.092 0.120 0.075 0.054 0.159
^r & 2.00 2.00 2.00 2.00 2.00
r(f2,ef) 0.002 0.001 0.001 0.000 0.002
r(e,ef) 0.116 0.209 0.180 0.154 0.246
sF 0.164 0.173 0.117 0.088 0.205

FIG. 4. Stationary pdf of the scalar dissipation@Xf8 5(ef*2^ef&)/sef
#

found withRl584,Sc51,Sf251, andf D51. All other parameters are the
same as in Fig. 1.h: Nz53; s: Nz52, shifted up one decade;L:
Nz51, shifted up two decades. The dashed curves correspond to the
stretched-exponential pdf fit using DNS data.21

FIG. 5. Stationary pdf of the natural logarithm of the scalar dissipation
@Xf9 5(ln(Xf)2^ln(Xf)&)/sln(Xf)

# found with Rl584 andSf250. All other
parameters are the same as in Fig. 4.h: Nz53; s: Nz52, shifted up one
decade;L: Nz51, shifted up two decades; dashed curve: Gaussian pdf.

FIG. 6. Stationary joint pdf of the natural logarithm of the turbulent fre-
quency@ ln(X)# and of the scalar dissipation@ ln(Xf)#. All other parameters
are the same as in Fig. 4. Top:Nz51; bottom:Nz53. Contour levels:
21:1021, 22:1022, 23:1023, 24:1024.
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modified model to low Reynolds number flows where the
integral and dissipation scales are not clearly separated.#

The generally good agreement with the DNS results is
also reflected in the pdf of the standardized scalar dissipation
~Fig. 4!:

Xf8 5
ef*2^ef&

sef

,

which has the characteristic stretched-exponential form seen
in earlier studies.21,50,60In Fig. 4, the dashed curves are again
the stretched-exponential forms fitted to the DNS data by
Overholt and Pope.21 Note that the behavior of the pdf for
large values ofXf8 is dominated by the behavior of^ef&* .
Thus, the stretched-exponential tails seen in Fig. 4 are a di-
rect result of having stretched-exponential tails for the pdf of
v* . ~This result has been confirmed by simulations employ-
ing alternative models forv* .! On the other hand, the be-
havior for small values ofXf8 is dominated by the behavior
of Z2. For smallZ2, its pdf scales likef (x);xNz/221, and
this scaling is clearly seen in Fig. 4. Similar conclusions can
be drawn from the results for ln(Xf) presented in Table V
and Fig. 5 where it can be observed that the model moder-
ately overpredicts the magnitude of the moments. This result
can be traced to an underprediction of the fall-off rate of the
left-hand tail of the pdf~Fig. 5! as compared to the DNS
results.17

4. Joint statistics

Additional stationary statistics are presented in Table VI.
Note that the value of the mechanical-to-scalar time-scale
ratio is controlled, primarily, by the choice of the integral-
scale time-scalet1 @Eq. ~32!# which will be affected, for
example, by the forcing scheme employed in the DNS.59 In
the LSR model,t1 is chosen to be 1/^v&, and thus^r & is
nearly independent ofRl . The model’s agreement with DNS
could thus be improved by incorporating the
Rl-dependence seen in the DNS results. Also note that the
turbulent-dissipation, scalar-dissipation correlation coeffi-
cient,r(e,ef), predicted by the model is near the~positive!
DNS value.~The model value is dependent onCx as seen in
Table IX, but is always positive.! This results from the rela-
tively strong correlation betweenv* and ^ef&* that is
clearly evident in Figs. 6 and 7, and in similar figures from
DNS21 that show precisely the same trend. Indeed, in Fig. 7,
the scalar dissipation conditioned on the turbulent frequency,

FIG. 7. Stationary conditional expectation of the scalar dissipation (Xf)
given the turbulent frequency (X) with Nz51. h: Rl528, Sc51; L:
Rl584,Sc51; s: Rl584,Sc5200. All other parameters are the same as
in Fig. 4.

FIG. 8. Stationary conditional expectation of the scalar dissipation (Xf)
given the scalar (Y). All other parameters are the same as in Fig. 3.
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^XfuX5x&5 K ef

^ef&
U v*

^v&
5xL ,

shows the same behavior with respect tox as found by DNS,
suggesting that Eq.~70! captures the essential physics of the
coupling between small-scale turbulent-frequency fluctua-
tions and scalar dissipation. As discussed in greater detail
below, the fact that the autocorrelation time ofv* is finite
and of the same order of magnitude as that of^ef&* in the
LSR model is also significant in determining the form of the
conditional scalar dissipation.

The model predicts, in good agreement with DNS, that
the scalar, scalar-dissipation correlation coefficient,
r(f2,ef), is nearly zero. The lack of significant correlation
between the scalar and scalar dissipation is also observed in
Fig. 8 for the conditional statistic:

^XfuY5x&5 K ef

^ef&
Uf8*

sf
5xL ,

and in Fig. 9 for the conditional scalar Laplacian:

^DuY5x&5 K G¹2f8

^rf&sf
Uf8*

sf
5xL .

Note that a sufficient condition for a Gaussian scalar pdf is
that the curves in both figures be linear inx as appears to be
the case for23<Y<3 ~cf. Fig. 3!. Nearly identical behav-
ior is found from DNS.21

5. Scalar-variance ratio statistics

Stationary moments for the scalar-variance ratio are pre-
sented in Tables VI and VII. As noted earlier,F plays a key
role in determining the extent of non-Gaussian behavior in
the scalar pdf. As is evident from Table VI, the magnitude of
the fluctuations inF, as measured by the standard deviation
sF , is strongly correlated with the extent of non-Gaussianity
in Table III. The higher-order moments in Table VII indicate
that the shape of the pdf is strongly dependent on the simu-
lation parameters. For example, the pdf of

S5
F2^F&

sF
,

for Sc5200 shown in Fig. 10 is slightly shewed towards
positive values. As expected from the model formulation, the
presence of a mean scalar gradient greatly reducessF . The
effect of reducing the diffusive-mixing parameter,f D , is
shown in Table VIII where it can be seen that smaller values
of f D lead to larger fluctuations inF and eventually to nu-
merical instability. In theory, DNS data could be employed
to estimatef D from the diffusive-mixing model:

TABLE VII. Stationary moments of the pdf of the scalar–variance ratio
(F) with f D51. First three rows:Sf251. Last three rows:Sf250.

Rl , Sc, Nz 28, 1, 1 84, 1,1 84, 1, 3 84, 200, 1

Skewness -0.09 -0.53 -0.53 0.00
Kurtosis 2.86 3.35 3.61 3.10
Superskewness 13.1 22.0 30.0 16.0
Skewness 0.52 0.05 -0.14 0.40
Kurtosis 3.48 3.04 3.14 3.50
Superskewness 25.9 15.5 17.3 26.5

TABLE VIII. Effect of diffusive-mixing parameter (f D) on selected station-
ary scalar statistics withRl584, Sc51, Nz51, and Sf250. When
f D<0.4, the simulation becomes statistically unstable before attaining a
statistically stationary state.

f D 1.0 0.8 0.6 0.4

sF 0.171 0.218 0.234 0.366
Kurtosis 3.09 3.15 3.17 3.13
Superskewness 16.4 16.4 17.7 17.0

FIG. 9. Stationary conditional expectation of the scalar Laplacian
@D5(G¹2f8)/(^rf&sf)# given the scalar (Y). All other parameters are the
same as in Fig. 3.

FIG. 10. Stationary pdf of the scalar–variance ratio (S5(F2^F&)/sF).
Dashed curve: Gaussian pdf. All parameters are the same as in Fig. 3.
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f D~^f82&2^f82uW &!5
^G¹2f82uW &

2^rf&
,

but this would require Lagrangian conditional statistics that
are difficult to obtain with sufficient accuracy from DNS
with Sc'1. Note, however, that the effective sample size of
the scalar field in a Kolmogorov-scale fluid particle can be
increased by using larger values ofSc for which DNS is
unfeasible. For this case, it may be possible to extract con-
ditional statistics from high-Sc experimental data51 where,
for example, the conditional variance^f82uW & would cor-
respond to the variance in a 3-D, Kolmogorov-scale mea-
surement window at a fixed time, and multiple samples could
be obtained by extracting data over many instants in time.

6. Temporal statistics

The one-point, one-time statistics presented thus far pro-
vide no information about the temporal behavior of the sto-
chastic models. This information can be extracted from La-
grangian time series such as those presented in Fig. 11 where
the dimensionless time is defined byt*5^v&t. ~No DNS
Lagrangian statistics for the scalar quantities have been re-
ported in the literature. However, it should possible61 and of
considerable interest to compute them for comparison with
model predictions.! Qualitatively, it is clear that the time
series for the scalar quantities (vf

† andF) are smoother than
that of the turbulent frequency. Moreover, it can also be ob-
served that peaks in the scalar quantities occur with a short
time delay after peaks in the turbulent frequency, and that the
time series forF is considerably smoother than the other
two. These observations can be made quantitative by com-
puting the Lagrangian stationary auto- and cross-correlation
functions defined for arbitrary second-order stationary, zero-
mean, Lagrangian time seriesT1(t) andT2(t) by

r i~t!5
^Ti~ t !Ti~ t1t!&

^Ti
2~ t !&

and

r1,2~t!5
^T1~ t !T2~ t1t!&

^T1
2~ t !&1/2^T2

2~ t !&1/2
,

respectively.~Note that stationarity implies that the right-
hand sides are independent oft.! Lagrangian auto- and cross-
correlation functions for the LSR model appear in Fig. 12.
From the behavior of its auto-correlation function near
t*50, it can be seen thatv* becomes uncorrelated expo-
nentially fast@as would be expected for a random process
driven by white-noise, Eq.~57!# with a dimensionless auto-
correlation time of approximately 0.06 ('2.8tK where
tK51/Re150.031 is the dimensionless Kolmogorov time
scale!. On the other hand, the auto-correlation functions for
vf
† andF both have zero slope att*50, reflecting the fact

that their time series are differentiable~or twice differen-
tiable in the case ofF) and, hence, relatively smooth func-
tions of time. Also note that their auto-correlation times are
approximately the same as that ofv* . The existence of a
time delay is confirmed by the cross-correlation functions.

FIG. 11. Example Lagrangian time series following a notional particle
found with Rl584 and Sc51. The dimensionless time is defined by
t*5^v&t. All other parameters are the same as in Fig. 4. Solid line:v* ;
L: vf

† ; s: F.

FIG. 12. Lagrangian auto- and cross-correlation functions withCx51 and
all other parameters are as in Fig. 4. Top—s: v* ; L: vf

† ; h: F.
Bottom—s: v* andvf

† ; L: vf
† andF; h: v* andF.
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For example,v* (t* ) is most strongly~positive! correlated
with vf

† (t*10.6tK) and ~negative! with F(t*13.2tK),
while vf

† (t* ) is most strongly~negative! correlated with
F(t*12.4tK). Finally, as discussed below, it is important to
keep in mind that these results are strongly dependent on the
choice of Cx51 in the model forv* . In particular, if
Cx;1/Re1 then the auto-correlation times will no longer
scale liketK ~Fig. 14!.

7. Effect of the auto-correlation time

In the Lagrangian pdf model forv* , Cx controls the
auto-correlation time and, since it describes processes near
the Kolmogorov scale, the latter is assumed to scale like
1/Re1. Nevertheless, available DNS statistics61 suggest that
the Lagrangian auto-correlation time may be independent of
Re1, in which caseCx;1/Re1. The effect ofCx on the
predictions of the LRM model has thus been investigated,
and the results are presented in Table IX and Figs. 13–15. As
noted earlier, a stretched-exponential pdf for the scalar dis-
sipation is predicted for all three values ofCx ~i.e., if the pdf
of X is stretched exponential, then so is that ofXf). Never-
theless,Cx has a strong effect on the correlation coefficient
r(e,ef), and on the magnitude of the moments of the scalar
dissipation pdf. Experimentation has revealed that all of
these statistics have their maximum values~and are closest to
DNS! whenCx'1. On the other hand, the largest value of
sF occurs with the smallest value ofCx . The conditional
scalar dissipation, presented in Fig. 13, also shows a strong
dependence onCx . ~Qualitatively, the conditional scalar dis-
sipation found withCx51/Re1 agrees most closely with the
DNS results.21! For Cx51/Re1, ^XfuX5x& falls off more
quickly with increasingx than is seen withCx51, indicating
that large values of the scalar dissipation are less correlated
with large values of the turbulent frequency when the auto-
correlation time is increased. This behavior can be under-
stood by observing that in the LSR modelXf;vf

†F so that
the effect of changing the autocorrelation time will depend
on its influence on bothvf

† andF. Scatter plots of these two
variables versusv* reveal that asCx decreases,F is more
strongly affected, and that for largev* the value ofF be-
comes significantly smaller asCx decreases, thereby de-
creasingXf . In the limit Cx→0, the LSR variables will be
in a quasi-equilibrium state where all time derivatives are
approximately zero. LettingS5Sf2 /^f82&, the model equa-
tion for F in this limit then yields (f D51)

F5
S1^rf&
S1vf

† .

Noting that if 0,S, then^rf&5S; the limiting behavior for
Xf is thus found to be

Xf51, if S50

or

Xf5C
vf
†

11vf
† , otherwise,

whereC511^1/vf
† &. Note that the second relation above

agrees well with the caseCx51/Re1 in Fig. 13, and that the

model predicts thatef* andv* will be nearly uncorrelated in
the absence of a mean scalar gradient ifCx;1/Re1. The
latter has been confirmed from simulations and is in sharp
contrast to the caseCx51 where the conditional scalar dis-
sipation is nearly the same in the absence of or with a mean
scalar gradient. Conversely, when 1!Cx both vf

† and F

FIG. 13. Effect of the auto-correlation time of the turbulent frequency on
the stationary conditional expectation of the scalar dissipation (Xf) given
the turbulent frequency (X) found with Rl584, Sc51, andNz51. All
other parameters are the same as in Fig. 1.h: Cx51/Re1; s: Cx51; L:
Cx510.
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become uncorrelated fromv* , and the latter behaves more
and more like a delta-correlated random process~i.e., the
‘‘white-noise’’ limit employed in earlier studies47,48!. For
good agreement with the DNS data, it is thus important that
the auto-correlation time ofv* be larger than the character-
istic scalar-dissipation diffusion time@1/(Cd^r &o

†) } 1/Re1# in
the LSR model~compare this conclusion with those concern-
ing the white-noise limit in Holzer and Sigga60!. The auto-
and cross-correlation functions presented in Figs. 14 and 15
confirm these observations. Additionally, as can be seen
from Fig. 14, whenCx;1/Re1 the cross-correlation between
v(t* ) andvf

† (t* ) is positive and nearly unity, implying that
vf
† is nearly a deterministic increasing function ofv* . The

DNS results21 ~with a uniform mean scalar gradient! for
^XfuX5x& atRl584 display a limiting value for largex of
approximately 2.4 which agrees well with limiting expres-
sion given above witĥ 1/vf

† &'1.4. The latter is slightly
larger than the LSR model prediction of^1/vf

† &51.13 with
Cx51/Re1, suggesting that the appropriate value ofCx lies
near the left-hand side of the interval (1/Re1 ,1).

From the above results, we can conclude that for station-
ary isotropic turbulence~i! the scalar and scalar dissipation
statistics predicted by the LSR model are in satisfactory
agreement with available DNS data;~ii ! the role of ‘‘small-
scale intermittency’’ of the scalar dissipation~viz., turbulent
frequency! in the generation of non-Gaussian scalar statistics
is consistent with other studies;50,60 ~iii ! the model predic-
tions are fairly insensitive to the auto-correlation time, pro-
videdCx<1; ~iv! the scalar dissipation moments found with
Cx'1 agree best with DNS, but agreement is adequate when
Cx;1/Re1; ~v! the conditional scalar dissipation found with
Cx51/Re1 agrees most closely with DNS;~vi! DNS results
for the conditional scalar dissipation withSf250 would be
useful for determining ifCx;1/Re1 in the turbulent fre-
quency model;~vii ! experimental measurements of Lagrang-
ian conditional scalar statistics in high-Scflows may be use-
ful for validating the statistics ofF and the diffusive-mixing
model; and~viii ! detailed Lagrangian DNS statistics for the
scalar quantities are needed to further validate the temporal
statistics predicted by the LSR model.

FIG. 14. Lagrangian auto- and cross-correlation functions withCx51/Re1
and all other parameters are as in Fig. 12.~Note the change in the time
scale.! Top—s: v* ; L: vf

† ; h: F. Bottom—s: v* andvf
† ; L: vf

† and
F; h: v* andF.

FIG. 15. Lagrangian auto- and cross-correlation functions withCx510 and
all other parameters are as in Fig. 12. Top—s: v* ; L: vf

† ; h: F.
Bottom—s: v* andvf

† ; L: vf
† andF; h: v* andF.
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B. Transient scalar statistics in stationary, isotropic
turbulence

The second case, unlike the first which dealt with small-
scale~presumably universal! phenomena, is strongly depen-
dent upon the initial conditions of the large scales and,
hence, will be highly flow dependent. Due to this depen-
dence on large scales, experimental62 and DNS22 results for
transient statistics for such flows are often plagued by the
effects of an inadequate sample size~i.e., over a sufficient
number of integral length scales!, leading to large statistical
fluctuations.59 This fact makes detailed quantitative compari-
sons with experimental/DNS data difficult. Nevertheless, a
qualitative comparison with the LSR model is possible, and
will suffice to illustrate the model’s ability to capture non-
Gaussian scalar behavior due to large-scale inhomogeneities.

1. Model problem

In the model problem to be considered, we will again
assume the turbulence to be fully developed, isotropic, and
stationary. The scalar spectrum, on the other hand, will be
assumed to be initially out of equilibrium so that transient
scalar statistics result as it relaxes to a fully developed form.
In the LSR model, this implies that the dynamic variables
~e.g.,^§ i , j&

†) must be initialized to represent the desired ini-
tial scalar spectrum. In the DNS22 study that will be used for
a qualitative model comparison, the most significant non-
Gaussian behavior is found when the initial scalar spectrum
is bimodal with one strong peak at small wavenumbers
(0,k!k0) and a second at relatively high wavenumbers
(k0!k,kU). In the LSR model, this would correspond to
initializing all spectral fractions, except^§1&

† and^§2,n2&
†, to

zero. @Note thatvf
† must also be initialized and, theoreti-

cally, is quite arbitrary since an infinitesimal amount of sca-
lar energy placed at a very large wavenumber could result in
^§D&†'0, butvf

†;1. Its initialization, however, is of little
consequence since it rapidly (t*;1/Re1) relaxes to a
quasi-SS value determined, primarily, by the scalar flux from
large scales.# Nevertheless, since in the LSR model all large
scales are ‘‘lumped’’ into stage 1 and treated as a simple
source of scalar energy, care must be taken when applying
the model to flows dominated by large scales. In practice, at
least three possibilities present themselves for handling such
flows.

~1! As noted in Sec. II, the large scales can be simulated
separately~e.g., LES! up to a cut-off wavenumber,kc ,
located somewhere in the inertial subrange~stage 2!. The
LSR model could then be applied as a subgrid model
with the scalar flux atkc provided as model input.

~2! The large scales can be treated using classical ‘‘turbulent
diffusivity’’ ~or scalar flux! models~e.g., standard La-
grangian pdf methods! on a computational grid of size
L'2p/k0. Large-scale scalar structures would then fall
across one or more grid cells~hereinafter called region
1! and all notional particles within this region would be
initialized with ^§1&

†51. Likewise, a region of small-
scale structures~region 2! could coexist between the
large-scale structures, and within this region
^§2,n2&

†51 ~or whatever initialization that is appropriate

for a given initial scalar spectrum!. Notional particles
with different initializations would then be advected be-
tween the grid cells, and the inertial- and diffusive-
mixing terms ~e.g., I f and Df , respectively! in the
LSR model would serve to ‘‘homogenize’’ the scalar
field at all scales.

~3! Since the DNS simulations are homogeneous on large
scales (L! l ), the spatial mixing by ‘‘turbulent diffu-
sion’’ can be approximated by splitting the notional par-
ticles into two sets~i.e., regions 1 and 2!, and, for the
ni particles in seti , by replacing the unconditional
means in the LSR model by weighted means, e.g.,

^§1&
i5wi,1~ t* !^§1&11wi ,2~ t* !^§1&2 ,

where^•& i is the~conditional! expected value computed
using only those particles in seti . Then, taking the char-
acteristic large-scale mixing time to be 1/^v&, the
weights become

w1,1~ t* !5
1

n11n2
~n11n2e

2t* !,

w2,2~ t* !5
1

n11n2
~n21n1e

2t* !,

andwi ,2512wi ,1 . This is the method that we shall em-
ploy in the sequel withn15n2 ~regions of equal vol-
ume!, and the initial conditions given in Table X.@The
‘‘global average’’ in Table X is defined by
^•&5(n1^•&11n2^•&2)/(n11n2).#

In the simulations, two sets of initial conditions will be
considered~Table X!. The first, denoted by IC1, corresponds
to an initial scalar spectrum with one-half of the energy at
large scales, and the other half at small scales~the total initial
scalar energy is arbitrarily set to unity!. IC1 thus models the
double-hat DNS initial conditions of Jaberiet al.22 The sec-
ond set, denoted by IC2, employs the same spectral fractions,
but assumes that region 1~large scales! has a much smaller

TABLE IX. Stationary moments of the pdf of the scalar dissipation (Xf)
and selected statistics found withRl584, Sc51, Nz51, andSf251 for
selected values of the auto-correlation time of the turbulent frequency@Cx

in Eq. ~58!#. Simulations run with 105 notional particles.

Cx 1/Re1 1 10Re1 DNS

Variance 2.18 2.70 1.94 5.6862.17
Skewness 3.26 4.70 3.20 6.8960.61
Kurtosis 20.6 48.2 20.6 84.2616.8
Superskewness 1750 14400 1830 28600612200
^r & 1.82 1.95 1.89 2.22
r(e,ef) 0.130 0.217 0.055 0.165
sF 0.179 0.120 0.042 •••

TABLE X. Non-equilibrium spectral initial conditions for IC1 and IC2 with
Rl584 andSc51. All other parameters are as in Tables I and III. Initial
conditions for remaining model variables:F51, ^§2,1&

†5^§2,2&
†50.

IC1 ^f82& i IC2 ^f82& i ^§1&
† ^§2,3&

† vf
†

Region 1 1.0 0.04 1.0 0.0 0.0
Region 2 1.0 1.96 0.0 1.0 6.0
Global average 1.0 1.0 0.5 0.5 3.0
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spectral energy than region 2. In physical space, IC2 would
correspond to large areas with nearly zero scalar fluctuations
~region 1!, separated by areas with high scalar fluctuations
over short length scales~region 2!. This type of scalar field
has been observed in earlier numerical studies of scalar
mixing,50,60 and is seen experimentally in grid turbulence
where scalar fluctuations are generated by line~grid! sources
separated by approximately one integral scale.62 For both
sets of initial conditions, we will again assume that the scalar
and scalar gradient fields are initially Gaussian~with a pos-
sibility different variance for each region!, and that all no-
tional particles have initiallyF51. In addition, the effect of
including a mean scalar gradient on the non-Gaussian behav-
ior will be considered.

2. Evolution of the scalar spectrum

Figures 16 and 17 have been included to illustrate the
LSR model’s prediction of transient scalar spectrum. Since
the results are qualitatively similar for both IC1 and IC2,
only one set of curves has been included in the figures. In
Fig. 16, the evolution of̂ rf& andr(e,ef) is presented and
can be divided into two distinct time periods. The first period
(t*,0.5) is dominated by the fast relaxation of the small
scales and, during this period, most of the spectral energy at
small scales~i.e., in region 2! dissipates. The second period
(0.5,t* ) is dominated by the slow relaxation of large
scales, the homogenization of the scalar field by ‘‘turbulent
diffusion,’’ and the gradual approach to spectral equilibrium.
Note that the dimensionless Kolmogorov time scale for this
flow is tK50.031 and, hence, the first period is relatively
long. ~Nevertheless, its length is proportional to the charac-
teristic time scale of the small scales:t2,350.125/̂ v&.! The
spectral fractions, appearing in Fig. 17, display a similar be-
havior and are consistent with the DNS results~compare
with Fig. 11 in Jaberiet al.22!. Finally, note that scalar dis-
sipation statistics@viz., r(e,ef)] reach their final values rela-

tively quickly due to the fact that the characteristic time scale
of scalar dissipation is proportional to 1/Re1 in the LSR
model (Cx51).

3. Evolution of the scalar pdf

The evolution of the superskewness of the scalar pdf is
shown in Fig. 18. From these curves it can be seen that the
transient scalar pdf is highly non-Gaussian, especially in the
absence of a mean scalar gradient, relaxing to a self-similar
form only after t*'3. By construction, the scalar pdf for
IC1 is initially Gaussian; however, since the large and small
scales have the same fraction of the total spectral energy, it
rapidly becomes non-Gaussian due to the loss of spectral
energy in the small scales~i.e., the scalar variance in region
2 decreases much faster than that in region 1!. The scalar pdf

FIG. 16. Evolution of the scalar dissipation rate and the scalar-mechanical
dissipation correlation coefficient with non-equilibrium spectral initial con-
ditions,Rl584, Sc51, andNz51. s: ^rf&; L: r(e,ef). One Kolmog-
orov time for this flow corresponds tot*50.031.

FIG. 17. Evolution of the spectral distribution with non-equilibrium spectral
initial conditions.s: ^§1&; h: ^§2,1&; L: ^§2,2&; n: ^§2,3&. All parameters
are the same as in Fig. 16.

FIG. 18. Evolution of the scalar superskewness with non-equilibrium spec-
tral initial conditions.s: IC1 with Sf250; L: IC1 with Sf251; h: IC2
with Sf250; Gaussian value: 15.
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for IC2, on the other hand, is initially highly non-Gaussian,
but evolves towards a Gaussian form by the same mecha-
nism. The large effect of the presence of a mean scalar gra-
dient is also evident in the figure where it can be seen that
the maximum deviation from Gaussian behavior is over three
times larger whenSf250 than whenSf251. Scalar pdf at
t*50.4, presented in Fig. 19, further illustrate the strong
‘‘smoothing’’ effect of a mean scalar gradient. Nearly iden-
tical behavior is seen from DNS.22 The essential difference
between zero- and uniform mean scalar gradient results is the
fact the latter has a Gaussian scalar variance source term@Eq.
~92!# that is uniform in both regions. Thus, as the initial
scalar energy dissipates away, it is quickly~and uniformly!
replenished until both regions are statistically identical at all
scales. Note that, in addition, if the source term produced
regions where the scalar variance and spectral distribution
were correlated ~e.g., the ‘‘ramp-and-cliff’’ structures seen
in uniform mean gradient studies50,60,63!, then the scalar pdf
would be further modified from the Gaussian form. In prin-
ciple, the LSR model is applicable to such flows; however,
the conditional scalar variance source model@Eq. ~92!#
would need to be modified to account for the correlations.

4. Evolution of conditional scalar statistics

The role of the various unclosed terms in the Lagrangian
scalar pdf equation@Eq. ~83!# in the production of transient
non-Gaussian scalar pdf can be highlighted by computing the
conditional scalar dissipation̂XfuY5x&, the conditional
scalar Laplacian̂DuY5x&, and the conditional scalar flux,

^AuY5x&5 K u•¹f8

^v&sf
Uf8*

sf
5xL .

As noted earlier, if all three functions are linear inx, then the
scalar pdf will be Gaussian. These quantities, computed from
the LSR model at four different times for IC2 withSf250,
appear in Figs. 20–22, respectively. Looking first at the con-
ditional scalar dissipation, note that it displays the parabolic
form found in grid turbulence62 and is often taken as a tell-
tale sign of non-Gaussian behavior.50,60 ~It is, however, not a

FIG. 19. Scalar pdf att*50.4 for IC1.s: Sf250; L: Sf251. Dashed
curves: Gaussian pdf.

FIG. 20. Conditional expectation of the scalar dissipation (Xf) given the
scalar (Y) for IC2 with Sf250. s: t*50.2;h: 0.4;L: 0.8;n: 1.6.

FIG. 21. Conditional expectation of the scalar Laplacian
@D5(G¹2f8)/(^rf&sf)# given the scalar (Y) for IC2 with Sf250. s:
t*50.2;h: 0.4;L: 0.8;n: 1.6.
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necessarycondition since the transient conditional dissipa-
tion for IC1 has aninverted-parabolic form!! The appearance
of a parabolic form for IC2 is easily understood from the
initial conditions: large scalar fluctuations are initially corre-
lated with large scalar dissipation. The conditional scalar La-
placian ~Fig. 21! and the conditional scalar flux@Eq. ~22!#
also display strongly non-linear forms, and also behave dif-
ferently for different initial conditions.~The former is often
modeled as a linear function, even in cases where the scalar
pdf is highly non-Gaussian.19! Neither of these quantities are
available from the DNS study22 for comparison with the
model, but both would be particularly useful for model vali-
dation and improvement. It would be important, however, to
measure them all for exactly the same flow at the same time
instant since their forms are highly dependent on the initial
conditions.

From the above results, we can conclude that large-scale
inhomogeneities in the initial scalar spectral distribution
have a strong and sustained effect on the evolution of the
scalar field statistics, and that these effects are successfully
captured by the LSR model. Future DNS/experimental stud-
ies of such flows are urged to report conditional scalar sta-
tistics, in particular,̂ AuY5x&, in order to allow for a more
complete validation of the inertial-range mixing term in the
LSR model.

V. CONCLUSIONS

A Lagrangian pdf version of the spectral relaxation
model for the scalar dissipation rate in homogeneous turbu-
lent flows has been derived and verified against DNS data.
The Lagrangian spectral relaxation model differs from single
time-scale models by the inclusion of multiple turbulence
time scales through a simple description of the cascade of
scalar energy from large to small scales, and by the appear-
ance on the instantaneous turbulent frequency to describe the
vortex-stretching history of the fluid particle. Based on the
comparisons with DNS, it is clear that the model for the

turbulent frequency plays an important role in the overall
satisfactory agreement of the scalar field statistics. In particu-
lar, it was shown that a stretched-exponential form for the
scalar dissipation pdf results only in the case where the tur-
bulent frequency pdf is also stretched exponential, that the
auto-correlation time of the turbulent frequency strongly in-
fluences the joint statistics, and that the mean turbulent fre-
quency has a significant effect on the equilibrium mean sca-
lar dissipation rate. Further improvement in scalar-
dissipation models in general will thus depend directly on
improvements in the turbulent frequency model~e.g., in the
description of non-equilibrium effects and of large scales!.

The field of application of the Lagrangian spectral relax-
ation model can be extended in various ways beyond the
simple homogeneous flows considered in the present work.
In its current form, the model is directly applicable to the
study of differential diffusion of passive scalars in homoge-
neous turbulence.30 With minor modifications, it should also
be possible to apply the model to the study of the important
areas of homogeneous non-premixed turbulent reacting flows
near extinction, inhomogeneous scalar mixing problems, and
premixed turbulent combustion.64 Furthermore, application
of the model to the description of small-scale mixing~micro-
mixing! in the chemical process industry11 should be particu-
larly fruitful due to the relative abundance of flows far from
scalar-spectral equilibrium~e.g., reacting point source in a
fully developed turbulent jet65,66 or in a fully developed tur-
bulent pipe flow24!.

Note added in proof. The most recent version of the
model employs the following definitions of the molecular
dissipation rate: ^rf&05^ef&/^fD8

2& and ^rf&1

5^ef&* /^fD8
2&* .
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